
Model Evaluation and
Smoothing
17 September 2025

CMPU 366 · Natural Language Processing

Where are we?

The idea of a statistical language model (LM) is to
compute the probability of a sequence of words,

P(W) = P(w1, w2, w3, …, wn),

or the probability of an upcoming word given
previous words,

P(wn | w1, w2, w3, …, wn−1).

In practice, we make a simplifying Markov
assumption that we can predict the probability of a
future event without looking too far into the past,
e.g.,

P(blue | The, water, of, Walden, Pond, is, so, beautifully)

≈ P(blue | so, beautifully)
Andrei Markov

We estimate the true probability of a sequence of
tokens using n-grams – sequences of tokens that are
always n tokens long, e.g., bigrams (n = 2) or trigrams
(n = 3).

Generating text

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I want

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I want to

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I want to eat

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I want to eat food

Generate random sentences:
Choose a random bigram (<s>, w) according to its probability.

Now choose a random bigram (w, x) according to its probability.

And so on until we randomly choose </s>.

<s> I want to eat food </s>

Approximating Shakespeare

Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you
enter

Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he
is trim, captain.

Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he
is trim, captain.

3-gram
Fly, and will rid me these news of price. Therefore
the sadness of parting, as they say, ’tis done.

This shall forbid it should be branded, if renown
made it empty.

Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he
is trim, captain.

3-gram
Fly, and will rid me these news of price. Therefore
the sadness of parting, as they say, ’tis done.

This shall forbid it should be branded, if renown
made it empty.

4-gram
King Henry. What! I will go seek the traitor
Gloucester. Exeunt some of the watch.

It cannot be but so.

Fitting and overfitting

We estimate the probabilities of n-grams using the
maximum likelihood estimate (MLE) – the estimate
that maximizes the likelihood of the training data
given the model.

For unigram probabilities,
that’s the fraction of times the word occurs in the corpus:

For bigram probabilities,
that’s the number of times that word follows the other word divided
by the number of times the other word occurs in the corpus:

P(wi) =
C(wi)
|V |

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)

Probability is assigned exactly based on the n-gram
count in the training corpus

Anything not found in the training corpus gets
probability 0.

Shakespeare as a corpus

	884 647	 tokens

	 29 066	 types

Shakespeare produced 300 000 bigram types out of
844 million possible bigrams.

Using MLE, 99.96% of the possible bigrams will have
a probability of 0.

The perils of overfitting

N-grams only work well for word prediction if the
test corpus looks like the training corpus.

In real life, it often doesn’t.

We need to train robust models that generalize!

If we assume every sequence of words we’ll ever see
occurs in our training data, that’s a kind of
overfitting.

We want to learn from the training data but also
generalize.

Smoothing and generalization

Laplace smoothing

Training set:
… denied the allegations (3×)

… denied the reports (2×)

… denied the claims (1×)

… denied the request (1×)

Test set:
… denied the attack

… denied the man

Problem: Sparsity

In Laplace smoothing or add-one smoothing, we
pretend we saw each word one more time than we
did.

P(wi ∣ wi−1, wi−2) =
c(wi−2, wi−1, wi)

c(wi−2, wi−1)
P*(wi ∣ wi−1,, wi−2) =

c(wi−2, wi−1, wi) + 1
c(wi−2, wi−1) + V

The inWXiWion of VmooWhing (fUom Dan Klein)

� When we have sparse statistics:

� Steal probability mass to generalize better

P(w | denied theͿ
ϯ allegations
Ϯ reports
ϭ claims
ϭ request
ϳ total

P(w | denied theͿ
Ϯ.ϱ allegations
ϭ.ϱ reports
Ϭ.ϱ claims
Ϭ.ϱ request
Ϯ other
ϳ total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

aW
Wa

ck

re
qu

es
t

m
an

oX
Wc

om
e

«

al
le

ga
tio

ns

aW
Wa

ck

m
an

oX
Wc

om
e

«al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

The inWXiWion of VmooWhing (fUom Dan Klein)

� When we have sparse statistics:

� Steal probability mass to generalize better

P(w | denied theͿ
ϯ allegations
Ϯ reports
ϭ claims
ϭ request
ϳ total

P(w | denied theͿ
Ϯ.ϱ allegations
ϭ.ϱ reports
Ϭ.ϱ claims
Ϭ.ϱ request
Ϯ other
ϳ total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

aW
Wa

ck

re
qu

es
t

m
an

oX
Wc

om
e

«

al
le

ga
tio

ns

aW
Wa

ck

m
an

oX
Wc

om
e

«al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

In Laplace smoothing or add-one smoothing, we
pretend we saw each word one more time than we
did.

P(wi ∣ wi−1, wi−2) =
c(wi−2, wi−1, wi)

c(wi−2, wi−1)
P*(wi ∣ wi−1,, wi−2) =

c(wi−2, wi−1, wi) + 1
c(wi−2, wi−1) + V

Size of the vocabulary

The inWXiWion of VmooWhing (fUom Dan Klein)

� When we have sparse statistics:

� Steal probability mass to generalize better

P(w | denied theͿ
ϯ allegations
Ϯ reports
ϭ claims
ϭ request
ϳ total

P(w | denied theͿ
Ϯ.ϱ allegations
ϭ.ϱ reports
Ϭ.ϱ claims
Ϭ.ϱ request
Ϯ other
ϳ total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

aW
Wa

ck

re
qu

es
t

m
an

oX
Wc

om
e

«

al
le

ga
tio

ns

aW
Wa

ck

m
an

oX
Wc

om
e

«al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

The inWXiWion of VmooWhing (fUom Dan Klein)

� When we have sparse statistics:

� Steal probability mass to generalize better

P(w | denied theͿ
ϯ allegations
Ϯ reports
ϭ claims
ϭ request
ϳ total

P(w | denied theͿ
Ϯ.ϱ allegations
ϭ.ϱ reports
Ϭ.ϱ claims
Ϭ.ϱ request
Ϯ other
ϳ total

al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

aW
Wa

ck

re
qu

es
t

m
an

oX
Wc

om
e

«

al
le

ga
tio

ns

aW
Wa

ck

m
an

oX
Wc

om
e

«al
le

ga
tio

ns

re
po

rt
s

cl
ai

m
s

re
qu

es
t

Berkeley Restaurant Project:
Original bigram counts

w1

w2

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

Berkeley restaurant corpus:
Laplace-smoothed bigram counts

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3

want 3 1 609 2 7 7 6 2

to 3 1 5 687 3 1 7 212

eat 1 1 3 1 17 3 43 1

chinese 2 1 1 1 1 83 2 1

food 16 1 16 1 2 5 1 1

lunch 3 1 1 1 1 2 1 1

spend 2 1 2 1 1 1 1 1

w1

w2

Berkeley restaurant corpus:
Laplace-smoothed bigram probabilities

w1

w2

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

We can go from add-1 smoothing to add-k, letting
us adjust how smooth the resulting distribution is.

Laplace smoothing is a blunt instrument.
It isn’t usually used for n-grams; there are better methods.

However, it is used to smooth other NLP models, e.g.,

for text classification or

in domains where the number of zeros isn’t so huge.

Interpolation

Sometimes it helps to use less context.
Condition on less context for contexts you haven’t learned much
about

Backof:
Use trigram if you have good evidence.

Otherwise, use bigram.

Otherwise, use unigram.

Interpolation
Mix unigrams, bigrams, and trigrams. Works better than backoff!

Linear interpolation

Simple interpolation: Estimate the trigram probabilities by mixing
unigram, bigram, and trigram probabilities:

̂P(wn ∣ wn−2wn−1) = λ1P(wn) +
λ2P(wn ∣ wn−1) +
λ3P(wn ∣ wn−2wn−1)

where the λs sum to 1

How do we pick the best λ values?

Use a held-out corpus:

Choose λs to maximize the probability of held-out
data:

Fix the n-gram probabilities (on the training data)

Then search for λs that give the largest probability to the held-out set:

log P(w1…wn ∣ M(λ1…λk)) = ∑
i

log PM(λ1…λk)(wi ∣ wi−1)

Dan	Jurafsky

How	to	set	the	lambdas?
• Use	a	held-out corpus

• Choose	λs to	maximize	the	probability	of	held-out	data:
• Fix	the	N-gram	probabilities	(on	the	training	data)
• Then	search	for	λs that	give	largest	probability	to	held-out	set:

Training	Data Held-Out	
Data

Test	
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Unknown words

If we know all the words in advance, it’s a closed
vocabulary task.

In an open vocabulary task, we might see words at
test time that we didn’t encounter in training.

These are called out of vocabulary (OOV) words.

We define the token <UNK> for unknown words.

Training of <UNK> probabilities:
Create a fixed lexicon L of size V.

At the text normalization phase, any training word not in L changed to
<UNK>.

Train language model probabilities as if <UNK> were a normal word.

At decoding time,
Use <UNK> probabilities for any word not in training.

Evaluating language models

So, we’ve counted a bunch of words, but is our
language model any good?

Does our language model prefer good sentences to
bad ones?

Assign higher probability to “real” or frequently observed sentences vs
“ungrammatical” or rarely observed ones?

We learn the model from a training set and test its
performance on a test set of data we haven’t seen.

An evaluation metric tells us how well our model
does on the test set.

Does our language model prefer good sentences to
bad ones?

Assign higher probability to “real” or frequently observed sentences vs
“ungrammatical” or rarely observed ones?

We learn the model from a training set and test its
performance on a test set of data we haven’t seen.

An evaluation metric tells us how well our model
does on the test set.

Ethics alert!

Beware

We can’t allow test sentences into the training set
or we’ll assign them artificially high probability when
we see it in the test set.

This is called training on the test set, and it’s bad
science.

Extrinsic evaluation of n-gram models

The best evaluation for comparing two language
models is to use each model in some “real” task like
spelling correction, speech recognition, or machine
translation.

Run the task and get the accuracy with each model:
How many misspelled words were corrected properly?

How many words were translated correctly?

Compare the accuracy with the models.

Running an extrinsic (“in vivo”) evaluation can be
very time-consuming.

So, sometimes we use an intrinsic evaluation like
perplexity, which is a measure of probability
distribution similarity.

Perplexity is a bad approximation unless the test
data looks just like the training data.

So, it is generally only used in pilot experiments or
to compare models on the same dataset.

Perplexity: Intuition

The Shannon Game: How well can we predict the
next word?

Claude Shannon,
looking playful

Perplexity: Intuition

The Shannon Game: How well can we predict the
next word?

I always order pizza with cheese and ______

The 33rd president of the US was ______

I saw a _____

mushrooms	 0.1
pepperoni	 0.1
anchovies	 0.01
…
fried rice	 0.0001
…
and	 1e-100

Perplexity: Intuition

The Shannon Game: How well can we predict the
next word?

I always order pizza with cheese and ______

The 33rd president of the US was ______

I saw a _____

A better model of a text is one which assigns higher
probability to the word that actually occurs

Unigrams are terrible at this game.

mushrooms	 0.1
pepperoni	 0.1
anchovies	 0.01
…
fried rice	 0.0001
…
and	 1e-100

Perplexity

The best language model is one that best predicts an
unseen test set – gives the highest probability to the
sentences.

Perplexity is the inverse probability of the test set,
normalized by the number of words:

PP(W) = P(w1w2…wN)− 1
N

Perplexity

The best language model is one that best predicts an
unseen test set – gives the highest probability to the
sentences.

Perplexity is the inverse probability of the test set,
normalized by the number of words:

PP(W) = P(w1w2…wN)− 1
N = N

1
P(w1w2…wN)

= N

N

∏
i=1

1
P(wi ∣ w1…wi−1)

= N

N

∏
i=1

1
P(wi ∣ wi−1)

chain rule for bigrams

You can think of perplexity as a measure of how
“surprised” a model is by some data.

Low perplexity means the data is highly probable under the model; its
not surprised to see it.

Minimizing perplexity is the same as maximizing
probability.

The lower the perplexity, the better the model.

Example: Wall Street Journal corpus
Training set: 38 million words

Test set: 1.5 million words

Perplexity:

Unigram:	962

Bigram:	 170

Trigram:	 109 Lowest perplexity; best model

Hands-on practice:
SpaCy and n-grams

from spacy.lang.en import English

nlp = English(pipeline=[])

This is a pipeline for processing
natural language, including
performing tokenization.

from spacy.lang.en import English

nlp = English(pipeline=[])

doc = nlp("Hello world!")

for token in doc:
 print(token.text)

Hello
world
!

from spacy.lang.en import English

nlp = English(pipeline=[])

doc = nlp("Hello world!")

token = doc[1]
print(token.text) world

from spacy.lang.en import English

nlp = English(pipeline=[])

doc = nlp("Hello world!")

span = doc[1:3]
print(span.text) world!

Let’s use what we know about
working with text in Python –
including what we just saw
about spaCy – to investigate the
frequency of

words (unigrams) and

colocations (bigrams)

in Jane Austen’s novel Emma.

Acknowledgments

This class incorporates material from:
Carolyn Anderson, Wellesley College

Na-Rae Han, University of Pittsburgh

Nancy Ide, Vassar College

Ines Montani, Advanced NLP with spaCy

Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

