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Where are we?



The idea of a statistical language model (LM) is to 
compute the probability of a sequence of words, 

P(W) = P(w1, w2, w3, …, wn), 

or the probability of an upcoming word given 
previous words, 

P(wn | w1, w2, w3, …, wn−1).



In practice, we make a simplifying Markov 
assumption that we can predict the probability of a 
future event without looking too far into the past, 
e.g., 

P(blue | The, water, of, Walden, Pond, is, so, beautifully) 

≈ P(blue | so, beautifully)
Andrei Markov



We estimate the true probability of a sequence of 
tokens using n-grams – sequences of tokens that are 
always n tokens long, e.g., bigrams (n = 2) or trigrams 
(n = 3).



Generating text



Generate random sentences: 
Choose a random bigram (<s>, w) according to its probability. 

Now choose a random bigram (w, x) according to its probability. 

And so on until we randomly choose </s>.

<s> I
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Generate random sentences: 
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Generate random sentences: 
Choose a random bigram (<s>, w) according to its probability. 

Now choose a random bigram (w, x) according to its probability. 
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<s> I want to eat



Generate random sentences: 
Choose a random bigram (<s>, w) according to its probability. 

Now choose a random bigram (w, x) according to its probability. 

And so on until we randomly choose </s>.

<s> I want to eat food



Generate random sentences: 
Choose a random bigram (<s>, w) according to its probability. 

Now choose a random bigram (w, x) according to its probability. 

And so on until we randomly choose </s>.

<s> I want to eat food </s>



Approximating Shakespeare



Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of 
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you 
enter



Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of 
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you 
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is 
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he 
is trim, captain.
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save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you 
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is 
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he 
is trim, captain.

3-gram
Fly, and will rid me these news of price. Therefore 
the sadness of parting, as they say, ’tis done.

This shall forbid it should be branded, if renown 
made it empty.



Approximating Shakespeare

1-gram
To him swallowed confess hear both. Which. Of 
save on trail for are ay device and rote life have

Hill he late speaks; or! a more to leg less first you 
enter

2-gram
Why dost stand forth thy canopy, forsooth; he is 
this palpable hit the King Henry. Live king. Follow.

What means, sir? I confess she? then all sorts, he 
is trim, captain.

3-gram
Fly, and will rid me these news of price. Therefore 
the sadness of parting, as they say, ’tis done.

This shall forbid it should be branded, if renown 
made it empty.

4-gram
King Henry. What! I will go seek the traitor 
Gloucester. Exeunt some of the watch.

It cannot be but so.



Fitting and overfitting



We estimate the probabilities of n-grams using the 
maximum likelihood estimate (MLE) – the estimate 
that maximizes the likelihood of the training data 
given the model.



For unigram probabilities,  
that’s the fraction of times the word occurs in the corpus: 

 

For bigram probabilities,  
that’s the number of times that word follows the other word divided 
by the number of times the other word occurs in the corpus: 

P(wi) =
C(wi)
|V |

P(wi ∣ wi−1) =
C(wi−1, wi)

C(wi−1)



Probability is assigned exactly based on the n-gram 
count in the training corpus 

Anything not found in the training corpus gets 
probability 0.



Shakespeare as a corpus

	884 647	 tokens 

	 29 066	 types 

Shakespeare produced 300 000 bigram types out of 
844 million possible bigrams. 

Using MLE, 99.96% of the possible bigrams will have 
a probability of 0.



The perils of overfitting

N-grams only work well for word prediction if the 
test corpus looks like the training corpus. 

In real life, it often doesn’t.  

We need to train robust models that generalize! 

If we assume every sequence of words we’ll ever see 
occurs in our training data, that’s a kind of 
overfitting.  

We want to learn from the training data but also 
generalize.



Smoothing and generalization



Laplace smoothing



Training set: 
… denied the allegations (3×) 

… denied the reports (2×) 

… denied the claims (1×) 

… denied the request (1×) 

Test set: 
… denied the attack 

… denied the man 

Problem: Sparsity



In Laplace smoothing or add-one smoothing, we 
pretend we saw each word one more time than we 
did.

P(wi ∣ wi−1, wi−2) =
c(wi−2, wi−1, wi)

c(wi−2, wi−1)
P*(wi ∣ wi−1,, wi−2) =

c(wi−2, wi−1, wi) + 1
c(wi−2, wi−1) + V

The inWXiWion of VmooWhing (fUom Dan Klein)

� When we have sparse statistics:

� Steal probability mass to generalize better
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In Laplace smoothing or add-one smoothing, we 
pretend we saw each word one more time than we 
did.

P(wi ∣ wi−1, wi−2) =
c(wi−2, wi−1, wi)

c(wi−2, wi−1)
P*(wi ∣ wi−1,, wi−2) =

c(wi−2, wi−1, wi) + 1
c(wi−2, wi−1) + V

Size of the vocabulary
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Berkeley Restaurant Project: 
Original bigram counts

w1

w2

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0



Berkeley restaurant corpus: 
Laplace-smoothed bigram counts

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3

want 3 1 609 2 7 7 6 2

to 3 1 5 687 3 1 7 212

eat 1 1 3 1 17 3 43 1

chinese 2 1 1 1 1 83 2 1

food 16 1 16 1 2 5 1 1

lunch 3 1 1 1 1 2 1 1

spend 2 1 2 1 1 1 1 1

w1

w2



Berkeley restaurant corpus: 
Laplace-smoothed bigram probabilities

w1

w2

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058



We can go from add-1 smoothing to add-k, letting 
us adjust how smooth the resulting distribution is.



Laplace smoothing is a blunt instrument. 
It isn’t usually used for n-grams; there are better methods. 

However, it is used to smooth other NLP models, e.g., 

for text classification or 

in domains where the number of zeros isn’t so huge.



Interpolation



Sometimes it helps to use less context. 
Condition on less context for contexts you haven’t learned much 
about 

Backof: 
Use trigram if you have good evidence. 

Otherwise, use bigram. 

Otherwise, use unigram. 

Interpolation 
Mix unigrams, bigrams, and trigrams. Works better than backoff!



Linear interpolation

Simple interpolation: Estimate the trigram probabilities by mixing 
unigram, bigram, and trigram probabilities:

̂P(wn ∣ wn−2wn−1) = λ1P(wn) +
λ2P(wn ∣ wn−1) +
λ3P(wn ∣ wn−2wn−1)

where the λs sum to 1



How do we pick the best λ values?

Use a held-out corpus: 

Choose λs to maximize the probability of held-out 
data: 

Fix the n-gram probabilities (on the training data) 

Then search for λs that give the largest probability to the held-out set:

log P(w1…wn ∣ M(λ1…λk)) = ∑
i

log PM(λ1…λk)(wi ∣ wi−1)

Dan	Jurafsky

How	to	set	the	lambdas?
• Use	a	held-out corpus

• Choose	λs to	maximize	the	probability	of	held-out	data:
• Fix	the	N-gram	probabilities	(on	the	training	data)
• Then	search	for	λs that	give	largest	probability	to	held-out	set:

Training	Data Held-Out	
Data

Test	
Data

logP(w1...wn |M (λ1...λk )) = logPM (λ1...λk ) (wi |wi−1)
i
∑



Unknown words



If we know all the words in advance, it’s a closed 
vocabulary task. 

In an open vocabulary task, we might see words at 
test time that we didn’t encounter in training.  

These are called out of vocabulary (OOV) words.



We define the token <UNK> for unknown words. 

Training of <UNK> probabilities: 
Create a fixed lexicon L of size V. 

At the text normalization phase, any training word not in L changed to 
<UNK>. 

Train language model probabilities as if <UNK> were a normal word. 

At decoding time, 
Use <UNK> probabilities for any word not in training.



Evaluating language models



So, we’ve counted a bunch of words, but is our 
language model any good?



Does our language model prefer good sentences to 
bad ones? 

Assign higher probability to “real” or frequently observed sentences vs 
“ungrammatical” or rarely observed ones? 

We learn the model from a training set and test its 
performance on a test set of data we haven’t seen. 

An evaluation metric tells us how well our model 
does on the test set.



Does our language model prefer good sentences to 
bad ones? 

Assign higher probability to “real” or frequently observed sentences vs 
“ungrammatical” or rarely observed ones? 

We learn the model from a training set and test its 
performance on a test set of data we haven’t seen. 

An evaluation metric tells us how well our model 
does on the test set.

Ethics alert!



Beware

We can’t allow test sentences into the training set 
or we’ll assign them artificially high probability when 
we see it in the test set. 

This is called training on the test set, and it’s bad 
science.



Extrinsic evaluation of n-gram models

The best evaluation for comparing two language 
models is to use each model in some “real” task like 
spelling correction, speech recognition, or machine 
translation. 

Run the task and get the accuracy with each model: 
How many misspelled words were corrected properly? 

How many words were translated correctly? 

Compare the accuracy with the models.



Running an extrinsic (“in vivo”) evaluation can be 
very time-consuming. 

So, sometimes we use an intrinsic evaluation like 
perplexity, which is a measure of probability 
distribution similarity.



Perplexity is a bad approximation unless the test 
data looks just like the training data. 

So, it is generally only used in pilot experiments or 
to compare models on the same dataset.



Perplexity: Intuition

The Shannon Game: How well can we predict the 
next word? 

Claude Shannon,  
looking playful



Perplexity: Intuition

The Shannon Game: How well can we predict the 
next word? 

I always order pizza with cheese and ______ 

The 33rd president of the US was ______ 

I saw a _____ 

mushrooms	 0.1 
pepperoni	 0.1 
anchovies	 0.01 
… 
fried rice	 0.0001 
… 
and	 1e-100



Perplexity: Intuition

The Shannon Game: How well can we predict the 
next word? 

I always order pizza with cheese and ______ 

The 33rd president of the US was ______ 

I saw a _____ 

A better model of a text is one which assigns higher 
probability to the word that actually occurs 

Unigrams are terrible at this game.

mushrooms	 0.1 
pepperoni	 0.1 
anchovies	 0.01 
… 
fried rice	 0.0001 
… 
and	 1e-100



Perplexity

The best language model is one that best predicts an 
unseen test set – gives the highest probability to the 
sentences. 

Perplexity is the inverse probability of the test set, 
normalized by the number of words: 

PP(W) = P(w1w2…wN)− 1
N



Perplexity

The best language model is one that best predicts an 
unseen test set – gives the highest probability to the 
sentences. 

Perplexity is the inverse probability of the test set, 
normalized by the number of words: 

PP(W) = P(w1w2…wN)− 1
N = N

1
P(w1w2…wN)

= N

N

∏
i=1

1
P(wi ∣ w1…wi−1)

= N

N

∏
i=1

1
P(wi ∣ wi−1)

chain rule for bigrams



You can think of perplexity as a measure of how 
“surprised” a model is by some data. 

Low perplexity means the data is highly probable under the model; its 
not surprised to see it. 

Minimizing perplexity is the same as maximizing 
probability. 

The lower the perplexity, the better the model. 



Example: Wall Street Journal corpus 
Training set: 38 million words 

Test set: 1.5 million words 

Perplexity:  

Unigram:	962 

Bigram:	 170 

Trigram:	 109 Lowest perplexity; best model



Hands-on practice:  
SpaCy and n-grams



from spacy.lang.en import English 

nlp = English(pipeline=[]) 

This is a pipeline for processing 
natural language, including 
performing tokenization.



from spacy.lang.en import English 

nlp = English(pipeline=[]) 

doc = nlp("Hello world!") 

for token in doc: 
    print(token.text)

Hello 
world 
!



from spacy.lang.en import English 

nlp = English(pipeline=[]) 

doc = nlp("Hello world!") 

token = doc[1] 
print(token.text) world



from spacy.lang.en import English 

nlp = English(pipeline=[]) 

doc = nlp("Hello world!") 

span = doc[1:3] 
print(span.text) world!



Let’s use what we know about 
working with text in Python – 
including what we just saw 
about spaCy – to investigate the 
frequency of  

words (unigrams) and  

colocations (bigrams)  

in Jane Austen’s novel Emma.
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