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Where are we?



Logistic regression is a supervised classification 
method: 

From a set of labeled documents, we learn a classifier that can predict 
the label for new documents. 

There can be any number of possible labels, but the easiest – and 
most common – case is binary classification.



1. Learn weights
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via the sigmoid (logistic) function, whose input 
is the dot product between the weight vector 

and the feature vector

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp( − (w ⋅ x + b))
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1. Learn weights

2. Predict probability 
via the sigmoid (logistic) function, whose input 
is the dot product between the weight vector 

and the feature vector

3. Predict label 
via a threshold on the predicted probability

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp( − (w ⋅ x + b))

decision(x) = {1 if P(y = 1 ∣ x) > 0.5
0 otherwise

via  
a loss function 

and  
an optimization algorithm 



P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp( − (w ⋅ x + b))

This is the classifier’s 
guess of y, so we can 
call it ŷ.



Learning weights

We know the correct label y (either 0 or 1) for each 
x in the training data, but what the system produces 
is an estimate, ŷ (between 0 and 1). 

We want to set w and b to minimize the distance 
between our estimate ŷ and the true y, which we 
denote call the loss, L(ŷ, y). 



Goal: Maximize the probability of the correct label 

	 P(y | x)	= ŷy (1 − ŷ)1−y 
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Goal: Maximize the probability of the correct label 

	 P(y | x)	= ŷy (1 − ŷ)1−y 

	 log P(y | x)	= log [ŷy (1 − ŷ)1−y] 

	 	= y log ŷ + (1 − y) log (1 − ŷ)



Goal: Maximize the probability of the correct label 

Goal: Minimize the cross-entropy loss (negative log likelihood) 

	− log P(y | x)	= −[y log ŷ + (1 − y) log (1 − ŷ)] 

	 LCE(ŷ, y)	= −[y log σ(wx + b) + (1 − y) log (1 − σ(wx + b))]



Today we’ll consider how we minimize this loss to 
learn the optimal weights – and then we’ll revisit the 
important question of evaluating a classifier.



Stochastic gradient descent



Our goal: minimize the loss

Let’s make explicit that the loss function is 
parameterized by weights θ = (w, b). 

And we’ll represent ŷ as f(x; θ) to make the 
dependence on θ more obvious. 

We want the weights that minimize the loss, 
averaged over all examples:

̂θ = argmin
θ

1
m

m

∑
i=1

LCE( f(x(i); θ), y(i))
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Model’s guess

Actual label



̂θ = argmin
θ
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̂θ = argmin
θ

1
m

m

∑
i=1

LCE( f(x(i); θ), y(i))

m = length of dataset



̂θ = argmin
θ

1
m
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∑
i=1

LCE( f(x(i); θ), y(i))

the average loss over all training examples



̂θ = argmin
θ

1
m

m

∑
i=1

LCE( f(x(i); θ), y(i))

the weights θ (w and b) that have the lowest average loss
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How do I get to the bottom 
of this river canyon?

Look around me 360°

Find the direction of steepest slope down.

Go that way.
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Gradient descent is designed for vectors – like the 
weights we’re learning – but it’s easier to think 
about the simpler case of a scalar.



w
(goal)

w1

Loss

0
wmin

Given the current (scalar) w, should 
we make it bigger or smaller?



w
(goal)

w1

Loss

0
wmin

Given the current (scalar) w, should 
we make it bigger or smaller?

Move w in the reverse direction from the slope of the function.



Loss

w
(goal)

w1

0
wmin

The slope of loss at w1 
is negative, so we 
should move positive.
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w
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One step of 
gradient descent
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To go further would be foolish.

Loss

wwmin

(goal)
w1

0



For logistic regression, the loss function is convex. 

A convex function has just one minimum, so 
gradient descent starting from any point is 
guaranteed to find the minimum.



The gradient of a function of many variables is a 
vector pointing in the direction of the greatest 
increase in a function. 

The gradient descent algorithm works by finding the 
gradient of the loss function at the current point and 
moving in the opposite direction.



Gradient descent takes the slope, 
 

and multiplies it by a learning rate η. 
A higher learning rate means that we make bigger adjustments to the 
weights each time. 

So, at time t we calculate the weights for time t + 1: 

d
dw

L( f(x; w), y)

wt+1 = wt − η
d

dw
L( f(x; w), y)

That’s a lowercase 
Greek letter eta



That was for a scalar, but we actually have N 
parameters making up θ, so we need to know 
where to move in an N-dimensional space! 

The gradient is just such a vector; it expresses the 
directional components of the sharpest slope along 
each of the N dimensions.



Imagine we just add one more parameter – now we have a scalar w and a scalar b.



We’ll have more dimensions, making it harder to 
visualize – but the idea will remain the same: Nudge 
each of the parameters in the direction that 
minimizes the loss.



For each dimension wi, the gradient component i 
tells us the slope with respect to that variable. 

“How much would a small change in wi influence the total loss 
function L?” 

We express the slope as a partial derivative ∂ of the loss ∂wi. 

The gradient is then defined as the vector of these 
partials.





The learning rate η is a hyperparameter. 
Too high: The learner will take big steps and overshoot 

Too low: The learner will take too long 

Hyperparameters are chosen by the algorithm 
designer instead of being learned from the data like 
the regular parameters are.



Mini-batch training

Stochastic gradient descent chooses a single random 
example at a time. 

That can result in choppy movements. 

It’s more common to compute the gradient over 
batches of training instances. 

Batch training: entire dataset 

Mini-batch training: m examples (e.g., 512 or 1024)



Overfitting and regularization



If a model perfectly matches the training data, that’s 
actually not good. 

It will overfit the data, modeling noise: 
A random word (maybe a typo) that perfectly predicts y because it 
only occurs in one class will get a very high weight. 

The resulting model will fail to generalize to a test set without this 
word



This movie drew me in, and it’ll do the same to you.

I can’t tell you how much I hated this movie. It sucked.

Useful (or, at least, harmless) features:

x1 = this 
x2 = movie 
x3 = hated 
x4 = drew me in

Overfitting

x5 = the same to you 
x6 = tell you how much



To avoid overfitting, we use a regularization term, 
which penalizes large weights that might come from 
these spurious associations.

See the reading for details!



Evaluation



After choosing the parameters for the classifier – 
i.e., training it – we test how well it does on a test 
set of examples that weren’t used for training.



Is a given passage from a book 
a “smell experience” or not?
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You build a “smell” detector 

Positive class: Paragraph that involves a smell 
experience 

Negative class: All other paragraphs



The 2×2 confusion matrix

Gold + Gold −

Predict + true positive false positive

Predict − false negative true negative



Evaluation metric: Accuracy

Accuracy is the percent of examples the system 
labels correctly (both positive and negative).

accuracy =
true positives + true negatives

true positives + false positives + true negatives + false negatives

true positives + true negatives
number of examples

=



Evaluation metric: Accuracy

Accuracy sounds great – it considers how the 
classifier does on all inputs! 

But 99.99% accuracy might be terrible. 
Imagine we saw 1 million paragraphs and only 100 of them mention 
smells, we could just label every paragraph as “not about smell”. 

But the whole point of the classifier is to help literary scholars find 
passages about smell to study – so this classifier is useless! 

That’s why we use precision and recall instead.



Evaluation metric: Precision

Precision is the percent of items the system detected 
(i.e., labeled +) that are, in fact, positive (according to 
the human gold labels).

precision =
true positives

true positives + false positives



Evaluation metric: Recall

Recall is the percent of items actually present in the 
input that were correctly identified by the system.

recall =
true positives

true positives + false negatives



For our classifier that labels nothing as being “about 
smell”, we get 99.99% accuracy – but 0% recall! 

It doesn’t identify any of the 100 paragraphs we wanted.



There’s a trade-off between precision and recall. 
A highly precise classifier will ignore cases where it’s less confident, 
leading to more false negatives  
→ lower recall 

A high-recall classifier will flag things it’s unsure about, leading to more 
false positives 
→ lower precision



In developing a real application, picking the right 
trade-off point between precision and recall is an 
important usability issue.  

Think about a grammar checker: Too many false positives will irritate 
lots of users.  

But if you’re designing a system to detect hate speech online, you 
might want to err on the side of high recall to avoid abuse slipping 
through the cracks.



Any balance of precision and recall can be encoded 
as a single measure called an F-score: 

 

We almost always use balanced F1, which is the 
harmonic mean of precision and recall: 

Fβ =
(β2 + 1)PR

β2P + R

F1 =
2PR

P + R

Why do we use the harmonic mean rather than the mean?



Evaluation with more than two classes



3×3 confusion matrix
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How can we combine the precision or recall scores 
from three (or more) classes to get one metric? 

Macroaveraging 

Compute the performance for each class and then average over 
classes 

Microaveraging 

Collect decisions for all classes into one confusion matrix 

Compute precision and recall from that table



Macroaveraging and Microaveraging

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: UrgentClass 1: Urgent Class 2: Normal Class 3: Spam Pooled

0.73

0.60



Avoiding harms in classification



Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most 
sentiment classifiers assigned lower sentiment and 
more negative emotion to sentences with African 
American names in them. 

This perpetuates negative stereotypes that associate 
African Americans with negative emotions.



Harms in toxicity classification

Toxicity detection is the task of identifying hate 
speech, abuse, harassment, and other kinds of toxic 
language. 

But some toxicity classifiers incorrectly flag as being 
toxic sentences that are non-toxic but simply 
mention identities like blind people, women, or gay 
people. 

This could lead to censorship of discussion about 
these groups.



Performance disparities

Text classifiers perform worse on many languages of 
the world due to lack of data or labels. 

Text classifiers perform worse on many varieties of 
even high-resource languages like English.



What causes these harms?

Can be caused by: 
Problems in the training data; machine learning systems are known to 
amplify the biases in their training data. 

Problems in the human labels 

Problems in the resources used (like lexicons) 

Problems in model architecture (like what the model is trained to 
optimize) 

Mitigation of these harms is an open research area.
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