
Gradient Descent

24 September 2025

CMPU 366 · Natural Language Processing

Where are we?

Logistic regression is a supervised classification
method:

From a set of labeled documents, we learn a classifier that can predict
the label for new documents.

There can be any number of possible labels, but the easiest – and
most common – case is binary classification.

1. Learn weights

1. Learn weights

1. Learn weights

2. Predict probability
via the sigmoid (logistic) function, whose input
is the dot product between the weight vector

and the feature vector

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp(− (w ⋅ x + b))

1. Learn weights

2. Predict probability
via the sigmoid (logistic) function, whose input
is the dot product between the weight vector

and the feature vector

3. Predict label
via a threshold on the predicted probability

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp(− (w ⋅ x + b))

decision(x) = {1 if P(y = 1 ∣ x) > 0.5
0 otherwise

1. Learn weights

2. Predict probability
via the sigmoid (logistic) function, whose input
is the dot product between the weight vector

and the feature vector

3. Predict label
via a threshold on the predicted probability

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp(− (w ⋅ x + b))

decision(x) = {1 if P(y = 1 ∣ x) > 0.5
0 otherwise

via
a loss function

and
an optimization algorithm

P(y = 1 ∣ x) = σ(w ⋅ x + b)

=
1

1 + exp(− (w ⋅ x + b))

This is the classifier’s
guess of y, so we can
call it ŷ.

Learning weights

We know the correct label y (either 0 or 1) for each
x in the training data, but what the system produces
is an estimate, ŷ (between 0 and 1).

We want to set w and b to minimize the distance
between our estimate ŷ and the true y, which we
denote call the loss, L(ŷ, y).

Goal: Maximize the probability of the correct label

	 P(y | x)	= ŷy (1 − ŷ)1−y

Goal: Maximize the probability of the correct label

	 P(y | x)	= ŷy (1 − ŷ)1−y

This part matters when y = 1

Goal: Maximize the probability of the correct label

	 P(y | x)	= ŷy (1 − ŷ)1−y

This part matters when y = 1 This part matters when y = 0

Goal: Maximize the probability of the correct label

	 P(y | x)	= ŷy (1 − ŷ)1−y

	 log P(y | x)	= log [ŷy (1 − ŷ)1−y]

	 	= y log ŷ + (1 − y) log (1 − ŷ)

Goal: Maximize the probability of the correct label

Goal: Minimize the cross-entropy loss (negative log likelihood)

	− log P(y | x)	= −[y log ŷ + (1 − y) log (1 − ŷ)]

	 LCE(ŷ, y)	= −[y log σ(wx + b) + (1 − y) log (1 − σ(wx + b))]

Today we’ll consider how we minimize this loss to
learn the optimal weights – and then we’ll revisit the
important question of evaluating a classifier.

Stochastic gradient descent

Our goal: minimize the loss

Let’s make explicit that the loss function is
parameterized by weights θ = (w, b).

And we’ll represent ŷ as f(x; θ) to make the
dependence on θ more obvious.

We want the weights that minimize the loss,
averaged over all examples:

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

Model’s guess

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

Model’s guess

Actual label

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

the loss for one training example

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

m = length of dataset

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

the average loss over all training examples

̂θ = argmin
θ

1
m

m

∑
i=1

LCE(f(x(i); θ), y(i))

the weights θ (w and b) that have the lowest average loss

How do I get to the bottom
of this river canyon?

How do I get to the bottom
of this river canyon?

Look around me 360°

How do I get to the bottom
of this river canyon?

Look around me 360°

Find the direction of steepest slope down.

How do I get to the bottom
of this river canyon?

Look around me 360°

Find the direction of steepest slope down.

Go that way.

i-am.ai/gradient-descent.html

https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html
https://www.i-am.ai/gradient-descent.html

Gradient descent is designed for vectors – like the
weights we’re learning – but it’s easier to think
about the simpler case of a scalar.

w
(goal)

w1

Loss

0
wmin

Given the current (scalar) w, should
we make it bigger or smaller?

w
(goal)

w1

Loss

0
wmin

Given the current (scalar) w, should
we make it bigger or smaller?

Move w in the reverse direction from the slope of the function.

Loss

w
(goal)

w1

0
wmin

The slope of loss at w1
is negative, so we
should move positive.

Loss

w
(goal)

w1

0
wmin

One step of
gradient descent

Loss

w
(goal)

w1

0
w2 wmin

Loss

w
(goal)

w1

0
w2 wmin

Loss

w
(goal)

w1

0
w2 wmin

Loss

w
(goal)

w1

0
w3 wmin

Loss

w
(goal)

w1

0
w3 wmin

Loss

w
(goal)

w1

0
w3 wmin

Loss

w
(goal)

w1

0
w4 wmin

Loss

w
(goal)

w1

0
w4 wmin

Loss

w
(goal)

w1

0
w4 wmin

Loss

wwmin

(goal)
w1

0
w5

Loss

wwmin

(goal)
w1

0
w5

Loss

wwmin

(goal)
w1

0
w5

Loss

wwmin

(goal)
w1

0

To go further would be foolish.

Loss

wwmin

(goal)
w1

0

For logistic regression, the loss function is convex.

A convex function has just one minimum, so
gradient descent starting from any point is
guaranteed to find the minimum.

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

The gradient descent algorithm works by finding the
gradient of the loss function at the current point and
moving in the opposite direction.

Gradient descent takes the slope,

and multiplies it by a learning rate η.
A higher learning rate means that we make bigger adjustments to the
weights each time.

So, at time t we calculate the weights for time t + 1:

d
dw

L(f(x; w), y)

wt+1 = wt − η
d

dw
L(f(x; w), y)

That’s a lowercase
Greek letter eta

That was for a scalar, but we actually have N
parameters making up θ, so we need to know
where to move in an N-dimensional space!

The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine we just add one more parameter – now we have a scalar w and a scalar b.

We’ll have more dimensions, making it harder to
visualize – but the idea will remain the same: Nudge
each of the parameters in the direction that
minimizes the loss.

For each dimension wi, the gradient component i
tells us the slope with respect to that variable.

“How much would a small change in wi influence the total loss
function L?”

We express the slope as a partial derivative ∂ of the loss ∂wi.

The gradient is then defined as the vector of these
partials.

The learning rate η is a hyperparameter.
Too high: The learner will take big steps and overshoot

Too low: The learner will take too long

Hyperparameters are chosen by the algorithm
designer instead of being learned from the data like
the regular parameters are.

Mini-batch training

Stochastic gradient descent chooses a single random
example at a time.

That can result in choppy movements.

It’s more common to compute the gradient over
batches of training instances.

Batch training: entire dataset

Mini-batch training: m examples (e.g., 512 or 1024)

Overfitting and regularization

If a model perfectly matches the training data, that’s
actually not good.

It will overfit the data, modeling noise:
A random word (maybe a typo) that perfectly predicts y because it
only occurs in one class will get a very high weight.

The resulting model will fail to generalize to a test set without this
word

This movie drew me in, and it’ll do the same to you.

I can’t tell you how much I hated this movie. It sucked.

Useful (or, at least, harmless) features:

x1 = this
x2 = movie
x3 = hated
x4 = drew me in

Overfitting

x5 = the same to you
x6 = tell you how much

To avoid overfitting, we use a regularization term,
which penalizes large weights that might come from
these spurious associations.

See the reading for details!

Evaluation

After choosing the parameters for the classifier –
i.e., training it – we test how well it does on a test
set of examples that weren’t used for training.

Is a given passage from a book
a “smell experience” or not?

https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf
https://arxiv.org/pdf/2011.08903.pdf

You build a “smell” detector

Positive class: Paragraph that involves a smell
experience

Negative class: All other paragraphs

The 2×2 confusion matrix

Gold + Gold −

Predict + true positive false positive

Predict − false negative true negative

Evaluation metric: Accuracy

Accuracy is the percent of examples the system
labels correctly (both positive and negative).

accuracy =
true positives + true negatives

true positives + false positives + true negatives + false negatives

true positives + true negatives
number of examples

=

Evaluation metric: Accuracy

Accuracy sounds great – it considers how the
classifier does on all inputs!

But 99.99% accuracy might be terrible.
Imagine we saw 1 million paragraphs and only 100 of them mention
smells, we could just label every paragraph as “not about smell”.

But the whole point of the classifier is to help literary scholars find
passages about smell to study – so this classifier is useless!

That’s why we use precision and recall instead.

Evaluation metric: Precision

Precision is the percent of items the system detected
(i.e., labeled +) that are, in fact, positive (according to
the human gold labels).

precision =
true positives

true positives + false positives

Evaluation metric: Recall

Recall is the percent of items actually present in the
input that were correctly identified by the system.

recall =
true positives

true positives + false negatives

For our classifier that labels nothing as being “about
smell”, we get 99.99% accuracy – but 0% recall!

It doesn’t identify any of the 100 paragraphs we wanted.

There’s a trade-off between precision and recall.
A highly precise classifier will ignore cases where it’s less confident,
leading to more false negatives
→ lower recall

A high-recall classifier will flag things it’s unsure about, leading to more
false positives
→ lower precision

In developing a real application, picking the right
trade-off point between precision and recall is an
important usability issue.

Think about a grammar checker: Too many false positives will irritate
lots of users.

But if you’re designing a system to detect hate speech online, you
might want to err on the side of high recall to avoid abuse slipping
through the cracks.

Any balance of precision and recall can be encoded
as a single measure called an F-score:

We almost always use balanced F1, which is the
harmonic mean of precision and recall:

Fβ =
(β2 + 1)PR

β2P + R

F1 =
2PR

P + R

Why do we use the harmonic mean rather than the mean?

Evaluation with more than two classes

3×3 confusion matrix

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Sy
st

em
 la

be
ls

Gold labels

recall recall recall

precision

precision

precision

How can we combine the precision or recall scores
from three (or more) classes to get one metric?

Macroaveraging

Compute the performance for each class and then average over
classes

Microaveraging

Collect decisions for all classes into one confusion matrix

Compute precision and recall from that table

Macroaveraging and Microaveraging

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: UrgentClass 1: Urgent Class 2: Normal Class 3: Spam Pooled

0.73

0.60

Avoiding harms in classification

Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most
sentiment classifiers assigned lower sentiment and
more negative emotion to sentences with African
American names in them.

This perpetuates negative stereotypes that associate
African Americans with negative emotions.

Harms in toxicity classification

Toxicity detection is the task of identifying hate
speech, abuse, harassment, and other kinds of toxic
language.

But some toxicity classifiers incorrectly flag as being
toxic sentences that are non-toxic but simply
mention identities like blind people, women, or gay
people.

This could lead to censorship of discussion about
these groups.

Performance disparities

Text classifiers perform worse on many languages of
the world due to lack of data or labels.

Text classifiers perform worse on many varieties of
even high-resource languages like English.

What causes these harms?

Can be caused by:
Problems in the training data; machine learning systems are known to
amplify the biases in their training data.

Problems in the human labels

Problems in the resources used (like lexicons)

Problems in model architecture (like what the model is trained to
optimize)

Mitigation of these harms is an open research area.

Acknowledgments

This class incorporates material from:
Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

Carolyn Anderson, Wellesley College

