cMpU 366 - Natural Language Processing

Neural Networks

6 October 2025

Artificial neural networks are an essential

computational tool for language processing, and
deep learning neural network architectures have
been at the core of NLP research in recent years.

Neurons

| Dendrites

l Dendrites

| Dendrites ‘

Dendrites

//

Different connections from other neurons to a given
neuron have different strengths.

In calculating the sum of its inputs, the neuron gives
more weight to inputs from stronger connections than
inputs from weaker connections.

Neuroscientists believe that adjustments to the
strength of connections between neurons is a key
part of how learning takes place in the brain.

Compute!

Inputs

Compute!

Inputs

Compute!

Output

Inputs

Compute!

Output

Inputs

Compute!

Output

Weights |

Inputs

Compute!

Output

Weights

Inputs

Compute!

Output y Y = WiXy T Wox, o0+ wex,

Weighted sum

Weights

Inputs X, X5 "t Xp

Output y Y = WiXy T Wox, o0+ wex,

Weighted sum

Weights 2

Inputs X, X5 "t Xp

Output

Weighted sum

Weights

Inputs

y — Z,’ WX

Output

Weighted sum

Weights| Vector w

Inputs Vector X

Output y y=W- 'X+Db

Weighted sum

Weights| Vector w and scalar b W,

Inputs Vector X X X, T Xy

Output y y =g(w: x+Db)

Non-linear activation function —>®

Weighted sum

Weights| Vector w and scalar b W, W,

Inputs Vector X X X, T Xy

Output y y =g(w: x+Db)

Non-linear activation function @

Weighted sum

Weights| Vector w and scalar b W, W,

Inputs Vector X X X, T Xy

A traditional choice of non-linear activation function
is the sigmoid, like we used for logistic regression.

Given an input between —co and oo,

0.8]

0.6 |

1 0a]
O\J) = ———mm
() 1 + eXp(—z) 02|

squishes the extremes so the output is between o
and 1.

However, years of experience has taught us that
other nonlinear functions work even better.

One good choice is ReLU — a rectified linear unit.

t's the same as its input except it turns flat when
the input would fall below o:

f(2) = max(z, 0)

1.5}

0.5}

Computing functions
with neural units

Can neural units compute simple functions of the input?

AND OR XOR
X2 Y X1 X2 Y X1 X2
0 O 0 0 O 0 O
T 0 o 1 1 0 1
0 O 1T 0 1 T 0
T 1 T 1 1 T 1

Minsky & Papert, 1969

Perceptrons
A very simple neural unit:
Binary output (o or 1)

No non-linear activation function

-~ JO iftw-x+bH6<0
=] fw-x+b>0

Solving AND

Deriving AND

— O O O X<

Goal: Return 1 if x1 and x, are both 1.

&

O iftw-x+b<0
Il tw-x+b>0

Deriving AND

X1 X2 y X1 W]\/ \
W,

X2

Goal: Return 1 if x1 and x, are both 1.

&

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving AND

X1 X2 Y

0O 0 O

W, — 1

X2

Goal: Return 1 if x1 and x, are both 1.

&

» wix1 +wxo + b

/

What should w1, wy, and b be?

> O

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving AND

Goal: Return 1 if x1 and x, are both 1.

X1 X2 Y X, Wy = 1
0 0 O \/ \

What should w1, wy, and b be?

~JO itw-x+b<0
Y Il tw-x+b>0

Deriving AND

Goal: Return 1 if x1 and x, are both 1.

X1 X2 Y X Wi = 1

0 0 0 \/ \
W, = 1

0 1 0 X, ><1+wm+/b > 0 /

What should w1, wy, and b be?

~JO itw-x+b<0
Y Il tw-x+b>0

Deriving AND

X1

0
0
1

0
1

0

O O O X

Goal: Return 1 if x1 and x, are both 1.

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving AND

— O O O X<

Goal: Return 1 if x1 and x, are both 1.

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Solving OR

Deriving OR

Goal: Return 1 if either x1 or xa is 1.

&

0O tw-x+b<0
Il tw-x+b>0

Deriving OR

X1 X2 y X1 w \
W,

X2

Goal: Return 1 if either x1 or xa is 1.

&

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving OR

X1 X2 Y X

0O 0 O

Goal: Return 1 if either x1 or xa is 1.

“Z \
W, = ¢

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving OR

X1 X2 Y X

0O 0 O

Goal: Return 1 if either x1 or xa is 1.

Wi — 1 \
W-r — 1

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving OR

X1 X2 Y
O 0 O
O 1 1

X2

Goal: Return 1 if either x1 or xa is 1.

Wi — 1 \
W-r — 1

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving OR

X1 X2 Y
0O 0 O
0 1 1
T 0 1

X2

Goal: Return 1 if either x1 or xa is 1.

Wi — 1 \
W-r — 1

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Deriving OR

Goal: Return 1 if either x1 or xa is 1.

Wi — 1 \
W-r — 1

» wix1 +wxo + b

/

What should w1, wy, and b be?

0
1

ftw-x+5b<0
fw-x+5b6>0

Solving XOR

Deriving XOR

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

&

O iftw-x+b<0
Il tw-x+b>0

Deriving XOR

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

X1 X2 y A w \
W>

X3 » wix1+twuxa+b >

/

What should w1, wy, and b be?

~JO itw-x+b<0
Y Il tw-x+b>0

Trick question — you can't capture XOR with
perceptrons!

The perceptron equation is the equation of a line — the decision boundary,

Perceptrons are linear classifiers

separating the outputs o and 1.

X; AND X,

X; OR X,

Perceptrons are linear classifiers

The perceptron equation is the equation of a line — the decision boundary,

separating the outputs o and 1.

X; AND X,
N
o
1 \ O
\
\
\
\
\
\\
X2 \\
\
\\
\\
0@ OoO—
O X 1

X; OR X,

X, XOR x,

All hope is not lost.

While XOR can't be calculated by a single
perceptron, it can be be calculated by a layered
network of units.

This is a hidden layer,

where intermediate units

learn transformations of

the features.

The hidden representation h

O 1
X2 h2
o @ @ 0@ =< O

Feedforward neural networks

A feedforward neural network is the simplest and
most common kind of neural network in NLP.

Units are organized in layers

O O O
O O O O

The output of each layer serves as
the input to the next higher layer

O O O

X X2 X3

The output of each layer serves as
the input to the next higher layer

The output of each layer serves as
the input to the next higher layer

O O O

The output of each layer serves as
the input to the next higher layer

The output of each layer serves as
the input to the next higher layer

The output of each layer serves as
the input to the next higher layer

The output of each layer serves as
the input to the next higher layer

The output of each layer serves as

the input to the next higher layer

Bev/|

el
Ve

CEX KX -

o
’
(«

bassed back to lower layers.

There are no cycles.
No outputs are

Output layer

Hidden layer

Input layer

In the standard architecture, every layer is fully
connected:

Each unit in each layer takes as input the outputs from all the units in
the previous layer.

There is a link between every pair of units from two adjacent layers.

What are hidden layers for?

Hidden layers are
mathematical
functions, each
designed to produce
an output specific to

an intended result

First hidden layer detects pixels of
light and dark

Second hidden layer identifies edges
and simple shapes

Third hidden layer comprises more
complex objects from edges and
simple shapes

Output layer recognizes a human face
with some confidence

For the hidden layer, we can
combine the weight w; and bias
b, for each unit i into

a single weight matrix W, where

each element W;; represents the weight
of the connection from the ith input unit

x; to the jth hidden unit h;, and

a single bias vector b for the whole layer.

Then the hiaden layer
computation can be done very
efficiently with simple matrix
operations:

h=0oW:-x+Db)

One-layel” netWOr’k This is logistic regression!
with scalar output

y y = o(w - X+ b)

Output layer

Sigmoid node

Vector w and scalar b

Input layer X1 X2 X3 o Xn

Vector X

Iwo-layer network

with scalar output
y y =0o(U - h)

Output layout @

Matrix U

Hidden layout 0\‘ Y A° h=0oW -x+ b)
- /
Matrix W and vector b ”"“"

Input layer X1 X2 X3 o Xn

Vector X

We can think of a neural network classifier with one
hidden layer as

building a vector h — the hidden layer
representation of the input — and

running standard logistic regression on the
features that the network develops in h.

For multinomial classification, we need probabilities,
but we have a vector of real-valued numbers.

Solution: Softmax!
exp(z;
softmax(z;) = y P(z) ,where 1l <i<d

)3 i=1 exp(z;)

Function for normalizing a vector of real values into a vector encoding
a probability distribution:

All the numbers lie between o and 1, and

they sum to 1.

O Ne- I a)’e I netwo I"I(This is multinomial logistic regression!
with softmax output

Y1 y2 Ym y = softmax(w - x + b)

Output layer @ @ T @

Softmax nodes

Vector w and vector b

Input layer X1 X2 X3 o Xn

Vector X

O Ne- I a)’e I netwo I"I(This is multinomial logistic regression!
with softmax output

y = softmax(w - X + b)

Output layer

Softmax nodes

Vector w and vector b

Input layer

Vector X

O Ne- I a)/e I netwo I"I(This is multinomial logistic regression!
with softmax output

Y1 y2 Ym y = softmax(w - x + b)

Output layer °
Softmax nodes \

Vector w and vector b l

Input layer X1 X2 X3 o Xn

Vector X

O Ne- I a)/e I netwo I"I(This is multinomial logistic regression!
with softmax output

Y1 y2 Ym y = softmax(w - x + b)

Output layer °\ ° °
Softmax nodes [’ /
LA

Vector w and vector b ’ "‘

Input layer X1 X2 X3 o Xn

Vector X

Iwo-layer network
with softmax output

Output layer

Softmax nodes

Matrix U

Hidden layer

Matrix W and vector b

Input layer

Vector X

Y1

A

Ym

ol

DN
0

X

y = softmax(U - h)

h =0o(W - x + b)

(202)

2]a[1] + bl2]

Multi-layer notation

At every layer the network performs the same
computation:

foriin1, ..., n:

Replacing the bias unit

L et’s switch to a notation without the bias unit.

This is just a notational change:

1. Add a dummy node a, = 1 to each layer

2. Its weight w, will be the bias

0l = 1 and alll = 1, al®l = 1, etc.

3. 50, input layer a 0 0

Replacing the bias unit

Instead of We’'ll do this

x=X1,X2,...xn X=Xo,x1,...xn

0 0

h=0c(W:-x+Db) h=0(W:-Xx)

Replacing the bias unit

We’ll do this

Using feedforward networks

|l et’s reconsider text classification.

We can start with a logistic regression classifier,
which corresponds to a one-layer network.

The input layer can consist of scalar features, like
before:

Var Definition

x1 count(positive lexicon words € doc)
x; count(negative lexicon words € doc)
1 if “no” € doc
{ 0 otherwise
x4 count(1st and 2nd pronouns € doc)
{ 1 if “!” € doc
0 otherwise
x¢ log(word count of doc)

And the output layer has a node for each label:

P(+) P(-) P(neutral)

And then we can add a hidden layer:

P(neutral)

)

)

Neural net classification with embeddings as

input features

wordcount X1 =
dessert l =3

positive
lexicon X9 =
was words = 1 2
count of no x3 =
great Lot X
X \'A'/
[@%1] [dh%3d]

Input layer

d = 37 features

[dhx1] [3%dh]

P
- Pe)

Y3 H— P(neutral)

[3%1]

Hidden layer

Output layer

Softmax

The real power of deep learning comes from the
ability to learn features from the data.

Instead of using hand-built human-engineered
features for classification, use learned
representations like embeddings!

An embedding is a vector of dimension [1 X d] that
represents the input token.

An embedding matrix E is a dictionary, one row per
token of vocab. V.

E has shape [|V| X d]

Embedding matrices are central to NLP; they
represent input text in LLMs and all modern NLP
tools.

Neural net classification with embeddings as
input features

) h1)
dessert—— o cosrs —— Yi)= P(+)
. O
embedding i
WAS — for was —1® —> D(—
f e , 2)1 P(-)
. ()]
sreat—— “prorent —10@ ¥3 H— P(neutral)
@)
hdp g
\A% h U N
[30%1] [dhx3d] [dnx1] [3%dn] [3%1]
Projection layer Hidden layer| |Qutput layer

Softmax

Neural net classification with embeddings as

in Put featu res This assumes a fixed size input (3)!

embedding
dessert for dessert

embedding
wdas for was

embedding
great for great

09 009 009

[30%1]

\'A%
[dn*3d]

Projection layer

¥

h

Y

[dnx1] [3%Xdn] [3%1]

Hidden layer

Output layer

Softmax

One approach: Make the input the length of the
longest input document

If it's shorter, pad it with zero embeddings

If you get a longer input at test time, truncate it &

Alternatively, we can take word embeddings (like
Word2vec) and apply a pooling function to the
embeddings of all the words in the input, making a
single embedding for the entire input.

Simple pooling functions:
add up all the embedding vectors

average all the embedding vectors

Neural net classification with embeddings as

input features

embedding
dessert for dessert
embedding

wdas for was
embedding

great for great

Input words

booling

000 @00 @e¢

X \A%

[dx1] [dyxd] [dnX1]

Input layer

Pooled embedding

h,

\ J

h

P

- Pe)

Y3)T P(neutral)

[3%dn] [3%1]

Hidden layer

Output layer

Softmax

The idea of relying on another algorithm to have
already learned an embedding representation for
our input words — as when we use VWord2vec
embeddings of the input — is called pretraining.

Deep feedforward neural networks

A simple way to increase the range of features that a
model can express is to add more hidden layers,
each of which is a combination of a linear
transformation and a nonlinear function.

A deep feedforward neural network is a type of
neural network that has more than one hidden layer.

The depth refers to the number of hidden layers,

and the width refers to the number of neurons in
each layer.

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
OO0,000 0.03 v Tanh v None v 0 v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.540
you want to use? do you want to i

| o = LY — Training loss 0.507

feed in?
4 neurons 2 neurons
&

il .} f

X2 } I } s ® o ¢ o'®
Ratio of training to P “: '-".'; oo

a O
test data: 50% «' 3.6 > o%8s 5
“ \ o Seooes ° -0
R X, The outputs are ':' ;'453,:.; o o
mixed with varying O 0.."03‘ ®° ¢
. weights, shown by ' ,.:.).: e
Noise: O o the thickness of < et
o < the lines.
[
Batch size: 10 X, X, \ This s the output
—e ‘ from one neuron. |
Hover to see it 0
larger.
sin(X,)
REGENERATE

Colors shows

playground.tensorflow.org

http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org

Are more layers always better?

Not necessarily!
More parameters and more computation
More prone to overfitting and underfitting

More difficult to optimize and converge

Techniques for improving the performance and
generalization of deep networks:

Regularization — add some penalty or constraint to the network to

reduce its complexity and prevent overfitting

Dropout — randomly dropping out some neurons and connections
during training to reduce the co-dependence of neurons and increase

the robustness of the network

Acknowledgments

This class incorporates material from:

Jurafsky & Martin, Speech and Language Processing, zrd ed. draft

