
Neural Networks

6 October 2025

CMPU 366 · Natural Language Processing

Artificial neural networks are an essential
computational tool for language processing, and
deep learning neural network architectures have
been at the core of NLP research in recent years.

Neurons

Cell body

Cell body

Dendrites

Cell body

Dendrites

Axon

Cell body

Dendrites

Axon

Cell body

Dendrites

Axon

Different connections from other neurons to a given
neuron have different strengths.

In calculating the sum of its inputs, the neuron gives
more weight to inputs from stronger connections than
inputs from weaker connections.

Neuroscientists believe that adjustments to the
strength of connections between neurons is a key
part of how learning takes place in the brain.

y

x1 x2 xn

Compute!

⋯

y

x1 x2 xn

Compute!

⋯Inputs

y

x1 x2 xn

Compute!

⋯Inputs

y

x1 x2 xn

Compute!

⋯

Output

Inputs

y

x1 x2 xn⋯

Output

Inputs

Compute!

y

x1 x2 xn⋯

w1 w2 wn

Output

Inputs

Weights ⋯

Compute!

y

x1 x2 xn⋯

w1 w2 wn

Output

Inputs

Weights ⋯

Compute!

y

x1 x2 xn⋯

w1 w2 wn

Σ

y = w1x1 + w2x2 + ⋯ + wnxnOutput

Inputs

Weights

Weighted sum

⋯

y

x1 x2 xn⋯

w1 w2 wn

Σ

y = w1x1 + w2x2 + ⋯ + wnxnOutput

Inputs

Weights

Weighted sum

⋯

y

x1 x2 xn⋯

w1 w2 wn

Σ

Output

Inputs

Weights

Weighted sum

⋯

y = Σi wixi

y

x1 x2 xn⋯

w1 w2 wn

Σ

Output

Inputs

Weights

Weighted sum

⋯

y = w ∙ x

Vector w

Vector x

y

x1 x2 xn⋯

w1 w2 wn

Σ

Output

Inputs

Weights

Weighted sum

⋯

y = w ∙ xy = w ∙ x + b

+1

bVector w and scalar b

Vector x

y

x1 x2 xn⋯

w1 w2 wn

Σ

Output

Inputs

Weights

Weighted sum

⋯

y = g(w · x + b)

+1

bVector w and scalar b

Vector x

gNon-linear activation function

y

x1 x2 xn⋯

w1 w2 wn

Σ

Output

Inputs

Weights

Weighted sum

⋯

y = g(w · x + b)

+1

bVector w and scalar b

Vector x

gNon-linear activation function

A traditional choice of non-linear activation function
is the sigmoid, like we used for logistic regression.

Given an input between −∞ and ∞,

	

squishes the extremes so the output is between 0
and 1.

σ(z) =
1

1 + exp(−z)

�2 �1 0 1 2

�1

�0.5

0

0.5

1

This is difficult to optimize for a number of reasons which will hopefully become clearer when we address
gradient descent. Firstly, it is not continuous, and secondly, it has a derivative of zero at all points. Intu-
itively, this means that we cannot know in which direction to look for a local minima of the function, which
makes it difficult to minimize loss in a smooth way.
Instead of using a step function like above, a better solution is to select a continuous function. We have
many options for such a function, including the sigmoid function (named for the Greek s or ’s’ as it looks
like an ’s’) as well as the rectified linear unit (ReLU).Let’s look at their definitions and graphs below:

Sigmoid: s(x) = 1
1+e�x

�10 �5 0 5 10

0

0.2

0.4

0.6

0.8

1

ReLU: f (x) =

(
0 if x < 0
x if x � 0

CS 188, Fall 2020, Note 10 4

However, years of experience has taught us that
other nonlinear functions work even better.

One good choice is ReLU – a rectified linear unit.

It’s the same as its input except it turns flat when
the input would fall below 0:

	 f(z) = max(z, 0)
�2 �1 0 1 2

0

0.5

1

1.5

2

Calculating the output of a multi-layer perceptron is done as before, with the difference that at the output
of each layer we now apply one of our new non-linearities (chosen as part of the architecture for the neural
network) instead of the initial indicator function. In practice, the choice of nonlinearity is a design choice
that typically requires some experimentation to select a good one for each individual use case.

Loss Functions and Multivariate Optimization

Now we have a sense of how a feed-forward neural network is constructed and makes its predictions, we
would like to develop a way to train it, iteratively improving its accuracy, similarly to how we did in the
case of the perceptron. In order to do so, we will need to be able to measure their performance. Returning
to our log-likelihood function that we wanted to maximize, we can derive an intuitive algorithm to optimize
our weights given that our function is differentiable.

Gradient Ascent / Descent

To maximize our log-likelihood function, we differentiate it to obtain a gradient vector consisting of its
partial derivatives for each parameter:

—w``(w) =


∂``(w)

∂w1
, ...,

∂``(w)

∂wn

�

This gradient vector gives the local direction of steepest ascent (or descent if we reverse the vector). Gradi-
ent ascent is a greedy algorithm that calculates this gradient for the current values of the weight parameters,
then updates the parameters along the direction of the gradient, scaled by a step size, a . Specifically the
algorithm looks as follows:

Initialize weights www

For i = 0, 1, 2, ...
www www+a—w``(www)

If rather than minimizing we instead wanted to minimize a function f , the update should subtract the scaled
gradient (w w�a—w f (w)) – this gives the gradient descent algorithm.

CS 188, Fall 2020, Note 10 5

Computing functions
with neural units

AND OR XOR

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Can neural units compute simple functions of the input?

Minsky & Papert, 1969

Perceptrons

A very simple neural unit:

	 Binary output (0 or 1)

	 No non-linear activation function

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Solving AND

Deriving AND
Goal: Return 1 if x1 and x2 are both 1.

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

x1 x2 y w1

w2

b

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

0

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

1

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = −1

What should w1, w2, and b be?

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

0

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = −1

What should w1, w2, and b be?

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

0

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

Deriving AND

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = −1

What should w1, w2, and b be?

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

1

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if x1 and x2 are both 1.

Solving OR

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y

0 1 1
1 0 1
1 1 1

w1

w2

b

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

w1 = ?

w2 = ?

b = ?

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

0

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

1

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

1

Deriving OR
Goal: Return 1 if either x1 or x2 is 1.

x1

x2

+1

w1x1 + w2x2 + b

w1 = 1

w2 = 1

b = 0

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

1

Solving XOR

Deriving XOR

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Deriving XOR

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

x1

x2

+1

w1x1 + w2x2 + b

w1

w2

b

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y

Trick question – you can’t capture XOR with
perceptrons!

1

x2

x1

x1 AND x2 x1 OR x2

x2

x1

Perceptrons are linear classifiers

The perceptron equation is the equation of a line – the decision boundary,
separating the outputs 0 and 1.

0 1
0

1

0
0

1

1

x2

x1

x1 AND x2 x1 OR x2

x2

x1

x1 XOR x2

x2

x1

1

0
0 1

Perceptrons are linear classifiers

The perceptron equation is the equation of a line – the decision boundary,
separating the outputs 0 and 1.

0 1
0

1

0
0

1

All hope is not lost.

While XOR can’t be calculated by a single
perceptron, it can be be calculated by a layered
network of units.

x1 x2 +1

h1 h2

y1

+1

1 1 1 1 0 −1

−21 0

ReLU

ReLU

x1 x2 +1

h1 h2

y1

+1

1 1 1 1 0 −1

−21 0

This is a hidden layer,
where intermediate units
learn transformations of
the features. ReLU

ReLU

The hidden representation h

x2

x1

1

0
0 1

h2

h1

1

0
0 1 2

Feedforward neural networks

A feedforward neural network is the simplest and
most common kind of neural network in NLP.

Units are organized in layers

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

The output of each layer serves as
the input to the next higher layer

x1 x2 x3 +1

x1 x2 x3 +1

There are no cycles.

No outputs are passed back to lower layers.

x1 x2 x3 +1

h1 h2 h3 h4

y1 y2 y3

Input layer

Hidden layer

Output layer

In the standard architecture, every layer is fully
connected:

Each unit in each layer takes as input the outputs from all the units in
the previous layer.

There is a link between every pair of units from two adjacent layers.

What are hidden layers for?

Hidden layers are
mathematical
functions, each
designed to produce
an output specific to
an intended result

First hidden layer detects pixels of
light and dark

Second hidden layer identifies edges
and simple shapes

Third hidden layer comprises more
complex objects from edges and
simple shapes

Output layer recognizes a human face
with some confidence

For the hidden layer, we can
combine the weight wi and bias
bi for each unit i into

a single weight matrix W, where

each element Wi,j represents the weight
of the connection from the ith input unit
xi to the jth hidden unit hj, and

a single bias vector b for the whole layer.

Then the hidden layer
computation can be done very
efficiently with simple matrix
operations:

	 h = σ(W ∙ x + b)

x1 x2 x3 +1

h1 h2 h3 h4

y1 y2 y3

bW

One-layer network
with scalar output

σOutput layer

x1 x2 x3 xn⋯ +1Input layer

w1 w2 w3 wn b

Vector x

y = σ(w ∙ x + b)

Sigmoid node

Vector w and scalar b

y

This is logistic regression!

Two-layer network
with scalar output

σHidden layout

x1 x2 x3 xn⋯ +1Input layer

σ σ⋯

σOutput layout

y = σ(U ∙ h)

h = σ(W ∙ x + b)

Vector x

y

Matrix W and vector b

Matrix U

We can think of a neural network classifier with one
hidden layer as

building a vector h – the hidden layer
representation of the input – and

running standard logistic regression on the
features that the network develops in h.

For multinomial classification, we need probabilities,
but we have a vector of real-valued numbers.

Solution: Softmax!

Function for normalizing a vector of real values into a vector encoding
a probability distribution:

All the numbers lie between 0 and 1, and

they sum to 1.

softmax(zi) =
exp(zi)

∑d
j=1 exp(zj)

, where 1 ≤ i ≤ d

One-layer network
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!

One-layer network
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!

One-layer network
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!

One-layer network
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!

Two-layer network
with softmax output

σHidden layer

x1 x2 x3 xn⋯ +1Input layer

σ σ⋯

SOutput layer

h = σ(W ∙ x + b)

S S

y = softmax(U ∙ h)

⋯

Matrix W and vector b

Matrix U

Vector x

y1 y2 ym

Softmax nodes

Multi-layer notation

x1 x2 x3 xn⋯ +1

⋯

W[2]

W[1] b[1]

b[2]

a[0]

z[2] = W[2]a[1] + b[2]
a[2] = g[2](z[2])

ŷ = a[2]

Multi-layer notation

At every layer the network performs the same
computation:

for i in 1, …, n:

		 z[i] = W[i] ∙ a[i−1] + b[i]

		 a[i] = g[i](z[i])

ŷ = a[n]

Replacing the bias unit

Let’s switch to a notation without the bias unit.

This is just a notational change:
1. Add a dummy node a0 = 1 to each layer

2. Its weight w0 will be the bias

3. So, input layer , and , , etc.a[0]
0 = 1 a[1]

0 = 1 a[2]
0 = 1

Replacing the bias unit

Instead of We’ll do this

x = x1, x2, …xn0
x = x0, x1, …xn0

h = σ(W ⋅ x + b) h = σ(W ⋅ x)

hj = σ (
n0

∑
i=1

Wjixi + bj) hj = σ (
n0

∑
i=0

Wjixi)

Replacing the bias unit

x1 x2 xn0

h1 h2

y1

⋯ +1

h3 hn1

y2 yn2⋯

b

⋯

x1 x2 xn0

h1 h2

y1

⋯x0 = 1

h3 hn1

y2 yn2⋯

⋯

Instead of We’ll do this

Using feedforward networks

Let’s reconsider text classification.

We can start with a logistic regression classifier,
which corresponds to a one-layer network.

The input layer can consist of scalar features, like
before:

And the output layer has a node for each label:

ŷ1

x1 x2 x3 x4

ŷ2 ŷ3

P(+) P(−) P(neutral)

x5 x6

And then we can add a hidden layer:

ŷ1

x1 x2 x3 x4

ŷ2 ŷ3

P(+) P(−) P(neutral)

x5 x6

h1 h2 h3 h4 hdh⋯

Neural net classification with embeddings as
input features

dessert

was

great

P(+)

P(−)

P(neutral)

Output layer

Softmax
Hidden layer

wordcount
= 3

positive
lexicon

words = 1

count of no
= 0

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Input layer

[d×1]
x

x1

x2

x3

d = 3 features

The real power of deep learning comes from the
ability to learn features from the data.

Instead of using hand-built human-engineered
features for classification, use learned
representations like embeddings!

An embedding is a vector of dimension [1 × d] that
represents the input token.

An embedding matrix E is a dictionary, one row per
token of vocab. V.

E has shape [|V| × d]

Embedding matrices are central to NLP; they
represent input text in LLMs and all modern NLP
tools.

Neural net classification with embeddings as
input features

dessert

was

great

P(+)

P(−)

P(neutral)

Output layer

Softmax
Hidden layer

embedding
for dessert

embedding
for was

embedding
for great

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Projection layer

[3d×1]

⋮

⋮

Neural net classification with embeddings as
input features

dessert

was

great

P(+)

P(−)

P(neutral)

embedding
for dessert

embedding
for was

embedding
for great

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

⋮

⋮

This assumes a fixed size input (3)!

Output layer

Softmax
Hidden layer

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

Projection layer

[3d×1]

One approach: Make the input the length of the
longest input document

If it’s shorter, pad it with zero embeddings

If you get a longer input at test time, truncate it ☹

Alternatively, we can take word embeddings (like
Word2vec) and apply a pooling function to the
embeddings of all the words in the input, making a
single embedding for the entire input.

Simple pooling functions:

	 add up all the embedding vectors

	 average all the embedding vectors

Neural net classification with embeddings as
input features

dessert

was

great

P(+)

P(−)

P(neutral)

+

embedding
for dessert

embedding
for was

embedding
for great

pooling

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Input words Output layer

SoftmaxPooled embedding

Input layer Hidden layer

x
[d×1]

W
[dh×d] [dh×1]

h U
[3×dh]

y
[3×1]

The idea of relying on another algorithm to have
already learned an embedding representation for
our input words – as when we use Word2vec
embeddings of the input – is called pretraining.

Deep feedforward neural networks

A simple way to increase the range of features that a
model can express is to add more hidden layers,
each of which is a combination of a linear
transformation and a nonlinear function.

A deep feedforward neural network is a type of
neural network that has more than one hidden layer.

The depth refers to the number of hidden layers,
and the width refers to the number of neurons in
each layer.

playground.tensorflow.org

http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org
http://playground.tensorflow.org

Are more layers always better?
Not necessarily!

More parameters and more computation

More prone to overfitting and underfitting

More difficult to optimize and converge

Techniques for improving the performance and
generalization of deep networks:

Regularization – add some penalty or constraint to the network to
reduce its complexity and prevent overfitting

Dropout – randomly dropping out some neurons and connections
during training to reduce the co-dependence of neurons and increase
the robustness of the network

Acknowledgments

This class incorporates material from:
Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

