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Artificial neural networks are an essential 
computational tool for language processing, and 
deep learning neural network architectures have 
been at the core of NLP research in recent years.
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Different connections from other neurons to a given 
neuron have different strengths. 

In calculating the sum of its inputs, the neuron gives 
more weight to inputs from stronger connections than 
inputs from weaker connections. 



Neuroscientists believe that adjustments to the 
strength of connections between neurons is a key 
part of how learning takes place in the brain.
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A traditional choice of non-linear activation function 
is the sigmoid, like we used for logistic regression. 

Given an input between −∞ and ∞, 

	  

squishes the extremes so the output is between 0 
and 1.

σ(z) =
1

1 + exp(−z)
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This is difficult to optimize for a number of reasons which will hopefully become clearer when we address
gradient descent. Firstly, it is not continuous, and secondly, it has a derivative of zero at all points. Intu-
itively, this means that we cannot know in which direction to look for a local minima of the function, which
makes it difficult to minimize loss in a smooth way.
Instead of using a step function like above, a better solution is to select a continuous function. We have
many options for such a function, including the sigmoid function (named for the Greek s or ’s’ as it looks
like an ’s’) as well as the rectified linear unit (ReLU).Let’s look at their definitions and graphs below:

Sigmoid: s(x) = 1
1+e�x
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ReLU: f (x) =

(
0 if x < 0
x if x � 0
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However, years of experience has taught us that 
other nonlinear functions work even better. 

One good choice is ReLU – a rectified linear unit. 

It’s the same as its input except it turns flat when 
the input would fall below 0: 

	 f(z) = max(z, 0)
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Calculating the output of a multi-layer perceptron is done as before, with the difference that at the output
of each layer we now apply one of our new non-linearities (chosen as part of the architecture for the neural
network) instead of the initial indicator function. In practice, the choice of nonlinearity is a design choice
that typically requires some experimentation to select a good one for each individual use case.

Loss Functions and Multivariate Optimization

Now we have a sense of how a feed-forward neural network is constructed and makes its predictions, we
would like to develop a way to train it, iteratively improving its accuracy, similarly to how we did in the
case of the perceptron. In order to do so, we will need to be able to measure their performance. Returning
to our log-likelihood function that we wanted to maximize, we can derive an intuitive algorithm to optimize
our weights given that our function is differentiable.

Gradient Ascent / Descent

To maximize our log-likelihood function, we differentiate it to obtain a gradient vector consisting of its
partial derivatives for each parameter:

—w``(w) =


∂``(w)

∂w1
, ...,

∂``(w)

∂wn

�

This gradient vector gives the local direction of steepest ascent (or descent if we reverse the vector). Gradi-
ent ascent is a greedy algorithm that calculates this gradient for the current values of the weight parameters,
then updates the parameters along the direction of the gradient, scaled by a step size, a . Specifically the
algorithm looks as follows:

Initialize weights www

For i = 0, 1, 2, ...
www www+a—w``(www)

If rather than minimizing we instead wanted to minimize a function f , the update should subtract the scaled
gradient (w w�a—w f (w)) – this gives the gradient descent algorithm.
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Computing functions  
with neural units



AND OR XOR

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Can neural units compute simple functions of the input?

Minsky & Papert, 1969



Perceptrons

A very simple neural unit: 

	 Binary output (0 or 1) 

	 No non-linear activation function

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0



Solving AND
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y = {0 if w ⋅ x + b ≤ 0
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Solving XOR



Deriving XOR

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0



Deriving XOR

Goal: Return 1 if either x1 or x2 is 1 but not both of them.

x1

x2

+1

w1x1 + w2x2 + b

w1

w2

b

What should w1, w2, and b be?

y = {0 if w ⋅ x + b ≤ 0
1 if w ⋅ x + b > 0

x1 x2 y



Trick question – you can’t capture XOR with 
perceptrons!
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Perceptrons are linear classifiers

The perceptron equation is the equation of a line – the decision boundary, 
separating the outputs 0 and 1.
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Perceptrons are linear classifiers

The perceptron equation is the equation of a line – the decision boundary, 
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All hope is not lost. 

While XOR can’t be calculated by a single 
perceptron, it can be be calculated by a layered 
network of units.



x1 x2 +1

h1 h2

y1

+1

1 1 1 1 0 −1

−21 0

ReLU

ReLU



x1 x2 +1

h1 h2

y1

+1

1 1 1 1 0 −1

−21 0

This is a hidden layer, 
where intermediate units 
learn transformations of 
the features. ReLU

ReLU



The hidden representation h
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Feedforward neural networks



A feedforward neural network is the simplest and 
most common kind of neural network in NLP. 



Units are organized in layers



The output of each layer serves as 
the input to the next higher layer

x1 x2 x3 +1
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The output of each layer serves as 
the input to the next higher layer

x1 x2 x3 +1



x1 x2 x3 +1

There are no cycles.

No outputs are passed back to lower layers.



x1 x2 x3 +1

h1 h2 h3 h4

y1 y2 y3

Input layer

Hidden layer

Output layer



In the standard architecture, every layer is fully 
connected: 

Each unit in each layer takes as input the outputs from all the units in 
the previous layer. 

There is a link between every pair of units from two adjacent layers.



What are hidden layers for?

Hidden layers are 
mathematical 
functions, each 
designed to produce 
an output specific to 
an intended result

First hidden layer detects pixels of 
light and dark

Second hidden layer identifies edges 
and simple shapes

Third hidden layer comprises more 
complex objects from edges and 
simple shapes 

Output layer recognizes a human face 
with some confidence



For the hidden layer, we can 
combine the weight wi and bias 
bi for each unit i into  

a single weight matrix W, where 

each element Wi,j represents the weight 
of the connection from the ith input unit 
xi to the jth hidden unit hj, and 

a single bias vector b for the whole layer. 

Then the hidden layer 
computation can be done very 
efficiently with simple matrix 
operations: 

	 h = σ(W ∙ x + b) 

x1 x2 x3 +1

h1 h2 h3 h4

y1 y2 y3

bW



One-layer network  
with scalar output

σOutput layer

x1 x2 x3 xn⋯ +1Input layer

w1 w2 w3 wn b

Vector x

y = σ(w ∙ x + b)

Sigmoid node

Vector w and scalar b

y

This is logistic regression!



Two-layer network 
with scalar output

σHidden layout

x1 x2 x3 xn⋯ +1Input layer

σ σ⋯

σOutput layout

y = σ(U ∙ h)

h = σ(W ∙ x + b)

Vector x

y

Matrix W and vector b

Matrix U



We can think of a neural network classifier with one 
hidden layer as 

building a vector h – the hidden layer 
representation of the input – and  

running standard logistic regression on the 
features that the network develops in h.



For multinomial classification, we need probabilities, 
but we have a vector of real-valued numbers. 

Solution: Softmax! 

Function for normalizing a vector of real values into a vector encoding 
a probability distribution: 

All the numbers lie between 0 and 1, and 

they sum to 1.

softmax(zi) =
exp(zi)

∑d
j=1 exp(zj)

, where 1 ≤ i ≤ d



One-layer network 
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!
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One-layer network 
with softmax output

S

x1 x2 x3 xn⋯ +1Input layer

S S⋯

Vector x

Output layer

Softmax nodes

y1 y2 ym y = softmax(w ∙ x + b)

Vector w and vector b

This is multinomial logistic regression!



Two-layer network 
with softmax output

σHidden layer

x1 x2 x3 xn⋯ +1Input layer

σ σ⋯

SOutput layer

h = σ(W ∙ x + b)

S S

y = softmax(U ∙ h)

⋯

Matrix W and vector b

Matrix U

Vector x

y1 y2 ym

Softmax nodes



Multi-layer notation

x1 x2 x3 xn⋯ +1

⋯

W[2]

W[1] b[1]

b[2]

a[0]

z[2] = W[2]a[1] + b[2]
a[2] = g[2](z[2])

ŷ = a[2]



Multi-layer notation

At every layer the network performs the same 
computation: 

for i in 1, …, n: 

		 z[i] = W[i] ∙ a[i−1] + b[i] 

		 a[i] = g[i](z[i]) 

ŷ = a[n]



Replacing the bias unit

Let’s switch to a notation without the bias unit. 

This is just a notational change: 
1. Add a dummy node a0 = 1 to each layer 

2. Its weight w0 will be the bias 

3. So, input layer , and , , etc.a[0]
0 = 1 a[1]

0 = 1 a[2]
0 = 1



Replacing the bias unit

Instead of We’ll do this

x = x1, x2, …xn0
x = x0, x1, …xn0

h = σ(W ⋅ x + b) h = σ(W ⋅ x)

hj = σ (
n0

∑
i=1

Wjixi + bj) hj = σ (
n0

∑
i=0

Wjixi)



Replacing the bias unit

x1 x2 xn0

h1 h2

y1

⋯ +1

h3 hn1

y2 yn2⋯

b

⋯

x1 x2 xn0

h1 h2

y1

⋯x0 = 1

h3 hn1

y2 yn2⋯

⋯

Instead of We’ll do this



Using feedforward networks



Let’s reconsider text classification. 

We can start with a logistic regression classifier, 
which corresponds to a one-layer network.



The input layer can consist of scalar features, like 
before: 



And the output layer has a node for each label:

ŷ1

x1 x2 x3 x4

ŷ2 ŷ3

P(+) P(−) P(neutral)

x5 x6



And then we can add a hidden layer:

ŷ1

x1 x2 x3 x4

ŷ2 ŷ3

P(+) P(−) P(neutral)

x5 x6

h1 h2 h3 h4 hdh⋯



Neural net classification with embeddings as 
input features

dessert

was

great

P(+)

P(−)

P(neutral)

Output layer

Softmax
Hidden layer

wordcount 
= 3

positive 
lexicon 

words = 1

count of no 
= 0

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Input layer

[d×1]
x

x1

x2

x3

d = 3 features



The real power of deep learning comes from the 
ability to learn features from the data. 

Instead of using hand-built human-engineered 
features for classification, use learned 
representations like embeddings!



An embedding is a vector of dimension [1 × d] that 
represents the input token. 

An embedding matrix E is a dictionary, one row per 
token of vocab. V. 

E has shape [|V| × d] 

Embedding matrices are central to NLP; they 
represent input text in LLMs and all modern NLP 
tools.



Neural net classification with embeddings as 
input features

dessert

was

great

P(+)

P(−)

P(neutral)

Output layer

Softmax
Hidden layer

embedding 
for dessert

embedding 
for was

embedding 
for great

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Projection layer

[3d×1]

⋮

⋮



Neural net classification with embeddings as 
input features

dessert

was

great

P(+)

P(−)

P(neutral)

embedding 
for dessert

embedding 
for was

embedding 
for great

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

⋮

⋮

This assumes a fixed size input (3)!

Output layer

Softmax
Hidden layer

W
[dh×3d] [dh×1]

h U
[3×dh]

y
[3×1]

Projection layer

[3d×1]



One approach: Make the input the length of the 
longest input document 

If it’s shorter, pad it with zero embeddings 

If you get a longer input at test time, truncate it ☹



Alternatively, we can take word embeddings (like 
Word2vec) and apply a pooling function to the 
embeddings of all the words in the input, making a 
single embedding for the entire input. 

Simple pooling functions: 

	 add up all the embedding vectors  

	 average all the embedding vectors



Neural net classification with embeddings as 
input features

dessert

was

great

P(+)

P(−)

P(neutral)

+

embedding 
for dessert

embedding 
for was

embedding 
for great

pooling

h1

h2

h3

hdh

⋮

ŷ1

ŷ2

ŷ3

Input words Output layer

SoftmaxPooled embedding

Input layer Hidden layer

x
[d×1]

W
[dh×d] [dh×1]

h U
[3×dh]

y
[3×1]



The idea of relying on another algorithm to have 
already learned an embedding representation for 
our input words – as when we use Word2vec 
embeddings of the input – is called pretraining.  



Deep feedforward neural networks



A simple way to increase the range of features that a 
model can express is to add more hidden layers, 
each of which is a combination of a linear 
transformation and a nonlinear function.



A deep feedforward neural network is a type of 
neural network that has more than one hidden layer. 

The depth refers to the number of hidden layers, 
and the width refers to the number of neurons in 
each layer.
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Are more layers always better? 
Not necessarily! 

More parameters and more computation 

More prone to overfitting and underfitting 

More difficult to optimize and converge



Techniques for improving the performance and 
generalization of deep networks: 

Regularization – add some penalty or constraint to the network to 
reduce its complexity and prevent overfitting 

Dropout – randomly dropping out some neurons and connections 
during training to reduce the co-dependence of neurons and increase 
the robustness of the network



Acknowledgments

This class incorporates material from: 
Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft




