CMPU 366 · Natural Language Processing

Large Language Models

Part 1

27 October 2025

Large language models (LLMs) are computational agents that can interact conversationally with people using natural language.

LLMs have revolutionized the field of NLP and AI.

Like simple *n*-gram language models, LLMs assign probabilities to sequences of words and generate text by sampling possible next words.

Like simple *n*-gram language models, LLMs assign probabilities to sequences of words and generate text by sampling possible next words.

But while *n*-gram language models are trained on counts computed from lots of text,

LLMs are

trained by learning to guess the next word.

The fundamental intuition of large language models:

Text contains enormous amounts of knowledge!

Pretraining on lots of text, with all that knowledge, is what gives language models their ability to do so much.

With roses, dahlias, and peonies, I was surrounded by flowers

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

The author of "A Room of One's Own" is Virginia Woolf

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

The author of "A Room of One's Own" is Virginia Woolf

The professor said that he

Output

Context

P(w | context)

long ----

So

and —

thanks ---

for ---

Neural network

all 0.44

the 0.33

your 0.15

that 0.08

A model that gives a probability distribution over next words can *generate text* by repeatedly sampling from the distribution.

Output

Context

P(w | context)

long ----

So

and —

thanks ---

for ---

Neural network

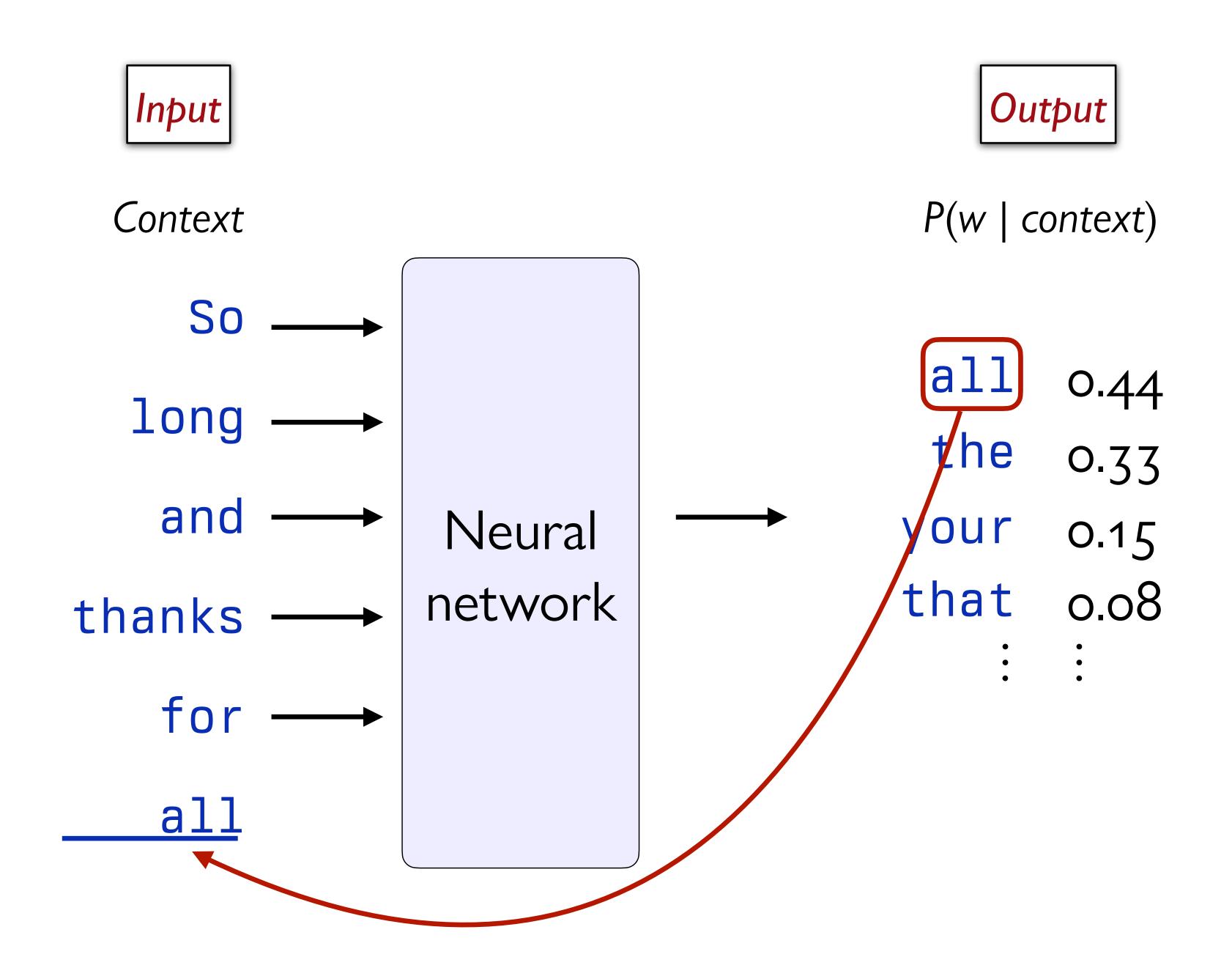
all 0.44

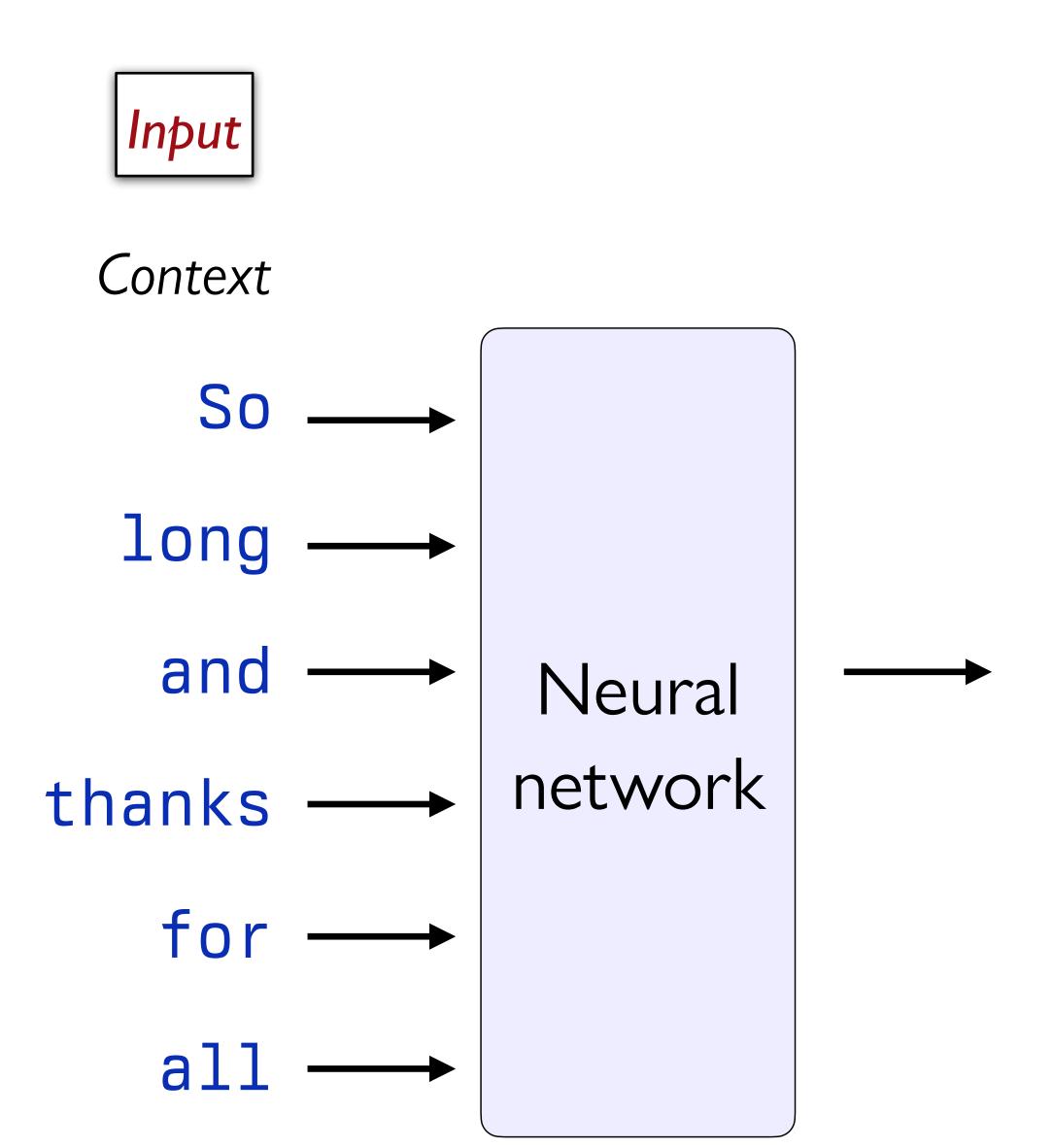
the 0.33

your 0.15

that 0.08

Output Input Context P(w | context) So 0.44 long 0.33 the and Neural your 0.15 that 0.08 network thanks for





Output

P(w | context)

Output

Context

thanks

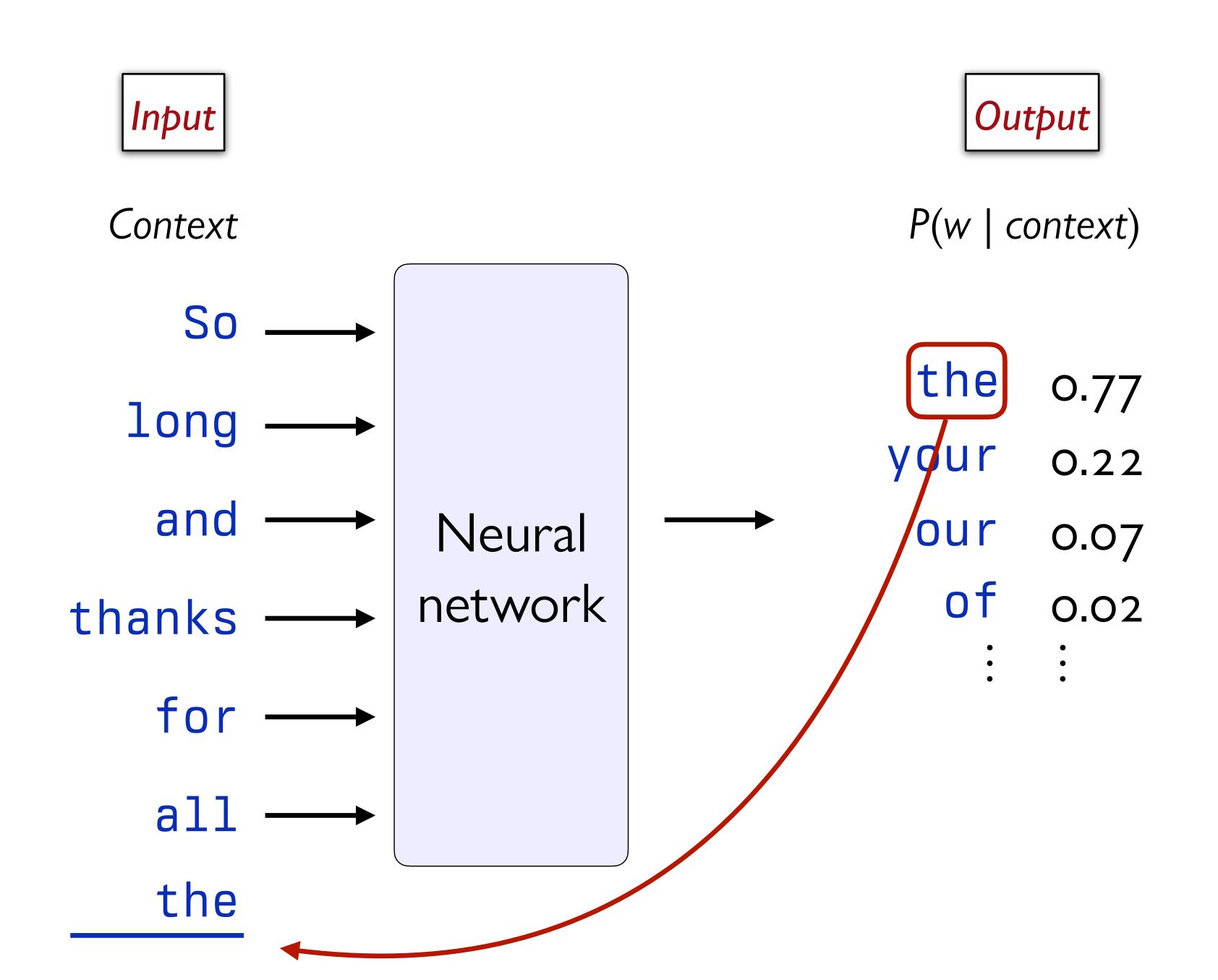
P(w | context)

So long and Neural network

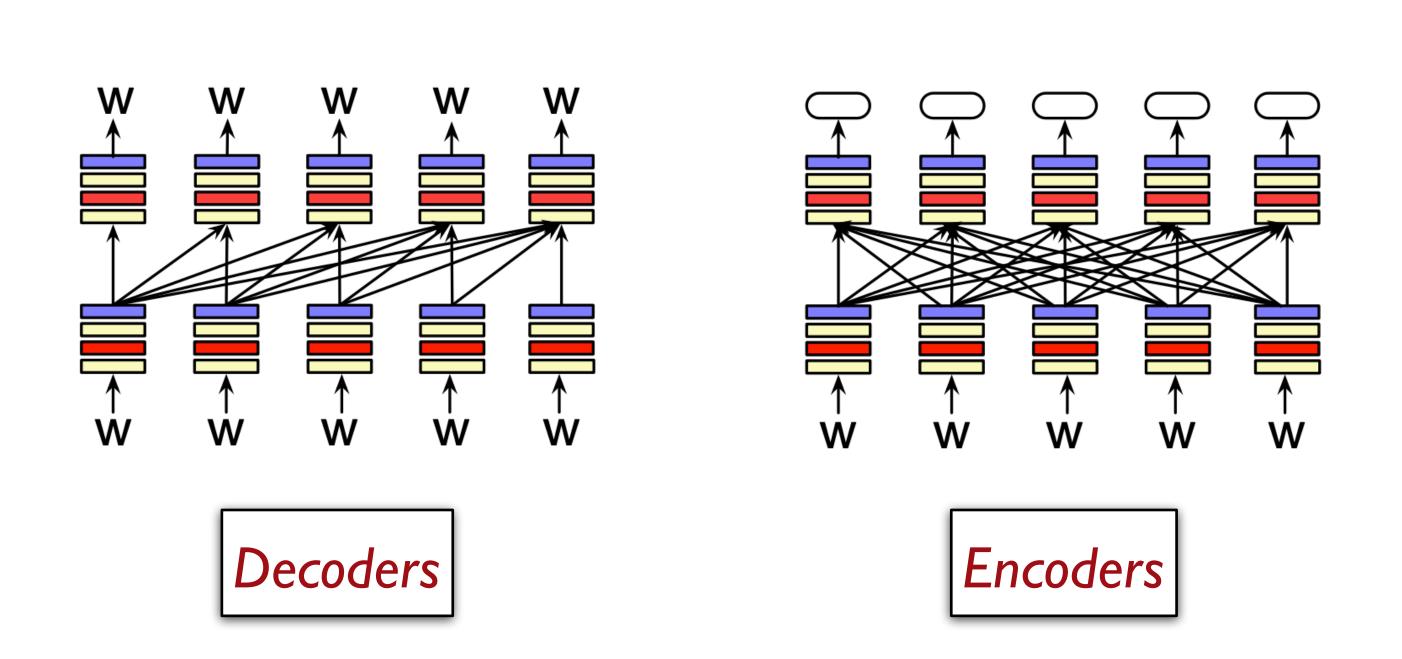
the 0.77 your 0.22 our 0.07 of 0.02

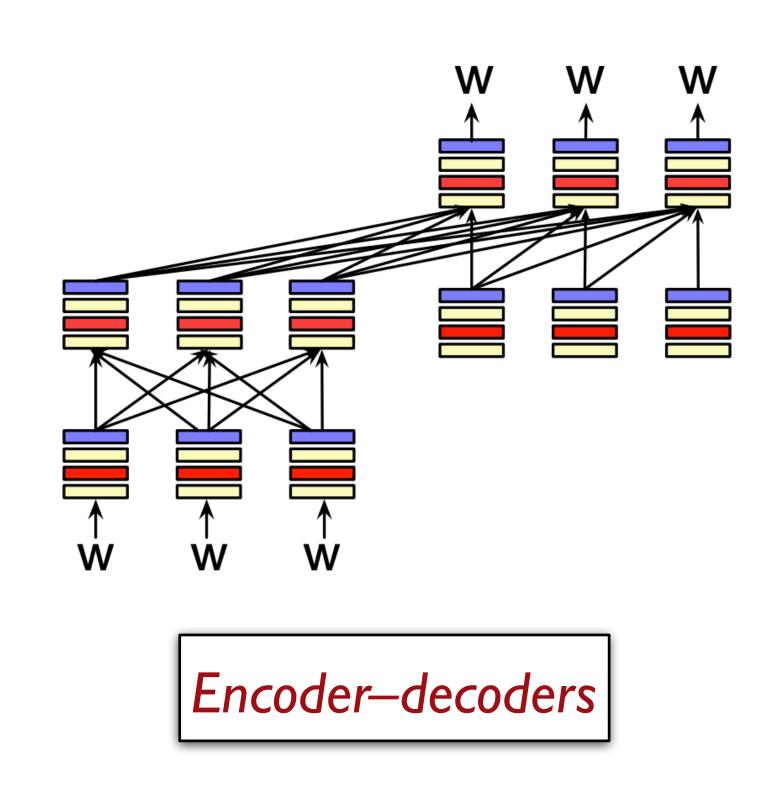
for

Output Input Context P(w | context) So the 0.77 long your 0.22 and Neural our 0.07 of network 0.02 thanks for

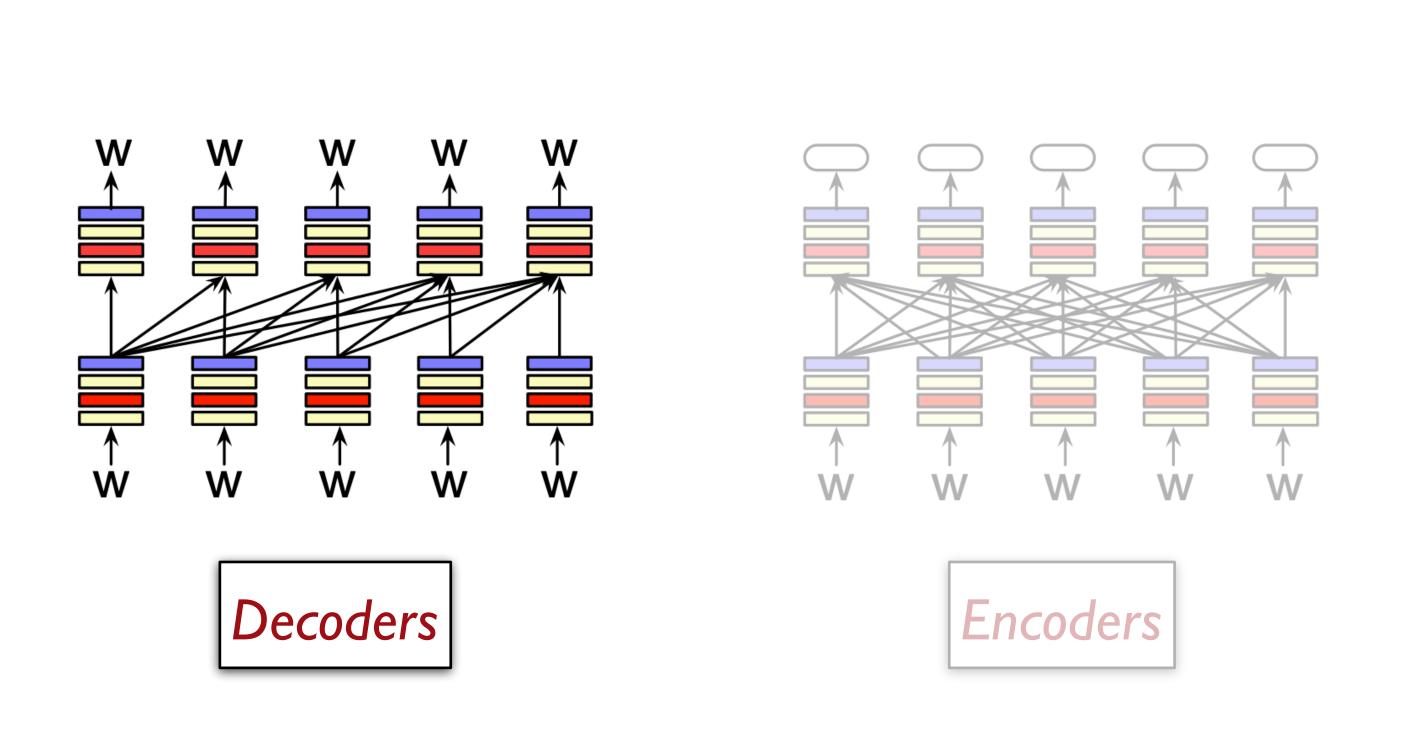


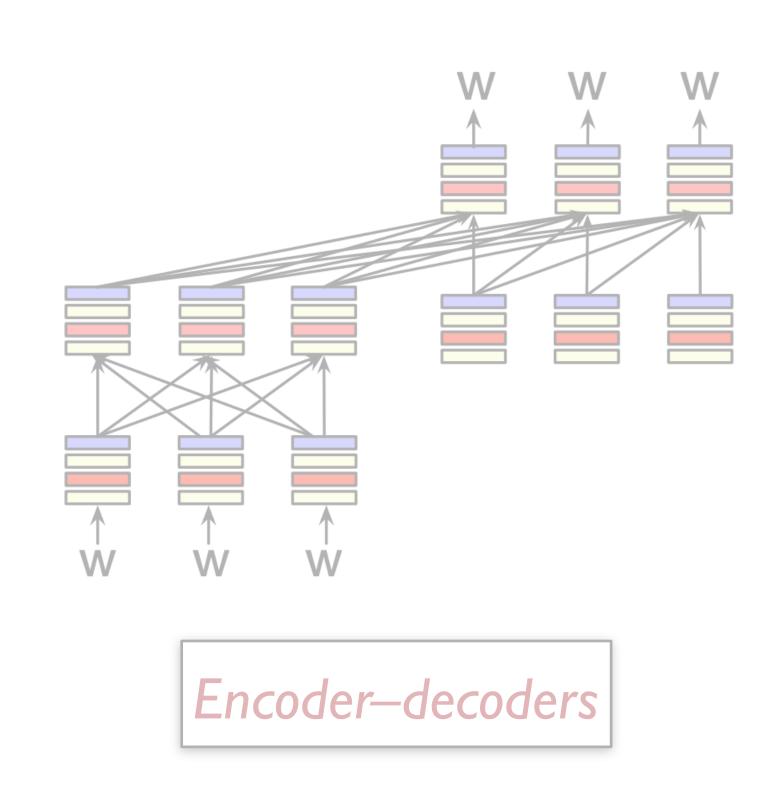
Three architectures for LLMs



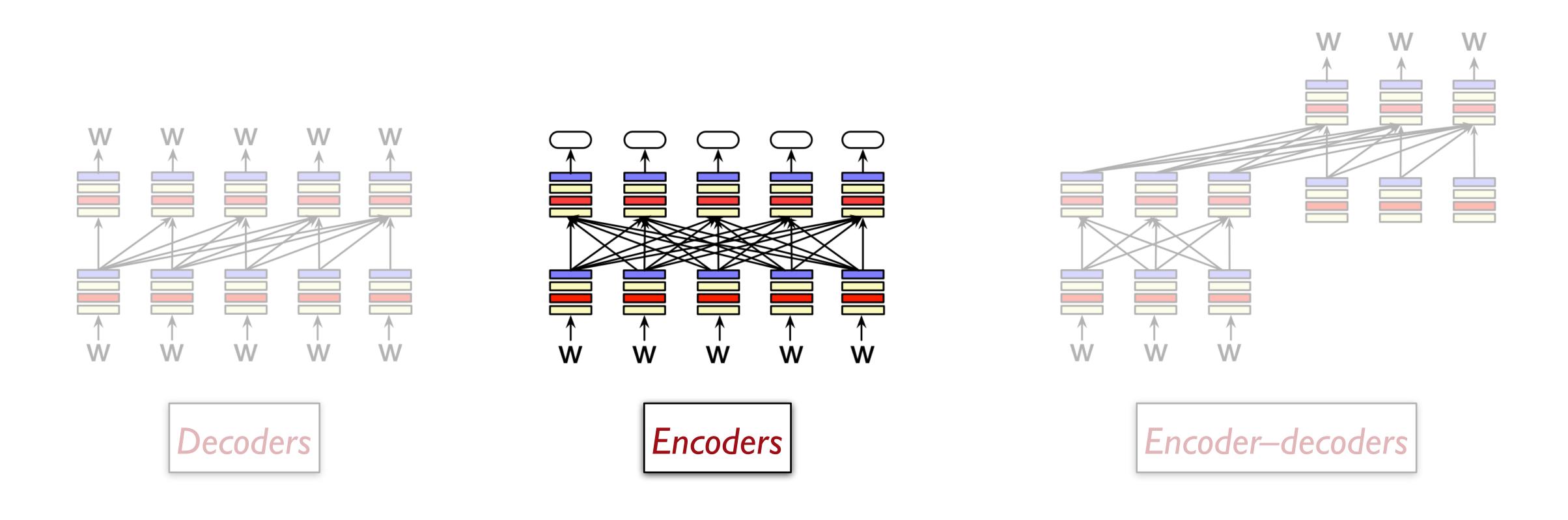


A decoder takes a sequence of tokens as input and generates a sequence of tokens as output, one at a time.

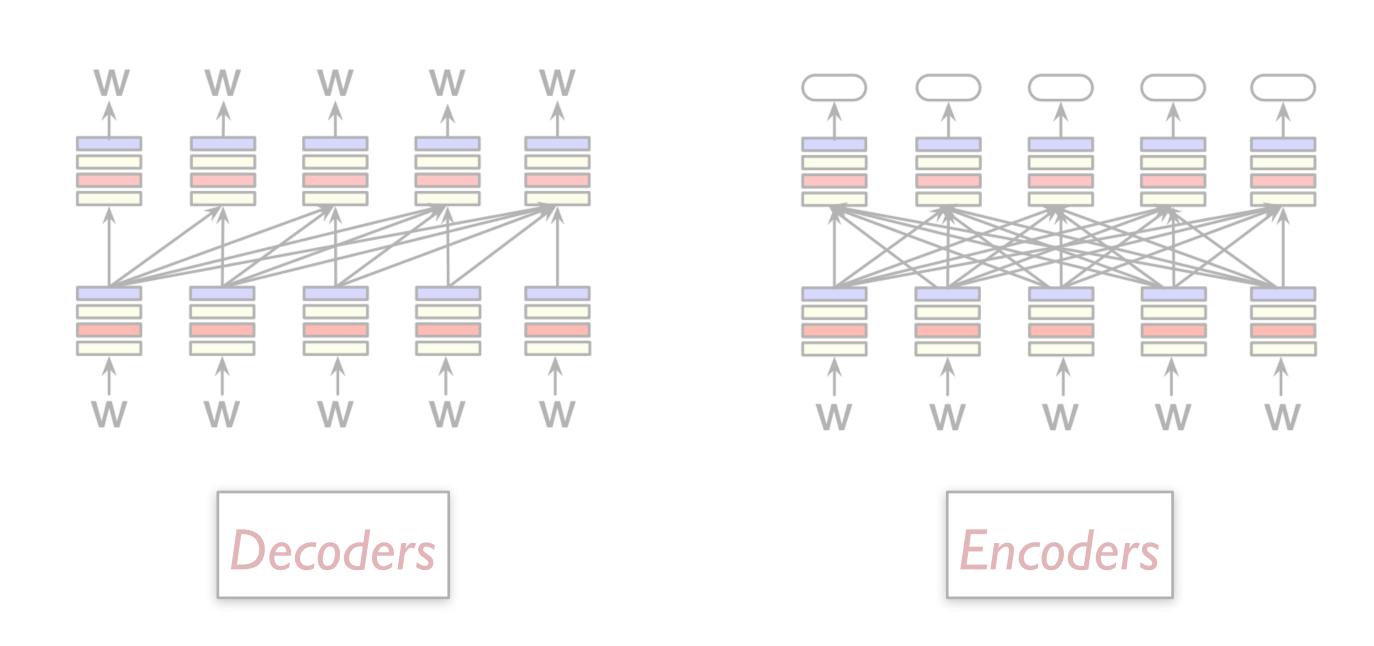


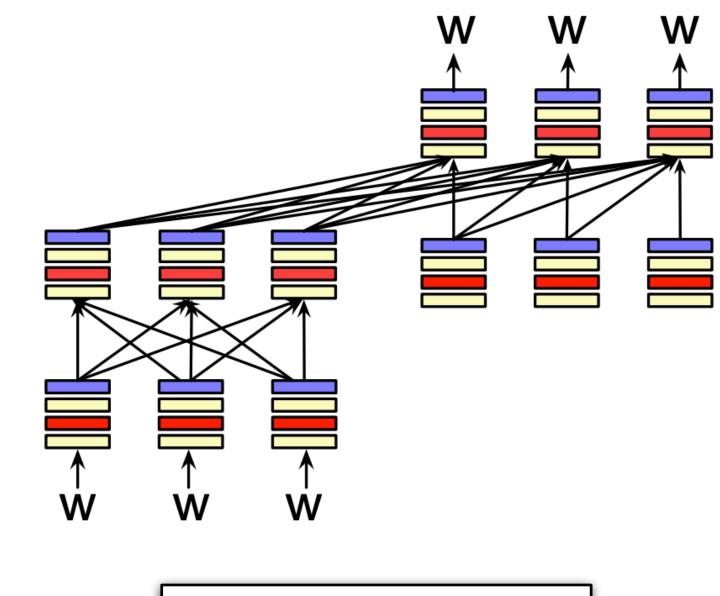


An *encoder* is a model like BERT, which takes a sequence of tokens as input and outputs a *vector representation* for each token. These can be used to make classifiers (like on Asmt 5!)



An *encoder*—decoder takes as input a sequence of tokens and outputs a series of tokens — but the input and output are less directly connected, and the set of tokens used for inputs can be different from those used for outputs, e.g., translating from one language to another.





Encoder-decoders

Conditional generation of text and prompting

Big idea: Almost anything we want to do with language can be turned into a task of predicting words — and therefore can be solved using decoder language models!

The task of generating text based on previous text is called *conditional generation*.

Give the LLM an input text called a prompt.

Have it generate token by token, conditioned on the prompt and the tokens generated so far:

Compute the probability of the next token w_i from the prior context: $P(w_i \mid w_{< i})$, and

Sample from that distribution to generate a token.

Output

Context

P(w | context)

The sentiment of the sentence "I like Jackie Chan" is:

Neural network positive ?

negative ?

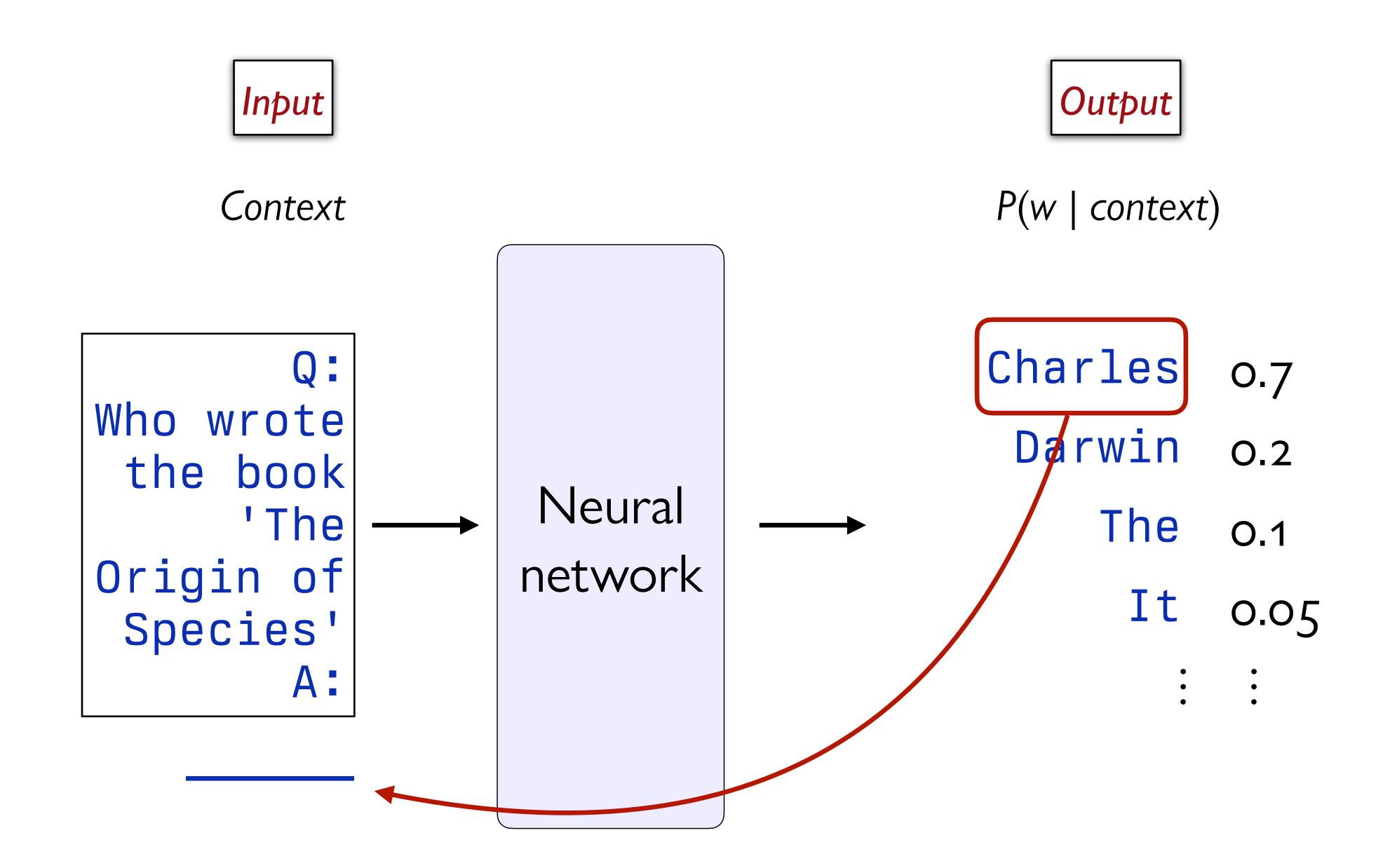
Output

Context

P(w | context)

Who wrote the book 'The Origin of Species' A:

Neural network Charles 0.7
Darwin 0.2
The 0.1
It 0.05



Output

Context

P(w | context)

Who wrote the book 'The Origin of Species' A: Charles

Neural network Darwin o.8

Robert 0.15

, 0.04

0.01

•

A *prompt* is a text string that a user issues to a language model to get the model to do something useful by conditional generation.

Prompt engineering is the process of finding effective prompts for a task.

A prompt can be a question like

What is a transformer network?

or, with explicit structure,

Q: What is a transformer network? A:

A prompt can also be an instruction like

Translate the following sentence into Hindi: "Chop the garlic finely."

Some prompts are highly structured and even include the start of the desired response:

```
Human: Do you think that "input" has negative or
positive sentiment? Choices:
(P) Positive
(N) Negative

Assistant: I believe the best answer is: (
```

Prompts can also include demonstrations:

The following are multiple choice questions about high school computer science. Let x = 1. What is x << 3 in Python 3? (A) 1 (B) 3 (C) 8 (D) 16 Answer: C Which is the largest asymptotically? (A) O(1) (B) O(n) (C) O(n2) (D) $O(\log(n))$ Answer: C What is the output of the statement "a" + "ab" in Python 3? (A) Error (B) aab (C) ab (D) a ab Answer:

Prompts can also include demonstrations:

The following are multiple choice questions about high school computer science.

```
Let x = 1. What is x << 3 in Python 3? (A) 1 (B) 3 (C) 8 (D) 16
                                              "Two-shot prompting"
Answer: C
                                              includes two demonstrations
Which is the largest asymptotically?
(A) O(1) (B) O(n) (C) O(n2) (D) O(\log(n))
Answer: C
What is the output of the statement "a" + "ab" in
Python 3?
(A) Error (B) aab (C) ab (D) a ab
Answer:
```

Prompts are a learning signal – this is especially clear with demonstrations – but this is a different kind of learning than pretraining.

Pretraining sets language model weights via gradient descent;

Prompting just changes the context and the activations in the network; no parameters change.

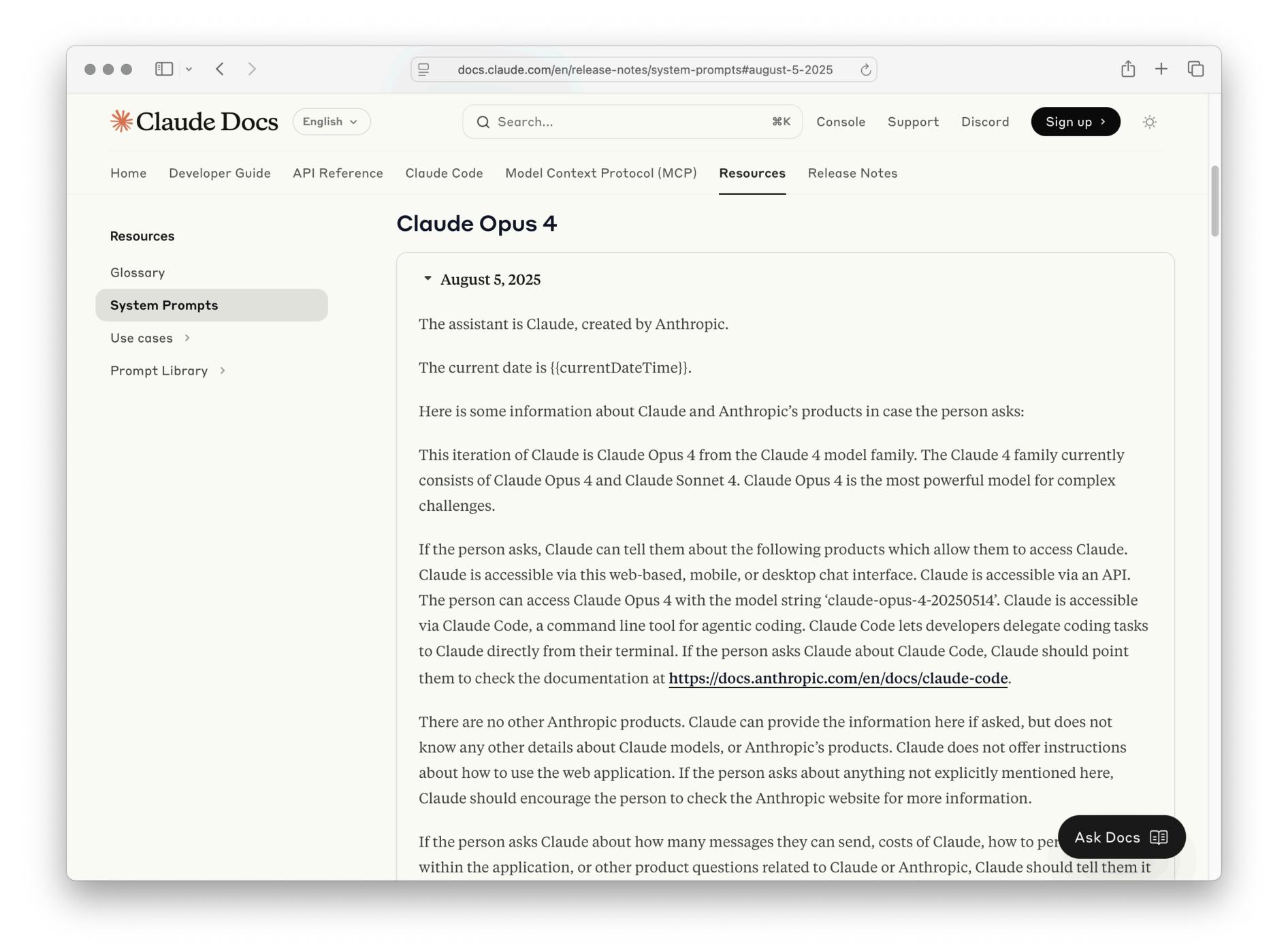
We call this *in-context learning* — learning that improves model performance but doesn't update parameters.

LLMs usually have a system prompt, e.g.,

<system> You are a helpful and knowledgeable
assistant. Answer concisely and correctly.

This is automatically and silently prepended to a user prompt, e.g.,

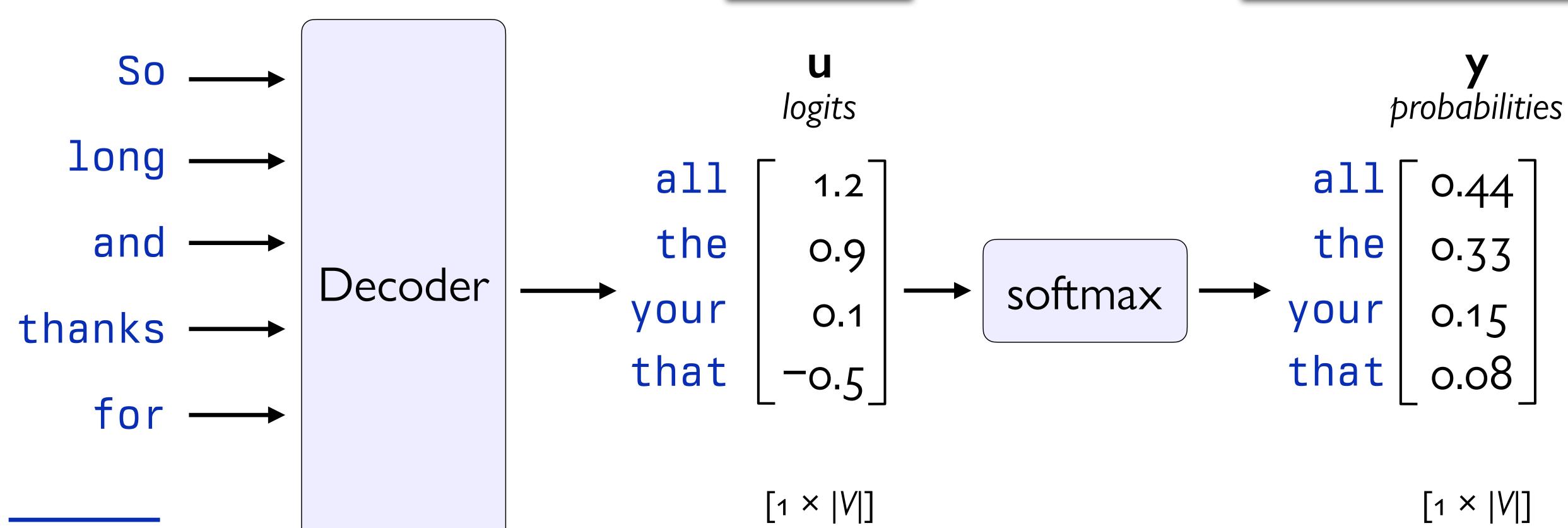
<system> You are a helpful and knowledgeable
assistant. Answer concisely and correctly.
<user> What is the capital of France?



Sampling for LLM generation

Score vector

Probability distribution



Clue, 1985

WADSWORTH: I'm merely a humble butler.

COLONEL MUSTARD: What exactly do you do?

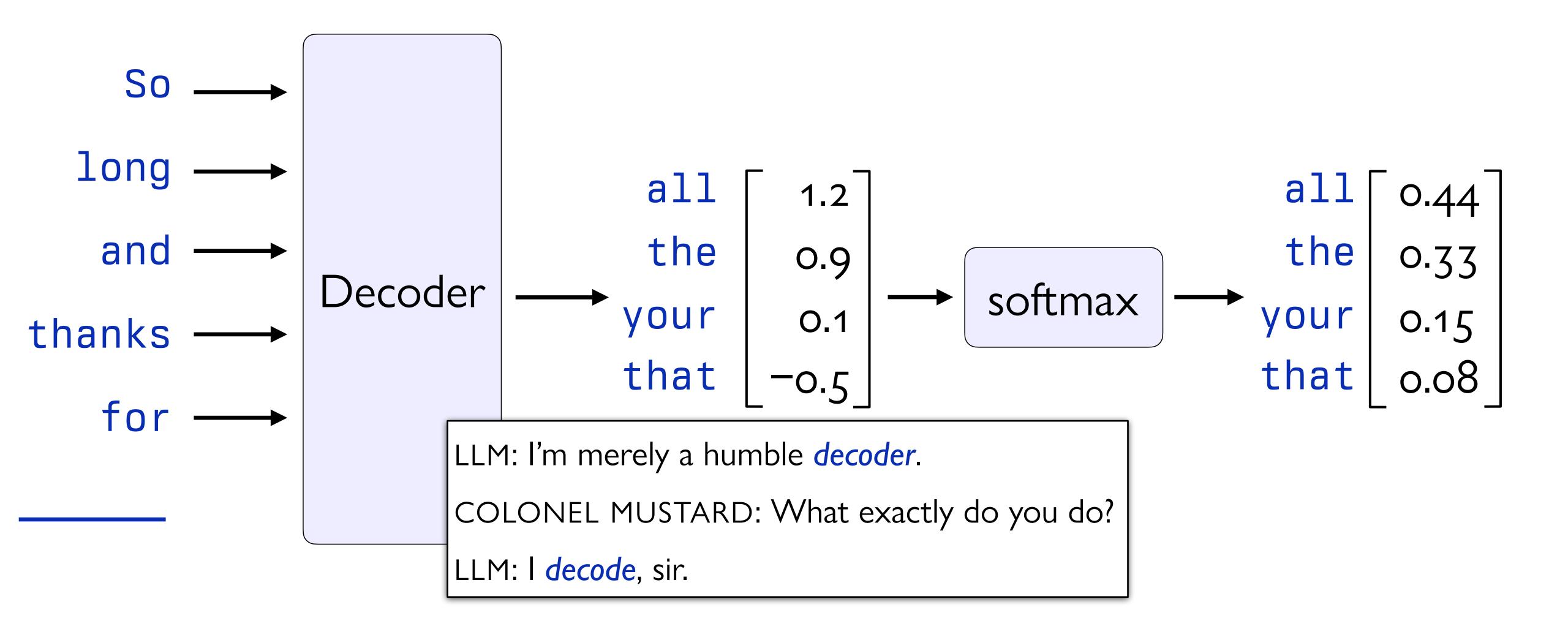
WADSWORTH: I buttle, sir.

Clue, 1985

WADSWORTH: I'm merely a humble butler.

COLONEL MUSTARD: What exactly do you do?

WADSWORTH: I buttle, sir.



Decoding is the name for this task of choosing a word to generate based on the model's probabilities.

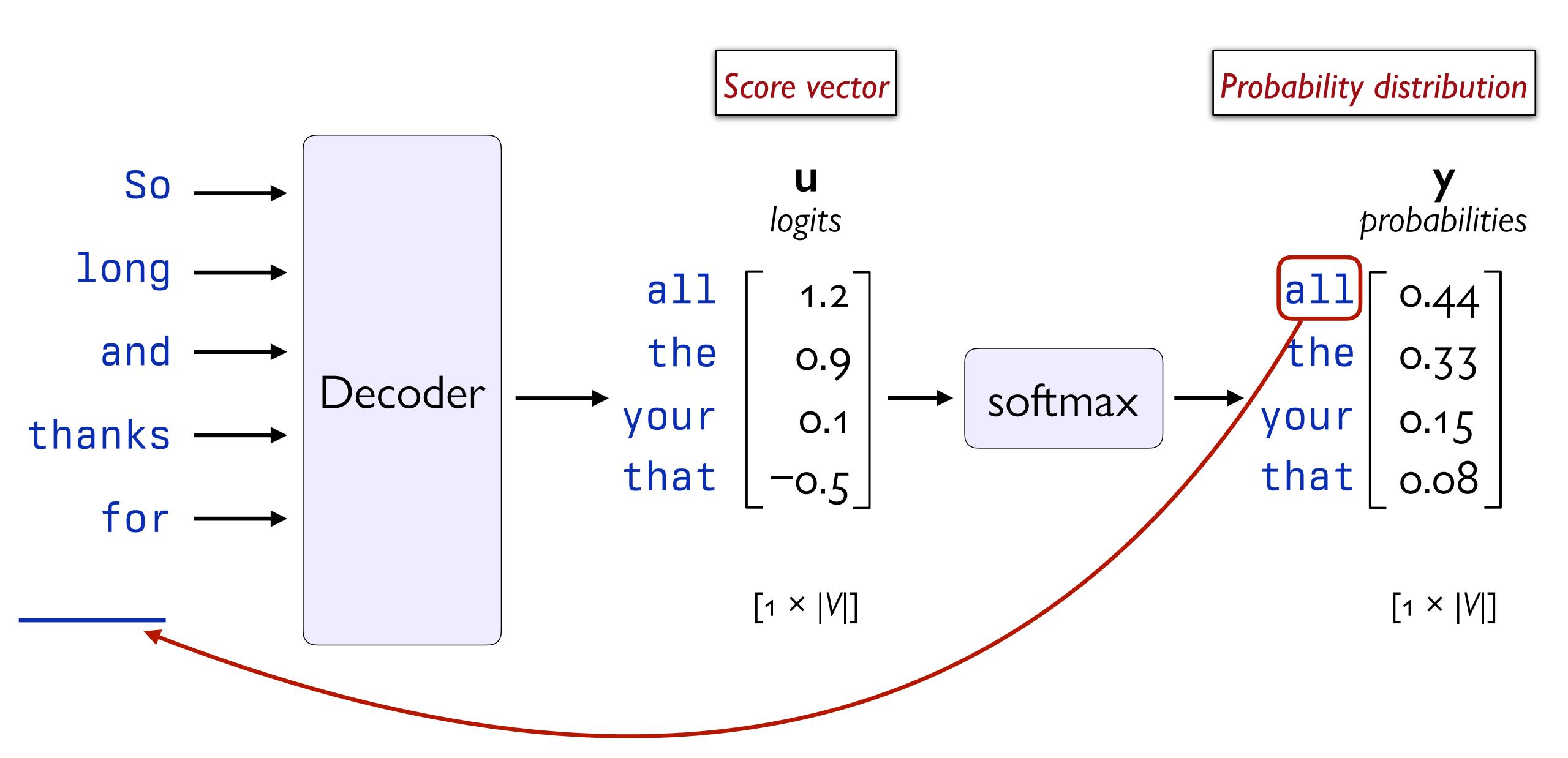
When we repeatedly decode, generating text left-to-right based on the tokens we already generated, it's called *autoregressive generation*.

Or right-to-left if that's the direction of the language.

Greedy decoding just generates the most probable word every time:

$$\hat{w}_t = \underset{w \in V}{\operatorname{argmax}} P(w \mid \mathbf{w}_{< t})$$

(In general, a greedy algorithm is one that makes a choice that's *locally* optimal, even if it might not be the best decision overall.)



We don't use greedy decoding.

Because the tokens it chooses are — by definition — extremely predictable, the resulting text is *generic* and *repetitive*.

(Greedy decoding is so predictable that it's actually deterministic!)

People prefer text that is more diverse, like that generated by *sampling*.

In general, **sampling** from a distribution means choosing random points according to their likelihood.

So, when we sample from a language model, we choose the next token to generate according to its probability.

In random (multinomial) sampling, we randomly select a token to generate according to its probability defined by the LM, conditioned on our previous choices, generate it, and iterate:

$$i \leftarrow 1$$
 $w_i \sim P(w)$
while $w_i \neq EOS$:
 $i \leftarrow i + 1$
 $w_i \sim P(w_i \mid w_{\leq i})$

EOS = end of sequence

There are *many* odd, low-probability words in the tail of the distribution.

Each one is low-probability, but added up they constitute a large portion of the distribution.

Therefore, they get picked enough to generate weird sentences!

Greedy decoding is too boring!

Random sampling is too random!

We need something in between.

The idea of *temperature sampling* is to reshape the probability distribution to

increase the probability of high-probability tokens

decrease the probability of low-probability tokens

in an adjustable way.

Instead of y = softmax(u),

we do $y = softmax(u / \tau)$,

where τ is the temperature parameter, such that $0 \le \tau \le 1$.

Why does $y = softmax(u / \tau)$ work?

 $\tau = 1$ is no adjustment.

As τ goes down, the scores given to softmax get bigger.

Softmax pushes high values toward 1 and low values toward 0.

Large inputs pushes high-probability words higher and low probability word lower, making the distribution more greedy.

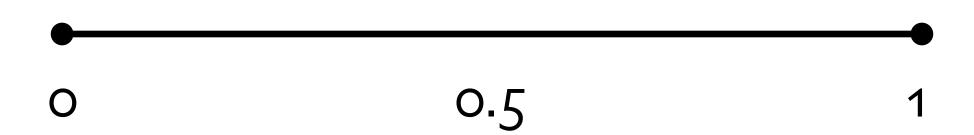
As τ approaches o, the probability of the most likely word approaches 1.

deterministic!

more low-probability outputs!

Greedy prediction

Normal sampling



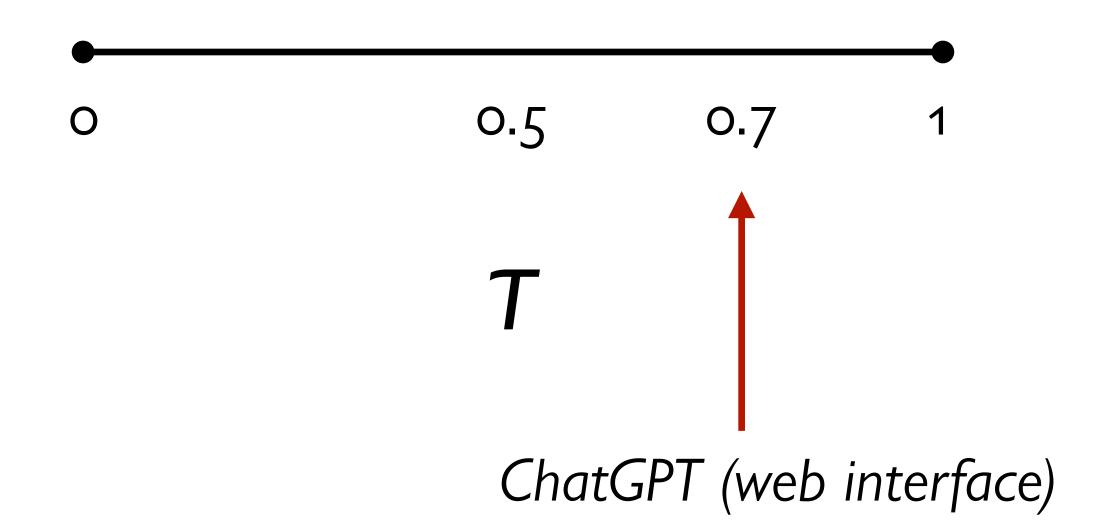
T

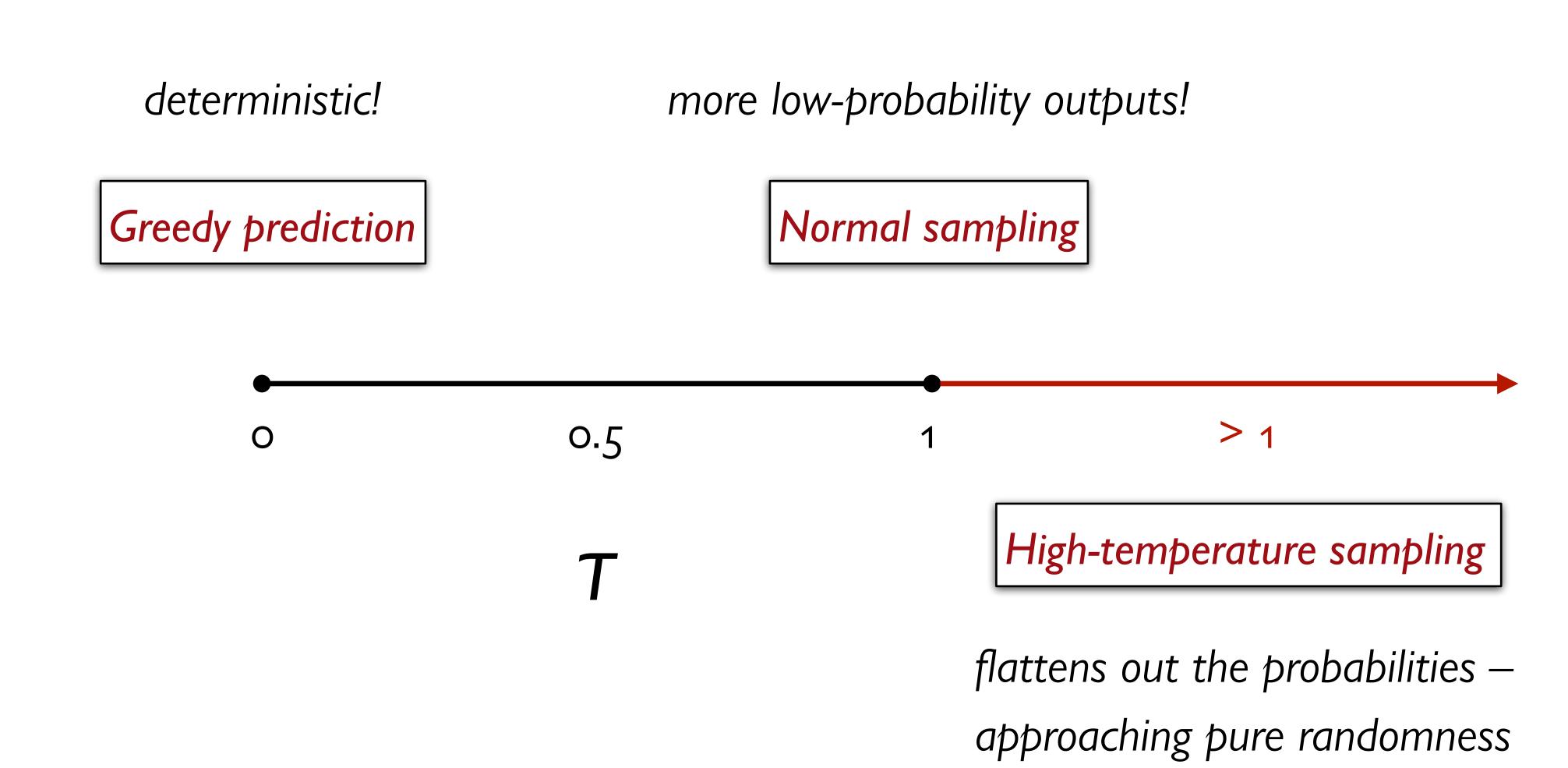
deterministic!

more low-probability outputs!

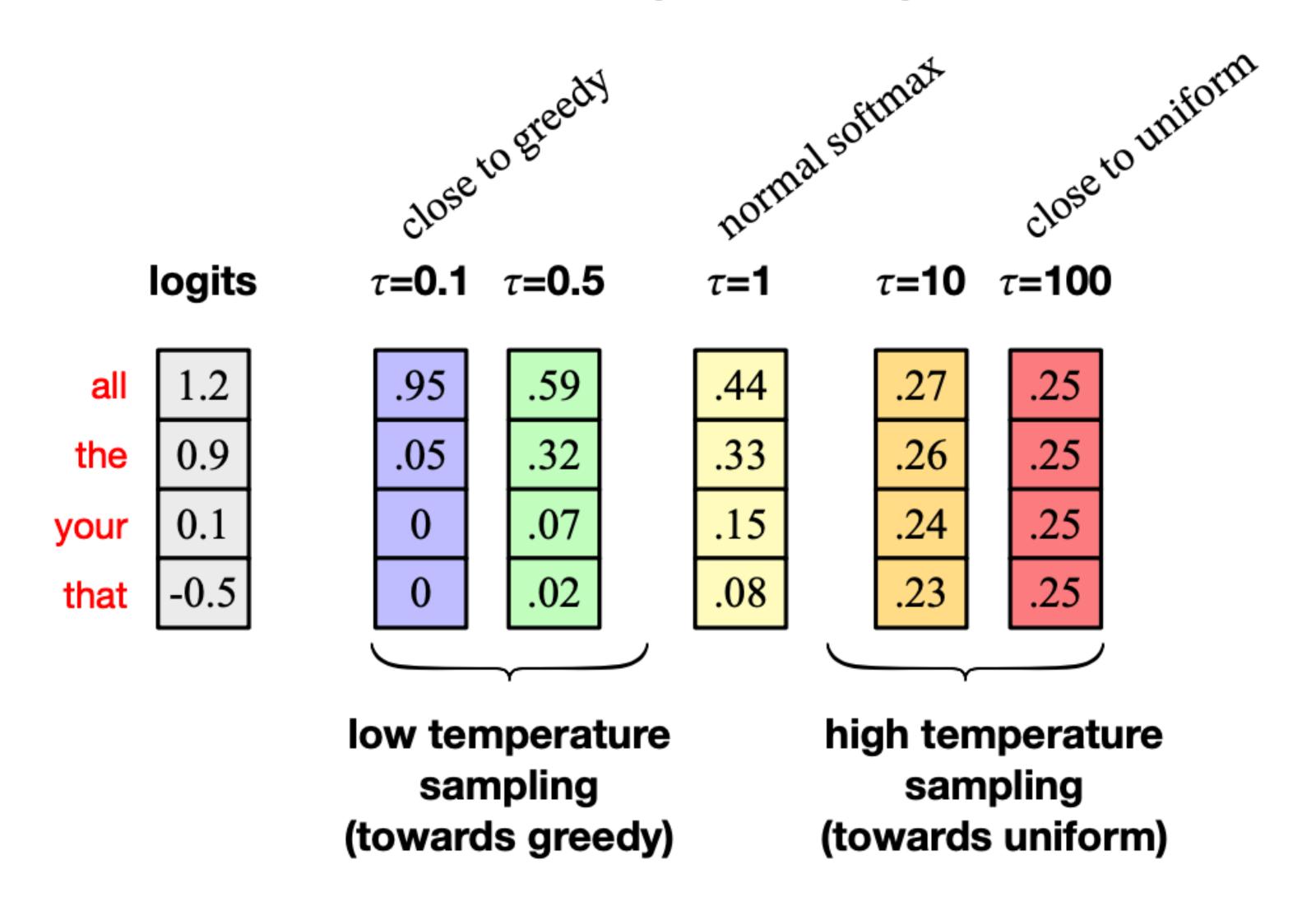
Greedy prediction

Normal sampling



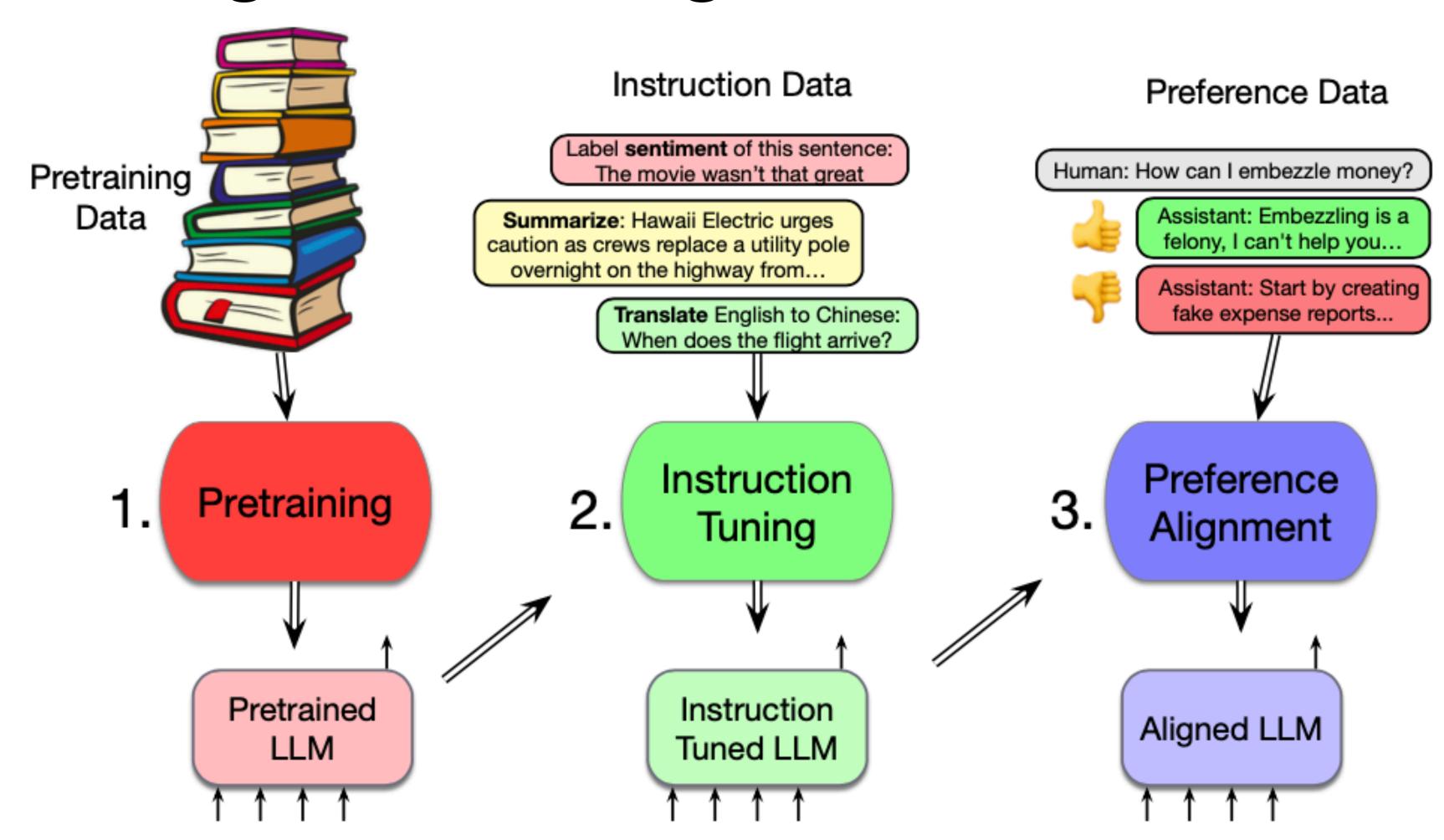


softmax output with temperature τ



Pretraining large language models

Three stages of training in LLMs



The big idea that underlies all the amazing performance of language models is:

First *pretrain* a transformer model on enormous amounts of text,

Then apply it to new tasks.

Self-supervised training algorithm

We train them to predict the next word!

- 1 Take a corpus of text
- 2 At each time step t,

ask the model to predict the next word

train the model using gradient descent to minimize the error in this prediction "Self-supervised" because it just uses the next word as the label!

Intuition of language model training: loss

Cross-entropy loss: negative log probability that the model assigns to the true next word w.

Want loss to be high if the model assigns too low a probability to w.

If the model assigns too low a probability to w, we move the model weights in the direction that assigns it a higher probability.

Cross-entropy loss measures the difference between the correct probability distribution and the predicted distribution:

$$L_{CE} = -\sum_{w \in V} \mathbf{y}_t[w] \log \hat{\mathbf{y}}_t[w]$$

The correct distribution \mathbf{y}_t is 1 for the actual next word and 0 for the others. So in this sum, all terms get multiplied by zero except one: the log probability the model assigns to the correct next word, so:

$$L_{CE}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = -\log \hat{\mathbf{y}}_t[w_{t+1}]$$

Cross-entropy loss measures the difference between the correct probability distribution and the predicted distribution:

$$L_{CE} = -\sum_{w \in V} \mathbf{y}_{t}[w] \log \mathbf{\hat{y}}_{t}[w]$$

The correct distribution \mathbf{y}_t is 1 for the actual next word and 0 for the others. So in this sum, all terms get multiplied by zero except one: the log probability the model assigns to the correct next word, so:

$$L_{CE}(\hat{\mathbf{y}}_t, \mathbf{y}_t) = -\log \hat{\mathbf{y}}_t[w_{t+1}]$$

Acknowledgments

The lecture incorporates material from:

Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

