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Large language models (LLMs) are computational 
agents that can interact conversationally with people 
using natural language. 

LLMs have revolutionized the field of NLP and AI.



Like simple n-gram language models, LLMs

assign probabilities to sequences of words and

generate text by sampling possible next words.



Like simple n-gram language models, LLMs

assign probabilities to sequences of words and

generate text by sampling possible next words.

But while n-gram language models are

trained on counts computed from lots of text,

LLMs are

trained by learning to guess the next word.



The fundamental intuition of large language models: 

Text contains enormous amounts of knowledge! 

Pretraining on lots of text, with all that 
knowledge, is what gives language models their 
ability to do so much.



What does a model learn from pretraining?
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The room wasn't just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own” is Virginia Woolf

The professor said that he
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A model that gives a probability distribution over 
next words can generate text by repeatedly sampling 
from the distribution.
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Three architectures for LLMs

Decoders Encoders Encoder–decoders



A decoder takes a sequence of tokens as input and generates a 
sequence of tokens as output, one at a time.

Decoders Encoders Encoder–decoders



An encoder is a model like BERT, which takes a sequence of 
tokens as input and outputs a vector representation for each 
token. These can be used to make classifiers (like on Asmt 5!)

Decoders Encoders Encoder–decoders



An encoder–decoder takes as input a sequence of tokens and 
outputs a series of tokens – but the input and output are less 
directly connected, and the set of tokens used for inputs can be 
different from those used for outputs, e.g., translating from one 
language to another.

Decoders Encoders Encoder–decoders



Conditional generation of text and 
prompting



Big idea: Almost anything we want to do with 
language can be turned into a task of predicting 
words – and therefore can be solved using 
decoder language models!



The task of generating text based on previous text is 
called conditional generation. 

Give the LLM an input text called a prompt. 

Have it generate token by token, conditioned on the prompt and the 
tokens generated so far: 

Compute the probability of the next token wi from the prior 
context: P(wi | w<i), and 

Sample from that distribution to generate a token.
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A prompt is a text string that a user issues to a 
language model to get the model to do something 
useful by conditional generation. 

Prompt engineering is the process of finding effective 
prompts for a task.



A prompt can be a question like 
What is a transformer network? 

or, with explicit structure, 
Q: What is a transformer network? A: 

A prompt can also be an instruction like 
Translate the following sentence into 
Hindi: "Chop the garlic finely."



Some prompts are highly structured and even 
include the start of the desired response: 

Human: Do you think that "input" has negative or 
positive sentiment? Choices: 
(P) Positive 
(N) Negative 

Assistant: I believe the best answer is: (



Prompts can also include demonstrations: 
The following are multiple choice questions about 
high school computer science. 

Let x = 1. What is x << 3 in Python 3? 
(A) 1 (B) 3 (C) 8 (D) 16 
Answer: C 

Which is the largest asymptotically? 
(A) O(1) (B) O(n) (C) O(n2) (D) O(log(n)) 
Answer: C 

What is the output of the statement "a" + "ab" in 
Python 3? 
(A) Error (B) aab (C) ab (D) a ab 
Answer:



Prompts can also include demonstrations: 
The following are multiple choice questions about 
high school computer science. 

Let x = 1. What is x << 3 in Python 3? 
(A) 1 (B) 3 (C) 8 (D) 16 
Answer: C 

Which is the largest asymptotically? 
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“Two-shot prompting” 
includes two demonstrations



Prompts are a learning signal – this is especially clear 
with demonstrations – but this is a different kind of 
learning than pretraining. 

Pretraining sets language model weights via gradient descent; 

Prompting just changes the context and the activations in the 
network; no parameters change. 

We call this in-context learning – learning that 
improves model performance but doesn’t update 
parameters.



LLMs usually have a system prompt, e.g., 
<system> You are a helpful and knowledgeable 
assistant. Answer concisely and correctly. 

This is automatically and silently prepended to a user 
prompt, e.g., 

<system> You are a helpful and knowledgeable 
assistant. Answer concisely and correctly. 
<user> What is the capital of France?
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Sampling for LLM generation
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WADSWORTH: I’m merely a humble butler. 

COLONEL MUSTARD: What exactly do you do? 

WADSWORTH: I buttle, sir.

Clue, 1985
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LLM: I’m merely a humble decoder. 

COLONEL MUSTARD: What exactly do you do? 

LLM: I decode, sir.



Decoding is the name for this task of choosing a 
word to generate based on the model’s probabilities. 

When we repeatedly decode, generating text left-
to-right based on the tokens we already generated, 
it’s called autoregressive generation.

Or right-to-left if 
that’s the direction 
of the language.



Greedy decoding just generates the most probable 
word every time: 

(In general, a greedy algorithm is one that makes a 
choice that’s locally optimal, even if it might not be 
the best decision overall.)

ŵt = argmax
w∈V

P(w ∣ w<t)
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We don’t use greedy decoding. 

Because the tokens it chooses are – by definition – 
extremely predictable, the resulting text is generic 
and repetitive. 

(Greedy decoding is so predictable that it’s actually deterministic!) 

People prefer text that is more diverse, like that 
generated by sampling.



In general, sampling from a distribution means 
choosing random points according to their 
likelihood. 

So, when we sample from a language model, we 
choose the next token to generate according to its 
probability.



In random (multinomial) sampling, we randomly 
select a token to generate according to its 
probability defined by the LM, conditioned on our 
previous choices, generate it, and iterate: 

i ← 1 
wi ~ P(w) 
while wi ≠ EOS: 
		 i ← i + 1 
		 wi ~ P(wi | w<i)

EOS = end of sequence



There are many odd, low-probability words in the 
tail of the distribution. 

Each one is low-probability, but added up they 
constitute a large portion of the distribution. 

Therefore, they get picked enough to generate 
weird sentences!



Greedy decoding is too boring! 

Random sampling is too random! 

We need something in between.



The idea of temperature sampling is to reshape the 
probability distribution to 

increase the probability of high-probability tokens  

decrease the probability of low-probability tokens 

in an adjustable way.



Instead of	 y = softmax(u), 

we do	 y = softmax(u / τ), 

where τ is the temperature parameter, such that  
0 ≤ τ ≤ 1.



Why does y = softmax(u / τ) work? 
τ = 1 is no adjustment.  

As τ goes down, the scores given to softmax get bigger. 

Softmax pushes high values toward 1 and low values toward 0.  

Large inputs pushes high-probability words higher and low 
probability word lower, making the distribution more greedy.  

As τ approaches 0, the probability of the most likely word approaches 
1.



τ
0 10.5

Normal samplingGreedy prediction

deterministic! more low-probability outputs!



τ
0 10.5

ChatGPT (web interface)

0.7

Normal samplingGreedy prediction

deterministic! more low-probability outputs!



τ
0 1

Normal samplingGreedy prediction

0.5

deterministic! more low-probability outputs!

High-temperature sampling

> 1

flattens out the probabilities – 
approaching pure randomness





Pretraining large language models



Three stages of training in LLMs



The big idea that underlies all the amazing 
performance of language models is: 

First pretrain a transformer model on enormous 
amounts of text, 

Then apply it to new tasks.



Self-supervised training algorithm

We train them to predict the next word! 

1  Take a corpus of text  

2  At each time step t,   

ask the model to predict the next word  

train the model using gradient descent to 
minimize the error in this prediction

“Self-supervised” because 
it just uses the next word as 
the label!



Intuition of language model training: loss

Cross-entropy loss: negative log probability that the 
model assigns to the true next word w. 

Want loss to be high if the model assigns too 
low a probability to w. 

If the model assigns too low a probability to w, 
we move the model weights in the direction 
that assigns it a higher probability.



Cross-entropy loss measures the difference between the correct 
probability distribution and the predicted distribution: 

The correct distribution yt is 1 for the actual next word and 0 for 
the others. So in this sum, all terms get multiplied by zero except 
one: the log probability the model assigns to the correct next 
word, so: 

 

LCE = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]



Cross-entropy loss measures the difference between the correct 
probability distribution and the predicted distribution: 

The correct distribution yt is 1 for the actual next word and 0 for 
the others. So in this sum, all terms get multiplied by zero except 
one: the log probability the model assigns to the correct next 
word, so: 

 

LCE = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]

correct predicted
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