cMpU 366 - Natural Language Processing

L arge Language Models

Part 1

27 October 2025

Large language models (LLMs) are computational

agents that can interact conversationally with people
using natural language.

LLMs have revolutionized the field of NLP and Al.

Like simple n-gram language models, LLMs
assign probabilities to sequences of words and

generate text by sampling possible next words.

Like simple n-gram language models, LLMs
assign probabilities to sequences of words and

generate text by sampling possible next words.

But while n-gram language models are
trained on counts computed from lots of text,

LLMS are

trained by learning to guess the next word.

The fundamental intuition of large language models:
Text contains enormous amounts of knowledge!

Pretraining on lots of text, with all that
knowledge, is what gives language models their
ability to do so much.

What does a model learn from pretraining?

What does a model learn from pretraining?

With roses, dahlias, and peonies, | was surrounded by flowers

What does a model learn from pretraining?

With roses, dahlias, and peonies, | was surrounded by flowers

The room wasn't just big it was enormous

What does a model learn from pretraining?

With roses, dahlias, and peonies, | was surrounded by flowers
The room wasn't just big it was enormous

The square root of 4 is 2

What does a model learn from pretraining?

With roses, dahlias, and peonies, | was surrounded by flowers
The room wasn't just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own™ is Virginia Woolf

What does a model learn from pretraining?

With roses, dahlias, and peonies, | was surrounded by flowers
The room wasn't just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own™ is Virginia Woolf

The professor said that he

Input

Context
SO
long
and
thanks

for

Neural
network

Output

P(w | context)

all
the

vour
that

0.44

0.33
0.15

0.08

A model that gives a probability distribution over
next words can generate text by repeatedly sampling
from the distribution.

Input

Context
SO
long
and
thanks

for

Neural
network

Output

P(w | context)

all
the

vour
that

0.44

0.33
0.15

0.08

Input

Context
SO
long
and
thanks

for

Neural
network

Output

P(w | context)

0.44

the 0.33
your 0.5

that 0.08

Input Output

Context P(w | context)

SO —»

0.44

long —
0.3%
and /™ | Neural | — our 0.1g
thanks —» netWOI”k

that 0.08

for —»

all

Input Output

Context P(w | context)

SO —»
long —
and —

Neural
thanks —» netWOI”k

for —»

all —

Input

Context
SO
long
and
thanks
for

all

Neural
network

Output

P(w | context)

the 0.77
vour o.22
our 0.07

of 0.02

Input

Context
SO
long
and
thanks
for

all

Neural
network

Output

P(w | context)

0.7

your o0.22
our 0.07

of 0.02

Input Output

Context P(w | context)
SO —»
0.
long — /7
0.22
and — | Neural | — 0.0/
thanks —— | Network of 0.02

for —»

all —

the

Three architectures for LLMs

Decoders Encoders Encoder—decoders

A decoder takes a sequence of tokens as input and generates a
sequence of tokens as output, one at a time.

Decoders

An encoder is a model like BERT, which takes a sequence of
tokens as input and outputs a vector representation for each
token. These can be used to make classifiers (like on Asmt g!)

Encoders

An encoder—decoder takes as input a sequence of tokens and
outputs a series of tokens — but the input and output are less
directly connected, and the set of tokens used for inputs can be

different from those used for outputs, e.g., translating from one
language to another.

Encoder—decoders

Conditional generation of text and
prompting

Big idea: Almost anything we want to do with
language can be turned into a task of predicting
words — and therefore can be solved using
decoder language models!

The task of generating text based on previous text is
called conditional generation.

Give the LLM an input text called a prompt.

Have it generate token by token, conditioned on the prompt and the
tokens generated so far:

Compute the probability of the next token w; from the prior
context: P(w; | w<), and

Sample from that distribution to generate a token.

Input Output

Context P(w | context)

The
sentiment

of the o ,
sentence| — | Neural , positive ¢

"I like network negative !

Jackile
Chan" 1s:

Input

Context

Q:

Who wrote
the book
'The
Origin of
Species'’
A

Neural
network

Output

P(w | context)

Charles 0.7
Darwin o.2
The 0.1

IT o.05

Input Output

Context P(w | context)

Who wrote :
the book Darwin 0.2
'The| — | Neural | __ The o1
Origin of network
Species' 1T 0.05
A: :

Input

Context

Q:

Who wrote
the book
'The
Origin of
Species'’
A
Charles

Neural
network

Output

P(w | context)

Darwin
Robert

’J

0.8

0.15
0.04

0.01

A prompt is a text string that a user issues to a
language model to get the model to do something
useful by conditional generation.

Prompt engineering is the process of finding effective
prompts for a task.

A prompt can be a question like

What 1s a transformer network?

or, with explicit structure,

Q: What is a transformer network? A:

A prompt can also be an instruction like

Translate the following sentence into
Hindi: "Chop the garlic finely."

Some prompts are highly structured and even
include the start of the desired response:

Human: Do you think that "input" has negative or
positive sentiment? Choilces.:

(P) Positive

(N) Negative

Assistant: I believe the best answer is: (

Prompts can also include demonstrations:

The following are multiple choilce questions about
high school computer science.

Let x = 1. What 1s x << 3 1n Python 37
(A) 1 (B) 3 (C) 8 (D) 16
Answer: C

Which 1s the largest asymptotically?
(A) 0(1) (B) 0(n) (C) 0(n2) (D) 0(log(n))
Answer: C

What 1s the output of the statement "a" + "ab" 1in
Python 37

(A) Error (B) aab (C) ab (D) a ab

Answer :

Prompts can also include demonstrations:

The following are multiple choilce questions about
high school computer science.

Let x = 1. What 1s x << 3 1n Python 37

(A) 1 (B) 3 (C) 8 (D) 16

Answer: C Iwo-shot prompting

includes two demonstrations

Which 1s the largest asymptotically?
(A) 0(1) (B) 0(n) (C) 0(n2) (D) 0(log(n))
Answer: C

What 1s the output of the statement "a" + "ab" 1in
Python 37

(A) Error (B) aab (C) ab (D) a ab

Answer :

Prompts are a learning signal — this is especially clear
with demonstrations — but this is a different kind of
learning than pretraining.

Pretraining sets language model weights via gradient descent;

Prompting just changes the context and the activations in the
network; no parameters change.

We call this in-context learning — learning that
improves model performance but doesn't update
parameters.

LLMs usually have a system prompt, e.g.,

<system> You are a helpful and knowledgeable
assistant. Answer concisely and correctly.

This is automatically and silently prepended to a user
prompt, e.g.,
<system> You are a helpful and knowledgeable

assistant. Answer concisely and correctly.
<user> What 1s the capital of France?

000 [{]+ (< = docs.claude.com/en/release-notes/system-prompts#august-5-2025 C @] + O

‘*Claude DOCS English v Q Search... ¥K Console Support Discord O-

Home Developer Guide APl Reference Claude Code Model Context Protocol (MCP) Resources Release Notes
Claude Opus 4

Resources

Glossary

v August s, 2025

System Prompts

The assistant is Claude, created by Anthropic.
Use cases >

Prompt Library > The current date is {{currentDateTime}}.
Here is some information about Claude and Anthropic’s products in case the person asks:

This iteration of Claude is Claude Opus 4 from the Claude 4 model family. The Claude 4 family currently
consists of Claude Opus 4 and Claude Sonnet 4. Claude Opus 4 is the most powerful model for complex

challenges.

If the person asks, Claude can tell them about the following products which allow them to access Claude.
Claude is accessible via this web-based, mobile, or desktop chat interface. Claude is accessible via an API.
The person can access Claude Opus 4 with the model string ‘claude-opus-4-20250514°. Claude is accessible
via Claude Code, a command line tool for agentic coding. Claude Code lets developers delegate coding tasks

to Claude directly from their terminal. If the person asks Claude about Claude Code, Claude should point

them to check the documentation at https://docs.anthropic.com/en/docs/claude-code.

There are no other Anthropic products. Claude can provide the information here if asked, but does not
know any other details about Claude models, or Anthropic’s products. Claude does not offer instructions
about how to use the web application. If the person asks about anything not explicitly mentioned here,

Claude should encourage the person to check the Anthropic website for more information.

If the person asks Claude about how many messages they can send, costs of Claude, how to pe Ask Docs

within the application, or other product questions related to Claude or Anthropic, Claude should tell them it

https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025

Sampling for LLM generation

SO
long

and

thanks

for

Decoder | ——

Score vector

all
the

vour
that

U
logits

1.2

0.9
0.1

__0.5_

[1 % V]

Probability distribution

softmax

y
pbrobabilities
all| o044
the| 0.33
your | 0.15
that| c.08
[1 % V]

Clue, 1985

WADSWORTH: I'm merely a humble butler.

COLONEL MUSTARD: What exactly do you do!?
WADSWORTH: | buttle, sir.

Clue, 1985

WADSWORTH: I'm merely a humble butler.

COLONEL MUSTARD: What exactly do you do!?
WADSWORTH: | buttle, sir.

SO
long
and
thanks

for

all | 1.2
the 0.9
DeCOder \/OU r 0.1 — Softmax
that —0.5

LLM: | decode, sir.

LLM: I'm merely a humble decoder.

COLONEL MUSTARD: What exactly do you do?

all
the

vour
that

0.44

0.33
0.15

0.08

Decoding is the name for this task of choosing a
word to generate based on the model’s probabilities.

When we repeatedly decode, generating text left- Or right-to-left if
to-right based on the tokens we already generated, that's the direction
it's called autoregressive generation. of the language.

Greedy decoding just generates the most probable
word every time:

A\

w, = argmax P(w | w_))
wevV

(In general, a greedy algorithm is one that makes a
choice that'’s locally optimal, even if it might not be
the best decision overall.)

SO
long

and

thanks

for

Decoder | ——

Score vector

all
the

vour
that

U
logits

1.2

0.9
0.1

__0.5_

[1 % V]

Probability distribution

softmax

y
pbrobabilities
allll o.44
the| 0.33
your | o.1g
that| c.08
[1 % V]

We don't use greedy decoding.

Because the tokens it chooses are — by definition —

extremely predictable, the resulting text is generic
and repetitive.

(Greedy decoding is so predictable that it's actually deterministic!)

People prefer text that is more diverse, like that
generated by sampling.

In general, sampling from a distribution means

choosing random points according to their
likelihood.

S0, when we sample from a language model, we
choose the next token to generate according to its
probability.

In random (multinomial) sampling, we randomly
select a token to generate according to its
probability defined by the LM, conditioned on our
previous choices, generate it, and iterate:

| < 1

Wi ~ P(W)

while w; # EOS: EOS = end of sequence
| «— | + 1

Wi ~ P (W,' ‘ W<i)

There are many odd, low-probability words in the
tail of the distribution.

Each one is low-probability, but added up they
constitute a large portion of the distribution.

Therefore, they get picked enough to generate
weird sentences!

Greedy decoding is too boring!
Random sampling is too random!

We need something in between.

The idea of temperature sampling is to reshape the
probability distribution to

increase the probability of high-probability tokens
decrease the probability of low-probability tokens

in an adjustable way.

Instead of y = softmax(u),
we do y = softmax(u / 1),

where T is the temperature parameter, such that
O=ST<=1.

Why does y = softmax(u / 1) work?

T = 1 is no adjustment.
As T goes down, the scores given to softmax get bigger.
Softmax pushes high values toward 1 and low values toward o.

Large inputs pushes high-probability words higher and low

probability word lower, making the distribution more greeay.

As T approaches o, the probability of the most likely word approaches
1,

deterministic!

Greedy prediction

more low-probability outputs!

Normal sampling

0.5

deterministic!

Greedy prediction

more low-probability outputs!

Normal sampling

0.5 0.7 1

T

ChatGPT (web interface)

deterministic! more low-probability outputs!

Greedy prediction Normal sampling

e) e >
O 0.5 1 > 1

T High-temperature sampling

flattens out the probabilities —

approaching pure randomness

softmax output with temperature 7

logits 7=0.1 7=0.5 =1 =10 7=100

all
the
your

that

low temperature high temperature
sampling sampling
(towards greedy) (towards uniform)

Pretraining large language models

Three stages of training in LLMs

Instruction Data Preference Data
Label sentiment of this sentence:
The movie wasn't that great (Human: How can | embezzle money?)
Summarize: Hawaii Electric urges Assistant: Embezzling is a]
caution as crews replace a utility pole - felony, | can't help you...
overnight on the highway from... -

Translate English to Chinese:
When does the fllght arrive?

Instruction
2. Tunmg

w7 :
. I 4 I \ ~ N
Pretrained nstruction Aligned LLM

LLM Tuned LLM

The big idea that underlies all the amazing
performance of language models is:

First pretrain a transformer model on enormous
amounts of text,

Then apply it to new tasks.

Self-supervised training algorithm

We train them to predict the next word!

1 Take a corpus of text

“Self-supervised” because
2 At each time step t, it just uses the next word as

the label!

ask the model to predict the next word

train the model using gradient descent to
minimize the error in this prediction

Intuition of language model training: loss

Cross-entropy loss: negative log probability that the
model assigns to the true next word w.

Want loss to be high it the model assigns too
low a probability to w.

If the model assigns too low a probability to w,
we move the model weights in the direction
that assigns it a higher probability.

Cross-entropy loss measures the difference between the correct
probability distribution and the predicted distribution:

LCE — = Z yt[W]IOg)A’t[W]

wevV

The correct distribution y, is 1 for the actual next word and o for
the others. So in this sum, all terms get multiplied by zero except
one: the log probability the model assigns to the correct next

word, so:

LCE(yta y,) = — log yt[wt+1]

Cross-entropy loss measures the difference between the correct
probability distribution and the predicted distribution:

correct predicted

wevV

The correct distribution y, is 1 for the actual next word and o for
the others. So in this sum, all terms get multiplied by zero except
one: the log probability the model assigns to the correct next

word, so:

LCE(yp y,) = — log yt[wt+1]

Acknowledgments

The lecture incorporates material from:

Jurafsky & Martin, Speech and Language Processing, zrd ed. draft

