
Large Language Models
Part 1

27 October 2025

CMPU 366 · Natural Language Processing

Large language models (LLMs) are computational
agents that can interact conversationally with people
using natural language.

LLMs have revolutionized the field of NLP and AI.

Like simple n-gram language models, LLMs

assign probabilities to sequences of words and

generate text by sampling possible next words.

Like simple n-gram language models, LLMs

assign probabilities to sequences of words and

generate text by sampling possible next words.

But while n-gram language models are

trained on counts computed from lots of text,

LLMs are

trained by learning to guess the next word.

The fundamental intuition of large language models:

Text contains enormous amounts of knowledge!

Pretraining on lots of text, with all that
knowledge, is what gives language models their
ability to do so much.

What does a model learn from pretraining?

What does a model learn from pretraining?

With roses, dahlias, and peonies, I was surrounded by flowers

What does a model learn from pretraining?

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

What does a model learn from pretraining?

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

What does a model learn from pretraining?

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own” is Virginia Woolf

What does a model learn from pretraining?

With roses, dahlias, and peonies, I was surrounded by flowers

The room wasn't just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own” is Virginia Woolf

The professor said that he

So

long

and

thanks

for

Context

? ?

P(w | context)

all
the
your
that

⋮

0.44
0.33
0.15
0.08
⋮

Input Output

Neural
network

A model that gives a probability distribution over
next words can generate text by repeatedly sampling
from the distribution.

So

long

and

thanks

for

Context

? ?

P(w | context)

all
the
your
that

⋮

0.44
0.33
0.15
0.08
⋮

Input Output

Neural
network

So

long

and

thanks

for

Context

? ?

P(w | context)

all
the
your
that

⋮

0.44
0.33
0.15
0.08
⋮

Input Output

Neural
network

So

long

and

thanks

for

Context P(w | context)

all
the
your
that

⋮

0.44
0.33
0.15
0.08
⋮

Input Output

all

Neural
network

? ?

So

long

and

thanks

for

Context

Neural
network

P(w | context)

Input Output

all

? ?

So

long

and

thanks

for

Context

Neural
network

P(w | context)

Input Output

all

the
your
our
of
⋮

0.77
0.22
0.07
0.02
⋮

? ?

So

long

and

thanks

for

Context

Neural
network

P(w | context)

Input Output

all

the
your
our
of
⋮

0.77
0.22
0.07
0.02
⋮

? ?

So

long

and

thanks

for

Context

Neural
network

P(w | context)

Input Output

all

the
your
our
of
⋮

0.77
0.22
0.07
0.02
⋮

? ?the

Three architectures for LLMs

Decoders Encoders Encoder–decoders

A decoder takes a sequence of tokens as input and generates a
sequence of tokens as output, one at a time.

Decoders Encoders Encoder–decoders

An encoder is a model like BERT, which takes a sequence of
tokens as input and outputs a vector representation for each
token. These can be used to make classifiers (like on Asmt 5!)

Decoders Encoders Encoder–decoders

An encoder–decoder takes as input a sequence of tokens and
outputs a series of tokens – but the input and output are less
directly connected, and the set of tokens used for inputs can be
different from those used for outputs, e.g., translating from one
language to another.

Decoders Encoders Encoder–decoders

Conditional generation of text and
prompting

Big idea: Almost anything we want to do with
language can be turned into a task of predicting
words – and therefore can be solved using
decoder language models!

The task of generating text based on previous text is
called conditional generation.

Give the LLM an input text called a prompt.

Have it generate token by token, conditioned on the prompt and the
tokens generated so far:

Compute the probability of the next token wi from the prior
context: P(wi | w<i), and

Sample from that distribution to generate a token.

The
sentiment

of the
sentence
"I like
Jackie

Chan" is:

Context

? ?

P(w | context)

positive ?

Input Output

Neural
network negative ?

Q:
Who wrote
the book

'The
Origin of
Species'

A:

Context

? ?

P(w | context)

Charles 0.7

Input Output

Neural
network

Darwin 0.2
The 0.1
It 0.05

⋮ ⋮

Context P(w | context)

Charles 0.7

Input Output

Neural
network

Darwin 0.2
The 0.1
It 0.05

⋮ ⋮
? ?

Q:
Who wrote
the book

'The
Origin of
Species'

A:

Q:
Who wrote
the book

'The
Origin of
Species'

A:
Charles

Context

? ?

P(w | context)

Darwin 0.8

Input Output

Neural
network

Robert 0.15
, 0.04
. 0.01
⋮ ⋮

A prompt is a text string that a user issues to a
language model to get the model to do something
useful by conditional generation.

Prompt engineering is the process of finding effective
prompts for a task.

A prompt can be a question like
What is a transformer network?

or, with explicit structure,
Q: What is a transformer network? A:

A prompt can also be an instruction like
Translate the following sentence into
Hindi: "Chop the garlic finely."

Some prompts are highly structured and even
include the start of the desired response:

Human: Do you think that "input" has negative or
positive sentiment? Choices:
(P) Positive
(N) Negative

Assistant: I believe the best answer is: (

Prompts can also include demonstrations:
The following are multiple choice questions about
high school computer science.

Let x = 1. What is x << 3 in Python 3?
(A) 1 (B) 3 (C) 8 (D) 16
Answer: C

Which is the largest asymptotically?
(A) O(1) (B) O(n) (C) O(n2) (D) O(log(n))
Answer: C

What is the output of the statement "a" + "ab" in
Python 3?
(A) Error (B) aab (C) ab (D) a ab
Answer:

Prompts can also include demonstrations:
The following are multiple choice questions about
high school computer science.

Let x = 1. What is x << 3 in Python 3?
(A) 1 (B) 3 (C) 8 (D) 16
Answer: C

Which is the largest asymptotically?
(A) O(1) (B) O(n) (C) O(n2) (D) O(log(n))
Answer: C

What is the output of the statement "a" + "ab" in
Python 3?
(A) Error (B) aab (C) ab (D) a ab
Answer:

“Two-shot prompting”
includes two demonstrations

Prompts are a learning signal – this is especially clear
with demonstrations – but this is a different kind of
learning than pretraining.

Pretraining sets language model weights via gradient descent;

Prompting just changes the context and the activations in the
network; no parameters change.

We call this in-context learning – learning that
improves model performance but doesn’t update
parameters.

LLMs usually have a system prompt, e.g.,
<system> You are a helpful and knowledgeable
assistant. Answer concisely and correctly.

This is automatically and silently prepended to a user
prompt, e.g.,

<system> You are a helpful and knowledgeable
assistant. Answer concisely and correctly.
<user> What is the capital of France?

https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025
https://docs.claude.com/en/release-notes/system-prompts#august-5-2025

Sampling for LLM generation

So

long

and

thanks

for

? ?

all
the
your
that

0.44
0.33
0.15
0.08

Decoder

u
logits probabilities

y

all
the
your
that

1.2
0.9
0.1

−0.5

softmax

Score vector Probability distribution

[1 × |V|] [1 × |V|]

WADSWORTH: I’m merely a humble butler.

COLONEL MUSTARD: What exactly do you do?

WADSWORTH: I buttle, sir.

Clue, 1985

WADSWORTH: I’m merely a humble butler.

COLONEL MUSTARD: What exactly do you do?

WADSWORTH: I buttle, sir.

Clue, 1985

So

long

and

thanks

for

? ?

all
the
your
that

0.44
0.33
0.15
0.08

Decoder

all
the
your
that

1.2
0.9
0.1

−0.5

softmax

LLM: I’m merely a humble decoder.

COLONEL MUSTARD: What exactly do you do?

LLM: I decode, sir.

Decoding is the name for this task of choosing a
word to generate based on the model’s probabilities.

When we repeatedly decode, generating text left-
to-right based on the tokens we already generated,
it’s called autoregressive generation.

Or right-to-left if
that’s the direction
of the language.

Greedy decoding just generates the most probable
word every time:

(In general, a greedy algorithm is one that makes a
choice that’s locally optimal, even if it might not be
the best decision overall.)

ŵt = argmax
w∈V

P(w ∣ w<t)

So

long

and

thanks

for

? ?

all
the
your
that

0.44
0.33
0.15
0.08

Decoder

u
logits probabilities

y

all
the
your
that

1.2
0.9
0.1

−0.5

softmax

Score vector Probability distribution

[1 × |V|] [1 × |V|]

We don’t use greedy decoding.

Because the tokens it chooses are – by definition –
extremely predictable, the resulting text is generic
and repetitive.

(Greedy decoding is so predictable that it’s actually deterministic!)

People prefer text that is more diverse, like that
generated by sampling.

In general, sampling from a distribution means
choosing random points according to their
likelihood.

So, when we sample from a language model, we
choose the next token to generate according to its
probability.

In random (multinomial) sampling, we randomly
select a token to generate according to its
probability defined by the LM, conditioned on our
previous choices, generate it, and iterate:

i ← 1
wi ~ P(w)
while wi ≠ EOS:
		 i ← i + 1
		 wi ~ P(wi | w<i)

EOS = end of sequence

There are many odd, low-probability words in the
tail of the distribution.

Each one is low-probability, but added up they
constitute a large portion of the distribution.

Therefore, they get picked enough to generate
weird sentences!

Greedy decoding is too boring!

Random sampling is too random!

We need something in between.

The idea of temperature sampling is to reshape the
probability distribution to

increase the probability of high-probability tokens

decrease the probability of low-probability tokens

in an adjustable way.

Instead of	 y = softmax(u),

we do	 y = softmax(u / τ),

where τ is the temperature parameter, such that
0 ≤ τ ≤ 1.

Why does y = softmax(u / τ) work?
τ = 1 is no adjustment.

As τ goes down, the scores given to softmax get bigger.

Softmax pushes high values toward 1 and low values toward 0.

Large inputs pushes high-probability words higher and low
probability word lower, making the distribution more greedy.

As τ approaches 0, the probability of the most likely word approaches
1.

τ
0 10.5

Normal samplingGreedy prediction

deterministic! more low-probability outputs!

τ
0 10.5

ChatGPT (web interface)

0.7

Normal samplingGreedy prediction

deterministic! more low-probability outputs!

τ
0 1

Normal samplingGreedy prediction

0.5

deterministic! more low-probability outputs!

High-temperature sampling

> 1

flattens out the probabilities –
approaching pure randomness

Pretraining large language models

Three stages of training in LLMs

The big idea that underlies all the amazing
performance of language models is:

First pretrain a transformer model on enormous
amounts of text,

Then apply it to new tasks.

Self-supervised training algorithm

We train them to predict the next word!

1 Take a corpus of text

2 At each time step t,

ask the model to predict the next word

train the model using gradient descent to
minimize the error in this prediction

“Self-supervised” because
it just uses the next word as
the label!

Intuition of language model training: loss

Cross-entropy loss: negative log probability that the
model assigns to the true next word w.

Want loss to be high if the model assigns too
low a probability to w.

If the model assigns too low a probability to w,
we move the model weights in the direction
that assigns it a higher probability.

Cross-entropy loss measures the difference between the correct
probability distribution and the predicted distribution:

The correct distribution yt is 1 for the actual next word and 0 for
the others. So in this sum, all terms get multiplied by zero except
one: the log probability the model assigns to the correct next
word, so:

LCE = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]

Cross-entropy loss measures the difference between the correct
probability distribution and the predicted distribution:

The correct distribution yt is 1 for the actual next word and 0 for
the others. So in this sum, all terms get multiplied by zero except
one: the log probability the model assigns to the correct next
word, so:

LCE = − ∑
w∈V

yt[w]log ŷt[w]

LCE(ŷt, yt) = − log ŷt[wt+1]

correct predicted

Acknowledgments

The lecture incorporates material from:
Jurafsky & Martin, Speech and Language Processing, 3rd ed. draft

