
DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Danie l Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of September 14, 2007. Do no t cite
without permission.

20
COMPUTATIONAL
LEXICAL SEMANTICS

To get a single right meaning is better than a ship-load of pearls,
To resolve a single doubt is like the bottom falling off the bucket.

Yuen Mei (1785) (translation by Arthur Waley)

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But in the
middle of the city is another patch of asphalt, the La Brea tarpits, and this asphalt pre-
serves millions of fossil bones from the last of the Ice Ages of the Pleistocene Epoch.
One of these fossils is theSmilodon, or sabre-toothed tiger, instantly recognizable by
its long canines. Five million years ago or so, a completely different sabre-tooth tiger
calledThylacosmiluslived in Argentina and other parts of South America. Thylacos-
milus was a marsupial where Smilodon was a placental mammal,but had the same
long upper canines and, like Smilodon, had a protective boneflange on the lower jaw.
The similarity of these two mammals is one of many example of parallel or convergent
evolution, in which particular contexts or environments lead to the evolution of very
similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind of
organism: the word. Suppose we wanted to decide if two words have similar mean-
ings. Not surprisingly, words with similar meanings often occur in similar contexts,
whether in terms of corpora (having similar neighboring words or syntactic structures
in sentences) or in terms of dictionaries and thesauruses (having similar definitions, or
being nearby in the thesaurus hierarchy). Thus similarity of context turns out to be an
important way to detect semantic similarity. Semantic similarity turns out to play an
important roles in a diverse set of applications including information retrieval, question
answering, summarization and generation, text classification, automatic essay grading
and the detection of plagiarism.

In this chapter we introduce a series of topics related to computing with word mean-
ings, orcomputational lexical semantics. Roughly in parallel with the sequence of
topics in Ch. 19, we’ll introduce computational tasks associated with word senses, re-
lations among words, and the thematic structure of predicate-bearing words. We’ll see
the role of important role of context and similarity of sensein each of these.

We begin withword sense disambiguation, the task of examining word tokens in
context and determining which sense of each word is being used. WSD is a task with

DRAFT

2 Chapter 20. Computational Lexical Semantics

a long history in computational linguistics, and as we will see, is a non-trivial under-
taking given the somewhat elusive nature of many word senses. Nevertheless, there
are robust algorithms that can achieve high levels of accuracy given certain reasonable
assumptions. Many of these algorithms rely on contextual similarity to help choose the
proper sense.

This will lead us natural to a consideration of the computation of word similarity
and other relations between words, including thehypernym, hyponym, andmeronym
WordNet relations introduced in Ch. 19. We’ll introduce methods based purely on
corpus similarity, and others based on structured resources such as WordNet.

Finally, we describe algorithms forsemantic role labeling, also known ascase role
or thematic role assignment. These algorithms generally use features extracted from
syntactic parses to assign semantic roles such asAGENT, THEME andINSTRUMENT to
the phrases in a sentence with respect to particular predicates.

20.1 WORD SENSE DISAMBIGUATION : OVERVIEW

Our discussion of compositional semantic analyzers in Ch. 18 pretty much ignored
the issue of lexical ambiguity. It should be clear by now thatthis is an unreasonable
approach. Without some means of selecting correct senses for the words in an input,
the enormous amount of homonymy and polysemy in the lexicon would quickly over-
whelm any approach in an avalanche of competing interpretations.

The task of selecting the correct sense for a word is calledword sense disambigua-
tion, or WSD. Disambiguating word senses has the potential to improve many naturalWORD SENSE

DISAMBIGUATION

WSD language processing tasks. As we’ll see in Ch. 25,machine translation is one area
where word sense ambiguities can cause severe problems; others includequestion-
answering, information retrieval , and text classification. The way that WSD is
exploited in these and other applications varies widely based on the particular needs
of the application. The discussion presented here ignores these application-specific
differences and focuses on the implementation and evaluation of WSD systems as a
stand-alone task.

In their most basic form, WSD algorithms take as input a word in context along
with a fixed inventory of potential word senses, and return the correct word sense for
that use. Both the nature of the input and the inventory of senses depends on the task.
For machine translation from English to Spanish, the sense tag inventory for an En-
glish word might be the set of different Spanish translations. If speech synthesis is our
task, the inventory might be restricted to homographs with differing pronunciations
such asbassandbow. If our task is automatic indexing of medical articles, the sense
tag inventory might be the set of MeSH (Medical Subject Headings) thesaurus entries.
When we are evaluating WSD in isolation, we can use the set of senses from a dictio-
nary/thesaurus resource like WordNet or LDOCE. Fig. 20.1 shows an example for the
wordbass, which can refer to a musical instrument or a kind of fish.1

1 The WordNet database includes 8 senses; we have arbitrarilyselected two for this example; we have
also arbitrarily selected one of the many possible Spanish names for fishes which could be used to translate
Englishsea-bass.

DRAFT

Section 20.2. Supervised Word Sense Disambiguation 3

WordNet Spanish Roget
Sense Translation Category Target Word in Context

bass4 lubina FISH/INSECT . . . fish as Pacific salmon and stripedbassand. . .
bass4 lubina FISH/INSECT . . . produce filets of smokedbassor sturgeon. . .
bass7 bajo MUSIC . . . exciting jazzbassplayer since Ray Brown. . .
bass7 bajo MUSIC . . . playbassbecause he doesn’t have to solo. . .

Figure 20.1 Possible definitions for the inventory of sense tags forbass.

It is useful to distinguish two variants of the generic WSD task. In the lexical
sampletask, a small pre-selected set of target words is chosen, along with an inventoryLEXICAL SAMPLE

of senses for each word from some lexicon. Since the set of words and the set of
senses is small,supervised machine learningapproaches are often used to handle
lexical sample tasks. For each word, a number of corpus instances (context sentences)
can be selected and hand-labeled with the correct sense of the target word in each.
Classifier systems can then be trained using these labeled examples. Unlabeled target
words in context can then be labeled using such a trained classifier. Early work in
word sense disambiguation focused solely on lexical sampletasks of this sort, building
word-specific algorithms for disambiguating single words like line, interest, or plant.

In contrast, in theall-words task systems are given entire texts and a lexicon withALL­WORDS

an inventory of senses for each entry, and are required to disambiguate every content
word in the text. The all-words task is very similar to part-of-speech tagging, except
with a much larger set of tags, since each lemma has its own set. A consequence of this
larger set of tags is a serious data sparseness problem; there is unlikely to be adequate
training data for every word in the test set. Moreover, giventhe number of polysemous
words in reasonably-sized lexicons, approaches based on training one classifier per
term are unlikely to be practical.

In the following sections we explore the application of various machine learning
paradigms to word sense disambiguation. We begin with supervised learning, followed
by a section on how systems are standardly evaluated. We thenturn to a variety of
methods for dealing with the lack of sufficient day for fully-supervised training, in-
cluding dictionary-based approaches and bootstrapping techniques.

Finally, after we have introduced the necessary notions of distributional word sim-
ilarity in Sec. 20.7, we return in Sec. 20.10 to the problem ofunsupervised approaches
to sense disambiguation.

20.2 SUPERVISEDWORD SENSE DISAMBIGUATION

If we have data which has been hand-labeled with correct wordsenses, we can use
a supervised learningapproach to the problem of sense disambiguation. extracting
features from the text that are helpful in predicting particular senses, and then training
a classifier to assign the correct sense given these features. The output of training is
thus a classifier system capable of assigning sense labels tounlabeled words in context.

For lexical sampletasks, there are various labeled corpora for individual words,
consisting of context sentences labeled with the correct sense for the target word. These

DRAFT

4 Chapter 20. Computational Lexical Semantics

include theline-hard-servecorpus containing 4,000 sense-tagged examples ofline as
a noun,hard as an adjective andserveas a verb (Leacock et al., 1993) , and theinter-
estcorpus with 2,369 sense-tagged examples ofinterestas a noun (Bruce and Wiebe,
1994). TheSENSEVAL project has also produced a number of such sense-labeled lexi-
cal sample corpora (SENSEVAL-1 with 34 words from theHECTOR lexicon and corpus
(Kilgarriff and Rosenzweig, 2000; Atkins, 1993),SENSEVAL-2 and -3 with 73 and 57
target words, respectively (Palmer et al., 2001; Kilgarriff, 2001)).

For trainingall-word disambiguation tasks we use asemantic concordance, aSEMANTIC
CONCORDANCE

corpus in which each open-class word in each sentence is labeled with its word sense
from a specific dictionary or thesaurus. One commonly used corpus is SemCor, a subset
of the Brown Corpus consisting of over 234,000 words which were manually tagged
with WordNet senses (Miller et al., 1993; Landes et al., 1998). In addition, sense-
tagged corpora have been built for theSENSEVAL all-word tasks. TheSENSEVAL-3
English all-words test data consisted of 2081 tagged content word tokens, from 5,000
total running words of English from the WSJ and Brown corpora(Palmer et al., 2001).

20.2.1 Extracting Feature Vectors for Supervised Learning

The first step in supervised training is to extract a useful set of features that are predic-
tive of word senses. As Ide and Véronis (1998b) point out, the insight that underlies
all modern algorithms for word sense disambiguation was first articulated by Weaver
(1955) in the context of machine translation:

If one examines the words in a book, one at a time as through an opaque mask
with a hole in it one word wide, then it is obviously impossible to determine, one
at a time, the meaning of the words. [. . .] But if one lengthensthe slit in the
opaque mask, until one can see not only the central word in question but also say
N words on either side, then if N is large enough one can unambiguously decide
the meaning of the central word. [. . .] The practical question is : “What minimum
value of N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

To extract useful features from such a window, a minimal amount of processing is
first performed on the sentence containing the window. This processing varies from
approach to approach but typically includes part-of-speech tagging, lemmatization or
stemming, and in some cases syntactic parsing to reveal information such as head
words and dependency relations. Context features relevantto the target word can then
be extracted from this enriched input. Afeature vectorconsisting of numeric or nom-FEATURE VECTOR

inal values is used to encode this linguistic information asan input to most machine
learning algorithms.

Two classes of features are generally extracted from these neighboring contexts:
collocational features and bag-of-words features. Acollocation is a word or phrase inCOLLOCATION

a position-specific relationship to a target word (i.e., exactly one word to the right, or
exactly 4 words to the left, and so on). Thuscollocational featuresencode informationCOLLOCATIONAL

FEATURES

aboutspecificpositions located to the left or right of the target word. Typical features
extracted for these context words include the word itself, the root form of the word,
and the word’s part-of-speech. Such features are effectiveat encoding local lexical and
grammatical information that can often accurately isolatea given sense.

DRAFT

Section 20.2. Supervised Word Sense Disambiguation 5

As an example of this type of feature-encoding, consider thesituation where we
need to disambiguate the wordbassin the following WSJ sentence:

(20.1) An electric guitar andbassplayer stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.

A collocational feature-vector, extracted from a window oftwo words to the right and
left of the target word, made up of the words themselves and their respective parts-of-
speech, i.e.,

[wi−2,POSi−2,wi−1,POSi−1,wi+1,POSi+1,wi+2,POSi+2](20.2)

would yield the following vector:

[guitar, NN, and, CC, player, NN, stand, VB]

The second type of feature consists ofbag-of-wordsinformation about neighboring
words. Abag-of-wordsmeans an unordered set of words, ignoring their exact position.BAG­OF­WORDS

The simplest bag-of-words approach represents the contextof a target word by a vector
of features, each binary feature indicating whether a vocabulary wordw does or doesn’t
occur in the context. This vocabulary is typically preselected as some useful subset of
words in a training corpus. In most WSD applications, the context region surrounding
the target word is generally a small symmetric fixed size window with the target word
at the center. Bag-of-word features are effective at capturing the general topic of the
discourse in which the target word has occurred. This, in turn, tends to identify senses
of a word that are specific to certain domains. We generally don’t use stop-words
as features, and may also limit the bag-of-words to only consider a small number of
frequently used content words.

For example a bag-of-words vector consisting of the 12 most frequent content
words from a collection ofbasssentences drawn from the WSJ corpus would have
the following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

Using these word features with a window size of 10, example (20.1) would be
represented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

We’ll revisit the bag-of-words technique in Ch. 23 where we’ll see that it forms the
basis for thevector space modelof search in modern search engines.

Most approaches to sense disambiguation use both collocational and bag-of-words
features, either by joining them into one long vector, or by building a distinct classifier
for each feature type, and combining them in some manner.

20.2.2 Naive Bayes and Decision List Classifiers

Given training data together with the extracted features, any supervised machine learn-
ing paradigm can be used to train a sense classifier. We will restrict our discussion
here to the naive Bayes and decision list approaches, since they have been the focus of
considerable work in word sense disambiguation and have notyet been introduced in
previous chapters.

DRAFT

6 Chapter 20. Computational Lexical Semantics

Thenaive Bayes classifierapproach to WSD is based on the premise that choosingNAIVE BAYES
CLASSIFIER

the best sense ˆs out of the set of possible sensesS for a feature vector~f amounts to
choosing the most probable sense given that vector. In otherwords:

ŝ= argmax
s∈S

P(s|~f)(20.3)

As is almost always the case, it would be difficult to collect reasonable statistics for this
equation directly. To see this, consider that a simple binary bag of words vector defined
over a vocabulary of 20 words would have 220 possible feature vectors. It’s unlikely
that any corpus we have access to will provide coverage to adequately train this kind
of feature vector. To get around this problem we first reformulate our problem in the
usual Bayesian manner as follows:

ŝ= argmax
s∈S

P(~f |s)P(s)

P(~f)
(20.4)

Even this equation isn’t helpful enough, since the data available that associates spe-
cific vectors~f with each senses is also too sparse. However, what is available in greater
abundance in a tagged training set is information about individual feature-value pairs
in the context of specific senses. Therefore, we can make the independence assumption
that gives this method its name, and that has served us well inpart-of-speech tagging,
speech recognition, and probabilistic parsing —naively assume that the features are
independent of one another. Making this assumption that thefeatures areconditionally
independent given the word senseyields the following approximation forP(~f |s):

P(~f |s)≈
n

∏
j=1

P(f j |s)(20.5)

In other words, we can estimate the probability of an entire vector given a sense by the
product of the probabilities of its individual features given that sense. SinceP(~f) is the
same for all possible senses, it does not effect the final ranking of senses, leaving us
with the following formulation of anaive Bayes classifier for WSD:

ŝ= argmax
s∈S

P(s)
n

∏
j=1

P(f j |s)(20.6)

Given this equation,training a naive Bayes classifier consists of estimating each
of these probabilities. (20.6) first requires an estimate for the prior probability of each
senseP(s). We get the maximum likelihood estimate of this probabilityfrom the sense-
tagged training corpus by counting the number of times the sensesi occurs and dividing
by the total count of the target wordwj (i.e. the sum of the instances of each sense of
the word). That is:

P(si) =
count(si ,wj)

count(wj)
(20.7)

We also need to know each of the individual feature probabilities P(f j |s). The
maximum likelihood estimate for these would be:

P(f j |s) =
count(f j ,s)

count(s)
(20.8)

DRAFT

Section 20.2. Supervised Word Sense Disambiguation 7

Thus, if a collocational feature such as [wi−2 = guitar] occurred 3 times for sense
bass1, and sense bass1 itself occurred 60 times in training, the MLE estimate isP(f j |s)=
0.05. Binary bag-of-word features are treated in a similar manner; we simply count the
number of times a given vocabulary item is present with each of the possible senses
and divide by the count for each sense.

With the necessary estimates in place, we can assign senses to words in context by
applying Equation (20.6). More specifically, we take the target word in context, extract
the specified features, computeP(s)∏n

j=1P(f j |s) for each sense, and return the sense
associated with the highest score. Note that in practice, the probabilities produced for
even the highest scoring senses will be dangerously low due to the various multipli-
cations involved; mapping everything to log-space and instead performing additions is
the usual solution.

The use of a simple maximum likelihood estimator means that in testing, when a
target word cooccurs with a word that it did not cooccur with in training, all of its
senses will receive a probability of zero. Smoothing is therefore essential to the whole
enterprise. Naive Bayes approaches to sense disambiguation generally use the simple
Laplace (add-one or add-k) smoothing discussed in Ch. 4.

One problem with naive Bayes and some other classifiers is that it’s hard for hu-
mans to examine their workings and understand their decisions. Decision lists and
decision trees are somewhat more transparent approaches that lend themselves to in-
spection. Decision list classifiersare equivalent to simple case statements in mostDECISION LIST

CLASSIFIERS

programming languages. In a decision list classifier, a sequence of tests is applied to
each target word feature vector. Each test is indicative of aparticular sense. If a test
succeeds, then the sense associated with that test is returned. If the test fails, then the
next test in the sequence is applied. This continues until the end of the list, where a
default test simply returns the majority sense.

Figure 20.2 shows a portion of a decision list for the task of discriminating the fish
sense ofbassfrom the music sense. The first test says that if the wordfish occurs
anywhere within the input context thenbass1 is the correct answer. If it doesn’t then
each of the subsequent tests is consulted in turn until one returns true; as with case
statements a default test that returns true is included at the end of the list.

Learning a decision list classifier consists of generating and ordering individual
tests based on the characteristics of the training data. There are a wide number of
methods that can be used to create such lists. In the approachused by Yarowsky (1994)
for binary homonym discrimination, each individual feature-value pair constitutes a
test. We can measure how much a feature indicates a particular sense by computing the
log-likelihood of the sense given the feature. The ratio between the log-likelihoods of
the two senses tells us how discriminative a feature is between senses:

∣

∣

∣

∣

Log

(

P(Sense1| fi)
P(Sense2| fi)

)∣

∣

∣

∣

(20.9)

The decision list is then created from these tests by simply ordering the tests in the
list according to the log-likelihood ratio. Each test is checked in order and returns the
appropriate sense. This training method differs quite a bitfrom standard decision list
learning algorithms. For the details and theoretical motivation for these approaches see
Rivest (1987) or Russell and Norvig (1995).

DRAFT

8 Chapter 20. Computational Lexical Semantics

Rule Sense
fishwithin window ⇒ bass1

striped bass ⇒ bass1

guitar within window ⇒ bass2

bass player ⇒ bass2

pianowithin window ⇒ bass2

tenorwithin window ⇒ bass2

sea bass ⇒ bass1

play/V bass ⇒ bass2

river within window ⇒ bass1

violin within window ⇒ bass2

salmonwithin window ⇒ bass1

on bass ⇒ bass2

bass are ⇒ bass1

Figure 20.2 An abbreviated decision list for disambiguating the fish sense of bass from
the music sense. Adapted from Yarowsky (1997).

20.3 WSD EVALUATION , BASELINES, AND CEILINGS

Evaluating component technologies like WSD is always a complicated affair. In the
long term, we’re primarily interested in the extent to whichthey improve performance
in some end-to-end application such as information retrieval, question answering or
machine translation. Evaluating component NLP tasks embedded in end-to-end appli-
cations is calledextrinsic evaluation, task-basedevaluation,end-to-endevaluation,EXTRINSIC

EVALUATION

or in vivo evaluation. It is only with extrinsic evaluation that we cantell if a technologyIN VIVO

such as WSD is working in the sense of actually improving performance on some real
task.

Extrinsic evaluations are much more difficult and time-consuming to implement,
however, since they require integration into complete working systems. Furthermore,
an extrinsic evaluation may only tell us something about WSDin the context of the
application, and may not generalize to other applications.

For these reasons, WSD systems are typically developed and evaluated extrinsi-
cally. Inextrinsic or in vitro we treat a WSD component as if it were a stand-alone sys-EXTRINSIC

IN VITRO tem operating independently of any given application. In this style of evaluation, sys-
tems are evaluated either using exact matchsense accuracy: the percentage of wordsSENSE ACCURACY

that are tagged identically with the hand-labeled sense tags in a test set; or with stan-
dard precision and recall measures if systems are permittedto pass on labeling some
instances. In general, we evaluate using held out data from the same sense-tagged
corpora that we used for training, such as the SemCor corpus discussed above, or the
various corpora produced by theSENSEVAL effort.

Many aspects of sense evaluation have been standardized by theSENSEVAL/SEMEVAL

efforts (Palmer et al., 2006; Kilgarriff and Palmer, 2000).This framework provides a
shared task with training and testing materials along with sense inventories for all-
words and lexical sample tasks in a variety of languages.

DRAFT

Section 20.3. WSD Evaluation, Baselines, and Ceilings 9

Whichever WSD task we are performing, we ideally need two additional measures
to assess how well we’re doing: a baseline measure to tell usehow well we’re doing as
compared to relatively simple approaches, and a ceiling to tell us how close we are to
optimal performance.

The simplest baseline is to choose themost frequent sensefor each word (GaleMOST FREQUENT
SENSE

et al., 1992b) from the senses in a labeled corpus. For WordNet, this corresponds to
the take the first senseheuristic, since senses in WordNet are generally ordered fromTAKE THE FIRST

SENSE

most-frequent to least-frequent. WordNet sense frequencies come from the SemCor
sense-tagged corpus described above.

Unfortunately, many WordNet senses do not occur in SemCor; these unseen senses
are thus ordered arbitrarily after those that do. The four WordNet senses of the noun
plant, for example, are as follows:

Freq Synset Gloss
338 plant1, works, industrial plantbuildings for carrying on industrial labor

207 plant2, flora, plant life a living organism lacking the power of locomotion

2 plant3 something planted secretly for discovery by another

0 plant4 an actor situated in the audience whose acting is rehearsed but
seems spontaneous to the audience

The most frequent sense baseline can be quite accurate, and is therefore often used
as a default, to supply a word sense when a supervised algorithm has insufficient train-
ing data. A second commonly used baseline is theLesk algorithm, discussed in the
next section.

Human inter-annotator agreement is generally considered as a ceiling, or upper
bound, for sense disambiguation evaluations. Human agreement is measured by com-
paring the annotations of two human annotators on the same data given the same tag-
ging guidelines. The ceiling (inter-annotator agreement)for many all-words corpora
using WordNet-style sense inventories seems to range from about 75% to 80% (Palmer
et al., 2006). Agreement on more coarse grained, often binary, sense inventories is
closer to 90% (Gale et al., 1992b).

While using hand-labeled test sets is the best current method for evaluation, label-
ing large amounts of data is still quite expensive. For supervised approaches, we need
this data anyhow for training so the effort to label large amounts of data seems justified.
But for unsupervised algorithms like those we will discuss in Sec. 20.10, it would be
nice to have an evaluation method that avoided hand labeling. The use ofpseudowordsPSEUDOWORDS

is one such simplified evaluation method (Gale et al., 1992a;Schütze, 1992a). A pseu-
doword is an artificial word created by concatenating two randomly-chosen words to-
gether (e.g.,bananaanddoor to createbanana-door.) Each occurrence of the two
words in the test set is replaced by the new concatenation, creating a new ‘word’ which
is now ambiguous between the sensesbananaanddoor. The ‘correct sense’ is defined
by the original word, and so we can apply our disambiguation algorithm and compute
accuracy as usual. In general, pseudowords give an overly optimistic measure of perfor-
mance, since they are a bit easier to disambiguate than average ambiguous words. This
is because the different senses of real words tend to be similar, while pseudowords are
generally not semantically similar, acting like homonymous but not polysemous words
(Gaustad, 2001). Nakov and Hearst (2003) shows that it is possible to improve the

DRAFT

10 Chapter 20. Computational Lexical Semantics

accuracy of pseudoword evaluation by more carefully choosing the pseudowords.

20.4 WSD: DICTIONARY AND THESAURUSMETHODS

Supervised algorithms based on sense-labeled corpora are the best performing algo-
rithms for sense disambiguation. However, such labeled training data is expensive and
limited and supervised approaches fail on words not in the training data. Thus this sec-
tion and the next describe different ways to get indirect supervision from other sources.
In this section, we describe methods for using a dictionary or thesaurus as an indirect
kind of supervision; the next section describes bootstrapping approaches.

20.4.1 The Lesk Algorithm

By far the most well-studied dictionary-based algorithm for sense disambiguation is
theLesk algorithm, really a family of algorithms that choose the sense whose dictio-LESK ALGORITHM

nary gloss or definition shares the most words with the targetword’s neighborhood.
Fig. 20.3 shows the simplest version of the algorithm, oftencalled theSimplified LeskSIMPLIFIED LESK

algorithm (Kilgarriff and Rosenzweig, 2000).

function SIMPLIFIED LESK(word, sentence) returns best sense ofword

best-sense←most frequent sense forword
max-overlap←0
context←set of words insentence
for each sensein senses ofword do
signature←set of words in the gloss and examples ofsense
overlap←COMPUTEOVERLAP(signature,context)
if overlap> max-overlapthen

max-overlap←overlap
best-sense←sense

end
return (best-sense)

Figure 20.3 The Simplified Lesk Algorithm. The COMPUTEOVERLAP function returns
the number of words in common between two sets, ignoring function words or other words
on a stop list. The original Lesk algorithm defines thecontextin a more complex way. The
Corpus Leskalgorithm weights each overlapping wordw by its− logP(w), and includes
labeled training corpus data in thesignature.

As an example of the Lesk algorithm at work, consider disambiguating the word
bankin the following context:

(20.10) Thebank can guarantee deposits will eventually cover future tuition costs because it
invests in adjustable-rate mortgage securities.

given the following two WordNet senses:

DRAFT

Section 20.4. WSD: Dictionary and Thesaurus Methods 11

bank1 Gloss: a financial institution that accepts deposits and channels the money into
lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgageon my
home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river

and watched the currents”

Sensebank1 has two (non-stop) words overlapping with the context in (20.10):
depositsandmortgage, while sense bank2 has zero, so sensebank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algorithm
(Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s signature
with the context words, the target signature is compared with the signatures of each of
the context words. For example, consider Lesk’s example of selecting the appropriate
sense ofconein the phrasepine conegiven the following definitions forpineandcone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would selectcone3 as the correct sense since two of the
words in its entry,evergreenandtree, overlap with words in the entry forpine, whereas
neither of the other entries have any overlap with words in the definition ofpine. In
general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, however, is
that the dictionary entries for the target words are short, and may not provide enough
chance of overlap with the context.2 One remedy is to expand the list of words used in
the classifier to include words related to, but not containedin their individual sense def-
initions. But the best solution, if any sense-tagged corpusdata like SemCor is available,
is to add all the words in the labeled corpus sentences for a word sense into the signa-
ture for that sense. This version of the algorithm, theCorpus Lesk algorithm is theCORPUS LESK

best-performing of all the Lesk variants (Kilgarriff and Rosenzweig, 2000; Vasilescu
et al., 2004) and is used as a baseline in theSENSEVAL competitions. Instead of just
counting up the overlapping words, theCorpus Lesk algorithm also applies a weight
to each overlapping word. The weight is theinverse document frequencyor IDF ,INVERSE DOCUMENT

FREQUENCY

IDF a standard information-retrieval measure to be introducedin Ch. 23. IDF measures
how many different ’documents’ (in this case glosses and examples) a word occurs in
(Ch. 23) and is thus a way of discounting function words. Since function words like
the, of, etc, occur in many documents, their IDF is very low, while the IDF of content
words is high. Corpus Lesk thus uses IDF instead of a stoplist.

Formally the IDF for a wordi can be defined as

idfi = log

(

Ndoc
ndi

)

(20.11)

2 Indeed, Lesk (1986) notes that the performance of his systemseems to roughly correlate with the length
of the dictionary entries.

DRAFT

12 Chapter 20. Computational Lexical Semantics

whereNdocis the total number of ‘documents’ (glosses and examples) and ndi is the
number of these documents containing wordi.

Finally, it is possible to combine the Lesk and supervised approaches, by adding
new Lesk-like bag-of-words features. For example, the glosses and example sentences
for the target sense in WordNet could be used to compute the supervised bag-of-words
features instead of (or in addition to) the words in the SemCor context sentence for the
sense (Yuret, 2004).

20.4.2 Selectional Restrictions and Selectional Preferences

One of the earliest knowledge-sources for sense disambiguation is the notion ofselec-
tional restrictions defined in Ch. 19. For example the verbeatmight have a restriction
that itsTHEME argument be[+FOOD] . In early systems, selectional restrictions were
used to rule out senses that violate the selectional restrictions of neighboring words
(Katz and Fodor, 1963; Hirst, 1987). Consider the followingpair of WSJ examples of
the worddish:

(20.12) “In our house, everybody has a career and none of them includes washingdishes,” he
says.

(20.13) In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying several simple
dishes, including braised pig’s ears and chicken livers with greenpeppers.

These correspond to WordNetdish1 (a piece of dishware normally used as a con-
tainer for holding or serving food), with hypernyms likeartifact, anddish2 (a particular
item of prepared food) with hypernyms likefood.

The fact that we perceive no ambiguity in these examples can be attributed to the
selectional restrictions imposed bywashandstir-fry on theirTHEME semantic roles.
The restrictions imposed bywash(perhaps [+WASHABLE]) conflict with dish2. The
restrictions onstir-fry ([+EDIBLE]) conflict with dish1. In early systems, the predicate
strictly selected the correct sense of an ambiguous argument by eliminating the sense
that fails to match one of its selectional restrictions. Butsuch hard constraints have
a number of problems. The main problem is that selectional restriction violations of-
ten occur in well-formed sentences, either because they arenegated as in (20.14), or
because selectional restrictions are overstated as in (20.15):

(20.14) But it fell apart in 1931, perhaps because people realized you can’teatgold for lunch
if you’re hungry.

(20.15) In his two championship trials, Mr. Kulkarniateglass on an empty stomach,
accompanied only by water and tea.

As Hirst (1987) observes, examples like these often result in the elimination of all
senses, bringing semantic analysis to a halt. Modern modelsthus adopt the view of se-
lectional restrictions as preferences, rather than rigid requirements. Although there
have been many instantiations of this approach over the years (e.g., Wilks, 1975c,
1975b, 1978), we’ll discuss a member of the popular probabilistic or information-
theoretic family of approaches: Resnik’s (1997) model ofselectional association.

Resnik first defines theselectional preference strengthas the general amount of
SELECTIONAL
PREFERENCE

STRENGTH

information that a predicate tells us about the semantic class of its arguments. For

DRAFT

Section 20.4. WSD: Dictionary and Thesaurus Methods 13

example, the verbeat tells us a lot about the semantic class of its direct object, since
they tend to be edible. The verbbe, by contrast, tells us less about its direct objects.
The selectional preference strength can be defined by the difference in information
between two distributions: the distribution of expected semantic classesP(c) (how
likely is it that a direct object will fall into classc) and the distribution of expected
semantic classes for the particular verbP(c|v) (how likely is it that the direct object of
specific verbv will fall into semantic classc). The greater the difference between these
distributions, the more information the verb is giving us about possible objects. This
difference can be quantified by therelative entropy between these two distributions, orRELATIVE ENTROPY

Kullback-Leibler divergence (Kullback and Leibler, 1951). The Kullback-Leibler orKULLBACK­LEIBLER
DIVERGENCE

KL divergenceD(P||Q) can be used to express the difference between two probability
distributionsP andQ, and will be discussed further when we discuss word similarity
in Equation (20.50).

D(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

(20.16)

The selectional preferenceSR(v) uses the KL divergence to express how much in-
formation, in bits, the verbv expresses about the possible semantic class of its argu-
ment.

SR(v) = D(P(c|v)||P(c))

= ∑
c

P(c|v) log
P(c|v)
P(c)

(20.17)

Resnik then defines theselectional associationof a particular class and verb as theSELECTIONAL
ASSOCIATION

relative contribution of that class to the general selectional preference of the verb:

AR(v,c) =
1

SR(p)
P(c|v) log

P(c|v)
P(c)

(20.18)

The selectional association is thus a probabilistic measure of the strength of associ-
ation between a predicate and a class dominating the argument to the predicate. Resnik
estimates the probabilities for these associations by parsing a corpus, counting all the
times each predicate occurs with each argument word, and assuming that each word is
a partial observation of all the WordNet concepts containing the word. The following
table from Resnik (1996) shows some sample high and low selectional associations for
verbs and some WordNet semantic classes of their direct objects.

Direct Object Direct Object
Verb Semantic Class AssocSemantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Resnik (1998) shows that these selectional associations can be used to perform a
limited form of word sense disambiguation. Roughly speaking the algorithm selects as
the correct sense for an argument the one that has the highestselectional association
between one of its ancestor hypernyms and the predicate.

DRAFT

14 Chapter 20. Computational Lexical Semantics

While we have presented only the Resnik model of selectionalpreferences, there
are other more recent models, using probabilistic methods and using other relations
than just direct object; see the end of the chapter for a briefsummary. In general,
selectional restriction approaches perform as well as other unsupervised approaches at
sense disambiguation, but not as well as Lesk or as supervised approaches.

20.5 MINIMALLY SUPERVISEDWSD: BOOTSTRAPPING

Both the supervised approach and the dictionary-based approach to WSD require large
hand-built resources; supervised training sets in one case, large dictionaries in the other.
We can instead usebootstrapping algorithms, often calledsemi-supervised learningBOOTSTRAPPING

or minimally supervised learning, which need only a very small hand-labeled training
set. The most widely emulated bootstrapping algorithm for WSD is theYarowsky
algorithm (Yarowsky, 1995).YAROWSKY

ALGORITHM

The goal of the Yarowsky algorithm is to learn a classifier fora target word (in a
lexical-sample task). The algorithm is given a small seed-set Λ0 of labeled instances
of each sense, and a much larger unlabeled corpusV0. The algorithm first trains an
initial decision-list classifier on the seed-setΛ0. It then uses this classifier to label
the unlabeled corpusV0. The algorithm then selects the examples inV0 that it is most
confident about, removes them, and adds them to the training set (call it nowΛ1). The
algorithm then trains a new decision list classifier (a new set of rules) onΛ1, and iterates
by applying the classifier to the now-smaller unlabeled setV1, extracting a new training
setΛ2 and so on. With each iteration of this process, the training corpus grows and the
untagged corpus shrinks. The process is repeated until somesufficiently low error-rate
on the training set is reached, or until no further examples from the untagged corpus
are above threshold.

(a) (b) (c)

Figure 20.4 PLACEHOLDER FIGURE TO BE REPLACED. The Yarowsky algorithm at the initial stage (a),
with only seed sentencesΛ labeled by collocates, at an intermediate state(b), where more collocates have been
discovered and more instances inV have been labeled and moved toΛ, and at a final stage (c).

DRAFT

Section 20.5. Minimally Supervised WSD: Bootstrapping 15

The key to any bootstrapping approach lies in its ability to create a larger training
set from a small set of seeds. This requires an accurate initial set of seeds and a good
confidence metric for picking good new examples to add to the training set. The confi-
dence metric used by Yarowsky (1995) is the measure described earlier in Sec. 20.2.2,
the log-likelihood ratio of the decision-list rule that classified the example.

We need more good teachers – right now, there are only a half a dozen who canplay the
freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just as
a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of Fame,
honors this historic night next Saturday, Harry Goodman, Mr. Goodman’s brother and
bass player at the original concert, will be in the audience with otherfamily members.
The researchers said the worms spend part of their life cyclein suchfish as Pacific salmon
and stripedbassand Pacific rockfish or snapper.

And it all started whenfishermen decided the stripedbassin Lake Mead were too skinny.

Though still a far cry from the lake’s record 52-poundbassof a decade ago, “you could
fillet thesefish again, and that made people very, very happy,” Mr. Paulson says.

Figure 20.5 Samples ofbasssentences extracted from the WSJ using the simple corre-
latesplay andfish.

One way to generate the initial seeds is to hand-label a smallset of examples
(Hearst, 1991). Instead of hand-labeling, it is also possible to use a heuristic to auto-
matically select accurate seeds. Yarowsky (1995) used theOne Sense per CollocationONE SENSE PER

COLLOCATION

heuristic, which relies on the intuition that certain wordsor phrases strongly associated
with the target senses tend not to occur with the other sense.Yarowsky defines his seed
set by choosing a single collocation for each sense. As an illustration of this technique,
consider generating seed sentences for the fish and musical senses ofbass. Without too
much thought, we might come up withfishas a reasonable indicator ofbass1, andplay
as a reasonable indicator ofbass2. Figure 20.5 shows a partial result of such a search
for the strings “fish” and “play” in a corpus ofbassexamples drawn from the WSJ.

We can also suggest collocates automatically, for example extracting words from
machine readable dictionary entries, and selecting seeds using collocational statistics
such as those described in Sec. 20.7 (Yarowsky, 1995).

The original Yarowsky algorithm also makes use of a second heuristic, calledOne
Sense Per Discourse, based on the work of Gale et al. (1992c), who noticed that aONE SENSE PER

DISCOURSE

particular word appearing multiple times in a text or discourse often appeared with the
same sense. Yarowsky (1995), for example, showed in a corpusof 37,232 examples
that every time the wordbassoccurred more than once in a discourse, that it occurred
in only thefishor only themusiccoarse-grain sense throughout the discourse. The va-
lidity of this heuristic depends on the granularity of the sense inventory and is not valid
in every discourse situation; it seems to be true mostly for coarse-grain senses, and
particularly for cases of homonymy rather than polysemy (Krovetz, 1998). Nonethe-
less, it has still been useful in a number of unsupervised andsemi-supervised sense

DRAFT

16 Chapter 20. Computational Lexical Semantics

disambiguation situations.

20.6 WORD SIMILARITY : THESAURUSMETHODS

We turn now to the computation of various semantic relationsthat hold between words.
We saw in Ch. 19 that such relations include synonymy, antonymy, hyponymy, hyper-
nymy, and meronymy. Of these, the one that has been most computationally developed
and has the greatest number of applications is the idea of word synonymyandsimilar-
ity .

Synonymy is a binary relation between words; two words are either synonyms or
not. For most computational purposes we use instead a loosermetric ofword similar-
ity or semantic distance. Two words are more similar if they share more features ofWORD SIMILARITY

SEMANTIC DISTANCE meaning, or are near-synonyms. Two words are less similar, or have greater semantic
distance, if they have fewer common meaning elements. Although we have described
them as relations between words, synonymy, similarity, anddistance are actually rela-
tions between wordsenses. For example of the two senses ofbank, we might say that
the financial sense is similar to one of the senses offund while the riparian sense is
more similar to one of the senses ofslope. In the next few sections of this chapter, we
will need to compute these relations over both words and senses.

The ability to compute word similarity is a useful part of many language under-
standing applications. Ininformation retrieval or question answeringwe might want
to retrieve documents whose words have similar meanings to the query words. Insum-
marization, generation, and machine translation, we need to know whether two
words are similar to know if we can substitute one for the other in particular contexts.
In language modeling, we can use semantic similarity to cluster words for class-based
models. One interesting class of applications for word similarity is automatic grading
of student responses. For example algorithms forautomatic essay gradinguse word
similarity to determine if an essay is similar in meaning to acorrect answer. We can
also use word-similarity as part of an algorithm totakean exam, such as a multiple-
choice vocabulary test. Automatically taking exams is useful in test designs in order to
see how easy or hard a particular multiple-choice question or exam is.

There are two classes of algorithms for measuring word similarity. This section
focuses onthesaurus-basedalgorithms, in which we measure the distance between
two senses in an on-line thesaurus like WordNet or MeSH. The next section focuses on
distributional algorithms, in which we estimate word similarity by finding words that
have similar distributions in a corpus.

The thesaurus-based algorithms use the structure of the thesaurus to define word
similarity. In principle we could measure similarity usingany information available
in a thesaurus (meronymy, glosses, etc). In practice, however, thesaurus-based word
similarity algorithms generally use only the hypernym/hyponym (is-aor subsumption)
hierarchy. In WordNet, verbs and nouns are in separate hypernym hierarchies, so a
thesaurus-based algorithm for WordNet can thus only compute noun-nounsimilarity, or
verb-verb similarity; we can’t compare nouns to verbs, or doanything with adjectives
or other parts of speech.

DRAFT

Section 20.6. Word Similarity: Thesaurus Methods 17

Resnik (1995) and Budanitsky and Hirst (2001) draw the important distinction be-
tweenword similarity andword relatedness. Two words are similar if they are near-WORD

RELATEDNESS

synonyms, or roughly substitutable in context. Word relatedness characterizes a larger
set of potential relationships between words; antonyms, for example, have high relat-
edness, but low similarity. The wordscar andgasolineare very related, but not similar,
while carandbicycleare similar. Word similarity is thus a subcase of word relatedness.
In general, the five algorithms we describe in this section donot attempt to distinguish
between similarity and semantic relatedness; for convenience we will call themsimi-
larity measures, although some would be more appropriately described as relatedness
measures; we return to this question in Sec. 20.8.

Figure 20.6 A fragment of the WordNet hypernym hierarchy, showing path lengths
from nickel to coin (1), dime(2), money(5), andRichter scale(7).

The oldest and simplest thesaurus-based algorithms are based on the intuition that
the shorter thepath between two words or senses in the graph defined by the thesaurus
hierarchy, the more similar they are. Thus a word/sense is very similar to its parents or
its siblings, and less similar to words that are far away in the network. This notion can
be operationalized by measuring the number of edges betweenthe two concept nodes
in the thesaurus graph. Fig. 20.6 shows an intuition; the conceptdimeis most similar to
nickelandcoin, less similar tomoney, and even less similar toRichter scale. Formally,
we specify path length as follows:

pathlen(c1,c2) = the number of edges in the shortest path in the thesaurus
graph between the sense nodesc1 andc2

Path-based similarity can be defined just as the path length,often with a log transform
(Leacock and Chodorow, 1998), resulting in the following common definition ofpath-
length based similarity:PATH­LENGTH BASED

SIMILARITY

simpath(c1,c2) =− log pathlen(c1,c2)(20.19)

For most applications, we don’t have sense-tagged data, andthus we need our algo-
rithm to give us the similarity between words rather than between senses or concepts.

DRAFT

18 Chapter 20. Computational Lexical Semantics

For any of the thesaurus-based algorithms, following Resnik (1995), we can approxi-
mate the correct similarity (which would require sense disambiguation) by just using
the pair of senses for the two words that results in maximum sense similarity. Thus
based on sense similarity we can defineword similarity as follows:WORD SIMILARITY

wordsim(w1,w2) = max
c1∈senses(w1)
c2∈senses(w2)

sim(c1,c2)(20.20)

The basic path-length algorithm makes the implicit assumption that each link in the
network represents a uniform distance. In practice, this assumption is not appropriate.
Some links (for example those that are very deep in the WordNet hierarchy) often seem
to represent an intuitively narrow distance, while other links (e.g., higher up in the
WordNet hierarchy) represent an intuitively wider distance. For example, in Fig. 20.6,
the distance fromnickel to money(5) seems intuitively much shorter than the distance
from nickel to an abstract wordstandard; the link betweenmedium of exchangeand
standardseems wider than that between, say,coinandcoinage.

It is possible to refine path-based algorithms with normalizations based on depth in
the hierarchy (Wu and Palmer, 1994), but in general we’d likean approach which lets
us represent the distance associated with each edge independently.

A second class of thesaurus-based similarity algorithms attempts to offer just such
a fine-grained metric. Theseinformation content word similarity algorithms still relyINFORMATION

CONTENT

on the structure of the thesaurus, but also add probabilistic information derived from a
corpus.

Using similar notions to those we introduced earlier to define soft selectional re-
strictions, let’s first defineP(c), following Resnik (1995), as the probability that a
randomly selected word in a corpus is an instance of conceptc (i.e., a separate ran-
dom variable, ranging over words, associated with each concept). This implies that
P(root) = 1, since any word is subsumed by the root concept. Intuitively, the lower
a concept in the hierarchy, the lower its probability. We train these probabilities by
counting in a corpus; each word in the corpus counts as an occurrence of each con-
cept that contains it. For example, in Fig. 20.6 above, an occurrence of the worddime
would count toward the frequency ofcoin, currency, standard, etc. More formally,
Resnik computesP(c) as follows:

P(c) =
∑w∈words(c) count(w)

N
(20.21)

where words(c) is the set of words subsumed by conceptc, andN is the total number
of words in the corpus that are also present in the thesaurus.

Fig. 20.7, from Lin (1998b), shows a fragment of the WordNet concept hierarchy
augmented with the probabilitiesP(c).

We now need two additional definitions. First, following basic information theory,
we define the information content (IC) of a conceptc as:

IC(c) =− logP(c)(20.22)

Second, we define thelowest common subsumeror LCS of two concepts:LOWEST COMMON
SUBSUMER

LCS

DRAFT

Section 20.6. Word Similarity: Thesaurus Methods 19

entity 0.395

inanimate-object0.167

natural-object0.0163

geological-formation0.00176

0.000113natural-elevation

0.0000189hill

shore 0.0000836

coast 0.0000216

Figure 20.7 A fragment of the WordNet hierarchy, showing the probability P(c) at-
tached to each content, adapted from a figure from Lin (1998b)

LCS(c1,c2) = the lowest common subsumer, i.e., the lowest node in the
hierarchy that subsumes (is a hypernym of) bothc1 andc2

There are now a number of ways to use the information content of a node in a word
similarity metric. The simplest way was first proposed by Resnik (1995). We think
of the similarity between two words as related to their common information; the more
two words have in common, the more similar they are. Resnik proposes to estimate the
common amount of information by theinformation content of the lowest common
subsumer of the two nodes. More formally, theResnik similarity measure is:RESNIK SIMILARITY

simresnik(c1,c2) =− logP(LCS(c1,c2))(20.23)

Lin (1998b) extended the Resnik intuition by pointing out that a similarity metric
between objects A and B needs to do more than measure the amount of information
in common between A and B. For example, he pointed out that in addition, the more
differencesbetween A and B, the less similar they are. In summary:

• commonality: the more information A and B have in common, the more similar
they are.
• difference: the more differences between the information in A and B, theless

similar they are

Lin measures the commonality between A and B as the information content of the
proposition that states the commonality between A and B:

IC(Common(A,B))(20.24)

He measures the difference between A and B as

IC(description(A,B))− IC(common(A,B))(20.25)

where description(A,B) describes A and B. Given a few additional assumptions about
similarity, Lin proves the following theorem:

DRAFT

20 Chapter 20. Computational Lexical Semantics

Similarity Theorem: The similarity between A and B is measured by the ratio
between the amount of information needed to state the commonality of A and B
and the information needed to fully describe what A and B are:

simLin(A,B) =
logP(common(A,B))

logP(description(A,B))
(20.26)

Applying this idea to the thesaurus domain, Lin shows (in a slight modification of
Resnik’s assumption) that the information in common between two concepts is twice
the information in the lowest common subsumer LCS(c1,c2). Adding in the above
definitions of the information content of thesaurus concepts, the finalLin similarityLIN SIMILARITY

function is:

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)
(20.27)

For example, using simlin , Lin (1998b) shows that the similarity between the con-
cepts ofhill andcoastfrom Fig. 20.7 is:

simLin(hill ,coast) =
2× logP(geological-formation)

logP(hill)+ logP(coast))
= 0.59(20.28)

A very similar formula,Jiang-Conrath distance (Jiang and Conrath, 1997) (al-JIANG­CONRATH
DISTANCE

though derived in a completely different way from Lin, and expressed as a distance
rather than similarity function) has been shown to work as well or better than all the
other thesaurus-based methods:

distJC(c1,c2) = 2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2))(20.29)

distjc can be transformed into a similarity by taking the reciprocal.
Finally, we describe adictionary-based method, an extension of the Lesk algo-

rithm for word-sense disambiguation described in Sec. 20.4.1. We call this a dictio-
nary rather than a thesaurus method because it makes use of glosses, which are in
general a property of dictionaries rather than thesauri (although WordNet does have
glosses). Like the Lesk algorithm, the intuition of thisExtended Gloss Overlap, orEXTENDED GLOSS

OVERLAP

Extended Leskmeasure (Banerjee and Pedersen, 2003) is that two concepts/sensesEXTENDED LESK

in a thesaurus are similar if their glosses contain overlapping words. We’ll begin by
sketching an overlap function for two glosses. Consider these two concepts, with their
glosses:

• drawing paper:paper that isspecially prepared for use in drafting

• decal: the art of transferring designs fromspecially preparedpaper to a wood or
glass or metal surface.

For eachn-word phrase that occurs in both glosses, Extended Lesk addsin a score
of n2 (the relation is non-linear because of the Zipfian relationship between lengths of
phrases and their corpus frequencies; longer overlaps are rare so should be weighted
more heavily). Here the overlapping phrases arepaperandspecially prepared, for a
total similarity score of 12 +22 = 5.

DRAFT

Section 20.6. Word Similarity: Thesaurus Methods 21

Given such an overlap function, when comparing two concepts(synsets), Extended
Lesk not only looks for overlap between their glosses, but also between the glosses of
the senses which are hypernyms, hyponyms, meronyms, and other relations of the two
concepts. For example if we just considered hyponyms, and defined gloss(hypo(A)) as
the concatenation of all the glosses of all the hyponym senses of A, the total relatedness
between two concepts A and B might be:

similarity(A,B) = overlap(gloss(A), gloss(B)) + overlap(gloss(hypo(A)),
gloss(hypo(B)))+ overlap(gloss(A),gloss(hypo(B))) + overlap(gloss(hypo(A)),gloss(B))

Let RELS be the set of possible WordNet relations whose glosses we compare;
assuming a basic overlap measure as sketched above, we can then define theExtended
Lesk overlap measure as:

simeLesk(c1,c2) = ∑
r,q∈RELS

overlap(gloss(r(c1)),gloss(q(c2)))(20.30)

simpath(c1,c2) = − log pathlen(c1,c2)

simResnik(c1,c2) = − logP(LCS(c1,c2))

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)

simjc(c1,c2) =
1

2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2))

simeLesk(c1,c2) = ∑
r,q∈RELS

overlap(gloss(r(c1)),gloss(q(c2)))

Figure 20.8 Five thesaurus-based (and dictionary-based) similarity measures.

Fig. 20.8 summarizes the five similarity measures we have described in this section
The publicly availableWordnet::Similarity package implementing all these
and other thesaurus-based word similarity measures is described in Pedersen et al.
(2004).

Evaluating Thesaurus-based Similarity Which of these similarity measures is best?
Word similarity measures have been evaluated in two ways. One instrinic method is to
compute the correlation coefficient between word similarity scores from an algorithm
and word similarity ratings assigned by humans; such human ratings have been ob-
tained for 65 word pairs by Rubenstein and Goodenough (1965), and 30 word pairs by
Miller and Charles (1991). Another more extrinsic evaluation method is to embed the
similarity measure in some end application like detection of malapropisms(real-word
spelling errors) (Budanitsky and Hirst, 2006; Hirst and Budanitsky, 2005), or other
NLP applications like word-sense disambiguation (Patwardhan et al., 2003; McCarthy
et al., 2004) and evaluate its impact on end-to-end performance. All of these evalu-
ations suggest that all the above measures perform relatively well, and that of these,

DRAFT

22 Chapter 20. Computational Lexical Semantics

Jiang-Conrath similarity and Extended Lesk similarity aretwo of the best approaches,
depending on the application.

20.7 WORD SIMILARITY : DISTRIBUTIONAL METHODS

The previous section showed how to compute similarity between any two senses in a
thesaurus, and by extension between any two words in the thesaurus hierarchy. But of
course we don’t have such thesauri for every language. Even for languages where we
do have such resources, thesaurus-based methods have a number of limitations. The
obvious limitation is that thesauri often lack words, especially new or domain-specific
words. In addition, thesaurus-based methods only work if rich hyponymy knowledge
is present in the thesaurus. While we have this for nouns, hyponym information for
verbs tends to be much sparser, and doesn’t exist at all for adjectives and adverbs.
Finally, it is more difficult with thesaurus-based methods to compare words in different
hierarchies, such as nouns with verbs.

For these reasons, methods which can automatically extractsynonyms and other
word relations from corpora have been developed. In this section we introduce such
distributional methods, which can be applied directly to supply a word relatedness
measure for NLP tasks. Distributional methods can also be used forautomatic the-
saurus generationfor automatically populating or augmenting on-line thesauruses like
WordNet with new synonyms and, as we will see in Sec. 20.8, with other relations like
hyponymy and meronymy.

The intuition of distributional methods is that the meaningof a word is related to
the distribution of words around it; in the famous dictum of Firth (1957), “You shall
know a word by the company it keeps!”. Consider the followingexample, modified by
Lin (1998a) from (?):

(20.31) A bottle of tezg̈uino is on the table.
Everybody likestezg̈uino.
Tezg̈uinomakes you drunk.
We maketezg̈uinoout of corn.

The contexts in whichtezg̈uino occurs suggest that it might be some kind of fer-
mented alcoholic drink made from corn. The distributional method tries to capture this
intuition by representing features of the context oftezg̈uinothat might overlap with fea-
tures of similar words likebeer, liquor, tequila, and so on. For example such features
might beoccursbefore drunkor occursafter bottleor is thedirectobject of likes.

We can then represent a wordw as afeature vector just as we saw with the bag-FEATURE VECTOR

of-words features in Sec. 20.2. For example, suppose we had one binary featurefi
representing each of theN words in the lexiconvi . The feature meansw occursin the
neighborhoodof wordvi, and hence takes the value 1 ifw andvi occur in some context
window, and 0 otherwise. We could represent the meaning of word w as the feature
vector

~w = (f1, f2, f3, · · · , fN)

DRAFT

Section 20.7. Word Similarity: Distributional Methods 23

If w= tezg̈uino, v1=bottle, v2=drunk, andv3=matrix, the co-occurrence vector forw
from the corpus above would be:

~w = (1,1,0, · · ·)

Given two words represented by such sparse feature vectors,we can apply a vector
distance measure and say that the words are similar if the twovectors are close by
this measure. Fig. 20.9 shows an intuition about vector similarity for the four words
apricot, pineapple, digital, and information. Based on the meanings of these four
words, we would like a metric that showsapricot andpineappleto be similar,digital
and information, to be similar, and the other four pairings to produce low similarity.
For each word, Fig. 20.9 shows a short piece (8 dimensions) ofthe (binary) word co-
occurrence vectors, computed from words that occur within atwo-line context in the
Brown corpus. The reader should convince themselves that the vectors forapricot
and pineappleare indeed more similar than those of, say,apricot and information.
For pedagogical purposes we’ve shown the context words thatare particularly good
at discrimination. Note that since vocabularies are quite large (10,000-100,000 words)
and most words don’t occur near each other in any corpus, realvectors are quite sparse.

arts boil data function large sugar summarized water
apricot 0 1 0 0 1 1 0 1

pineapple 0 1 0 0 1 1 0 1
digital 0 0 1 1 1 0 1 0

information 0 0 1 1 1 0 1 0

Figure 20.9 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only 8 of the (binary) dimensions (hand-picked for pedagogical purposes to show
discrimination). Note thatlarge occurs in all the contexts andarts occurs in none; a real
vector would be extremely sparse.

Now that we have some intuitions, let’s move on to examine thedetails of these
measures. Specifying a distributional similarity measurerequires that we specify three
parameters: (1) how the co-occurrence terms are defined (i.e. what counts as a neigh-
bor), (2) how these terms are weighted (binary? frequency? mutual information?) and
(3) what vector distance metric we use (cosine? Euclidean distance?). Let’s look at
each of these requirements in the next three subsections.

20.7.1 Defining a Word’s Co-occurrence Vectors

In our example feature vector, we used the featurew occurs in the neighborhoodof
word v j . That is, for a vocabulary sizeN, each wordw hadN features, specifying
whether vocabulary elementv j occurred in the neighborhood. Neighborhoods range
from a small window of words (as few as one or two words on either side) to very
large windows of±500 words. In a minimal window, for example, we might have two
features for each wordv j in the vocabulary,word vk occursimmediatelybefore word
w andword vk occursimmediatelyafter wordw.

DRAFT

24 Chapter 20. Computational Lexical Semantics

To keep these contexts efficient, we often ignore very frequent words which tend
not to be very discriminative, e.g., function words such asa, am, the, of, 1, 2, and so
on. These removed words are calledstopwordsor thestoplist.STOPWORDS

STOPLIST Even with the removal of the stopwords, when used on very large corpora these co-
occurrence vectors tend to be very large. Instead of using every word in the neighbor-
hood, Hindle (1990) suggested choosing words that occur in some sort ofgrammatical
relation or dependencyto the target words. Hindle suggested that nouns which bear
the same grammatical relation to the same verb might be similar. For example, the
wordstea, water, andbeerare all frequent direct objects of the verbdrink. The words
senate, congress, panel, andlegislatureall tend to be subjects of the verbsconsider,
vote, andapprove.

Hindle’s intuition follows from the early work of Harris (1968), who suggested
that:

The meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of theseentities relative
to other entities.

There have been a wide variety of realizations of Hindle’s idea since then. In general,
in these methods each sentence in a large corpus is parsed anda dependency parse is
extracted. We saw in Ch. 12 lists of grammatical relations produced by dependency
parsers, including noun-verb relations like subject, object, indirect object, and noun-
noun relations like genitive, ncomp, and so on. A sentence like the following would
result in the set of dependencies shown here:

(20.32) I discovered dried tangerines:
discover (subject I) I (subj-of discover)
tangerine (obj-of discover) tangerine (adj-mod dried)
dried (adj-mod-of tangerine)

Since each word can be in a variety of different dependency relations with other
words, we’ll need to augment the feature space. Each featureis now a pairing of a
word and a relation, so instead of a vector ofN features, we have a vector ofN×R
features, whereR is the number of possible relations. Fig. 20.10 shows a schematic
example of such a vector, taken from Lin (1998a), for the wordcell. As the value of
each attribute we have shown the frequency of the feature co-occurring withcell; the
next section will discuss the use of what values and weights to use for each attribute.

Since full parsing is very expensive, it is common to use a chunker or shallow parser
of the type defined in Sec.??, with the goal of extracting only a smaller set of relations
like subject, direct object, and prepositional object of a particular preposition (Curran,
2003).

20.7.2 Measures of Association with Context

Now that we have a definition for the features or dimensions ofa word’s context vector,
we are ready to discuss the values that should be associated with those features. These
values are typically thought of asweights or measures ofassociationbetween eachASSOCIATION

target wordw and a given featuref . In the example in Fig. 20.9, our association
measure was a binary value for each feature, 1 if the relevantword had occurred in the

DRAFT

Section 20.7. Word Similarity: Distributional Methods 25

su
b

j-
o

f,
ab

so
rb

su
b

j-
o

f,
ad

ap
t

su
b

j-
o

f,
b

eh
av

e
... p

o
b

j-
o

f,
in

si
d

e

p
o

b
j-

o
f,

in
to

... n
m

o
d

-o
f,a

b
n

o
rm

al
ity

n
m

o
d

-o
f,a

n
em

ia

n
m

o
d

-o
f,a

rc
h

ite
ct

u
re

... o
b

j-
o

f,
at

ta
ck

o
b

j-
o

f,
ca

ll

o
b

j-
o

f,
co

m
e

fr
o

m

o
b

j-
o

f,
d

ec
o

ra
te

... n
m

o
d,

b
ac

te
ri

a

n
m

o
d,

b
o

d
y

n
m

o
d,

b
o

n
e

m
ar

ro
w

cell 1 1 1 16 30 3 8 1 6 11 3 2 3 2 2

Figure 20.10 Co-occurrence vector for the wordcell, from Lin (1998a), showing gram-
matical function (dependency) features. Values for each attribute are frequency counts
from a 64-million word corpus, parsed by an early version of MINIPAR.

context, 0 if not. In the example in Fig. 20.10, we used a richer association measure,
the relative frequency with which the particular context feature had co-occurred with
the target word.

Frequency, or probability, is certainly a better measure ofassociation than just a
binary value; features that occur often with a target word are more likely to be good
indicators of the word’s meaning. Let’s define some terminology for implementing
a probabilistic measure of association. For a target wordw, each element of its co-
occurrence vector is a featuref , consisting of a relationr and a related wordw′; we
can sayf = (r,w′). For example, one of the features of the wordcell in Fig. 20.10 is
f = (r,w′) =(obj-of, attack). The probability of a featuref given a target wordw is
P(f |w), for which the maximum likelihood estimate is:

P(f |w) =
count(f ,w)

count(w)
(20.33)

Similarly, the maximum likelihood estimate for the joint probabilityP(f ,w) is:

P(f ,w) =
count(f ,w)

∑w′ count(f ,w′))
(20.34)

P(w) andP(f) are computed similarly.
Thus if we were to define simple probability as a measure of association it would

look as follows:
assocprob(w, f) = P(f |w)(20.35)

It turns out, however, that simple probability doesn’t workas well as more sophis-
ticated association schemes for word similarity.

Why isn’t frequency or probability a good measure of association between a word
and a context feature? Intuitively, if we want to know what kinds of contexts are
shared byapricotandpineapplebut not bydigital andinformation, we’re not going to
get good discrimination from words likethe, it, or they, which occur frequently with
all sorts of words, and aren’t informative about any particular word. We’d like context
words which are particularly informative about the target word. We, therefore, need
a weighting or measure of association which asks how much more often than chance

DRAFT

26 Chapter 20. Computational Lexical Semantics

that the feature co-occurs with the target word. As Curran (2003) points out, such a
weighting is what we also want for finding goodcollocations, and so the measures ofCOLLOCATIONS

association used for weighting context words for semantic similarity are exactly the
same measure used for finding a word’s collocations.

One of the most important measures of association was first proposed by Church
and Hanks (1989, 1990) and is based on the notion ofmutual information . Themu-
tual information between two random variablesX andY isMUTUAL

INFORMATION

I(X,Y) = ∑
x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(20.36)

Thepointwise mutual information (Fano, 1961)3 is a measure of how often twoPOINTWISE MUTUAL
INFORMATION

eventsx andy occur, compared with what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(20.37)

We can apply this intuition to co-occurrence vectors, by defining the pointwise
mutual information association between a target wordw and a featuref as:

assocPMI(w, f) = log2
P(w, f)

P(w)P(f)
(20.38)

The intuition of the PMI measure is that the numerator tells us how often we ob-
served the two words together (assuming we compute probability using MLE as above).
The denominator tells us how often we wouldexpectthe two words to co-occur assum-
ing they each occurred independently, so their probabilities could just be multiplied.
Thus the ratio gives us an estimate of how much more the targetand feature co-occur
than we expect by chance.

Since f is itself composed of two variablesr andw′, there is a slight variant on
this model, due to Lin (1998a), that breaks down the expectedvalue forP(f) slightly
differently; we’ll call it theLin association measureassocLin, not to be confused withLIN ASSOCIATION

MEASURE

the WordNet measure simLin that we discussed in the previous section:

assocLin(w, f) = log2
P(w, f)

P(w)P(r|w)P(w′|w)
(20.39)

For both assocPMI and assocLin, we generally only use the featuref for a word
w if the assoc value is positive, since negative PMI values (implying things are co-
occurringless oftenthan we would expect by chance) tend to be unreliable unless the
training corpora are enormous (Dagan et al., 1993; Lin, 1998a). In addition, when
we are using the assoc-weighted features to compare two target words, we only use
features that co-occur with both target words.

Fig. 20.11 from Hindle (1990) shows the difference between raw frequency counts
and PMI-style association, for some direct objects of the verb drink.

3 Fano actually used the phrasemutual informationto refer to what we now callpointwise mutual infor-
mation, and the phraseexpectation of the mutual informationfor what we now callmutual information; the
termmutual informationis still often used to meanpointwise mutual information.

DRAFT

Section 20.7. Word Similarity: Distributional Methods 27

Object Count PMI assoc Object Count PMI assoc

bunch beer 2 12.34 wine 2 9.34
tea 2 11.75 water 7 7.65
Pepsi 2 11.75 anything 3 5.15
champagne 4 11.75 much 3 5.15
liquid 2 10.53 it 3 1.25
beer 5 10.20 <SOME AMOUNT> 2 1.22

Figure 20.11 Objects of the verbdrink, sorted by PMI, from Hindle (1990).

One of the most successful association measures for word similarity attempts to
capture the same intuition as mutual information, but uses thet-test statistic to measureT­TEST

how much more frequent the association is than chance. This measure was proposed
for collocation-detection by Manning and Schütze (1999, Chapter 5) and then applied
to word similarity by Curran and Moens (2002), Curran (2003).

The t-test statistic computes the difference between observed and expected means,
normalized by the variance. The higher the value oft, the more likely we can reject the
null hypothesis that the observed and expected means are thesame.

t =
x̄− µ
√

s2

N

(20.40)

When applied to association between words, the null hypothesis is that the two
words are independent, and henceP(f ,w) = P(f)P(w) correctly models the relation-
ship between the two words. We want to know how different the actual MLE proba-
bility P(f ,w) is from this null hypothesis value, normalized by the variance. Note the
similarity to the comparison with the product model in the PMI measure above. The
variances2 can be approximated by the expected probabilityP(f)P(w) (see Manning
and Schütze (1999)). IgnoringN (since it is constant), the resulting t-test association
measure from Curran (2003) is thus:

assoct-test(w, f) =
P(w, f)−P(w)P(f)

√

P(f)P(w)
(20.41)

See the history section for a summary of various other weighting factors that have
been tested on word similarity.

20.7.3 Defining similarity between two vectors

From the previous sections we can now compute a co-occurrence vector for a target
word, with each co-occurrence feature weighted by an association measure, giving us
a distributional definition of the meaning of a target word.

To define similarity between two target wordsv and w, we need a measure for
taking two such vectors and giving a measure of vector similarity. Perhaps the simplest
two measures of vector distance are the Manhattan and Euclidean distance. Fig. 20.12
shows a graphical intuition for Euclidean and Manhattan distance between two two-
dimensional vectors~a and~b. TheManhattan distance, also known asLevenshteinMANHATTAN

DISTANCE

DRAFT

28 Chapter 20. Computational Lexical Semantics

distanceor L1 norm , isLEVENSHTEIN
DISTANCE

L1 NORM

distancemanhattan(~x,~y) =
N

∑
i=1

|xi−yi|(20.42)

TheEuclidean distance, also called theL2 norm , was introduced in Ch. 9:L2 NORM

distanceeuclidean(~x,~y) =

√

N

∑
i=1

(xi−yi)2(20.43)

Figure 20.12 The Euclidean and Manhattan distance metrics for vectorsa = (a1,a2),
andb = (b1,b2), just to give the reader a grpahical intuition about the ideaof distance
between vectors; these particular metrics are generally not used for word similarity. See
Ch. 9 for more on distance metrics.

Although the Euclidean and Manhattan distance metrics provide a nice geometric
intuition for vector similarity and distance, these measures are rarely used for word
similarity. This is because both measures turn out to be verysensitive to extreme values.
Instead of these simple distance metrics, word similarity is based on closely related
metrics frominformation retrieval and frominformation theory . The information
retrieval methods seem to work better for word similarity, so we’ll define a number of
these in this section.

Let’s begin with the intuition for a similarity metric in Fig. 20.9, in which the
similarity between two binary vectors was just the number offeatures the two words
had in common. If we assume a feature vector is abinary vector, we can define suchBINARY VECTOR

a similarity metric as follows, using thedot product or inner product operator fromDOT PRODUCT

INNER PRODUCT linear algebra:

simdot-product(~v,~w) =~v·~w =
N

∑
i=1

vi×wi(20.44)

In most cases, though, as we saw in the previous section, the values of our vector are
not binary. Let’s assume for the rest of this section that theentries in the co-occurrence
vector are theassociationvalues between the target words and each of the features. In
other words, let’s define the vector for a target word~w with N featuresf1.. fN as:

DRAFT

Section 20.7. Word Similarity: Distributional Methods 29

~w = (assoc(w, f1),assoc(w, f2),assoc(w, f3), . . . ,assoc(w, fN))(20.45)

Now we can apply simdot-productto vectors with values defined as associations, to
get the dot-product similarity between weighted values. This raw dot-product, however,
has a problem as a similarity metric: it favorslong vectors. Thevector length isVECTOR LENGTH

defined as:

|~v|=
√

N

∑
i=1

v2
i(20.46)

A vector can be longer because it has more non-zero values, orbecause each dimen-
sion has a higher value. Both of these facts will increase thedot product. It turns
out that both of these can occur as a by-product of word frequency. A vector from
a very frequent word will have more non-zero co-occurrence association values, and
will probably have higher values in each (even using association weights that control
somewhat for frequency). The raw dot product thus favors frequent words.

We need to modify the dot product to normalize for the vector length. The simplest
way is just to divide the dot product by the lengths of each of the two vectors. This
normalized dot product turns out to be the same as the cosine of the angle betweenNORMALIZED DOT

PRODUCT

the two vectors. Thecosineor normalized dot product similarity metric is thus:COSINE

simcosine(~v,~w) =
~v ·~w
|~v||~w| =

∑N
i=1vi×wi

√

∑N
i=1v2

i

√

∑N
i=1w2

i

(20.47)

Because we have transformed the vectors to unit length, the cosine metric, unlike
Euclidean or Manhattan distance, is no longer sensitive to long vectors from high-
frequency words. The cosine value ranges from 1 for vectors pointing in the same
direction, through 0 for vectors which are orthogonal (share no common terms), to
-1 for vectors pointing in opposite directions, although inpractice values tend to be
positive.

Let’s discuss two more similarity measures derived from information retrieval. The
Jaccard (Jaccard, 1908, 1912) (also calledTanimoto or min/max (Dagan, 2000))JACCARD

TANIMOTO

MIN/MAX

measure was originally designed for binary vectors. It was extended by Grefenstette
(1994) to vectors of weighted associations as follows:

simJaccard(~v,~w) =
∑N

i=1min(vi ,wi)

∑N
i=1max(vi ,wi)

(20.48)

The numerator of the Grefenstette/Jaccard function uses the min function, essen-
tially computing the (weighted) number of overlapping features (since if either vector
has a zero association value for an attribute, the result will be zero). The denominator
can be viewed as a normalizing factor.

A very similar measure, theDice measure, was similarly extended from binaryDICE

vectors to vectors of weighted associations; one extensionfrom Curran (2003) uses the
Jaccard numerator, but uses as the denominator normalization factor the total weighted
value of non-zero entries in the two vectors.

DRAFT

30 Chapter 20. Computational Lexical Semantics

simDice(~v,~w) =
2×∑N

i=1min(vi ,wi)

∑N
i=1(vi +wi)

(20.49)

assocprob(w, f) = P(f |w) (20.35)

assocPMI(w, f) = log2
P(w, f)

P(w)P(f) (20.38)

assocLin(w, f) = log2
P(w, f)

P(w)P(r|w)P(w′|w) (20.39)

assoct-test(w, f) = P(w, f)−P(w)P(f)√
P(f)P(w)

(20.41)

simcosine(~v,~w) = ~v·~w
|~v||~w| =

∑N
i=1vi×wi√

∑N
i=1 v2

i

√
∑N

i=1w2
i

(20.47)

simJaccard(~v,~w) =
∑N

i=1min(vi ,wi)

∑N
i=1 max(vi ,wi)

(20.48)

simDice(~v,~w) =
2×∑N

i=1min(vi ,wi)

∑N
i=1(vi+wi)

(20.49)

simJS(~v||~w) = D(~v|~v+~w
2)+D(~w|~v+~w

2) (20.52)

Figure 20.13 Defining word similarity: measures of association between atarget word
w and a featuref = (r,w′) to another wordw′, and measures of vector similarity between
word co-occurrence vectors~v and~w.

Finally, there is a family of information-theoretic distributational similarity mea-
sures, (Pereira et al., 1993; Dagan et al., 1994, 1999; Lee, 1999), also based on the
conditional probability association measureP(f |w). The intuition of these models is
that two vectors~v and~w are similar to the extent that their probability distributions
P(f |w) andP(f |v) are similar. The basis of comparing two probability distributions
P andQ is theKullback-Leibler divergence or KL divergence or relative entropyKL DIVERGENCE

(Kullback and Leibler, 1951) :

D(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

(20.50)

Unfortunately, the KL-divergence is undefined whenQ(x) = 0 andP(x) 6= 0, which
is a problem since these word distribution vectors are generally quite sparse. One
alternative (Lee, 1999) is to use theJenson-Shannon divergence, which representsJENSON­SHANNON

DIVERGENCE

the divergence of each distribution from the mean of the two,and doesn’t have this
problem with zeros:

JS(P||Q) = D(P|P+Q
2

)+D(Q|P+Q
2

)(20.51)

Rephrased in terms of vectors~v and~w,

DRAFT

Section 20.7. Word Similarity: Distributional Methods 31

simJS(~v||~w) = D(~v|~v+~w
2

)+D(~w|~v+~w
2

)(20.52)

Fig. 20.13 summarizes the measures of association and of vector similarity that
we have designed. See the history section for a summary of other vector similarity
measures.

Finally, let’s look at some of the results of distributionalword similarity. The fol-
lowing are the ten most similar words to the different parts of speech ofhopeandbrief,
derived using the online dependency-based similarity tool(Lin, 2007); this tool defines
the co-occurrence vector using all minipar grammatical relations, uses the assocLin
measure of association, and a vector similarity metric fromLin (1998a).

• hope (N):optimism 0.141338, chance 0.136681, expectation 0.136559, prospect
0.125597, dream 0.119079, desire 0.117939, fear 0.116273,effort 0.111264,
confidence 0.109136, promise 0.108269

• hope (V): would like 0.157988, wish 0.139532, plan 0.139349, say 0.136786,
believe 0.135058, think 0.132673, agree 0.129985, wonder 0.129709, try 0.127047,
decide 0.125387,

• brief (N): legal brief 0.139177, affidavit 0.103401, filing 0.0982636,petition
0.0864875, document 0.0835244, argument 0.0831851, letter 0.0785654, rebut-
tal 0.077766, memo 0.0768226, article 0.0758248

• brief (A): lengthy 0.256242, hour-long 0.191421, short 0.173561, extended 0.163085,
frequent 0.162555, recent 0.15815, short-lived 0.154955,Prolonged 0.149289,
week-long 0.149128, occasional 0.146385

20.7.4 Evaluating Distributional Word Similarity

Distributional similarity can be evaluated in the same waysas thesaurus-based simi-
larity; we can compare intrinsically to human similarity scores, or we can evaluate it
extrinsically as part of end-to-end applications. Besidesword sense disambiguation
and malapropism detection, similarity measures have been used as a part of systems
for the grading of exams and essays(Landauer et al., 1997), or taking TOEFL multiple-
choice exams (Landauer and Dumais, 1997; Turney et al., 2003).

Distributional algorithms are also often evaluated in a third intrinsic way: by com-
parison with a gold-standard thesaurus. This comparison can be direct with a single
thesaurus (Grefenstette, 1994; Lin, 1998a) or by using precision and recall measure
against an ensemble of thesauri (Curran and Moens, 2002). Let Sbe the set of words
that are defined as similar in the thesaurus, by being in the same synset, or perhaps
sharing the same hypernym, or being in the hypernym-hyponymrelation. LetS′ be the
set of words that are classified as similar by some algorithm.We can define precision
and recall as:

precision=
|S∩S′|
|S′| recall=

|S∩S′|
|S|(20.53)

Curran (2003) evaluated a number of distributional algorithms using comparison
with thesauri and found that the Dice and Jaccard methods performed best as measures

DRAFT

32 Chapter 20. Computational Lexical Semantics

of vector similarity, while t-test performed best as a measure of association. Thus the
best metric weighted the associations with t-test, and thenused either Dice or Jaccard
to measure vector similarity.

20.8 HYPONYMY AND OTHER WORD RELATIONS

Similarity is only one kind of semantic relation between words. As we discussed in
Ch. 19, WordNet and MeSH both includehyponymy/hypernymy, as do many the-
sauruses for other languages, such as CiLin for Chinese (?).WordNet also includes
antonymy, meronymy, and other relations. Thus if we want to know if two senses are
related by one of these relations, and the senses occur in WordNet or MeSH, we can
just look them up. But since many words are not in these resources, it is important to
be able to learn new hypernym and meronym relations automatically.

Much work on automatic learning of word relations is based ona key insight first
articulated by Hearst (1992), that the presence of certain lexico-syntactic patterns can
indicate a particular semantic relationship between two nouns. Consider the following
sentence extracted by Hearst from the Groliers encyclopedia:

(20.54) Agar is a substance prepared from a mixture of red algae, suchas Gelidium, for
laboratory or industrial use.

Hearst points out that most human readers will not know whatGelidiumis, but that
they can readily infer that it is a kind of (ahyponym of) red algae, whatever that is.
She suggests that the followinglexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i ≥ 1(20.55)

implies the following semantics

∀NPi , i ≥ 1,hyponym(NPi ,NP0)(20.56)

allowing us to infer
hyponym(Gelidium, red algae)(20.57)

NP{,NP}∗{,} (and|or) otherNPH . . . temples, treasuries, and other important civic buildings.
NPH such as{NP,}* (or|and)NP red algae such as Gelidium
suchNPH as{NP,}* (or|and)NP works by such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including{NP,}* (or|and)NP All common-law countries, including Canada and England
NPH {,} especially{NP,}* (or|and)NP . . . most European countries, especially France, England, and Spain

Figure 20.14 Hand-built lexico-syntactic patterns for finding hypernyms (Hearst, 1992, 1998)

Fig. 20.14 shows five patterns Hearst (1992, 1998) suggestedfor inferring the hy-
ponym relation; we’ve shownNPH as the parent/hyponym. There are a number of other
attempts to extract different WordNet relations using suchpatterns; see the history sec-
tion for more details.

DRAFT

Section 20.8. Hyponymy and other word relations 33

Of course, the coverage of such pattern-based methods is limited by the number and
accuracy of the available patterns. Unfortunately, once the obvious examples have been
found, the process of creating patterns by hand becomes a difficult and slow process.
Fortunately, we’ve already seen the solution to this kind ofproblem. We can find
new patterns usingbootstrapping methods that are common in information extraction
(Riloff, 1996; Brin, 1998), and are also key to the Yarowsky method described earlier
in Sec. 20.5.

The key insight for the use of bootstrapping in relational pattern discovery is that
with a large corpus we can expect that words involved in a relation to show up with
many different patterns that express that same relation. Therefore, in theory at least,
we need only start with a small number of precise patterns to acquire a set of seed
words involved in a given relation. These words can then be used to query a large
corpus for sentences containing both terms in some kind of dependency relation; new
patterns can then be extracted from these new sentences. Theprocess can be repeated
until the pattern set is large enough.

As an example of this process, consider the terms “red algae”and “Gelidium”
discovered earlier using Hearst’s simple pattern set. Among the results of a simple
Google search using these as query terms is the following example:

(20.58) One example of a red algae is Gelidium.

Removing the seed words from such a sentence and replacing them with simple
wildcards is the crudest kind of pattern generation. In thiscase, submitting the pattern
“One example of a * is *” to Google currently yields nearly 500,000 hits, including the
following example:

(20.59) One example of a boson is a photon.

We can also extract slightly more sophisticated patterns byparsing the extracted
sentences and putting wildcards into the parse tree.

The key to the success of bootstrapping approaches is to avoid thesemantic drift
that tends to occur as part of repeated applications of bootstrapping. The further we
get from the original set of seed words or patterns the more likely it is that we’ll come
across patterns with meanings quite different from what we set out to discover. We’ll
see methods for dealing with this drift when we discuss bootstrapping for information
extraction in Ch. 22.

An alternative to bootstrapping is to use large lexical resources like WordNet as a
source of training information, in which each WordNet hypernym/hyponym pair tells
us something about kinds of words are in this relation, and wetrain a classifier to help
find new words that exhibit this relation.

This hyponym learning algorithm of Snow et al. (2005), for example, relies on
WordNet to help learn large numbers of weak hyponym patterns, and then combine
them in a supervised classifier in 4 steps:

1. Collect all pairs of WordNet noun conceptsci , c j that are in the hypernym/hyponym
relation.

2. For each noun pair, collect all sentences (in a 6 million word corpus) in which
both nouns occur.

DRAFT

34 Chapter 20. Computational Lexical Semantics

3. Parse the sentences and automatically extract every possible Hearst-style lexico-
syntactic pattern from the parse tree

4. Use the large set of patterns as features in an logistic regression classifier

5. Given a pair of nouns in the test set, extract features and use the classifier to
determine if the noun pair is related by the hypernym/hyponym relation or not.

Four of the new patterns automatically learned by this algorithm include:

NPH like NP NPH called NP
NP is a NPH NP, a NPH (appositive):

Snow et al. (2005) then showed good hypernym detection performance by using
each of these patterns as a weak feature combined by a logistic regression classifier.

Another way to use WordNet to help address the hypernym problem is to model the
task as choosing the place to insert unknown words into an otherwise complete hierar-
chy. It is possible to do this without using lexico-syntactic patterns. For example, we
can use a similarity classifier (using distributional information, or morphological infor-
mation) to find the words in the hierarchy that are most similar to an unknown word,
using an approach like K-Nearest-Neighbors, and insert thenew word there (Tseng,
2003). Or we can treat the task of hypernym labeling as a labeling task like named-
entity tagging. Ciaramita and Johnson (2003) take this approach, using as tags 26
supersenses, from the 26 broad-category ‘lexicographer class’ labels from WordNetSUPERSENSES

(person, location, event, quantity, etc). They use features such as surrounding part-of-
speech tags, word bigram and trigram features, spelling andmorphological features,
and apply a multiclass perceptron classifier.

Finding meronyms seems to be harder than hyponyms; here are some examples
from Girju et al. (2003):

(20.60) The car’s mail messenger is busy at work in the<PART>mail car</PART> as the
<WHOLE>train</WHOLE>moves along.

(20.61) Through the open<PART>side door</PART> of the<WHOLE>car</WHOLE>, moving
scenery can be seen.

Meronyms are hard to find because the lexico-syntactic patterns that characterize
them are very ambiguous. For example the two most common patterns indicating
meronymy are the English genitive constructions [NP1 of NP2] and [NP1’s NP2], which
also express many other meanings such aspossession; see Girju et al. (2003, 2006) for
discussion and possible algorithms.

Learning individual relations between words is an important component of the gen-
eral task ofthesaurus induction. In thesaurus induction, we combine our estimatesTHESAURUS

INDUCTION

of word similarity with our hypernym or other relations to build an entire ontology or
thesaurus. For example the two-step thesaurus induction algorithm of Caraballo (1999,
2001) first applies a bottom-upclustering algorithm to group together semantically
similar words into an unlabeled word hierarchy. Recall fromSec. 20.10 that in ag-
glomerative clustering, we start by assigning each word itsown cluster. New clusters
are then formed in a bottom-up fashion by successively merging the two clusters that
are most similar; we can use any metric for semantic similarity, such as one of the
distributional metrics described in the previous section.In the second step, given the

DRAFT

Section 20.9. Semantic Role Labeling 35

unlabeled hierarchy, the algorithm uses a pattern-based hyponym classifier to assign a
hypernym label to each cluster of words. See the history section for more recent work
on thesaurus induction.

20.9 SEMANTIC ROLE LABELING

The final task we’ll discuss in this chapter links word meanings with sentence mean-
ings. This is the task ofsemantic role labeling, sometimes calledthematic role label-SEMANTIC ROLE

LABELING

ing, case role assignmentor evenshallow semantic parsing. Semantic role labeling
is the task of automatically finding thesemantic rolesfor each predicate in a sentence.
More specifically, that means determining which constituents in a sentence are seman-
tic arguments for a given predicate, and then determining the appropriate role for each
of those arguments. Semantic role labeling has the potential to improve performance in
any language understanding task, although to date its primary applications have been
in question answering and information extraction.

Current approaches to semantic role labeling are based on supervised machine
learning and hence require access to adequate amounts of training and testing mate-
rials. Over the last few years, both the FrameNet and PropBank resources discussed
in Ch. 19 have played this role. That is, they have been used tospecify what counts
as a predicate, to define the set of roles used in the task and toprovide training and
test data. TheSENSEVAL-3 evaluation used Framenet, while the CONLL evaluations
in 2004 and 2005 were based on PropBank.

The following examples show the different representationsfrom the two efforts.
Recall that FrameNet (20.62) employs a large number of frame-specific frame elements
as roles, while PropBank (20.63) makes use of a smaller number of numbered argument
labels which can be interpreted as verb-specific labels.

(20.62)
[You] can’t [blame] [the program] [for being unable to identify a processor]
COGNIZER TARGET EVALUEE REASON

(20.63)
[The San Francisco Examiner] issued [a special edition] [around noon yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched inFig. 20.15. Following
the very earliest work on semantic role analysis (Simmons, 1973), most work on se-
mantic role labeling begins by parsing the sentence. Publicly available broad-coverage
parsers (such as Collins (1996) or Charniak (1997)) are typically used to assign a parse
to the input string. Fig. 20.16 shows a parse of (20.63) above. The resulting parse
is then traversed to find all predicate-bearing words. For each of these predicates the
tree is again traversed to determine which role, if any, eachconstituent in the parse
plays with respect to that predicate. This judgment is made by first characterizing the
constituent as a set of features with respect to the predicate. A classifier trained on
an appropriate training set is then passed this feature set and makes the appropriate
assignment.

Let’s look in more detail at the simple set of features suggested by Gildea and Juraf-
sky (2000, 2002), which have been incorporated into most role-labeling systems. We’ll

DRAFT

36 Chapter 20. Computational Lexical Semantics

function SEMANTICROLELABEL(words) returns labeled tree

parse←PARSE(words)
for eachpredicatein parsedo

for each nodein parsedo
featurevector←EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 20.15 A generic semantic role labeling algorithm. The CLASSIFYNODE com-
ponent can be a simple 1-of-N classifier which assigns a semantic role (or NONE for
non-role constituents). CLASSIFYNODE can be trained on labeled data such as FrameNet
or PropBank.

S

NP-SBJ= ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP= ARG1 PP-TMP= ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 20.16 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows thepath feature NP↑S↓VP↓VBD for ARG0, the NP-SBJ constituentthe San Francisco Examiner.

extract them for the firstNP in Fig. 20.16, theNP-SBJconstituentthe San Francisco
Examiner.

• The governingpredicate, in this case the verbissued. For PropBank, the pred-
icates are always verbs; FrameNet also has noun and adjective predicates. The
predicate is a crucial feature, since both PropBank and FrameNet labels are de-
fined only with respect to a particular predicate.
• Thephrase typeof the constituent, in this caseNP (or NP-SBJ). This is simply

the name of the parse node which dominates this constituent in the parse tree.
Some semantic roles tend to appear asNPs, others asSor PP, and so on.
• The head word of the constituent,Examiner. The head word of a constituent

can be computed using standard head rules, such as those given in Ch. 12 in

DRAFT

Section 20.9. Semantic Role Labeling 37

Fig. ??. Certain head words (e.g. pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• Thehead word part-of-speechof the constituent,NNP.

• The path in the parse tree from the constituent to the predicate. Thispath is
marked by the blue dotted line in Fig. 20.16. Following (Gildea and Jurafsky,
2000), we can use a simple linear representation of the path,NP↑S↓VP↓VBD. ↑
and↓ represent upward and downward movement in the tree respectively. The
path is very useful as a compact representation of many kindsof grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this caseactive
(as contrasted withpassive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than active ones.

• The binarylinear position of the constituent with respect to the predicate, either
beforeor after.

• The sub-categorizationof the predicate. Recall from Ch. 12 that the subcat-
egorization of a verb is the set of expected arguments that appear in the verb
phrase. We can extract this information by using the phrase structure rule that
expands the immediate parent of the predicate;VP→ NP PPfor the predicate in
Fig. 20.16.

Many other features are generally extracted by semantic role labeling systems, such
as named entity tags (it is useful to know if a constituent is aLOCATION or PERSON,
for example), or more complex versions of the path features (the upward or downward
halves, whether particular nodes occur in the path), the rightmost or leftmost words of
the constituent, and so on.

We now have a set of observations like the following example,each with a vector
of features; we have shown the features in the order described above (recall that most
observations will have the value NONE rather than e.g.,ARG0, since most constituents
in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP↑S↓VP↓VBD, active, before, VP→ NP PP]

Just as we saw for word sense disambiguation, we can divide these observations
into a training and a test set, use the training examples in any supervised machine
learning algorithm, and build a classifier. SVM and Maximum Entropy classifiers have
yielded good results on this task on standard evaluations. Once trained, the classi-
fier can be used on unlabeled sentences to propose a role for each constituent in the
sentence. More precisely, an input sentence is parsed and a procedure similar to that
described earlier for training is employed.

Instead of training a single stage classifier, some role labeling algorithms do classi-
fication in multiple stages for efficiency:

• Pruning: to speed up execution, some constituents are eliminated from consid-
eration as possible roles, based on simple rules

• Identification: a binary classification of each node as anARG to be labeled or a
NONE.

DRAFT

38 Chapter 20. Computational Lexical Semantics

• Classification: a one-of-N classification of all the constituents that were labeled
asARG by the previous stage.

There are a number of complications that all semantic role labeling systems need to
deal with. Constituents in FrameNet and PropBank are required to be non-overlapping.
Thus if a system incorrectly labels two overlapping constituents as arguments, it needs
to decide which of the two is correct. Additionally, the semantic roles of constituents
are not independent; since PropBank does not allow multipleidentical arguments, la-
beling one constituent as anARG0 would greatly increase the probability of another
constituent being labeledARG1. Both these problems can be addressed by the two-
stage approaches based on lattice orN-best rescoring discussed in Ch. 9: having the
classifier assign multiple labels to each constituent, eachwith a probability, and using
a second global optimization pass to pick the best label sequence.

Instead of using parses as input, it is also possible to do semantic role labeling
directly from raw (or part-of-speech tagged) text by applying the chunking techniques
used for named entity extraction or partial parsing. Such techniques are particularly
useful in domains such as bioinformatics where it is unlikely that syntactic parsers
trained on typical newswire text will perform well.

Finally, semantic role labeling systems have been generally evaluated by requiring
that each argument label must be assigned to the exactly correct word sequence or
parse constituent. Precision, recall, and F-measure can then be computed. A simple
rule-based system can be used as a baseline, for example tagging the first NP before
the predicate asARG0 and the first NP after the predicate asARG1, and switching these
if the verb phrase is passive.

20.10 ADVANCED: UNSUPERVISEDSENSE DISAMBIGUATION

Let’s briefly return to the WSD task. It is expensive and difficult to build large cor-
pora in which each word is labeled for its word sense. For thisreason, unsupervised
approaches to sense disambiguation are an exciting and important research area.

In unsupervised approaches, we don’t use human-defined wordsenses. Instead, the
set of ‘senses’ of each word are created automatically from the instances of each word
in the training set. Let’s introduce a simplified version of the methods of Schütze’s
(Schütze, 1992b, 1998) on unsupervised sense disambiguation. In Schütze’s method,
we first represent each instance of a word in the training set by distributional con-
text feature-vectors that are a slight generalization of the feature vectors we defined in
Sec. 20.7. (It is for this reason that we turned to unsupervised sense disambiguation
only after introducing word similarity.)

As in Sec. 20.7 we will represent a wordw as a vector based on frequencies of its
neighboring words. For example for a given target word (type) w, we might select 1000
words that occur most frequently within 25 words of any instance ofw. These 1000
words become the dimension of the vector. Let’s definefi to mean the frequency with
which wordi occurs in the context of wordw. We define the word vector~w (for a given
token (observation) ofw) as:

~w = (f1, f2, f3, · · · , f1000)

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 39

So far this is just a version of the distributional context wesaw in Sec. 20.7. We
can also use a slightly more complex version of the distributional context. For example
Schuetze defines thecontext vector of a word w not as this first-order vector, but
instead by itssecond order co-occurrence. That is, the context vector for a wordw is
built by taking each wordx in the context ofw, for eachx computing its word vector~x,
and then taking the centroid (average) of the vectors~x.

Let’s see how we use these context vectors (whether first-order or second-order) in
unsupervised sense disambiguation of a wordw. In training, we’ll need only 3 steps:

1. For each tokenwi of wordw in a corpus, compute a context vector~c.

2. Use aclustering algorithm to cluster these word token context vectors~c into a
predefined number of groups or clusters. Each cluster definesa sense ofw.

3. Compute thevector centroid of each cluster. Each vector centroid~sj is asense
vector representing that sense ofw.

Since this is an unsupervised algorithm we won’t have names for each of these
‘senses’ ofw; we just refer to thejth sense ofw.

Now how do we disambiguate a particular tokent of w? Again we have three steps:

1. Compute a context vector~c for t as discussed above.

2. Retrieve all sense vectorssj for w.

3. Assignt to the sense represented by the sense vectorsj that is closest tot.

All we need is a clustering algorithm, and a distance metricsbetween vectors. For-
tunately, clustering is a well-studied problem with a wide number of standard algo-
rithms that can be applied to inputs structured as vectors ofnumerical values (Duda
and Hart, 1973). A frequently used technique in language applications is known as
agglomerative clustering. In this technique, each of theN training instances is ini-AGGLOMERATIVE

CLUSTERING

tially assigned to its own cluster. New clusters are then formed in a bottom-up fashion
by successively merging the two clusters that are most similar. This process continues
until either a specified number of clusters is reached, or some global goodness measure
among the clusters is achieved. In cases where the number of training instances makes
this method too expensive, random sampling can be used on theoriginal training set
(Cutting et al., 1992) to achieve similar results.

How can we evaluate unsupervised sense disambiguation approaches? As usual,
the best way is to do extrinsic or in vivo evaluation, in whichthe WSD algorithm is
embedded in some end-to-end system. Intrinsic evaluation can also be useful, though,
if we have some way to map the automatically derived sense classes into some hand-
labeled gold standard set, so that we can compare a hand-labeled test set with a set
labeled by our unsupervised classifier. One way of doing thismapping is to map each
sense cluster to a pre-defined sense by choosing the sense that (in some training set)
has the most word tokens overlapping with the cluster. Another is to consider all pairs
of words in the test set, testing for each whether both the system and the hand-labeling
put both members of the pair in the same cluster or not.

DRAFT

40 Chapter 20. Computational Lexical Semantics

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Word sense disambiguation traces its roots to some of the earliest applications of dig-
ital computers. We saw above Warren Weaver’s (1955) suggestion to disambiguate
a word by looking at a small window around it, in the context ofmachine transla-
tion. Other notions first proposed in this early period include the use of a thesaurus for
disambiguation (Masterman, 1957), supervised training ofBayesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clusteringin word sense analysis
(Sparck Jones, 1986).

An enormous amount of work on disambiguation has been conducted within the
context of early AI-oriented natural language processing systems. While most natural
language analysis systems of this type exhibited some form of lexical disambiguation
capability, a number of these efforts made word sense disambiguation a larger focus
of their work. Among the most influential efforts were the efforts of Quillian (1968)
and Simmons (1973) with semantic networks, the work of Wilkswith Preference Se-
manticsWilks (1975c, 1975b, 1975a), and the work of Small and Rieger(1982) and
Riesbeck (1975) on word-based understanding systems. Hirst’s ABSITY system (Hirst
and Charniak, 1982; Hirst, 1987, 1988), which used a technique based on semantic
networks called marker passing, represents the most advanced system of this type. As
with these largely symbolic approaches, most connectionist approaches to word sense
disambiguation have relied on small lexicons with hand-coded representations (Cot-
trell, 1985; Kawamoto, 1988).

Considerable work on sense disambiguation has been conducted in the areas of
Cognitive Science and psycholinguistics. Appropriately enough, it is generally de-
scribed using a different name: lexical ambiguity resolution. Small et al. (1988) present
a variety of papers from this perspective.

The earliest implementation of a robust empirical approachto sense disambigua-
tion is due to Kelly and Stone (1975) who directed a team that hand-crafted a set of
disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the first to
use a machine readable dictionary for word sense disambiguation. Wilks et al. (1996)
describe extensive explorations of the use of machine readable dictionaries. The prob-
lem of dictionary senses being too fine-grained or lacking anappropriate organization
has been addressed with models of clustering word senses Dolan (1994), Peters et al.
(1998), Chen and Chang (1998), Mihalcea and Moldovan (2001), Agirre and de La-
calle (2003), Chklovski and Mihalcea (2003), Palmer et al. (2004), McCarthy (2006),
Navigli (2006), Snow et al. (2007); corpora with clustered word senses for training
clustering algorithms include Palmer et al. (2006) andOntoNotes(Hovy et al., 2006).ONTONOTES

Modern interest in supervised machine learning approachesto disambiguation be-
gan with Black (1988), who applied decision tree learning tothe task. The need for
large amounts of annotated text in these methods led to investigations into the use of
bootstrapping methods (Hearst, 1991; Yarowsky, 1995). Theproblem of how to weigh
and combine disparate sources of evidence is explored in Ng and Lee (1996), McRoy
(1992), and Stevenson and Wilks (2001).

Among the semi-supervised methods, more recent models of selectional prefer-

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 41

ence include Li and Abe (1998), Ciaramita and Johnson (2000), McCarthy and Carroll
(2003), Light and Greiff (2002). Diab and Resnik (2002) givea semi-supervised al-
gorithm for sense disambiguation based on aligned parallelcorpora in two languages.
For example, the fact that the French wordcatastrophemight be translated as English
disasterin one instance andtragedyin another instance can be used to disambiguate
the senses of the two English words (i.e. to choose senses ofdisasterand tragedy
that are similar). Abney (2002, 2004) explores the mathematical foundations of the
Yarowsky algorithm and its relation to co-training. The most-frequent-sense heuristic
is an extremely powerful one, but requires large amounts of supervised training data.
McCarthy et al. (2004) propose an unsupervised way to automatically estimate the
most frequent sense, based on the thesaurus similarity metrics defined in Sec. 20.6.

The earliest attempt to use clustering in the study of word senses is due to Sparck Jones
(1986). Zernik (1991) successfully applied a standard information retrieval clustering
algorithm to the problem, and provided an evaluation based on improvements in re-
trieval performance. More extensive recent work on clustering can be found in Peder-
sen and Bruce (1997) and Schütze (1997, 1998).

A few algorithms have attempted to exploit the power of mutually disambiguating
all the words in a sentence, either by multiple passes (Kellyand Stone, 1975) to take
advantage of easily disambiguated words, or by parallel search (Cowie et al., 1992;
Veronis and Ide, 1990).

Recent work has focused on ways to use the web for training data for word sense
disambiguation, either unsupervised (Mihalcea and Moldovan, 1999) or by using vol-
unteers to label data (Chklovski and Mihalcea, 2002).

Resnik (2006) describes potential applications of WSD. Onerecent application has
been to improve machine translation Chan et al. (2007), Carpuat and Wu (2007).

Agirre and Edmonds (2006) is a comprehensive edited volume that summarizes the
state of the art in WSD. Ide and Veronis (1998a) provide a comprehensive review of
the history of word sense disambiguation up to 1998. Ng and Zelle (1997) provide a
more focused review from a machine learning perspective. Wilks et al. (1996) describe
dictionary and corpus experiments, along with detailed descriptions of very early work.

The models of distributional word similarity we discussed arose out of research
in linguistics and psychology of the 1950’s. The idea that meaning was related to
distribution of words in context was widespread in linguistic theory of the 1950’s; even
before the well-known Firth (1957) and Harris (1968) dictums discussed earlier, Joos
(1950) stated that

the linguist’s ‘meaning’ of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes’

The related idea that the meaning of a word could be modeled asa point in a Eu-
clidean space, and that the similarity of meaning between two words could be modeled
as the distance between these points, was proposed in psychology by Osgood et al.
(1957). The application of these ideas in a computational framework was first made
by Sparck Jones (1986), and became a core principle of information retrieval, from
whence it came into broader use in speech and language processing.

There are a wide variety of other weightings and methods for word similarity. The
largest class of methods not discussed in this chapter are the variants to and details of
the information-theoretic methods like Jensen-Shannon divergence, KL-divergence

DRAFT

42 Chapter 20. Computational Lexical Semantics

andα-skew divergence that we briefly introduced (Pereira et al.,1993; Dagan et al.,
1994, 1999; Lee, 1999, 2001); there are also other metrics from Hindle (1990) and Lin
(1998a). Alternative paradigms include theco-occurrence retrievalmodel (Weeds,
2003; Weeds and Weir, 2005). Manning and Schütze (1999, Chapter 5 and 8) give col-
location measures and other related similarity measures. Acommonly used weighting
is weighted mutual information (Fung and McKeown, 1997) in which the pointwiseWEIGHTED MUTUAL

INFORMATION

mutual information is weighted by the joint probability. Ininformation retrieval the
TF/IDF weight is widely used, as we will see in Ch. 23. See Dagan (2000), Mo-
hammad and Hirst (2005), Curran (2003) and Weeds (2003) for good summaries of
distributional similarity.

An alternative vector space model of semantic similarity,Latent Semantic In-
dexing (LSI) or Latent Semantic Analysis(LSA), usessingular value decomposi-LATENT SEMANTIC

INDEXING

LSA tion to reduce the dimensionality of the vector space with the intent of discovering
higher-order regularities (Deerwester et al., 1990). We have already discussed Schütze
(1992b), another semantic similarity model based on singular value decomposition.

There is a wide variety of recent literature on other lexicalrelations and thesaurus
induction. The use of distributional word similarity for thesaurus induction was ex-
plored systematically by Grefenstette (1994). A wide variety of distributional cluster-
ing algorithms have been applied to the task of discovering groupings of semantically
similar words, including hard clustering (Brown et al., 1992), soft clustering (Pereira
et al., 1993), as well as new algorithms likeClustering By Committee(CBC) (Lin and
Pantel, 2002). For particular relations, Lin et al. (2003) applied hand-crafted patterns
to find antonyms, with the goal of improving synonym-detection. The distributional
word similarity algorithms from Sec. 20.7 often incorrectly assign high similarity to
antonyms. Lin et al. (2003) showed that words appearing in the patternsfrom X to Yor
either X or Ytended to be antonyms. Girju et al. (2003, 2006) show improvements in
meronymextraction by learning generalizations about the semanticsuperclasses of the
two nouns. Chklovski and Pantel (2004) used hand-built patterns to extract fine-grained
relations between verbs such asstrength. Much recent work has focused on thesaurus
induction by combining different relation extractors. Pantel and Ravichandran (2004),
for example, extend Caraballo’s algorithm for combining similarity and hyponymy in-
formation, while Snow et al. (2006) integrate multiple relation extractors to compute
the most probable thesaurus structure. Recent work on similarity focuses on the use of
the Web, for example relying on Wikipedia Strube and Ponzetto (2006), Gabrilovich
and Markovitch (2007); this Web-based work is also closely related to unsupervised
information extraction; see Ch. 22 and references like Etzioni et al. (2005).

While not as old a field as word similarity or sense disambiguation, semantic role
labeling has a long history in computational linguistics. The earliest work on semantic
role labeling (Simmons, 1973) first parsed a sentence using an ATN parser. Each verb
then had a set of rules specifying how the parse should be mapped to semantic roles.
These rules mainly made reference to grammatical functions(subject, object, comple-
ment of specific prepositions), but also checked constituent-internal features such as
the animacy of head nouns.

Statistical work in the area revived in 2000 after the FrameNet and PropBank
project had created databases large enough and consistent enough to make training and
testing possible. Many popular features used for role labeling are defined in Gildea and

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 43

Jurafsky (2002), Chen and Rambow (2003), Surdeanu et al. (2003), Xue and Palmer
(2004), Pradhan et al. (2003, 2005).

To avoid the need for huge labeled training sets, recent workhas focused on unsu-
pervised approaches for semantic role labeling (Swier and Stevenson, 2004).

The semantic labeling work described above focuses on labeling each sentence
token in a corpus with semantic roles. An alternative approach to semantic role labeling
focuses on lexicon learning, using unsupervised learning on a corpus to learn the kinds
of semantic classes a verb can belong to in terms of its possible semantic roles or
argument alternation patterns (Stevenson and Merlo, 1999;Schulte im Walde, 2000;
Merlo and Stevenson, 2001; Merlo et al., 2001; Grenager and Manning, 2006).

EXERCISES

20.1 Collect a small corpus of example sentences of varying lengths from any news-
paper or magazine. Using WordNet, or any standard dictionary, determine how many
senses there are for each of the open-class words in each sentence. How many distinct
combinations of senses are there for each sentence? How doesthis number seem to
vary with sentence length?

20.2 Using WordNet, or a standard reference dictionary, tag eachopen-class word in
your corpus with its correct tag. Was choosing the correct sense always a straightfor-
ward task. Report on any difficulties you encountered.

20.3 Using the same corpus, isolate the words taking part in all the verb-subject and
verb-object relations. How often does it appear to be the case that the words taking
part in these relations could be disambiguated using only information about the words
in the relation?

20.4 Between the wordseatandfindwhich would you expect to be more effective in
selectional restriction-based sense disambiguation? Why?

20.5 Using your favorite dictionary, simulate the Original Leskword overlap dis-
ambiguation algorithm described on page 11 on the phraseTime flies like an arrow.
Assume that the words are to be disambiguated one at a time, from left to right, and
that the results from earlier decisions are used later in theprocess.

20.6 Build an implementation of your solution to the previous exercise. Using Word-
Net, implement the Original Lesk word overlap disambiguation algorithm described on
page 11 on the phraseTime flies like an arrow.

20.7 Implement and experiment with a decision-list sense disambiguation system.
As a model, use the kinds of features shown in Figure 20.2. Useone of the publicly
available decision-list packages like WEKA (or see Russelland Norvig (1995) for more
details on implementing decision-list learning yourself). To facilitate evaluation of your
system, you should obtain one of the freely available sense-tagged corpora.

20.8 Evaluate two or three of the similarity methods from the publicly available
Wordnet::Similarity package (Pedersen et al., 2004). You might do this by

DRAFT

44 Chapter 20. Computational Lexical Semantics

hand-labeling some word pairs with similarity scores and seeing how well the algo-
rithms approximate your hand labels.

20.9 Implement a distributional word similarity algorithm thatcan take different mea-
sures of association and different measures of vector similarity. Now evaluate two mea-
sures of association and two measures of vector similarity from Fig. 20.13. Again, you
might do this by hand-labeling some word pairs with similarity scores and seeing how
well the algorithms approximate your hand labels.

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 45

Abney, S. P. (2002). Bootstrapping. InACL-02.

Abney, S. P. (2004). Understanding the Yarowsky algorithm.
Computational Linguistics, 30(3), 365–395.

Agirre, E. and de Lacalle, O. L. (2003). Clustering wordnet
word senses. InRANLP 2003.

Agirre, E. and Edmonds, P. (Eds.). (2006).Word Sense Disam-
biguation: Algorithms and Applications. Kluwer.

Atkins, S. (1993). Tools for computer-aided corpus lexicog-
raphy: The Hector project.Acta Linguistica Hungarica, 41,
5–72.

Banerjee, S. and Pedersen, T. (2003). Extended gloss overlaps
as a measure of semantic relatedness. InIJCAI 2003, pp. 805–
810.

Black, E. (1988). An experiment in computational discrimina-
tion of English word senses.IBM Journal of Research and
Development, 32(2), 185–194.

Brin, S. (1998). Extracting patterns and relations from the
World Wide Web. InProceedings World Wide Web and
Databases International Workshop, Number 1590 in LNCS,
pp. 172–183. Springer.

Brown, P. F., Della Pietra, V. J., de Souza, P. V., Lai, J. C., and
Mercer, R. L. (1992). Class-basedn-gram models of natural
language.Computational Linguistics, 18(4), 467–479.

Bruce, R. and Wiebe, J. (1994). Word-sense disambiguation us-
ing decomposable models. InProceedings of the 32nd ACL,
Las Cruces, NM, pp. 139–145.

Budanitsky, A. and Hirst, G. (2001). Semantic distance in
WordNet: An experimental, application-oriented evaluation
of five measures. InProceedings of the NAACL 2001 Work-
shop on WordNet and Other Lexical Resources, Pittsburgh,
PA.

Budanitsky, A. and Hirst, G. (2006). Evaluating wordnet-based
measures of lexical semantic relatedness.Computational Lin-
guistics, 32(1), 13–47.

Caraballo, S. A. (1999). Automatic construction of a hypernym-
labeled noun hierarchy from text. InACL-99, College Park,
MD. ACL.

Caraballo, S. A. (2001).Automatic Acquisition of a hypernym-
labeled noun hierarchy from text. Ph.D. thesis, Brown Uni-
versity.

Carpuat, M. and Wu, D. (2007). Improving statistical ma-
chine translation using word sense disambiguation. In
EMNLP/CoNLL 2007, Prague, Czech Republic, pp. 61–72.

Chan, Y. S., Ng, H. T., and Chiang, D. (2007). Word sense
disambiguation improves statistical machine translation. In
ACL-07, Prague, Czech Republic, pp. 33–40.

Charniak, E. (1997). Statistical parsing with a context-free
grammar and word statistics. InAAAI-97, Menlo Park, pp.
598–603. AAAI Press.

Chen, J. N. and Chang, J. S. (1998). Topical clustering of MRD
senses based on information retrieval techniques.Computa-
tional Linguistics, 24(1), 61–96.

Chen, J. and Rambow, O. (2003). Use of deep linguistic fea-
tures for the recognition and labeling of semantic arguments.
In EMNLP 2003, pp. 41–48.

Chklovski, T. and Mihalcea, R. (2003). Exploiting Agreement
and Disagreement of Human Annotators for Word Sense Dis-
ambiguation. InRANLP 2003.

Chklovski, T. and Mihalcea, R. (2002). Building a sense tagged
corpus with open mind word expert. InACL-02 Workshop on
Word Sense Disambiguation: Recent Successes and Future
Directions, pp. 116–122.

Chklovski, T. and Pantel, P. (2004). Verb ocean: Mining the
Web for fine-grained semantic verb relations. InEMNLP
2004, pp. 25–26.

Church, K. W. and Hanks, P. (1989). Word association norms,
mutual information, and lexicography. InProceedings of the
27th ACL, Vancouver, B.C., pp. 76–83. ACL.

Church, K. W. and Hanks, P. (1990). Word association norms,
mutual information, and lexicography.Computational Lin-
guistics, 16(1), 22–29.

Ciaramita, M. and Johnson, M. (2000). Explaining away am-
biguity: learning verb selectional preference with Bayesian
networks. InCOLING-00, pp. 187–193. ACL.

Ciaramita, M. and Johnson, M. (2003). Supersense tagging of
unknown nouns in WordNet. InEMNLP-2003, pp. 168–175.
ACL.

Collins, M. (1996). A new statistical parser based on bigram
lexical dependencies. InACL-96, Santa Cruz, California, pp.
184–191. ACL.

Cottrell, G. W. (1985). A Connectionist Approach to Word
Sense Disambiguation. Ph.D. thesis, University of Rochester,
Rochester, NY. Revised version published in the same title by
Pitman in 1989.

Cowie, J., Guthrie, J. A., and Guthrie, L. M. (1992). Lexical
disambiguation using simulated annealing. InCOLING-92,
Nantes, France, pp. 359–365.

Curran, J. R. (2003).From Distributional to Semantic Similar-
ity. Ph.D. thesis, University of Edinburgh.

Curran, J. R. and Moens, M. (2002). Improvements in au-
tomatic thesaurus extraction. InProceedings of the ACL-02
workshop on Unsupervised Lexical Acquisition, Philadelphia,
PA, pp. 59–66. ACL.

Cutting, D., Karger, D. R., Pedersen, J., and Tukey, J. W.
(1992). Scatter/gather: A cluster-based approach to brows-
ing large document collections. InSIGIR-92, Copenhagen,
Denmark, pp. 318–329. ACM.

Dagan, I. (2000). Contextual word similarity. In Dale, R.,
Moisl, H., and Somers, H. (Eds.),A Handbook of Natural
Language Processing: Techniques and applications for the
processing of language as text. Marcel Dekker.

Dagan, I., Lee, L., and Pereira, F. C. N. (1999). Similarity-
based models of cooccurrence probabilities.Machine Learn-
ing, 34(1–3), 43–69.

DRAFT

46 Chapter 20. Computational Lexical Semantics

Dagan, I., Marcus, S., and Markovitch, S. (1993). Contextual
word similarity and estimation from sparse data. InProceed-
ings of the 31st ACL, Columbus, Ohio, pp. 164–171.

Dagan, I., Pereira, F. C. N., and Lee, L. (1994). Similarity-base
estimation of word cooccurrence probabilities. InProceedings
of the 32nd ACL, Las Cruces, NM, pp. 272–278. ACL.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
and Harshman, R. (1990). Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41, 391–407.

Diab, M. and Resnik, P. (2002). An unsupervised method for
word sense tagging using parallel corpora. InACL-02, pp.
255–262. ACL.

Dolan, W. B. (1994). Word sense ambiguation: Clustering
related senses. InCOLING-94, Kyoto, Japan, pp. 712–716.
ACL.

Duda, R. O. and Hart, P. E. (1973).Pattern Classification and
Scene Analysis. John Wiley and Sons, New York.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked,
T., Soderland, S., Weld, D., and Yates, A. (2005). Unsuper-
vised named-entity extraction from the web: An experimental
study.Artificial Intelligence, 165(1), 91–134.

Fano, R. M. (1961).Transmission of information; A statistical
theory of communications. MIT Press.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955.
In Studies in Linguistic Analysis. Philological Society, Ox-
ford. Reprinted in Palmer, F. (ed.) 1968. Selected Papers ofJ.
R. Firth. Longman, Harlow.

Fung, P. and McKeown, K. R. (1997). A technical word and
term translation aid using noisy parallel corpora across lan-
guage groups.Machine Translation, 12(1-2), 53–87.

Gabrilovich, E. and Markovitch, S. (2007). Computing Se-
mantic Relatedness using Wikipedia-based Explicit Semantic
Analysis. InIJCAI-07.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992a). Work
on statistical methods for word sense disambiguation. In
Goldman, R. (Ed.),Proceedings of the 1992 AAAI Fall Sym-
posium on Probabilistic Approaches to Natural Language.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992b). Esti-
mating upper and lower bounds on the performance of word-
sense disambiguation programs. InProceedings of the 30th
ACL, Newark, DE, pp. 249–256. ACL.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992c). One
sense per discourse. InProceedings DARPA Speech and Nat-
ural Language Workshop, pp. 233–237. Morgan Kaufmann.

Gaustad, T. (2001). Statistical corpus-based word sense dis-
ambiguation: Pseudowords vs. real ambiguous words. In
ACL/EACL 2001 – Student Research Workshop, pp. 255–262.
ACL.

Gildea, D. and Jurafsky, D. (2000). Automatic labeling of se-
mantic roles. InACL-00, Hong Kong, pp. 512–520.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of se-
mantic roles.Computational Linguistics, 28(3), 245–288.

Girju, R., Badulescu, A., and Moldovan, D. (2006). Automatic
discovery of part-whole relations.Computational Linguistics,
31(1).

Girju, R., Badulescu, A., and Moldovan, D. (2003). Learn-
ing semantic constraints for the automatic discovery of part-
whole relations. InHLT-NAACL-03, Edmonton, Canada, pp.
1–8. ACL.

Gould, S. J. (1980).The Panda’s Thumb. Penguin Group, Lon-
don.

Grefenstette, G. (1994).Explorations in Automatic Thesaurus
Discovery. Kluwer, Norwell, MA.

Grenager, T. and Manning, C. D. (2006). Unsupervised Dis-
covery of a Statistical Verb Lexicon. InEMNLP 2006.

Harris, Z. S. (1968). Mathematical Structures of Language.
John Wiley.

Hearst, M. A. (1991). Noun homograph disambiguation. In
Proceedings of the 7th Annual Conference of the University
of Waterloo Centre for the New OED and Text Research, Ox-
ford, pp. 1–19.

Hearst, M. A. (1992). Automatic acquisition of hyponyms from
large text corpora. InCOLING-92, Nantes, France.

Hearst, M. A. (1998). Automatic discovery of wordnet rela-
tions. In Fellbaum, C. (Ed.),Wordnet: An Electronic Lexical
Database. MIT Press.

Hindle, D. (1990). Noun classification from predicate-argument
structures. InProceedings of the 28th ACL, Pittsburgh, PA, pp.
268–275. ACL.

Hirst, G. (1987).Semantic Interpretation and the Resolution of
Ambiguity. Cambridge University Press.

Hirst, G. (1988). Resolving lexical ambiguity computationally
with spreading activation and polaroid words. In Small, S. L.,
Cottrell, G. W., and Tanenhaus, M. K. (Eds.),Lexical am-
biguity resolution: Perspectives from psycholinguistics, neu-
ropsychology, and artificial intelligence, pp. 73–108. Morgan
Kaufmann.

Hirst, G. and Budanitsky, A. (2005). Correcting real-word
spelling errors by restoring lexical cohesion.Natural Lan-
guage Engineering, 11, 87–111.

Hirst, G. and Charniak, E. (1982). Word sense and case slot
disambiguation. InAAAI-82, pp. 95–98.

Hovy, E. H., Marcus, M. P., Palmer, M., Ramshaw, L. A., and
Weischedel, R. (2006). Ontonotes: The 90% solution. In
HLT-NAACL-06.

Ide, N. M. and Veronis, J. (Eds.). (1998a).Computational
Linguistics: Special Issue on Word Sense Disambiguation,
Vol. 24. MIT Press.

Ide, N. M. and Véronis, J. (1998b). Introduction to the special
issue on word sense disambiguation.Computational Linguis-
tics, 24(1), 1–40.

Jaccard, P. (1908). Nouvelles recherches sur la distribution flo-
rale. Bulletin de la Société Vaudoise des Sciences Naturelles,
44, 223–227.

Jaccard, P. (1912). The distribution of the flora of the alpine
zone.New Phytologist, 11, 37–50.

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 47

Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity
based on corpus statistics and lexical taxonomy. InROCLING
X, Taiwan.

Joos, M. (1950). Description of language design.Journal of the
Acoustical Society of America, 22, 701–708.

Katz, J. J. and Fodor, J. A. (1963). The structure of a semantic
theory.Language, 39, 170–210.

Kawamoto, A. H. (1988). Distributed representations of am-
biguous words and their resolution in connectionist networks.
In Small, S. L., Cottrell, G. W., and Tanenhaus, M. (Eds.),
Lexical Ambiguity Resolution, pp. 195–228. Morgan Kauf-
man.

Kelly, E. F. and Stone, P. J. (1975).Computer Recognition of
English Word Senses. North-Holland, Amsterdam.

Kilgarriff, A. (2001). English lexical sample task descrip-
tion. In Proceedings of Senseval-2: Second International
Workshop on Evaluating Word Sense Disambiguation Sys-
tems, Toulouse, France, pp. 17–20.

Kilgarriff, A. and Palmer, M. (Eds.). (2000).Computing and the
Humanities: Special Issue on SENSEVAL, Vol. 34. Kluwer.

Kilgarriff, A. and Rosenzweig, J. (2000). Framework and re-
sults for English SENSEVAL.Computers and the Humani-
ties, 34(1-2).

Krovetz, R. (1998). More than one sense per discourse. In
Proceedings of the ACL-SIGLEX SENSEVAL Workshop.

Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency.Annals of Mathematical Statistics, 22, 79–86.

Landauer, T. K. and Dumais, S. T. (1997). A solution to Plato’s
problem: The Latent Semantic Analysis theory of acquisition,
induction, and representation of knowledge.Psychological
Review, 104, 211–240.

Landauer, T. K., Laham, D., Rehder, B., and Schreiner, M. E.
(1997). How well can passage meaning be derived without
using word order: A comparison of latent semantic analysis
and humans. InCOGSCI-97, Stanford, CA, pp. 412–417.
Lawrence Erlbaum.

Landes, S., Leacock, C., and Tengi, R. I. (1998). Building se-
mantic concordances. In Fellbaum, C. (Ed.),WordNet: An
Electronic Lexical Database, pp. 199–216. MIT Press.

Leacock, C. and Chodorow, M. S. (1998). Combining lo-
cal context and WordNet similarity for word sense identifi-
cation. In Fellbaum, C. (Ed.),Wordnet: An Electronic Lexical
Database, pp. 265–283. MIT Press.

Leacock, C., Towell, G., and Voorhees, E. (1993). Corpus-
based statistical sense resolution. InProceedings of the ARPA
Human Language Technology Workshop, pp. 260–265.

Lee, L. (1999). Measures of distributional similarity. InACL-
99, pp. 25–32.

Lee, L. (2001). On the effectiveness of the skew divergence
for statistical language analysis. InArtificial Intelligence and
Statistics, pp. 65–72.

Lesk, M. E. (1986). Automatic sense disambiguation using ma-
chine readable dictionaries: How to tell a pine cone from an
ice cream cone. InProceedings of the Fifth International Con-
ference on Systems Documentation, Toronto, CA, pp. 24–26.
ACM.

Li, H. and Abe, N. (1998). Generalizing case frames using a
thesaurus and the MDL principle.Computational Linguistics,
24(2), 217–244.

Light, M. and Greiff, W. (2002). Statistical models for the in-
duction and use of selectional preferences.Cognitive Science,
87, 1–13.

Lin, D. (1998a). Automatic retrieval and clustering of similar
words. InCOLING/ACL-98, Montreal, pp. 768–774.

Lin, D. (1998b). An information-theoretic definition of similar-
ity. In ICML 1998, San Francisco, pp. 296–304.

Lin, D. (2007). Dependency-based word similarity
demo. http://www.cs.ualberta.ca/ ˜ lindek/
demos.htm .

Lin, D. and Pantel, P. (2002). Concept discovery from text. In
COLING-02, pp. 1–7.

Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying
synonyms among distributionally similar words. InIJCAI-03,
pp. 1492–1493.

Madhu, S. and Lytel, D. (1965). A figure of merit technique
for the resolution of non-grammatical ambiguity.Mechanical
Translation, 8(2), 9–13.

Manning, C. D. and Schütze, H. (1999).Foundations of Statis-
tical Natural Language Processing. MIT Press.

Masterman, M. (1957). The thesaurus in syntax and semantics.
Mechanical Translation, 4(1), 1–2.

McCarthy, D. (2006). Relating wordnet senses for word sense
disambiguation. InProceedings of ACL Workshop on Making
Sense of Sense.

McCarthy, D. and Carroll, J. (2003). Disambiguating nouns,
verbs, and adjectives using automatically acquired selectional
preferences.Computational Linguistics, 29(4), 639–654.

McCarthy, D., Koeling, R., Weeds, J., and Carroll, J. (2004).
Finding predominant word senses in untagged text. InACL-
04, pp. 279–286.

McRoy, S. (1992). Using multiple knowledge sources for word
sense discrimination.Computational Linguistics, 18(1), 1–30.

Merlo, P. and Stevenson, S. (2001). Automatic verb classifi-
cation based on statistical distribution of argument structure.
Computational Linguistics, 27(3), 373–408.

Merlo, P., Stevenson, S., Tsang, V., and Allaria, G. (2001).A
multilingual paradigm for automatic verb classification. In
ACL-02, pp. 207–214.

Mihalcea, R. and Moldovan, D. (2001). Automatic generation
of a coarse grained WordNet. InNAACL Workshop on Word-
Net and Other Lexical Resources.

Mihalcea, R. and Moldovan, D. (1999). An automatic method
for generating sense tagged corpora. InProceedings of AAAI,
pp. 461–466.

DRAFT

48 Chapter 20. Computational Lexical Semantics

Miller, G. A. and Charles, W. G. (1991). Contextual correlates
of semantics similarity.Language and Cognitive Processes,
6(1), 1–28.

Miller, G. A., Leacock, C., Tengi, R., and Bunker, R. T. (1993).
A semantic concordance. InProceedings ARPA Workshop on
Human Language Technology, pp. 303–308. ACL.

Mohammad, S. and Hirst, G. (2005). Distributional measures
as proxies for semantic relatedness. Submitted.

Nakov, P. I. and Hearst, M. A. (2003). Category-based pseu-
dowords. InHLT-NAACL-03, Edmonton, Canada. ACL.

Navigli, R. (2006). Meaningful clustering of senses helps boost
word sense disambiguation performance. InCOLING/ACL
2006, pp. 105–112.

Ng, H. T. and Lee, H. B. (1996). Integrating multiple knowl-
edge sources to disambiguate word senses: An exemplar-
based approach. InACL-96, Santa Cruz, CA, pp. 40–47. ACL.

Ng, H. T. and Zelle, J. (1997). Corpus-based approaches to
semantic interpretation in NLP.AI Magazine, 18(4), 45–64.

Osgood, C. E., Suci, G. J., and Tannenbaum, P. H. (1957).The
Measurement of Meaning. University of Illinois Press, Ur-
bana, IL.

Palmer, M., Dang, H. T., and Fellbaum, C. (2006). Making fine-
grained and coarse-grained sense distinctions, both manually
and automatically. Natural Language Engineering, 13(2),
137–163.

Palmer, M., Babko-Malaya, O., and Dang, H. T. (2004). Dif-
ferent sense granularities for different applications. InHLT-
NAACL Workshop on Scalable Natural Language Under-
standing, Boston, MA, pp. 49–56.

Palmer, M., Fellbaum, C., Cotton, S., Delfs, L., and Dang,
H. T. (2001). English tasks: All-words and verb lexical
sample. InProceedings of Senseval-2: Second International
Workshop on Evaluating Word Sense Disambiguation Sys-
tems, Toulouse, France, pp. 21–24.

Palmer, M., Ng, H. T., and Dang, H. T. (2006). Evaluation
of wsd systems. In Agirre, E. and Edmonds, P. (Eds.),Word
Sense Disambiguation: Algorithms and Applications. Kluwer.

Pantel, P. and Ravichandran, D. (2004). Automatically labeling
semantic classes. InHLT-NAACL-04, Boston, MA.

Patwardhan, S., Banerjee, S., and Pedersen, T. (2003). Using
measures of semantic relatedness for word sense disambigua-
tion. In Proceedings of the Fourth International Conference
on Intelligent Text Processing and Computational Linguistics,
pp. 241–257. Springer.

Pedersen, T. and Bruce, R. (1997). Distinguishing word senses
in untagged text. InEMNLP 1997, Providence, RI.

Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Word-
Net::Similarity – Measuring the relatedness of concepts. In
HLT-NAACL-04.

Pereira, F. C. N., Tishby, N., and Lee, L. (1993). Distributional
clustering of English words. InProceedings of the 31st ACL,
Columbus, Ohio, pp. 183–190. ACL.

Peters, W., Peters, I., , and Vossen, P. (1998). Automatic sense
clustering in EuroWordNet. InLREC-98, Granada, Spain, pp.
447–454.

Pradhan, S., Hacioglu, K., Ward, W., Martin, J., and Jurafsky,
D. (2003). Semantic role parsing: Adding semantic structure
to unstructured text. InProceedings of the International Con-
ference on Data Mining (ICDM-2003).

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., and Jurafsky,
D. (2005). Semantic role labeling using different syntactic
views. InACL-05, Ann Arbor, MI. ACL.

Quillian, M. R. (1968). Semantic memory. In Minsky, M. (Ed.),
Semantic Information Processing, pp. 227–270. MIT Press.

Resnik, P. (1995). Using information content to evaluate seman-
tic similarity in a taxanomy. InInternational Joint Conference
for Artificial Intelligence (IJCAI-95), pp. 448–453.

Resnik, P. (1996). Selectional constraints: An information-
theoretic model and its computational realization.Cognition,
61, 127–159.

Resnik, P. (1997). Selectional preference and sense disam-
biguation. InProceedings of ACL SIGLEX Workshop on Tag-
ging Text with Lexical Semantics, Washington, D.C., pp. 52–
57.

Resnik, P. (1998). Wordnet and class-based probabilities.
In Fellbaum, C. (Ed.),WordNet: An Electronic Lexical
Database. MIT Press.

Resnik, P. (2006). Word sense disambiguation in nlp apppli-
cations. In Agirre, E. and Edmonds, P. (Eds.),Word Sense
Disambiguation: Algorithms and Applications. Kluwer.

Riesbeck, C. K. (1975). Conceptual analysis. In Schank, R. C.
(Ed.),Conceptual Information Processing, pp. 83–156. Amer-
ican Elsevier, New York.

Riloff, E. (1996). Automatically generating extraction patterns
from untagged text. InAAAI-96, pp. 117–124.

Rivest, R. L. (1987). Learning decision lists.Machine Learn-
ing, 2(3), 229–246.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual cor-
relates of synonymy.Communications of the ACM, 8(10),
627–633.

Russell, S. and Norvig, P. (1995).Artificial Intelligence: A
Modern Approach. Prentice Hall.

Schulte im Walde, S. (2000). Clustering verbs semantically
according to their alternation behaviour. InCOLING-00,
Saarbrücken, Germany, pp. 747–753.

Schütze, H. (1992a). Context space. In Goldman, R. (Ed.),Pro-
ceedings of the 1992 AAAI Fall Symposium on Probabilistic
Approaches to Natural Language.

Schütze, H. (1992b). Dimensions of meaning. InProceedings
of Supercomputing ’92, pp. 787–796. IEEE, IEEE Press.

Schütze, H. (1997).Ambiguity Resolution in Language Learn-
ing: Computational and Cognitive Models. CSLI Publica-
tions, Stanford, CA.

Schütze, H. (1998). Automatic word sense discrimination.
Computational Linguistics, 24(1), 97–124.

DRAFT

Section 20.10. Advanced: Unsupervised Sense Disambiguation 49

Simmons, R. F. (1973). Semantic networks: Their computa-
tion and use for understanding English sentences. In Schank,
R. C. and Colby, K. M. (Eds.),Computer Models of Thought
and Language, pp. 61–113. W.H. Freeman and Co., San Fran-
cisco.

Small, S. L., Cottrell, G. W., and Tanenhaus, M. (Eds.). (1988).
Lexical Ambiguity Resolution. Morgan Kaufman.

Small, S. L. and Rieger, C. (1982). Parsing and comprehend-
ing with Word Experts. In Lehnert, W. G. and Ringle, M. H.
(Eds.),Strategies for Natural Language Processing, pp. 89–
147. Lawrence Erlbaum.

Snow, R., Jurafsky, D., and Ng, A. Y. (2005). Learning syntac-
tic patterns for automatic hypernym discovery. In Saul, L. K.,
Weiss, Y., and Bottou, L. (Eds.),NIPS 17, pp. 1297–1304.
MIT Press.

Snow, R., Jurafsky, D., and Ng, A. Y. (2006). Semantic taxon-
omy induction from heterogenous evidence. InCOLING/ACL
2006.

Snow, R., Prakash, S., Jurafsky, D., and Ng, A. Y. (2007).
Learning to merge word senses. InEMNLP/CoNLL 2007, pp.
1005–1014.

Sparck Jones, K. (1986).Synonymy and Semantic Classifica-
tion. Edinburgh University Press, Edinburgh. Republication
of 1964 PhD Thesis.

Stevenson, M. and Wilks, Y. (2001). The interaction of knowl-
edge sources in word sense disambiguation.Computational
Linguistics, 27(3), 321–349.

Stevenson, S. and Merlo, P. (1999). Automatic verb classifica-
tion using distributions of grammatical features. InEACL-99,
Bergen, Norway, pp. 45–52.

Strube, M. and Ponzetto, S. P. (2006). WikiRelate! Comput-
ing semantic relatedness using Wikipedia. InAAAI-06, pp.
1419–1424.

Surdeanu, M., Harabagiu, S., Williams, J., and Aarseth, P.
(2003). Using predicate-argument structures for information
extraction. InACL-03, pp. 8–15.

Swier, R. and Stevenson, S. (2004). Unsupervised semantic role
labelling. InEMNLP 2004, pp. 95–102.

Tseng, H. (2003). Semantic classification of Chinese unknown
words. InACL-03, pp. 72–79. ACL.

Turney, P., Littman, M., Bigham, J., and Shnayder, V. (2003).
Combining independent modules to solve multiple-choice
synonym and analogy problems. InProceedings of RANLP-
03, Borovets, Bulgaria, pp. 482–489.

Vasilescu, F., Langlais, P., and Lapalme, G. (2004). Evaluating
variants of the lesk approach for disambiguating words. In
LREC-04, Lisbon, Portugal, pp. 633–636. ELRA.

Veronis, J. and Ide, N. M. (1990). Word sense disambigua-
tion with very large neural networks extracted from machine
readable dictionaries. InCOLING-90, Helsinki, Finland, pp.
389–394.

Weaver, W. (1949/1955). Translation. In Locke, W. N. and
Boothe, A. D. (Eds.),Machine Translation of Languages, pp.

15–23. MIT Press. Reprinted from a memorandum written by
Weaver in 1949.

Weeds, J. (2003).Measures and Applications of Lexical Distri-
butional Similarity. Ph.D. thesis, University of Sussex.

Weeds, J. and Weir, D. (2005). Co-occurrence retrieval: a gen-
eral framework for lexical distributional similarity.Computa-
tional Linguistics, 31(4), 439–476.

Wilks, Y. (1975a). An intelligent analyzer and understander of
English.Communications of the ACM, 18(5), 264–274.

Wilks, Y. (1975b). Preference semantics. In Keenan, E. L.
(Ed.), The Formal Semantics of Natural Language, pp. 329–
350. Cambridge Univ. Press.

Wilks, Y. (1975c). A preferential, pattern-seeking, semantics
for natural language inference.Artificial Intelligence, 6(1),
53–74.

Wilks, Y. (1978). Making preferences more active.Artificial
Intelligence, 11(3), 197–223.

Wilks, Y., Slator, B. M., and Guthrie, L. M. (1996).Electric
Words: Dictionaries, Computers, and Meanings. MIT Press.

Wu, Z. and Palmer, M. (1994). Verb semantics and lexical se-
lection. InProceedings of the 32nd ACL, Las Cruces, NM, pp.
133–138.

Xue, N. and Palmer, M. (2004). Calibrating features for seman-
tic role labeling. InEMNLP 2004.

Yarowsky, D. (1994). Decision lists for lexical ambiguity
resolution: Application to accent restoration in Spanish and
French. InProceedings of the 32nd ACL, Las Cruces, NM,
pp. 88–95. ACL.

Yarowsky, D. (1995). Unsupervised word sense disambiguation
rivaling supervised methods. InACL-95, Cambridge, MA, pp.
189–196. ACL.

Yarowsky, D. (1997). Homograph disambiguation in text-to-
speech synthesis. In van Santen, J. P. H., Sproat, R., Olive,
J. P., and Hirschberg, J. (Eds.),Progress in Speech Synthesis,
pp. 157–172. Springer.

Yuret, D. (2004). Some experiments with a Naive Bayes WSD
system. InSenseval-3: Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of Text.

Zernik, U. (1991). Train1 vs. train2: Tagging word senses in
corpus. InLexical Acquisition: Exploiting On-Line Resources
to Build a Lexicon, pp. 91–112. Lawrence Erlbaum.

