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Abstract

Every second of every day large amounts of confidential data are encrypted to enable financial

transactions, intelligence operations, and countless other tasks. Public-key cryptography

underlies the security of all of these systems and is used to prevent an attacker from getting

access to private information.

The cryptographic algorithms that secure the majority of these interactions are widely ac-

cepted as sufficiently strong to protect users’ information. The implementations of these

algorithms are usually encapsulated in third-party libraries, which are used by systems to se-

cure data. However, there is little assurance that these systems use public-key cryptography

correctly, even if they rely on correctly implemented third-party cryptographic libraries.

This thesis defines what it means for public-key cryptography to be secure and presents a

mechanism that provably enforces it. The definition of safe public-key cryptography is based

on one developed by Askarov, Hedin, and Sabelfeld (2008) to reason about information flow

and private-key cryptography.

We extend our enforcement mechanism to handle language features of the Java programming

language, and implement Cryptflow, a tool to track how secure information flows through Java

programs and ensure correct use of public-key cryptography. This tool analyzes programs

that employ cryptography and rejects programs that exhibit common security vulnerabilities

found on the Android Platform, while accepting programs that use cryptography securely.

This thesis is a step toward enforcing the secure use of public-key cryptography and guaran-

teeing that confidential information is encrypted properly.
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Chapter 1

Introduction

Large systems are constantly manipulating sensitive and non-sensitive data. For example,

when a customer accesses the internet to buy a new pair of shoes, she expects her credit

card information to be kept secure, while her ratings of a shoe to be public. When a lost

tourist uses his mobile phone to find the nearest place to procure caffeine, he might not mind

that the model of his phone becomes public information, but would probably prefer his exact

location to be kept secret. Every second of every day large amounts of confidential data are

encrypted to enable financial transactions, intelligence operations, and countless other tasks.

Public-key cryptography underlies the security of all of these systems and is used to prevent

an attacker from getting access to private information. Most developers do not write imple-

mentations of public-key encryption and decryption algorithms themselves, but rather, they

make use of third-party libraries which encapsulate this functionality. However, there is little

assurance that these systems use cryptography correctly, even if they rely on correctly imple-

mented third-party cryptographic libraries. This thesis is concerned with preventing misuses

of cryptography in systems that rely on correctly implemented third-party cryptographic

libraries.

The problem of potentially insecure use of cryptographic protocols is particularly relevant

when we consider the ubiquity of smart phones, which will be used by the majority of the

American population within the next three years [22]. These phones have access to a high

concentration of private data including one’s exact GPS location, text messages, contacts,

unique phone identifying number and more. While personal computers are protected by a

bevy of measures including firewalls and complex anti-virus systems, mobile phones do not

have similarly advanced defense mechanisms. This thesis aims to prevent common crypto-

graphic vulnerabilities on the Android Platform which runs on 48.6% [2] of smart phones in

the United States, making it the largest player in the American smart phone market.

1
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// The bytes that represent the private key are hard-coded into the file

byte[] priv_key_bytes = { 0xe3, 0x00, ... };

// Turn the bytes into a PrivateKey which will later become part of a KeyPair object

PKCS8EncodedKeySpec key = new PKCS8EncodedKeySpec(priv_key_bytes);

KeyFactory kf = KeyFactory.getInstance("RSA");

PrivateKey priv_key = kf.generatePrivate(key);

Listing 1.1: Cryptography Vulnerability: hard-coded private key

Indeed, a recent report [27] found that over 40% of Android applications (out of close to 10,000

analyzed applications) use hard-coded cryptographic keys, which violates good encryption

practice. The same report claimed that cryptographic issues cause 44% of security breaches

on the Android platform and are the leading cause of security errors on the device. A

hard-coded key is essentially public information, so any information encrypted with the

compromised key can no longer be considered secure. To prevent the use of hard-coded keys,

or other similar vulnerabilities, we need to provide stronger guarantees about the security of

encrypted information.

Motivating Examples We present two examples which model the most frequent misuses

of cryptography on the Android Platform. The first example shows a hardcoded crypto-

graphic key and the second demonstrates the output of a private key to a public channel.

Programs for the Android Platform are written in Java and make use of Java’s cryptographic

libraries.

In Java, a KeyPair class contains both the PublicKey needed for encryption and the PrivateKey

needed for decryption. This class can be generated by the KeyPairGenerator class, or created

from a PrivateKey, and a PublicKey, generated by the KeyFactory class. Both the PublicKeyand

the PrivateKey have a getEncodedBytes field that allows one to extract the bytes of the key, and

store them in an array of bytes.

In the code snippet of Listing 1.1, a private key is created from a sequence of public bytes

in the file. The code snippet exhibits a security vulnerability because the contents of the
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// Extract the private key from a KeyPair object

KeyPair pair = ...;

PrivateKey priv_key = pair.getPrivate();

// Output the bytes of the private key to System.out and print them to the screen

byte[] priv_key_bytes = priv_key.getEncodedBytes();

System.out.println(Arrays.toString(priv_key_bytes));

Listing 1.2: Cryptography Vulnerability: output private key to public channel

private key are visible to anyone with access to the source code of the application. The

correct approach would be to store keys in a secure private file, or in a key store, which is a

secure database of keys.

In Listing 1.2, the bytes of a private key are converted to a string and output to the console

via System.out.println. This code exhibits a security vulnerability because the contents of

the private key are printed out and have become public information. A key should only

be output to a secure private file, or to a key store; it should never be output on a public

channel.

To prevent the construction of private keys from insecure data, and the flow of private keys

to public channels, as in the examples above, we need to provide stronger guarantees about

the security of encrypted information. In the first example, we can prevent a private key

from being constructed from a low security array of bytes. In the second example, we can

prevent any information about the private key from flowing to a public channel, such as

System.out.println.

To establish these guarantees, we track the information flow through programs which employ

cryptographic primitives. Because a program is a series of statements, or commands, we

can analyze how secure information interacts with public information at every step of the

program. Generally, a program is considered secure if the property of noninterference holds.

This property stipulates that computations on private data may not have any influence on

public data.
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For example, an application that displayed a user’s password in plaintext on its website

would clearly violate noninterference because a private password has been output on a public

channel. However, many security vulnerabilities are much more subtle. For example, a social

networking application that displays the length of your password next to your name is not

secure. This is so because even though your entire password has not been compromised, an

attacker now knows how long it is, and with enough tries, could more easily break into your

account. This also violates noninterference because information about the private password

has leaked to a public channel.

We extend the notion of noninterference to allow safe encryption, decryption and key gen-

eration for public-key cryptographic protocols. Our extension is based on the work done

by Askarov, Hedin and Sabelfeld [5] on symmetric encryption. Any program that complies

with our extended notion of noninterference is defined as secure. Armed with this security

condition, this thesis presents a provable enforcement mechanism for our security condition.

This mechanism is a type system, which is a set of rules that governs how data can flow

through a program, for a small, imperative, Java-like language with encryption, decryption,

and key generation.

We prove that this type system guarantees our extended notion of noninterference, which

implies that programs written in our language are provably secure. Finally, because Android

applications are written in Java and largely make use of Java’s cryptography libraries, we

use the existing Polyglot [21] framework, which facilitates making extensions to the Java lan-

guage, to implementCryptflow, an information flow analysis of Java programs which employ

cryptographic protocols. This tool analyzes programs that employ cryptography and rejects

programs that exhibit common security vulnerabilities, while accepting programs that use

cryptography securely. We run Cryptflow on programs that mimic common security vulner-

abilities present on the Android Platform, and ensure that Cryptflow rejects those programs.

The rest of the thesis is structured as follows. We describe related work in Chapter 2.
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A simple imperative programming language with primitives for public-key cryptography is

presented in Chapter 3. Chapter 4 defines a security condition for public-key cryptography

and presents a type system that provably enforces it. We describe Cryptflow, our tool for

ensuring correct use of public-key cryptography for Java programs in Chapter 5. We conclude

the thesis in Chapter 6.



Chapter 2

Background and Previous Work

This chapter presents the prior work that serves as the foundation of this thesis. We first

describe the study of information flow which serves as the basis for the type system for our

language in Section 2.1. We then overview the prior work done on using information flow

techniques to reason about cryptography in Section 2.2. Finally, we conclude the chapter by

type systems as a means for information flow control in Section 2.3.

§2.1 Information Flow

In this thesis we consider a system with two security levels, high and low, which model a

situation with high-security and low-security data. This set of security levels has a partial

ordering v which is reflexive, transitive and antisymmetric. Let L = {L,H}. The partial

ordering defines the set of permitted flows in our system. In this set of security levels, L v L,

L v H, H v H and H 6v L. For example, since L v H we say that L flows into H, which is

permitted since low-security data can flow into high-security data. However, because H 6v L,

we say that H does not flow to L which indicates that we do not permit high-security data

to flow to low-security data.

We can also define the join and meet operations on any two security levels in L. In our

system, the join of two levels is their least upper bound and the meet of two levels is their

greatest lower bound. Denning [8] describes the generalization of a system with two levels

of security to one with more levels and more complex relations on the levels.

There are multiple ways high-security data can flow to low-security data within a program.

6
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// Assign the value of H to L

L = H;

Listing 2.1: Explicit Flow

// Assign the value of H to L

if H {

L = 4;

}

else

L = -5;

Listing 2.2: Implicit Flow

The majority of these flows are classified as either explicit flows, or implicit flows. An explicit

flow occurs when some high-security data is assigned to a low-security variable, or when

some high-security variable is output on a low-security channel. An implicit flow describes

a situation where the control flow of the program depends on high security data [9]. Let L

represent a variable which contains low-security public data, and let H be a variable which

contains high-security secret data. Consider the program in Listing 2.1.

The code in Listing 2.1 is the most simple example of an explicit flow of information. This

code is not secure, and violates noninterference. Recalling from Chapter 1, noninterference

[14] is a strong semantic security guarantee that, in essence, requires that secret inputs do

not influence public outputs. A semantic security condition is a security condition that is

defined in terms of the semantics of the language.

While the previous example illustrates the direct flow of information, the indirect flow of

sensitive information is even harder to reason about. Consider the program in Listing 2.2.

In the code in Listing 2.2, the variable H represents a high-security boolean variable. If H is

true, then L is assigned a positive number, and otherwise L is assigned a negative number.

While the value of H is not revealed directly, an attacker will observe different program

behavior based on the high-security input.
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By inundating the system with enough test cases, a clever attacker can figure out under

which conditions a positive, or a negative number is produced. Therefore, he has deduced

how the control flow of the program depends on the high-security variable and the security

of the system has been compromised. Therefore, public outputs are influenced by sensitive

inputs and this program also violates noninterference.

In a language-based setting, noninterference can be enforced by tracking and controlling

the flow of information in a program, using program analyses such as type systems. In the

presence of implicit flows it is hard to enforce noninterference. Most type systems solve this

problem by tracking the level of the information stored in program counter which represents

the upper bound of the security level at the current point in the program. For example, in

the loop in Listing 2.2, the loop depends on a high-security variable, so the program counter

would also be marked high. Therefore, an assignment to a low variable would be prohibited.

§2.2 Cryptographic Flows

While it is necessary to reason about information flow through systems that employ cryp-

tographic protocols, the traditional definition of noninterference [14], the notion that no

computations on private data may influence computations on public data, is insufficient for

our analysis. This occurs because the value produced by encrypting a high-security value, the

plaintext, with a key, frequently called the ciphertext, is by definition a low-security public

value. It is a low-security public value because it is constructed to conceal sensitive infor-

mation well enough to be broadcast publically. This low-security ciphertext depends on the

high-security plaintext and the key used for encryption. If the private plaintext is varied,

then there might possibly be variation in the low-security ciphertext, so noninterference is

broken.
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To extend the notion of noninterference to allow safe encryption, decryption and key genera-

tion for public-key cryptographic protocols, we use a form of noninterference called possibilis-

tic noninterference. Possibilistic noninterference is based on the idea that if the ciphertext

can possibly be any value, then a change in the high-security plaintext does affect the low-

security ciphertext. This occurs because in both situations, the ciphertext is possibly any

value, so the attacker is not able to extract new information from a change in the high-

security plaintext. We define our notion of possibilistic noninterference with respect to a

probabilistic encryption algorithm with nondeterministic encryption.

This extension furthers the work done on cryptographically-masked flows by Askarov et al

[5] that presents a security condition and a type system for a language with symmetric

encryption. We extend their notion of possibilistic noninterference to support safe public-key

encryption. We also offer an implementation that enforces our type system.

Approaches to dealing with information flow in the presence of cryptography tend to ex-

tend the notion of noninterference to accommodate information-theoretic artifacts of cryp-

tography. Traditionally, such extensions treat cryptographic primitives as a black-box [10].

Our approach has its roots in Abadi’s model [1] for symmetric-key cryptographic protocols.

Vaughan and Zdancewic[26] present a language in which security labels are connected to

public-key cryptography; however, as argued in [5], this approach is prone to occlusion [24].

An instance of occlusion occurs when all ciphertexts are considered low-equivalent, or indis-

tinguishable to an attacker. Let x and y be two ciphertexts that are indistinguishable to an

attacker, and H a high-security boolean variable. Consider the code in Listing 2.3.

In this code we cannot distinguish whether x and y are equivalent. However, their equality,

or inequality, leaks information about the secret value H, so a leak has occurred. The main

issue with occlusion is that an indistinguishability definition (which is used to simplify the

security guarantees for encryption and decryption) may also mask other unintended leaks.

Our approach protects against this variety of occlusion.
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// Encrypt plaintext a with key k

x = encrypt(k,a);

if H {

// Encrypt plaintext a with key k

y = encrypt(k,a);

}

else

y = x;

Listing 2.3: Occlusion

Much recent work [19, 18, 12, 11, 17, 25, 13] focuses on the computational probabilistic

guarantees of programs that use cryptography. While this thesis aims at showing a simpler

possibilistic guarantee, we believe that computational soundness of our enforcement may be

established by following the Laud’s analysis of cryptographically-masked flows [20]. Another

advantage of using a possibilistic condition is composition with possibilistic policies for de-

classification and key release [6] and security in the presence of dynamic policies [4]. As far

as we know, these policies have no probabilistic counterparts.

From the implementation perspective, the work most closely related to ours is the one by

Küsters et al [17] that analyzes implementation-level usage of cryptographic primitives in

Java-like programs. Our analysis is implemented as a modular extension to the ObjAnal

framework [7] which covers the full Java language. As a part of a bigger framework, our

implementation benefits from the additional analyses done by other components of the

ObjAnal framework, allowing easy extensions to our implementation, such as key release and

declassification.

§2.3 Type Systems as Enforcement Mechanisms

The most common method of statically (at compile time) enforcing the secure flow of infor-

mation is by means of a type system. In a type system used to enforce information flow,
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// Assign the value of H to L

x = y;

Listing 2.4: Insecure Assignment

// Return 4 if H is true or false

if H {

L = 4;

}

else

L = 4;

Listing 2.5: Secure Program Rejected by Type System

the type of a variable usually encodes its basic type, such as whether it is an integer or a

boolean, for example, and its security level. For some mapping Γ that maps variables to

types, program counter pc, and command c, we write Γ, pc ` c to indicate that the command

c is well-typed with respect to Γ and the pc. The pc represents an upper bound on the

security level of the program just before c is executed.

Let x be a low integer that has type int L and y be a high integer that has type int H. The

code in Listing 2.4 would be rejected by the type system, because assignment from a low

level variable to a high level variable is forbidden.

Consider the program in Listing 2.5. This program leakes no information (the public output

is always 4), but because assignment to low-security variables happens when the pc is high (in

a loop which depends on high-security data the pc is marked high), this program is rejected

by the type system.

The program in Listing 2.5 is rejected by the type system even though it is secure and does

not leak information. Some secure programs will inevitably be rejected by the type system,

but any insecure program is guaranteed to be rejected. This means that the enforcement

mechanism is conservative because any sound type system (a type system that guarantees

that a well-typed program will not cause an error) will reject some secure programs. There
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are other ways to enforce the secure flow of information besides using a type system, such as

runtime approaches. Sabelfeld and Myers [23] survey other approaches for language-based

information-flow control.



Chapter 3

Language Based Model

We reason about the security of cryptographic keys using a simply typed imperative language

that includes cryptographic primitives and input/output. This section presents the syntax

and semantics for that language.

§3.1 Syntax

Our primitives for public-key cryptography include commands for encryption, decryption,

and key generation. The full syntax is given in Figure 3.1, where x ∈ VarName ranges over

the set of variable names, ch ∈ ChanName ranges over the set of channel names, and n ∈ Z

ranges over the integers.

§3.2 Semantics

This section presents the semantics of the expressions and the commands in the language.

Expressions e ::= n | x | e1 op e2 | (e1, e2) | fst(e) | snd(e)
Commands c ::= skip | x := e | c1; c2 | x := encrypt(e1, e2) | x := decrypt(e1, e2) |

(x, y) := newkeypair | if e then c1 else c2 | while e do c |
in(x, ch) | out(ch, e)

Figure 3.1: Syntax

13
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Values in our language are integers, tuples, public encryption keys, private decryption keys,

and ciphertexts.

Values v ::= n | (v1, v2) | kpub | kpriv | u

Our system is parametrized over a public key encryption scheme AE = (K, E ,D), where

• K is a key generation algorithm that takes no input and returns a pair (kpub , kpriv ) of

keys, where kpub is a public key, and kpriv is a matching private key. We let Keypriv be

the set of private keys and Keypub be the set of public keys.

• E is a nondeterministic encryption algorithm that takes the public key kpub and a

plaintext value v and returns a ciphertext u. We write E(kpub , v) to denote the set of

possible ciphertexts that can be obtained by encrypting value v with key kpub .

• D is a deterministic decryption algorithm that takes the private key kpriv and a cipher-

text u, and returns the corresponding plaintext value v.

Let M be a variable environment that maps variables to values. The semantics for expressions

is defined as a standard big-step relation 〈M, e〉 ⇓ v. Here, expression e is evaluated in the

variable environment M , producing the value v. The full semantics of expressions is given in

Figure 3.2.

For the semantics of commands, we use environments E that are composed of a 4-tuple

(M,G, I,O). Here, as before, M is a variable environment that maps variables to values, G

is a stream of private and public key pairs generated by K, and I and O are environments

that map channel names to streams of values. We write 〈E, c〉 ⇓ E′ to mean that when the

command c is executed in the environment E, it produces the environment E′. While most of
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S-INT

〈M,n〉 ⇓ n

S-VAR

M(x) = v

〈M,x〉 ⇓ v

S-OP

〈M, e1〉 ⇓ v2 〈M, e2〉 ⇓ v2 v = v1 op v2

〈M, e1 op e2〉 ⇓ v

S-PAIR

〈M, e1〉 ⇓ v1 Me2v2

〈M, (e1, e2)〉 ⇓ (v1, v2)

S-FST

〈M, e〉 ⇓ (v1, v2)

〈M, fst(e)〉 ⇓ v1

S-SND

〈M, e〉 ⇓ (v1, v2)

〈M, snd(e)〉 ⇓ v2

Figure 3.2: Semantics for Expressions

the semantics in this language are standard, the encryption, decryption and key generation

commands are non-standard.

Figure 3.3 presents all the semantic rules for commands. The rest of this section presents

the interesting rules for encryption, decryption, and key generation.

Rule (S-ENCRYPT) describes the semantics of the encryption command x := encrypt(e1, e2).

The first argument, e1, is a public key and the second argument, e2, is the value to be en-

crypted. The resulting ciphertext, u ∈ E(k, v), is one of the set of possible encryptions that

this specific key and value could create. We note that this command is nondeterministic; it

does not have one defined execution, but rather a set of possible executions. The nondeter-

minism of the encryption command is essential to our notion of noninterference as described

in Section 4.3.

Rule (S-DECRYPT) describes the semantics of the decryption command x := decrypt(e1, e2).

The first argument, e1, is a private key and the second argument, e2, is the ciphertext to be

decrypted. The resulting value, v = D(k, u) is the one possible decryption of the ciphertext u

with that key. There is no nondeterminism in this command and it has one defined execution,

unlike the encryption command.

Rule (S-NEWKEYPAIR) describes the semantics for the key generation command (x, y) :=
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newkeypair. The first element of the resulting pair, x, is a public key, and the second element

of the resulting pair, y is a private key. This tuple is taken from the key pair stream G.

The semantics of the language is nondeterministic because the encryption command is non-

deterministic. We write [[〈E, c〉]] to indicate the the set of possible environments that can be

produced by the execution of command c in environment E. That is,

[[〈E, c〉]] = {E′ | 〈E, c〉 ⇓ E′}

We extend the notation to handle a set of input environments. That is, if Ê is a set of

environments, then [[〈Ê, c〉]] denotes the union of the sets [[〈E, c〉]] for E ∈ Ê.

We use this notation in the statement of our soundness result in Section 4.4.

[[〈Ê, c〉]] =
⋃
{[[〈E, c〉]] | E ∈ Ê} = {E′ | E ∈ Ê ∧ 〈E, c〉 ⇓ E′}



Chapter 3. Language Based Model 17

S-SKIP

〈E, skip〉 ⇓ E

S-SEQ

〈E, c1〉 ⇓ E′ 〈E′, c2〉 ⇓ E′′

〈E, c1; c2〉 ⇓ E′′

S-ASSIGN

〈M, e〉 ⇓ v
〈(M,G, I,O), x := e〉 ⇓ (M [x 7→ v], G, I,O)

S-IF1

〈M, e〉 ⇓ v v 6= 0 〈(M,G, I,O), c1〉 ⇓ E′

〈(M,G, I,O), if e then c1 else c2〉 ⇓ E′

S-IF2

〈M, e〉 ⇓ 0 〈(M,G, I,O), c2〉 ⇓ E′

〈(M,G, I,O), if e then c1 else c2〉 ⇓ E′

S-WHILE1

〈M, e〉 ⇓ v v 6= 0 〈(M,G, I,O), c; while e do c〉 ⇓ E′

〈(M,G, I,O),while e do c〉 ⇓ E′

S-WHILE2

〈M, e〉 ⇓ 0

〈(M,G, I,O),while e do c〉 ⇓ (M,G, I,O)

S-INPUT

I(ch) = v · vs
〈(M,G, I,O), in(x, ch)〉 ⇓ (M [x 7→ v], G, I[ch 7→ vs], O)

S-OUTPUT

〈M, e〉 ⇓ v
〈(M,G, I,O), out(ch, e)〉 ⇓ (M,G, I,O[ch 7→ v ·O[ch])

S-ENCRYPT

〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ v k ∈ Keypub u ∈ E(k, v)

〈(M,G, I,O), x := encrypt(e1, e2)〉 ⇓ (M [x 7→ u], G, I,O)

S-DECRYPT

〈M, e1〉 ⇓ k 〈M, e2〉 ⇓ u k ∈ Keypriv v = D(k, u)

〈(M,G, I,O), x := decrypt(e1, e2)〉 ⇓ (M [x 7→ v], G, I,O)

S-NEWKEYPAIR

G = (k1, k2) · ks
〈(M,G, I,O), (x, y) := newkeypair〉 ⇓ (M [x 7→ k1, y 7→ k2], ks, I, O)

Figure 3.3: Semantics for Commands
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Security Guarantees

This section presents the security condition for public-key cryptography and the type system

that enforces it. Section 4.1 presents the security levels and the intuition behind them.

Section 4.2 defines the attacker observation model and Section 4.3 defines our notion of

possibilistic noninterference. Section 4.4 defines the type system and Section 4.5 shows how

the type system prevents some common vulnerabilities.

§4.1 Security Levels

The system considered in this thesis consists of the following security levels. As explained in

Section 2.1, we consider a system that has high-security and low-security data, represented

by the levels H and L, respectively. However, we also consider the two types of keys, public

keys for encryption and private keys for decryption. Let L = {H,L}. The set of security

levels we consider are L ∪ {publickey, privatekey}. We define a partial order v on this set

that models the permitted flows. These flows are shown in Figure 4.1. We note that the

meet, u, and join, t, operations are only defined for any two levels in L. For example,

privatekey t L is undefined.

The solid line shows that we allow flows from data marked with the level L to data marked

with the level H. More specifically, we define L v L, L v H, H v H and H 6≤ L. We do not

permit information marked with the security level H to flow to information marked with the

level L.

We do not allow public keys to flow into private keys, or other high values. While a public

18



Chapter 4. Security Guarantees 19

H

privkey

pubkey

L

Figure 4.1: Security Levels

key can flow to a low value, as shown with a dotted line, this flow is not particularly useful

because public keys are only used for encryption. Our type system provides typed output

channels with enough structure to make this flow unnecessary.

We also do not allow private keys to flow into public keys, or low values. While a private key

can flow into a high value, as shown with a dotted line, this flow does not have a purpose,

since private keys are used only for decryption and our type system provides typed channels

to output private keys, if necessary. We do not allow anything to flow into a public key.

§4.2 Low Equivalence

To define noninterference, we first define an attacker observation model. We do this by

introducing a low equivalence relation with respect to all the possible types. That is, for

each security type τ we define low-equivalence relation ≈τ such that if v and v′ are values

of type τ and v ≈τ v′, then the attacker is unable to distinguish values v and v′. Inference

rules for these equivalence relations are given in Figure 4.2. Intuitively, the attacker is only

able to see low-security information.
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LE-INT-L

n ≈int L n

LE-INT-H

n1 ≈int H n2

LE-ENC-L
∃ui, ki . vi = D(ki, ui) i = 1, 2

k1 ≈privkey k2 v1 ≈τ v2 u1
.
= u2

u1 ≈enc τ L u2

LE-ENC-H

u1 ≈enc τ H u2

LE-PRIVKEY

k1 ≈privkey k2

LE-PUBKEY

k ≈pubkey k

LE-PAIR

v11 ≈τ1 v21 v21 ≈τ2 v22

(v11, v12) ≈(τ1,τ2) (v21, v22)

Figure 4.2: Low Equivalence for Values

Because we do not consider all ciphertexts indistinguishable, we must define a low-equivalence

relation for ciphertexts. In our language, a ciphertext has type enc τσ where τ is the type of

the plaintext and σ is either high or low. Any two high-security ciphertexts are indistinguish-

able to the attacker. However, any two low-security ciphertexts are not indistinguishable.

In order to define the low equivalence relation with respect to the enc τ L type we define a

helper low equivalence relation
.
=. We require that for any choice of plaintext and key there

will be exactly one other related ciphertext for any other plaintext and key. We formalize

this below.

u1 ∈ E(k1, v1) =⇒ ∃u2 . u2 ∈ E(k2, v2) ∧ u1
.
= u2

∃u1, u2 . u1 ∈ E(k1, v1) ∧ u2 ∈ E(k2, v2) ∧ u1 6
.
= u2

We now briefly discuss how low-equivalence
.
= can be defined for probabilistic encryption

algorithms. Many such algorithms, for example, El Gamal, generate a random string r

that is used as part of the encryption. The resulting ciphertext u is represented as a tuple

u = (c1, c2), where c1 is a function of the random string r and the encryption key kpub , and c2

is a function of the plaintext to be encrypted v and the random string r, and possibly of the

key kpub . In general, we can represent the ciphertext (c1, c2) as a tuple (f(r),ENC(r, v, kpub)),

where ENC is the implementation of the rest of the encryption algorithm. Using this structure,

we can define low-equivalence
.
= by relating equally-sized ciphertexts obtained with the same
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LE-MEM

∀x ∈ Dom(Ω) M1(x) ≈Ω(x) M2(x)

M1 ≈Ω M2

LE-IOENV

∀ch ∈ Dom(Θ) X1(ch) ≈Θ(ch) X2(ch)

X1 ≈Θ X2
(X1, X2) ∈ {(I1, I2), (O1, O2)}

LE-STREAM1

ε ≈τ stream ε

LE-STREAM2

v1 ≈τ v2 vs1 ≈τ stream vs2

v1 · vs1 ≈τ stream v2 · vs2

LE-ENV

M ≈Ω M ′ G ≈(pubkey,privkey) stream G′ (I,O) ≈Θ (I ′, O′)

(M,G, I,O) ≈(Ω,Θ) (M ′, G′, I ′, O′)

Figure 4.3: Low Equivalence for Memories, Channels, and Environments

random string:

∀kpub , k′pub , v, v′ . (f(r),ENC(r, v, k))
.
= (f(r),ENC(r, v′, k′))

For non-deterministic public-key encryption schemes such as RSA, a probabilistic encryption,

which would satisfy the above definition, can be obtained using mechanism of Goldwasser

and Micali [15].

We extend the low-equivalence relation to memories, channels, streams and environments.

Inference rules for these relations are in Figure 4.3. Let Ω be a mapping from variables to se-

curity types, and Θ be a mapping from channel names to types. The low-equivalence relations

for memories, input and output environments, and streams are defined straightforwardly us-

ing low-equivalence on values. Similarly, low-equivalence for environments (M,G, I,O) is

defined using the low-equivalence relations on memories M , key pair streams G, and input

and output environments I and O.

We lift the low-equivalence relation ≈(Ω,Θ) on environments to a low-equivalence relation
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≈̂(Ω,Θ) on sets of environments in the standard way. Let Ê1 and Ê2 be two sets of environ-

ments. We define Ê1≈̂(Ω,Θ)Ê2 as follows.

Ê1≈̂(Ω,Θ)Ê2 ⇐⇒ ∀E′
1 ∈ Ê1. ∃E′

2 ∈ Ê2. E
′
1 ≈(Ω,Θ) E

′
2 and ∀E′

2 ∈ Ê2. ∃E′
1 ∈ Ê1. E

′
1 ≈(Ω,Θ) E

′
2

Intuitively, Ê1 is indistinguishable from Ê2 to an attacker if for every environment in Ê1

there is an equivalent environment in Ê2, and vice versa. This equivalence relation over sets

of environments is key to our definition of noninterference.

§4.3 Noninterference

Intuitively, command c satisfies noninterference if for every pair of low-equivalent environ-

ments E1 and E2, the set of possible behaviors that executing c in these environments is

indistinguishable to the attacker. That is, the attacker is unable to determine whether the

program started execution in environment E1 or E2.

Definition 1 (Noninterference). Command c is noninterfering with respect to Ω and

Θ if for all environments E1 and E2 such that E1 ≈(Ω,Θ) E2 and [[〈E1, c〉]] 6= ∅ and

[[〈E2, c〉]] 6= ∅ then

[[〈E2, c〉]] ≈̂(Ω,Θ) [[〈E2, c〉]].
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Security Levels σ ::= L | H
Basic Types t ::= int | enc τ
Security Types τ ::= t σ | privkey | pubkey | (τ1, τ2)

Figure 4.4: Types

§4.4 The Type System

In this section, we cover the type system of this language, including the typing of expressions,

the typing of commands and subtyping.

Figure 4.4 describes the types for our language. Security levels σ represent the restrictions

that should apply to the use of data. For simplicity, we only consider two levels of security,

L, for public information, and H, for secret information. We assume L v H and H 6v L.

Basic types t include int (the type for integer values) and enc τ (the type for encryptions of

a plaintext value of type τ). Security types τ include t σ for basic type t and security level

σ, which represents a value of type t whose use is restricted according to σ. Security types

privkey and pubkey are the types of private keys and public keys respectively. Public keys

are used to encrypt data, and private keys are used to decrypt data. Type (τ1, τ2) is the type

of a pair of a τ1 value and a τ2 value.

Expressions

Variable typing context Ω maps variables to security types. We write Ω ` e : τ if the

expression e has type τ in context Ω. Inference rules for the expression typing judgment are

given in Figure 4.5, and are standard.
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T-INT

Ω ` n : int L

T-VAR

Ω(x) = τ

Ω ` x : τ

T-PAIR

Ω ` e1 : τ1 Ω ` e2 : τ2

Ω ` (e1, e2) : (τ1, τ2)

T-FST

Ω ` e : (τ1, τ2)

Ω ` fst(e) : τ1

T-SND

Ω ` e : (τ1, τ2)

Ω ` snd(e) : τ2

T-OP

Ω ` e1 : int σ1 Ω ` e2 : int σ2

Ω ` e1 op e2 : int (σ1 t σ2)

Figure 4.5: Typing Rules for Expressions

Commands

Before we present the typing for commands, we present some useful functions and notation.

We write τσ to mean that security type τ is tainted with security level σ, that is, the security

level of τ is increased to σ. The full definition of the tainting function is presented below.

(t σ)σ
′

= t (σ t σ′)

(τ1, τ2)σ = (τσ1 , τ
σ
2 )

pubkeyL = pubkey

privkeyσ = privkey

Note that we do not allow a public key to be tainted with security level H. A private key,

however, may be tainted with either H or L, but privkeyσ = privkey . We also define the

least function, which represents the lowest bound on the security level of a type, as follows:

least(int σ) = σ

least(enc τ σ) = least(τ) u σ

least(τ1, τ2) = least(τ1) u least(τ2)

Channel typing environments Θ map channel names to security types. If Θ(ch) = τ , then

only values of type τ may be send on channel ch. This structure allows us to safely output
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keys on appropriate channels. Context Γ = (Ω,Θ) is a pair of a variable typing environment

Ω and channel typing environment Θ.

We define the judgment Γ, pc ` c to mean that the command c is well typed with respect to

the variable type environment Ω, the channel type environment Θ and the program counter’s

security level pc. The inference rules for this judgment are given in Figure 4.6. While most

of the typing for commands is standard for a security-typed imperative language, the input,

output, encryption, decryption and key generation commands are distinct to our language.

Input command in(x, ch) inputs a value x from a channel ch. We require that the pc flow

into the lowest possible level of ch and that the type of the channel be a subtype of the type

of x. Intuitively, these requirements mean that in high context we cannot read from a low

channel, and that the type of the channel must be compatible with that of x.

Output command out(ch, x) outputs an expression e as the value x to a channel ch. To type

check, τ tainted with the pc must be a subtype of the type of the channel, where τ is the

type of e. The intuition for this is that we desire to prevent situations where the τpc = H

and least(Θ(ch)) = L leading to the output of high values on low channels.

An encrypt command is of the form x = encrypt(e1, e2). An encryption will only type check

if the first argument, e1 is a public key and the pc flows into the lowest possible level of the

type of x. Intuitively, this makes sense because we want to avoid encrypting a low value

where least(Ω(x)) = L in the context where pc = H because in this situation high security

information has influenced the low security encryption value.

A decrypt command is of the form x = decrypt(e1, e2). It requires that the first argument

e1 be a private key, and that the second argument, e2 be an encryption of some type τ with

some level σ. A decryption can only occur if tainting τ with lowest upper bound of the pc

and σ is a subtype of the type of x. Intuitively, this means that in order for a successful

decryption to occur, the level of x must be at least as secure as the type of the encryption
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T-SKIP

Γ, pc ` skip

T-SEQ

Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

T-ASIGN

Ω ` e : τ τpc <: Ω(x)

(Ω,Θ), pc ` x := e

T-IF

Ω ` e : int σ (Ω,Θ), pc t σ ` ci i = 1, 2

(Ω,Θ), pc ` if e then c1 else c2

T-WHILE

Ω ` int σ (Ω,Θ), pc t σ ` c
(Ω,Θ), pc ` while e do c

T-INPUT

least(Θ(ch)) = σ pc v σ Θ(ch) <: Ω(x)

(Ω,Θ), pc ` in(x, ch)

T-OUTPUT

Ω ` e : τ τpc <: Θ(ch)

(Ω,Θ), pc ` out(ch, x)

T-ENCRYPT

Ω ` e1 : pubkey Ω ` e2 : τ pc v least(Ω(x))

(Ω,Θ), pc ` x := encrypt(e1, e2)

T-DECRYPT

Ω ` e1 : privkey Ω ` e2 : enc τ σ τpctσ <: Ω(x)

(Ω,Θ), pc ` x := decrypt(e1, e2)

T-NEWKEYPAIR

Ω(x) = pubkey Ω(y) = privkey

(Ω,Θ), L ` (x, y) := newkeypair

Figure 4.6: Typing Rules for Commands

with the pc and the level of the encryption σ folded in.

Key-pair generation command (x, y) = newkeypair only type checks when the pc is low, and

requires that a tuple is created where the first element is a public key and the second element

is a private key. The key generation can only happen in a low context because a public key

cannot be generated in a high context.

Subtyping

We say that the type τ1 is a subtype of the type τ2, if everywhere a value of type τ2 is

expected, a value of type τ1 can be used. We write this as τ1 <: τ2. The subtyping relation

is defined in Figure 4.7.
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SUB-INT

σ1 v σ2

int σ1 <: int σ2

SUB-PAIR

τ1 <: τ3 τ3 <: τ4

(τ1, τ2) <: (τ3, τ4)

SUB-ENC

τ1 <: τ2 σ1 v σ2

enc τ1 σ1 <: enc τ2 σ2

SUB-PRIV

privkey <: privkey

SUB-PUB

pubkey <: pubkey

Figure 4.7: Subtyping

Soundness

The type system soundly enforces the security condition of noninterference, and prevents

misuse of cryptographic primitives, such as the vulnerabilities discussed in Chapter 1.

Theorem 1 (Type-soundness). If command (Ω,Θ), pc ` c, then c is noninterfering with

respect to Ω and Θ.

We prove this theorem by structural induction on the commands. This theorem relies on

two key lemmas, Lemma 1 which proves the noninterference of expressions and Lemma 2

that shows that running a command in a high context renders the resulting environment low

equivalent to the initial environment.

Lemma 1. If Ω ` e : τ and M1 ≈Ω M2, then M1(e) ≈τ M2(e).

This lemma states that if an expression is well typed and if two memories are low equivalent,

then the evaluations of that expression in the two memories must be low equivalent with

respect to its type. We prove this lemma by structural induction on the type of the expression.
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// The public integer that is the private key

secret = 25;

// Make a private key out of this integer

priv_key = secret;

Listing 4.1: Securing Cryptography Vulnerability #1

Lemma 2. If (Ω,Θ), H ` c, then for all environments E and E′ such that E′ ∈ [[〈E, c〉]],

we have E′ ≈(Ω,Θ) E.

This lemma states that if a command is run in a high context then the resulting environment

is low equivalent to the initial environment. By proving that an environment produced by

running a command in a high context is low equivalent to the original environment, we lift

this notion to sets of environments and prove our noninterference condition. We prove this

lemma by structural induction on the commands.

§4.5 Examples

In this section, we reimplement the motivating examples from Chapter 1 and show that they

are rejected by our type system. The example from Listing 1.1 is rewritten in Listing 4.1.

This code is rejected by our type system because the assignment of secret to priv_key does

not type check by rule (T-ASSIGN). Here, the type of secret is int L and the type of priv_key

is privkey . Regardless of the level of the program counter pc, (int L)pc cannot be a subtype

of privkey . Therefore, this code does not type check and it is correctly rejected.

We reimplement the code from Listing 1.2 in Listing 4.2. This code is rejected by our type
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// Generate a key pair

keypair = newkeypair;

// Extract the private key from the key pair

priv_key = snd(keypair);

// Output the private key to the low channel ch

out(ch, priv_key);

Listing 4.2: Securing Cryptography Vulnerability #2

system because the output of priv_key to ch does not type check by rule (T-OUTPUT).

Here, the type of priv_key is privkey . Regardless of the level of the program counter pc, type

Θ(ch)pc cannot be a subtype of privkey . Therefore, this code is rejected and this vulnerability

is prevented.
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Implementation

We have extended the ideas of the type system of Section 4.4 to the Java programming

language, and instantiated them in the tool Cryptflow. Cryptflow is implemented using the

Accrue ObjAnal framework [7] for interprocedural analysis of Java programs. ObjAnal is

itself built as a compiler extension to Polyglot [21], an extensible compiler framework for

Java. This chapter presents Cryptflow in Section 5.1 and presents some simple Cryptflow

programs in Section 5.2.

§5.1 Cryptflow

The analysis we have implemented in Cryptflow is actually more precise than the type system

described in Section 4.4, since it is built on top of a flow-sensitive information-flow analysis.

In a flow-sensitive security type system [16], the type of a variable may depend on the program

point and is not immutable. We have modified the typing rules presented in Section 4.4 to

be flow sensitive.

The flow-sensitive information-flow analysis takes care of tracking information flow through

Java language features, including objects, methods, fields, and exceptions. The analysis does

not handle reflection or custom class loaders. Cryptflow required approximately 500 lines

of Java code to adapt the information-flow analysis to handle the restrictions on public-key

cryptography.

Cryptflow visits source files to gather constraints of the form σ v σ′ and t = t′, corresponding

to restrictions on the permitted security levels, and types. Once all source files of a program

30
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have been visited, Cryptflow checks whether the set of constraints is solvable, using a standard

work-queue algorithm.

Since the partial order of basic types is finite, the constraint solver is guaranteed to terminate,

producing either a solution to the constraints, or indicating that no solution is possible. If

a solution exists, then the program is secure, and there is a mapping from variables to

security levels that does not violate our noninterference condition. If a solution does not

exist then there is no mapping from variables to security levels such that noninterference

is preserved. The tool either rejects the program, or accepts it. As mentioned previously,

because the underlying type system is sound, the tool is conservative and will reject some

secure programs.

We have run Cryptflow on several simple Java programs, including programs that use cryp-

tography safely and programs with vulnerabilities such as those of Listings 1.1 and 1.2.

Cryptflow correctly rejects the unsafe usages of cryptography, and admits simple programs

that use cryptography correctly, such as a program that generates a keypair and correctly

performs RSA encryption and decryption.

Our prototype implementation currently relies on the programmer identifying the uses of

encryption and decryption. This is done because in the Java Cryptography framework,

the method javax.crypto.Cipher.doFinal is used to perform both encryption and decryption,

based on a flag passed earlier to a the javax.crypto.Cipher.init method. We implement this

functionality by providing a wrapper around Java’s cryptography methods, which separates

the encryption and decryption functionalities. Cryptflow then makes use of this wrapper

when analyzing code that involves encryption and decryption.



Chapter 5. Implementation 32

public static void main(String[] args) throws Exception {

// Generate the key pair

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

KeyPair key = keyGen.generateKeyPair();

}

Listing 5.1: Safe Key Generation

§5.2 Examples

The code in Listing 5.1 is an example of a very simple program that Cryptflow accepts as

secure. This program generates a key pair, which consists of a public key and private key.

The keys are generated and can later be used for encryption and decryption. Cryptflow

analyzes the call to generateKeyPair and marks the PrivateKey field in a KeyPair with the

security level privatekey and marks the PublicKey field in a KeyPair with the security level

publickey. Cryptflow adds these constraints to its set of generated constraints on the flow

of information in this program (constraints are generated by the assignments, the method

call, etc). Cryptflow then attempts to solve this set of constraints by assigning the variables

various security levels while only allowing permitted flows of information. In this situation,

because the private key is not output anywhere, Cryptflow is able to solve the constraints

generated and accepts this program. This program does not violate our security definition,

so it is allowed by the type system and accepted by Cryptflow.

The code in Listing 5.2 is an example of a program that Cryptflow rejects. This code models

a situation where a key pair consisting of a public key and a private key is created and then

the private key is output to a public channel. The annotation /* @output "L" */ is used to

indicate that System.out.println is a low-level channel. Similarly, as in the previous example,

Cryptflow analyzes the call to generateKeyPair and marks the PrivateKey field in a KeyPair with

the security level privatekey and marks the PublicKey field in a KeyPair with the security level

publickey.
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public static void main(String[] args) throws Exception {

// Generate the key pair

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

KeyPair key = keyGen.generateKeyPair();

// Get the bytes that comprise the private key

PrivateKey privkey = key.getPrivate();

byte[] privateKeyBytes = privkey.getEncoded();

// Print the bytes

System.out.println(/* @output "L" */("PrivateKey:" + new String(privateKeyBytes)));

}

Listing 5.2: Printing Private Key Bytes

Then, because the getEncoded() method is used to extract the bytes of the private key and

store them in the byte array privateKeyBytes, Cryptflow generates constraints that note that

a value of security level privatekey has moved to a byte array. Finally, Cryptflow generates

constraints that model that the byte array privateKeyBytes is output on the low-channel

represented by System.out.println. When Cryptflow tries to solve these constraints it is

not able to, because there is no mapping of variables to security levels that would permit

the output of a private key on a low-security channel. This program violates our security

definition and does not typecheck. Therefore, it is rejected by Cryptflow.
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Conclusion

This thesis presents a possibilistic noninterference condition for public-key cryptography.

The security condition defines what it means for public-key cryptography to be secure, and

modifies the traditional notion of noninterference to be compatible with the needs of public-

key cryptography. This semantic security condition is enforced by a type system which tracks

the flow of information through programs that employ cryptographic primitives.

The typing for expressions is completely standard for an imperative language, and most of

the typing for the commands is standard with the exception of the commands for input,

output, encryption, decryption and key generation. This type system is able to provably

prevent the most common cryptographic vulnerabilities present on the Android platform,

such as outputs of private keys on public channels and hardcoded cryptographic keys.

Finally, this thesis presents Cryptflow, a tool to track the information flow through programs

written in Java that employ cryptography. This tool is meant to reject programs with insecure

uses of public-key cryptography and accept programs that demonstrate safe uses of public-key

cryptography. Cryptflow is a static analysis that enforces the main ideas of our type system

by rejecting programs that do not comply with our notion of possibilistic noninterference.

Public-key cryptography is essential to a majority of transactions, an increasing number of

which are performed on mobile phones due to their increasing popularity. The fact that

cryptographic vulnerabilities are a leading cause of security vulnerabilities on the Android

Platform suggests that current security guarantees for public-key cryptography are not suf-

ficient. By offering a definition for safe public-key cryptography, a type system that enforces

it, and a tool that implements this functionality, this thesis is a step towards providing strong

security guarantees for public-key cryptography.

34
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Future Extensions Though Cryptflow is successful in rejecting programs which exhibit

common security vulnerabilities currently present on the Android Platform, there is more

work to be done to enhance its capabilities. First, as mentioned in Section 5.2, Cryptflow

currently requires minimal annotations by the programmer. This is done because in the

Java Cryptography framework, the method javax.crypto.Cipher.doFinal is used to perform

both encryption and decryption, based on a flag passed earlier to a different method of the

object. Future work on this tool will eliminate the need for these programmer annotations by

having Cryptflow analyze the arguments to the javax.crypto.Cipher.init method to determine

whether encryption or decryption is being performed.

Further, while Cryptflow does reject programs which model the common vulnerabilities which

occur on the Android Platform, many more cryptographic vulnerabilities abound. This thesis

was only concerned with misuses of public-key cryptography, however, enforcing the correct

use of private-key cryptography is also important. A security definition and a type system

for private-key cryptography are developed by Askarov, Hedin and Sabelfeld [5]. This type

system could be folded into our type system and Cryptflow could detect security vulnera-

bilities in private-key cryptographic protocols, as well as those in public-key cryptographic

protocols.

Finally, Cryptflow could be extended to detect the appropriate release of information, also

called declassification, and the release of keys. Askarov and Sabelfeld developed type based

enforcement that guarantees security when cryptographic keys are released [3]. The ideas of

this type system could be implemented in Cryptflow, which would allow Cryptflow to detect

appropriate and inappropriate releases of information.
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Noninterference Proofs

§A.1 Well-Formedness of Types

The well-formedness relation can be found in Figure A.1.

§A.2 Noninterference Proofs

WF-INT

n : int σ

WF-PAIR

v1 : τ1 v2 : τ2

(v1, v2) : (τ1, τ2)

WF-KEY-PRIV

k ∈ Keypriv
k : privkey

WF-KEY-PUB

k ∈ Keypub
k : pubkey

WF-ENC

k : pubkey u ∈ E(k, v) v : τ

u : enc τ σ

WF-MEM

∀x ∈ dom(Ω) M(x) : Ω(x)

M : Ω

WF-IOENV

∀ch ∈ dom(Θ) X(ch) : Ω(ch)

X : Θ
x ∈ {I,O}

WF-STREAM1

ε : τ stream

WF-STREAM2

v : τ vs : τ stream

v · vs : τ stream

WF-ENV

M : Ω G : (pubkey, privkey) stream I : Ω O : Ω

(M,G, I,O) : (Ω,Θ)

Figure A.1: Well Formedness of Types
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This theorem states that if command (Ω,Θ), pc ` c, then c is noninterfering with respect to Ω

and Θ. We prove this theorem by structural induction on the commands. This theorem relies

on two key lemmas, Lemma 1, which proves the noninterference of expressions and Lemma

2, which shows that running a command in a high context renders the resulting environment

low equivalent to the initial environment.

Theorem 1 (Type-soundness). If Ω,Θ, pc ` c and Ê1≈̂(Ω,Θ)Ê2 then [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

Proof. Let P (c) be if Ω,Θ, pc ` c and Ê1 ≈(Ω,Θ) Ê2, then [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2. We proceed

by structural induction on subcommands. If c′ is a subcommand of c, then P (c′). Let c be

given and assume Ω,Θ, pc ` c. Let Ê1, Ê2 be fixed. Because most of the cases are standard,

we present only the cases unique to our type system – the input, output, encrypt, decrypt

and newkeypair cases.

1. Case INPUT

We are given that Ê1≈̂(Ω,Θ)Ê2. By the definition of the ≈̂(Ω,Θ) relation we see that

∃E1 ∈ Ê1 and E2 ∈ Ê2 such that E1 ≈(Ω,Θ) E2. Let E1 = (M1, G1, I1, O1) and E2 =

(M2, G2, I2, O2). Let E′
1 = [[c]]E1 and E′

2 = [[c]]E2. Let E′
1 = (M ′

1, G
′
1, I

′
1, O

′
1) and

(M ′
2, G

′
2, I

′
2, O

′
2). Because c is in(ch, e) we see that G′

1 = G1 and O′
1 = O1. Similarly,

we see that G′
2 = G2 and O′

2 = O2. This means that it suffices to show that M ′
1 ≈Ω M ′

2

given that M1 ≈Ω M2 and I ′1 ≈Ω I ′2 given that I1 ≈Θ I2.

By Lemma 2, we see that if pc = H that E1 ≈(Ω,Θ) E
′
1 and E2 ≈(Ω,Θ) E

′
2, so we see

that E′
1 ≈(Ω,Θ) E

′
2 and we are done. We now consider the cases where pc = L.

Given that Ω,Θ, pc ` in(x, ch), we need to show that M ′
1 ≈Ω M ′

2. This is equivalent

to showing M1[x 7→ v] ≈Ω M2[x 7→ v]. By (LE-MEM) and given that M1 ≈Ω M2 it
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suffices to show that M1(x) ≈Ω(x) M2(x). By typing, we see that Θ(ch) <: Ω(x) where

least(Θ(ch)) = σ and L v σ. We now consider the two cases of σ.

If σ = H then least(Θ(ch)) = H. By subtyping, we see that this implies that

least(Θ(ch)) v Ω(x). This implies that least(Ω(x)) = H. By the base cases (LE-

INT-H), (LE-ENC-H), and the compound case (LE-PAIR) we see that if Ω(x) is high

then M1(x) ≈Ω(x) M2(x). This means that M ′
1 ≈Ω M ′

2 and we are done.

We now consider the case if σ = L. This means that least(Θ(ch)) = L. By subtyping,

we see that this implies that least(Θ(ch)) v Ω(x). This implies that least(Ω(x)) = L or

least(Ω(x)) = H. If least(Ω(x)) = H then by the base cases (LE-INT-H), (LE-ENC-H),

and the compound case (LE-PAIR) we see that if Ω(x) is high then M1(x) ≈Ω(x) M2(x).

This means that M ′
1 ≈Ω M ′

2 and we are done.

If least(Ω(x)) = L, then a low value is input from a channel. We know that I1 ≈Θ I2 so

therefore I1(ch) ≈Θ(ch) I2(ch). Because Θ(ch) is low, from the base cases (LE-INT-L),

(LE-ENC-L), and the compound case (LE-PAIR) we can infer that I1(ch) = I2(ch).

By the semantics, we see that this means that v1 = v2 where I1(ch) = v1 · vs1 and

I2(ch) = v2 · vs2. By the semantics, we see that M1(x) = v1 and M2(x) = v2. This

implies that M1(x) = M2(x). By definition, this means that M1(x) ≈Ω(x) M2(x). We

have now shown that M ′
1 ≈Ω M ′

2 and we are done.

Now, it remains to show that I ′1 ≈Θ I ′2. This is equivalent to showing I1[ch 7→ vs] ≈Θ

I2[ch 7→ vs]. By the semantics, we see that prior to the input, I1(ch) = v1 · vs1 and

I2(ch) = v2 · vs2. Because I1(ch) ≈Θ(ch) I2(ch) we know that v1 · vs1 ≈Θ(ch) v2 · vs2.

This means that vs1 ≈Θ(ch) vs2 so I1[ch 7→ vs] ≈Θ I2[ch 7→ vs]. We have now shown

that I ′1 ≈Θ I ′2 and we are done.

We have shown that M ′
1 ≈Ω M ′

2 and I ′1 ≈Θ I ′2 which implies that E′
1 ≈(Ω,Θ) E

′
2. Because

E1 ∈ Ê1 and E2 ∈ Ê2 are arbitrary environments that are equivalent under ≈(Ω,Θ), we

have shown that [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

2. Case OUTPUT
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We are given that Ê1≈̂(Ω,Θ)Ê2. By the definition of the ≈̂(Ω,Θ) relation we see that

∃E1 ∈ Ê1 and E2 ∈ Ê2 such that E1 ≈(Ω,Θ) E2. Let E1 = (M1, G1, I1, O1) and

E2 = (M2, G2, I2, O2). Let E′
1 = [[c]]E1 and E′

2 = [[c]]E2. Let E′
1 = (M ′

1, G
′
1, I

′
1, O

′
1)

and (M ′
2, G

′
2, I

′
2, O

′
2). We want to show that E′

1 ≈(Ω,Θ) E
′
2. Because c is out(ch, e) we

see that M ′
1 = M1, G′

1 = G1 and I ′1 = I1. Similarly, we see that M ′
2 = M2, G′

2 = G2

and I ′2 = I2. This means that it suffices to show that O′
1 ≈Θ O′

2 given that O1 ≈Θ O2.

By Lemma 2, we see that if pc = H that E1 ≈(Ω,Θ) E
′
1 and E2 ≈(Ω,Θ) E

′
2, so we see

that E′
1 ≈(Ω,Θ) E

′
2 and we are done. We now consider the cases where pc = L.

Given that Ω,Θ, pc ` out(ch, e), we need to show that O′
1 ≈Θ O′

2. This is equivalent

to showing O1[ch 7→ v1 · O1[ch]] ≈Θ O2[ch 7→ v2 · O2[ch]]. By (LE-IO) and given

that O1 ≈Θ O2 it suffices show that O1(ch) ≈Θ(ch) O2(ch). By typing we see that

τpc <: Θ(ch) so we are trying to show that O1(ch) ≈τpc O2(ch). Because pc = L, this

is equivalent to showing that O1(ch) ≈τ O2(ch).

Because O1(ch) = v1 ·O1[ch] and O2(ch) = v2 ·O2[ch], it suffices to show that v1 ≈τ v2

where Ω ` e : τ . From the semantics we see that v1 = M1(e) and v2 = M2(e). Due to

Lemma 1, because M1 ≈Ω M2, M1(e) ≈τ M2(e). This implies that v1 ≈ τv2 and we

are done.

We have shown that O′
1 ≈Θ O′

2 which implies that E′
1 ≈(Ω,Θ) E

′
2. Because E1 ∈ Ê1 and

E2 ∈ Ê2 are arbitrary environments that are equivalent under ≈(Ω,Θ), we have shown

that [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

3. Case ENCRYPT

We are given that Ê1≈̂(Ω,Θ)Ê2. By the definition of the ≈̂(Ω,Θ) relation we see that

∃E1 ∈ Ê1 and E2 ∈ Ê2 such that E1 ≈(Ω,Θ) E2. Let E1 = (M1, G1, I1, O1) and E2 =

(M2, G2, I2, O2). Let E′
1 = [[c]]E1 and E′

2 = [[c]]E2. Let E′
1 = (M ′

1, G
′
1, I

′
1, O

′
1) and

(M ′
2, G

′
2, I

′
2, O

′
2). We want to show that E′

1 ≈(Ω,Θ) E
′
2. Because c is x := encrypt(e1, e2)

we see that G′
1 = G1, I ′1 = I1 and O′

1 = O1. Similarly, we see that G′
2 = G2, I ′2 = I2 and

O′
2 = O2. This means that it suffices to show that M ′

1 ≈Ω M ′
2 given that M1 ≈Ω M2.
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By Lemma 2, we see that if pc = H that E1 ≈(Ω,Θ) E
′
1 and E2 ≈(Ω,Θ) E

′
2, so we see

that E′
1 ≈(Ω,Θ) E

′
2 and we are done. We now consider the cases where pc = L.

Given that Ω,Θ, pc ` x := encrypt(e1, e2), we need to show that M ′
1 ≈Ω M ′

2. This

is equivalent to showing M1[x 7→ u1] ≈Ω M2[x 7→ u2]. By (LE-MEM) and given that

M1 ≈Ω M2 it suffices to show that M1(x) ≈Ω(x) M2(x).

We are trying to show that u1 ≈enc τ σ u2. By (LE-ENC-H), it is obvious that any two

encryptions are equivalent under ≈enc τ H so we only consider the case when σ = L. By

(LE-ENC-L), we see that this requires a few conditions. We first define v1 = D(k1, u1)

and v2 = D(k2, u2). We know that k1 ≈privkey k2 because any two private keys are

low equivalent. We now need to show that v1 ≈τ v2 where Ω ` e2 : τ .We know

that u1 ∈ E(k′, v1) where k′ = M1(e1) and v1 = M1(e2). Similarly, u2 ∈ E(k′′, v2)

where k′′ = M2(e1) and v2 = M2(e2). By Lemma 1, because M1 ≈Ω M2 we see that

M1(e2) ≈τ M2(e2) where Ω ` e2 : τ . Therefore, v1 ≈τ v2.

Finally, we need to show that u1=̇u2. Now we recall the fact that because if u1 ∈

E(k1, v1) then ∃u′2 ∈ E(k2, v2) such that u1=̇u′2. We cannot claim that u2 = u′2, but

for some n such that u′2 = M ′
n(x) this is true. Because the above argument for memory

equivalence can be exactly replicated to apply to E1 and En, we see that this means

that E′
1 ≈(Ω,Θ) E

′
n where E′

n is an arbitrary environment produced by applying c to En

which is no different from the initial choice of E′
2.

Because E1 ∈ Ê1 and E2 ∈ Ên are arbitrary environments that are equivalent under

≈(Ω,Θ), we have shown that [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

4. Case DECRYPT

We are given that Ê1≈̂(Ω,Θ)Ê2. By the definition of the ≈̂(Ω,Θ) relation we see that

∃E1 ∈ Ê1 and E2 ∈ Ê2 such that E1 ≈(Ω,Θ) E2. Let E1 = (M1, G1, I1, O1) and E2 =

(M2, G2, I2, O2). Let E′
1 = [[c]]E1 and E′

2 = [[c]]E2. Let E′
1 = (M ′

1, G
′
1, I

′
1, O

′
1) and

(M ′
2, G

′
2, I

′
2, O

′
2). We want to show that E′

1 ≈(Ω,Θ) E
′
2. Because c is x := decrypt(e1, e2)

we see that G′
1 = G1, I ′1 = I1 and O′

1 = O1. Similarly, we see that G′
2 = G2, I ′2 = I2 and
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O′
2 = O2. This means that it suffices to show that M ′

1 ≈Ω M ′
2 given that M1 ≈Ω M2.

By Lemma 2, we see that if pc = H that E1 ≈(Ω,Θ) E
′
1 and E2 ≈(Ω,Θ) E

′
2, so we see

that E′
1 ≈(Ω,Θ) E

′
2 and we are done. We now consider the cases where pc = L.

Given that Ω,Θ, pc ` in(x, ch), we need to show that M ′
1 ≈Ω M ′

2. This is equivalent

to showing M1[x 7→ v1] ≈Ω M2[x 7→ v2]. By (LE-MEM) and given that M1 ≈Ω M2

it suffices show that M1(x) ≈Ω(x) M2(x). By typing we see that τLtσ <: Ω(x) where

Ω ` e2 : enc τ σ. We now consider the cases of σ.

If σ = H then τLtH = τH and by Lemma 3 M1(x) ≈τH M2(x). We know that

M1(x) : τ and M2(x) : τ , so by Lemma 4 we see that M1(x) ≈Ω(x) M2(x).

If σ = L then τLtL = τL = τ . We now need to show that v1 ≈τ v2. By the semantics,

we know that v1 = D(k′, u1) and v2 = D(k′′, u2). Because both k′ and k′′ are private

keys we know that k′ ≈privkey k′′. By Lemma 1 we see that because M1 ≈ M2,

M1(e2) ≈enc τ L M2(e2) where Ω ` e2 : enc τ L. By (LE-ENC-L), we see that v1 ≈τ v2.

Given the fact that τ <: Ω(x) and by the application of Lemma 4 we see that v1 ≈Ω(x)

and we are done.

We have shown that M ′
1 ≈Θ M ′

2 which implies that E′
1 ≈(Ω,Θ) E

′
2. Because E1 ∈ Ê1

and E2 ∈ Ê2 are arbitrary environments that are equivalent under ≈(Ω,Θ), we have

shown that [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

5. Case NEWKEYPAIR

We are given that Ê1≈̂(Ω,Θ)Ê2. By the definition of the ≈̂(Ω,Θ) relation we see that

∃E1 ∈ Ê1 and E2 ∈ Ê2 such that E1 ≈(Ω,Θ) E2. Let E1 = (M1, G1, I1, O1) and

E2 = (M2, G2, I2, O2). Let E′
1 = [[c]]E1 and E′

2 = [[c]]E2. Let E′
1 = (M ′

1, G
′
1, I

′
1, O

′
1)

and (M ′
2, G

′
2, I

′
2, O

′
2). Because c is (x, y) := newkeypair we see that I ′1 = I1 and

O′
1 = O1. Similarly, we see that I ′2 = I2 and O′

2 = O2. This means that it suf-

fices to show that M ′
1 ≈Ω M ′

2 given that M1 ≈Ω M2 and that G′
1 ≈Ω G′

2 given that

G1 ≈(pubkey,privkey) stream) G2.
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Given that Ω,Θ, L ` (x, y) := newkeypair, we need to show that M ′
1 ≈Ω M ′

2. This is

equivalent to showing M1[x 7→ k1, y 7→ k2] ≈Ω M2[x 7→ k1, y 7→ k2]. By (LE-MEM), and

given thatM1 ≈Ω M2, it suffices show thatM1(x) ≈Ω(x) M2(x) andM1(y) ≈Ω(y) M2(y).

From the typing we see that Ω(x) = privkey and Ω(y) = pubkey. This means that

we are trying to show that M1(x) ≈pubkey M2(x) and M1(y) ≈privkey M2(y). Because

k1 = M1(x) = M2(x) we see by (LE-PUBKEY) that M1(x) ≈pubkey M2(x). Because

k1 = M1(y) = M2(y) and by (LE-PRIVKEY) we see that any two private keys are

equivalent under ≈privkey, we know that M1(y) ≈privkey M2(y). We have now shown

that M ′
1 ≈M ′

2.

We now show that G′
1 ≈(pubkey,privkey) stream G′

2. Let G1 = (k11, k21) · ks1 and G2 =

(k12, k22) · ks2. By the semantics of the language, we see that G′
1 = ks1 and G′

2 = ks2.

If G1 ≈(pubkey,privkey) stream G2, then by (LE-STREAM2), we see that

(k11, k21) ≈(pubkey,privkey) (k12, k22) and ks1 ≈(pubkey,privkey) stream ks2. We have now

shown that G′
1 ≈(pubkey,privkey) stream G′

2.

We have shown that M ′
1 ≈Ω M ′

2 and G′
1 ≈(pubkey,privkey) stream G′

2 which implies that

E′
1 ≈(Ω,Θ) E

′
2. Because E1 ∈ Ê1 and E2 ∈ Ê2 are arbitrary environments that are low

equivalent, we have shown that [̂[c]]Ê1≈̂(Ω,Θ) [̂[c]]Ê2.

This lemma states that if an expression is well typed and if two memories are low equivalent,

then the evaluations of that expression in the two memories must be low equivalent with

respect to its type. We prove this lemma by structural induction on the type of the expression.

Lemma 1. If Ω ` e : τ ∧M1 ≈Ω M2 then M1(e) ≈τ M2(e).

Proof. Let the given M1,M2 be such that M1 ≈Ω M2. We proceed by induction on the
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derivation of Ω ` e : τ . Let P (Ω ` e : τ) = if Ω ` e : τ and M1 ≈Ω M2 thenM1(e) ≈τ M2(e).

The inductive hypothesis is if Ω′ ` e′ : τ ′ is a subderivation of the derivation for Ω ` e : τ

then P (Ω′ ` e′ : τ ′). Because the expressions in this language are completely standard, the

complete proof is omitted.

This lemma states that if a command is run in a high context, then the resulting environment

is low equivalent to the initial environment. By proving that an environment produced by

running a command in a high context is low equivalent to the original environment, we lift

this notion to sets of environments and prove our noninterference condition. We prove this

lemma by structural induction on the commands.

Lemma 2. If Ω,Θ, H ` c then ∀E,E′ . E′ ∈ [[c]]E . E′ ≈(Ω,Θ) E.

Proof. Let P (c) be if Ω,Θ, H ` c, then ∀E,E′ . E′ ∈ [[c]]E . E′ ≈(Ω,Θ) E. We proceed by

structural induction on subcommands. If c′ is a subcommand of c, then P (c′). Let c be

given and assume Ω,Θ, H ` c. Let E be fixed. Because most of the cases are standard, we

present only the cases unique to our type system – the input, output, encrypt, decrypt and

newkeypair cases.

1. Case INPUT

Let c = in(x, ch). Here, let E = (M,G, I,O) and [[c]](M,G, I,O) = {(M [x 7→

v], G, I[ch 7→ vs], O)} where I(ch) = v · vs. Let E′ = (M [x 7→ v], G, I[ch 7→ vs], O). We

want to show that E ≈(Ω,Θ) E
′. Because G and O are unchanged, it suffices to show

that M ≈Ω M [x 7→ v] and I ≈Θ I[ch 7→ vs]. Let M ′ = M [x 7→ v] and I ′ = I[ch 7→ vs].

We first show that M ≈Ω M ′ and then we show that I ≈Θ I’.

We know that for all variables y, such that y 6= x, M(y) = M ′(y). By (LE-MEM), for

M ≈Ω M ′ to hold, we need to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x). Assume
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Dom(Ω) = {x} ] V where V is the set of all channel names with the exception of x.

We have ∀y ∈ V , M(y) = M ′(y) which implies that M(y) ≈τ M ′(y) where τ = Ω(y).

Therefore, in order to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x) we only need to

show that M(x) ≈Ω(x) M
′(x).

Let v1 = M(x) and v2 = M ′(x). By the typing, we see that Θ(ch)H <: Ω(x). This

means that for τ = Θ(ch) we are trying to show that v1 ≈τH v2. We know that

v1 : τ and v2 : τ . By Lemma 3, we see this is the case and we have shown that

M(x) ≈Ω(x) M
′(x) and we are done with the first part of the proof.

We know that for all channel names ch′, such that ch′ 6= ch, I(ch′) = I ′(ch′). By (LE-

IOENV), for I ≈Θ I ′ to hold, we need to show that ∀ch ∈ Dom(Θ), I(ch) ≈Θ(ch) I
′(ch).

Assume Dom(Θ) = {ch} ] Ch where Ch is the set of all channel names with the

exception of ch. We have ∀ch′ ∈ V , I(ch′) = I ′(ch′) which implies that I(ch′) ≈τ I ′(ch′)

where τ = Θ(ch′). Therefore, in order to show that ∀ch ∈ Dom(Θ), I ≈Θ I ′ we only

need to show that I(ch) ≈Θ(ch) I
′(ch).

Let v1 = I(ch) and v2 = I ′(ch). By the typing, we see that Θ(ch) <: Ω(x) where

least(Θ(ch)) = σ and pc v σ. We know that pc = H so σ = H. Therefore,

least(Θ(ch)) = H. We now perform an induction on the derivation of the least function

by considering the cases of Θ(ch).

If Θ(ch) = int σ then σ = H. In this case we want to show that v1 ≈int H v2.

By (LE-INT-H), we see that any two integers are high equivalent, so we know that

v1 ≈Θ(ch) v2. Consequently v1 ≈Ω(x) v2 and we are done. If Θ(ch) = enc τ σ then

least(τ) u σ = H. This means that least(τ) = H and σ = H. In this case we want to

show that v1 ≈enc τ H v2. By (LE-ENC-H), we see that any two ciphertexts are high

equivalent, so we know that v1 ≈Θ(ch) v2. Consequently v1 ≈Ω(x) v2 and we are done.

We now consider the inductive case where Θ(ch) = (τ1, τ2). In this case, least(τ1, τ2) =

least(τ1)uleast(τ2) . This means that least(τ1) = H and least(τ2) = H. In this case we

want to show that v1 ≈(τ1,τ2) v2 where v1 = (v11, v21) and v2 = (v21, v22). By induction
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we know that if least(τ1) = H and least(τ2) = H then v11 ≈τ1 v21 and v21 ≈τ2 v22. By

(LE-PAIR) this means that v1 ≈(τ1,τ2) v2. Consequently v1 ≈Ω(x) v2 and we are done.

2. Case OUTPUT

Let c = out(ch, e). Here, let E = (M,G, I,O) and [[c]](M,G, I,O) = {(M,G, I,O[ch 7→

v · O[ch]])} where v = M(e). Let E′ = (M,G, I,O[ch 7→ v · O[ch]). We want to

show that E ≈(Ω,Θ) E
′. Because G and I are unchanged, it suffices to show that

O ≈Θ O[ch 7→ v · O[ch]]. Let O′ = O[ch 7→ v · O(ch)]. We first show that M ≈Ω M ′

and then we show that O ≈Θ O’.

We know that for all channel names ch′, such that ch′ 6= ch, O(ch′) = O′(ch′). By

(LE-IOENV), for O ≈Θ O′ to hold, we need to show that ∀ch ∈ Dom(Θ), O(ch) ≈Θ(ch)

O′(ch). Assume Dom(Θ) = {ch}]Ch where Ch is the set of channel names with the ex-

ception of ch. We have ∀ch′ ∈ V , O(ch′) = O′(ch′) which implies that O(ch′) ≈τ O′(ch′)

where τ = Θ(ch′). Therefore, in order to show that ∀ch ∈ Dom(Θ), O(ch) ≈Θ(ch)

O′(ch) we only need to show that O(ch) ≈Θ(ch) O
′(ch).

Let v1 = O(ch) and v2 = O′(ch). By the typing, we see that τH <: Ω(x) where

Ω ` e : τ . We are trying to show that v1 ≈τH v2. By Lemma 3, we see this is the case

and we have shown that O(ch) ≈Θ(ch) O
′(ch) and we are done with the proof.

3. Case ENCRYPT

Let c = x := encrypt(e1, e2). Here, let E = (M,G, I,O) and [[c]](M,G, I,O) =

{(M [x 7→ u], G, I,O)} where M(e1) = k, k ∈ Keypub, M(e2) = v and u ∈ E(k, v).

Let E′ = (M [x 7→ v], G, I,O). We want to show that E ≈(Ω,Θ) E
′. Because G, I,O are

unchanged, it suffices to show that M ≈Ω M [x 7→ v]. Let M ′ = M [x 7→ v]. We now

show that M ≈Ω M ′.

We know that for all variables y, such that y 6= x, M(y) = M ′(y). By (LE-MEM), for

M ≈Ω M ′ to hold, we need to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x). Assume

Dom(Ω) = {x}]V where V is the set of all variables with the exception of x. We have

∀y ∈ V , M(y) = M ′(y) which implies that M(y) ≈τ M ′(y) where τ = Ω(y). Therefore,
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in order to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x) we only need to show that

M(x) ≈Ω(x) M
′(x).

Let v1 = M(x) and v2 = M ′(x). Due to the judgment Ω ` e2 : τ we know that

τH <: Ω(x). This means that we are trying to show that v1 ≈τH v2. We know that

v1 : τ and v2 : τ . By Lemma 3, we see this is the case and we have shown that

M(x) ≈Ω(x) M
′(x) and we are done.

4. Case DECRYPT

Let c = x := decrypt(e1, e2). Here, let E = (M,G, I,O) and [[c]](M,G, I,O) =

{(M [x 7→ v], G, I,O)} where M(e1) = k, k ∈ Keypriv, M(e2) = u and v = D(k, y). Let

E′ = (M [x 7→ v], G, I,O). We want to show that E ≈(Ω,Θ) E
′. Because G, I,O are

unchanged, it suffices to show that M ≈Ω M [x 7→ v]. Let M ′ = M [x 7→ v]. We now

show that M ≈Ω M ′.

We know that for all variables y, such that y 6= x, M(y) = M ′(y). By (LE-MEM), for

M ≈Ω M ′ to hold, we need to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x). Assume

Dom(Ω) = {x}]V where V is the set of all variables with the exception of x. We have

∀y ∈ V , M(y) = M ′(y) which implies that M(y) ≈τ M ′(y) where τ = Ω(y). Therefore,

in order to show that ∀x ∈ Dom(Ω), M(x) ≈Ω(x) M
′(x) we only need to show that

M(x) ≈Ω(x) M
′(x).

By the typing, we see that τpctσ <: Ω(x) where Ω ` e2 : enc τ σ. Because pc = H,

pc t σ = H. Therefore, we need to show that M(x) ≈τH M ′(x). Let v1 = M(x)

and v2 = M ′(x). This means that we are trying to show that v1 ≈τH v2. We know

that v1 : τ and v2 : τ . By Lemma 3, we see this is the case and we have shown that

M(x) ≈Ω(x) M
′(x) and we are done.

5. Case NEWKEYPAIR

Let c = (x, y) := newkeypair. By typing, we see that (Ω,Θ), L ` (x, y) := newkeypair

and because pc = H, this case is impossible in this context.
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Lemma 1 and Lemma 2 rely on two lemmas.

Lemma 3. Given, v1, v2, τ such that v1 : τ , and v2 : τ and τH is defined then v1 ≈τH v2.

Proof. We proceed by induction on the structure of v1 and v2.

Lemma 4. Given, v1, v2, τ such that v1 : τ , v2 : τ , τ <: τ ′ and v1 ≈τ v2, then v1 ≈τ ′ v2.

Proof. We proceed by induction on the structure of v1 and v2.
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