
Securing Public-key
Cryptography on the
Android Platform
Anna Gommerstadt

Harvard Programming Languages Seminar 4/17/13

Me

• I’m a Senior concentrating in Computer
Science and Math at Harvard College

• This work is my senior thesis, advised by
Stephen Chong and Aslan Askarov

• This is my first PL Seminar talk!

Motivation

• The Android platform is notoriously
insecure

• There are many different classes of bugs
present on the platform

• A recent report found that one of the
leading causes of errors is misused
cryptography (40% of errors)

Cryptographic Errors

• Most developers rely on third party
libraries for encryption and decryption

• We assume that these libraries provide
correct implementations of common
algorithms (RSA, etc)

• We are concerned with misuses of
correctly implemented cryptographic
protocols

What Kinds of Bugs?

• Mainly hardcoded cryptographic keys

• This is a huge problem because Android
applications are trivial to decompile, so a
hardcoded key is easy to retrieve

• Also outputs of secure keys to public
insecure channels

Background

• Aslan et al (2008) defined a semantic
security guarantee and an enforcement
mechanism for private-key cryptography

• Other work has been done on showing
probabilistic guarantees of programs that
use cryptography

• We show a possibilistic guarantee which is
simpler, but easier to compose with other
policies

Approach

• Theory

• Defining a semantic security condition
for public-key cryptography

• Developing an enforcement mechanism
(a type system)

• Implementation

• Developing Cryptflow, an information
flow analysis that detects misuses of
cryptography

Security Condition

• Based on the (awesome!) work by Aslan et
al (2008)

• Standard noninterference does not work
for public key cryptography because the
public ciphertext is influenced by the high-
security plaintext

• So we use possibilistic noninterference!

Possibilistic Noninterference

• A modified notion of traditional
noninterference

• Basically, we want the ciphertext to
possibly be any value

• Then, a change in the high-security
plaintext does not affect the low-security
ciphertext!

Encryption Semantics

• Encryption is nondeterministic

• Encrypting a plaintext with a specific key
can generate a lot of possible
ciphertexts.

• Decryption is deterministic

• A ciphertext and a key have one possible
decryption

• Examples: El Gamal, nondeterministic
variant of RSA

The Type System

• Using a standard imperative language with
encryption, decryption and key generation
commands

• Most of the typing is standard, except for
input, output, encryption, decryption and
key generation

Cool things in the Type System!

• We provide input and output channels
with a lot of structure

• Can output public and private keys on
dedicated channels without causing
massive security vulnerabilities

• Full details of the type system in the
paper (I decided to spare you, it’s a nice
day)

Cryptflow

• Built on top of the Polyglot and Objanal
frameworks

• Performs a flow sensitive information flow
analysis of Java code

• Computes constraints on the levels of
variables and tries to solve them

• Solution: Flows are secure!

• No Solution: Insecure flow!

Cryptflow Currently

• Can analyze snippets of code that misuse
cryptography and identify simple
vulnerabilities:

• Outputs of private keys to System.out

• Hardcoded private keys

• Still in prototype form (but I’m working on
it!)

Future Work

• Working on having Cryptflow analyze
actual Android applications to analyze
misused cryptography

• Analyzing the source Java code to find illegal
flows of information having to do with
cryptography

• Saving the world one cryptographic
vulnerability at a time!

More Details

• Talk to me!

• My thesis is online on my/SEAS’ website

• This material will be in a PLDI poster this
summer!

