
Monitors and
Blame Assignment for
Higher-Order Session Types

HANNAH GOMMERSTADT

LIMIN JIA & FRANK PFENNING

1

Anna Problems

2

Good Communication

3

Bad Communication

4

What happened?

5

Or…

6

Contributions

• Use session types to dynamically monitor
communication between processes to
detect undesirable behavior

• Correctly blame the party that violated
the communication contract

7

Static Checking?

• Need to run checker on each node on
code written in different languages

• Unrealistic to assume that will have access
to whole computing base

• Use session types as invariants to check
dynamically

8

Process Model

• Processes communicate asynchronously
over channels by using message queues

• A process provides a service along a single
channel, ex. proc(c, P)

 9

proc(c, P)

Attacker Model

• Takes control of a process by replacing it
by another

▬►▫╬╬ȟ╟

10

Attacker Model

• Takes control of a process by replacing it
by another

▬►▫╬╬ȟ╟ m ▬►▫╬╬ȟ╠

11

Attacker Model

• Takes control of a process by replacing it
by another

havoc: ▬►▫╬╬ȟ╟ ᵐ▬►▫╬╬ȟ╠

12

Attacker Model

• Takes control of a process by replacing it
by another

havoc: ▬►▫╬╬ȟ╟ ᵐ▬►▫╬╬ȟ╠

• Q cannot invent new channels, must have
knowledge of existing ones

13

Communication Contracts

Session types express
communication contracts

between concurrent
processes.

14

Related Work

• Session types as a model for concurrent
communicating processes (Honda 1998)

• Blame theorems for higher-order
contracts (Findler & Felleisen 2002)

15

Session Types

16

proc(a, P)
╬ȡ░▪◄ ᷈═ 5

proc(c , send c 5; Q)

Session Types

17

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(a, P)
╬ȡ═

5

5

proc(c , send c 5; Q)

proc(c , Q)

Linearity

╬ȡ═ ȣ╬▪ȡ═▪Ṳ╟ḋ╬ȡ═

where A is a session type

18

A process always provides along a single channel, but
it may be a client of multiple channels.

Example

19

Example

20

Example

21

Example

22

Example

23

Example

24

Example

25

Example

26

Example

27

Example

28

Example

29

Example

30

Example

31

Example

32

Session Types

Type Meaning

╬ȡ Ⱳ ᷈═ Send ○ȡⱲ along ╬, continue as ═

╬ȡⱲO ═ Receive ○ȡⱲ along ╬, continue as ═

╬ȡ Close channel ╬ and terminate

╬ȡ═ṧ║ Send channel ▀ȡ═ along ╬, continue as ║

╬ȡ═ Ẋ║ Receive channel ▀ȡ═ along ╬, continue ║

╬ȡ ṥ ■░ȡ═░ Send label ■░ along ╬, continue as ═░

╬ȡǪ■░ȡ═░ Receive label ■░ along ╬, continue as ═░

33

Monitor Capabilities

• Placed at the ends of each queue,
typecheck message as it gets enqueued

• Can ONLY observe communicated values

• No access to process internals

• Raise alarms, which stop computation

34

M M

System Assumptions

• All processes are untrusted

• All monitors are trusted

• All message queues are trusted

35

Simple Monitor

36

5

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

Simple Monitor

37

5

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

5: int

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

Simple Monitor

38

╬ȡ═

5

proc(c , Q)

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

5: int

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

proc(a, P) M M 5

Simple Monitor

39

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

άǎƭƻǘƘέ

Simple Monitor

40

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

άǎƭƻǘƘέ

άǎƭƻǘƘέΥ int

Simple Monitor

41

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

proc(a, P)
╬ȡ░▪◄ ᷈═

proc(c , send c 5; Q) M M

άǎƭƻǘƘέ

άǎƭƻǘƘέΥ int

Higher-Order Monitor - Cut

42

proc(a, P) proc(c , d ҥ R; Q) M M
╬ȡ║

d : A

Higher-Order Monitor - Cut

43

proc(a, P)
╬ȡ║

proc(c , Q) M M

proc(a, P) proc(c , d ҥ R; Q) M M
╬ȡ║

proc(d , R)
▀ȡ═

M M

d : A

Higher-Order Monitor - ṧ

44

d

proc(a, P) proc(c , send c d; Q) M M

proc(d , R)
▀ȡ═

M M

╬ȡ═ ṧ║

Higher-Order Monitor - ṧ

45

d

proc(a, P)
╬ȡ║

proc(c , Q) M M

proc(a, P) proc(c , send c d; Q) M M

proc(d , R)
▀ȡ═

M M

╬ȡ═ ṧ║

d

proc(d , R)
▀ȡ═

M M

Blame Challenges

• Passing channels along channels
complicates the communication

• If an alarm is raised during higher-order
communication, it is not clear which
processes are to be blamed

46

Non-higher Order Case

47

Process configuration

Non-higher Order Case

48

Process configuration

Non-higher Order Case

49

Process configuration

Higher-Order Case

50

Process configuration

Higher-Order Case

51

Process configuration Communication
configuration

Higher-Order Case

52

Process configuration Communication
configuration

Incorrect Blame

53

Process configuration Communication
configuration

Correct Blame

54

Process configuration Communication
configuration

Intuition

55

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Intuition

56

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Incorrect Blame

57

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Correct Blame

58

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Blame Summary

Regardless of communication configuration,
our higher-order monitors are able to

produce a correct blame set by using the
process configuration

59

Theoretical Results

• Correctness of blame

• Well typed configurations do not raise
alarms

• Monitor transparency

• Minimality*

60

Correctness of Blame

• In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

61

Well Typed Configurations

• A havoc transition is necessary for the
monitor to halt execution and assign blame

62

Monitor Transparency

• Dynamic monitoring does not change
system behavior for well-typed processes

63

Minimality*

• The set of processes is as minimal as
possible with respect to the observational
model of the monitor

• This is a conjecture

64

Blame Proof Sketch

• (Giant messy) Preservation proof over the
monitoring rules (operational semantics
augmented with monitor actions)

• Track havoc processes in a graph to later
blame if alarm is raised

65

Blame Proof Challenges

• Havoc transitions can violate the linearity
condition

• Can now have channels being dropped or
duplicated which complicates the
communication even further

66

Minimality Revisited

• The set of processes
is as minimal as
possible with respect
to the observational
model of the monitor

67

Process configuration

Can we do better?

• How much more
power do the
monitors have to have
to make our blame
assignment more
precise?

68

Process configuration

New monitor capabilities

• The monitor verifies that any new spawned
process has the appropriate type

• Processes are no longer black boxes

69

Higher-Order Monitor - Cut

70

proc(a, P) proc(c , d ҥ R; Q) M M
╬ȡ║

d : A

Higher-Order Monitor - Cut

71

proc(a, P)
╬ȡ║

proc(c , Q) M M

proc(a, P) proc(c , d ҥ R; Q) M M
╬ȡ║

proc(d , R)
▀ȡ═

M M

d : A

R :: (d : A)

Example Take 2

72

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Take 2

73

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Incorrect Blame

74

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Correct Blame

75

Root

User

Perm

Cam

Pic

Process configuration

Root

User Cam

Communication
configuration

Perm

Pic

Blame Correctness Take 2

• In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

76

Blame Proof Sketch

• (Not messy) Preservation proof over the
monitoring rules (operational semantics
augmented with monitor actions)

• Track types of channels at each step of the
communication to typecheck new spawned
processes

77

Monitoring Tradeoffs

Monitor Capabilities Maximum Size of the Blame Set

- Monitors can’t access process
internals

- Communications over channels are
monitored

The longest path from the root of the
process configuration tree to a leaf

- Every new spawned process is
typechecked

- Communications over channels are
monitored

One process

78

Takeaways

• Using session types as communication
contracts enables dynamic monitoring

• The monitors assign blame correctly which
is a significant theoretical result

• There are tradeoffs between monitor
capability and blame precision

79

Future Work

• Communication contracts

• More expressive security properties via
dependent types

80

Questions?

81

Related Work

• Blame Calculi: Findler et al. (2002), Wadler
et al. (2009), Dimoulas et al. (2011, 2012),
Ahmed et al. (2011), Fennel et al. (2012),
Keil et al. (2015), Siek et al. (2015)

• Multiparty Session Types: Bocchi et al.
(2013), Chen at al. (2011), Thiemann
(2014)

82

