Monitors and

Blame Assignment for
Higher-Order Session Types

HANNAH GOMMERSTADT
LIMIN JIA & FRANK PFENNING

- 0000000000000 0000000000000

Anna Problems

Good Communication

Bad Communication

What happened?

User Android OS

[...

L 4 -

Android OS

Contributions

» Usesession typeso dynamically monitor
communication between processes to
detect undesirable behavior

* Correctlyplamethe party that violated
the communication contract

Static Checking?

* Need to run checker on each node on
code written in different languages

 Unrealistic to assume that will have access
to whole computing base

« Use session types as invariants to check
dynamically

Process Model

* Processes communicate asynchronously
over channels by using message queues

» A process provides a service along a single
channel, exproc(c, P)

proc(c, P)

Attacker Model

« Takes controbf a process by replacing it
by another

= ()

Attacker Model

« Takes controbf a process by replacing it
by another

> i ™ == 4

Attacker Model

« Takes controbf a process by replacing it
by another

havoC wm > ”(Jl%ﬁfu') My P O Jlﬁﬂlf

Attacker Model

Takes controbf a process by replacing it
by another

havoC wm > ”(Jl%ﬁf”') My P O Jlﬁﬂlf

* (Qcannot invent new channels, must have
knowledge of existing ones

Communication Contracts

Session types express
communication contracts
between concurrent
processes.

Related Work

« Session types as a model for concurrent
communicating processes (Honda 1998)

« Blame theorems for highesrder
contracts Findler& Felleiser2002)

Session Types

proc(a, P)

d
g

4 e

proc(c, sendc 5 Q)

Session Types

proc(a, P)

proc(a, P) — 5

proc(c, sendc 5 Q)

prog(c, Q)

Linearity

o 8kd= Uhd 905

whereAis a session type

A process always provides along a single channel, but
it may be a client of multiple channels.

Example

Example

Cam = take :

Example

Cam = &{take: }

Example

Cam = &{take : photoPerm }

Example

Cam = &{take : photoPerm — picHandle }

Example

Cam = &{take : photoPerm — picHandle ® Cam}

Example

User = picRequest :

Example

User = &{picRequest :

Example

User = &{picRequest :

fail :

success : ' }

Example

User = &{picRequest :
& {fail :

success : ' 1}

Example

User = &{picRequest :
@ {fail : User;

SuUCCess : ' 1}

Example

User = &{picRequest :
& {fail : User;

success : photoPerm ' 1}

Example

User = &{picRequest :
¢ {fail : User;

success : photoPerm ® User}}

Example

Cam = &{take : photoPerm — picHandle ® Cam}

User = & {picRequest :
¢ {fail : User;

success : photoPerm ® User}}

Session Types

MGW = Serd ody\along4k continue as=
: = Receiveody\alongd: continue as=
= Close channefand terminate
H=3 | Send channd®g=along4f; continue as|
J= X || Receivechanne®d= alongd: continue ||
IS {mg=1} Send labe alongf continueas=
JO{mo=} Receivdabelm alongqf; continue as=

Monitor Capabilities
™M

» Placed at the ends of each queue,
typecheckmessage as it geshgueued

 CanONLY observe communicated values
* NO access to process internals

« Raise alarms, which stop computation

System Assumptions

« All processes arentrusted
 All monitors are

* All message queues are

Simple Monitor

proc(a, P) — N m -

proc(c, sendc 5 Q)

S

Simple Monitor

A =
proc(a, F) _- - i proc(c, sendc 5 Q)
5

i -«
proc(a,) _- - L proc(c, sendc 5 Q)
5:int

Simple Monitor

L
proc(a, P) —- - i proc(c, sendc 5 Q)
)

ot e
proc(a, P) —- 'ﬂ proc(c, sendc 5 Q)

5:int

d
proc(a, P) —- 5 ' in proc(c, Q)

Simple Monitor

dlg = ™
proc(a, P) —- - i proc(c, sendc 5 Q)

aaf2uKEe

Simple Monitor

dg -
proc(a, F) _- - i proc(c, sendc 5 Q)

aaf2uKEé

i -«
proc(a,) _- - i proc(c, sendc 5 Q)
aaf 2mKeéyY

Simple Monitor

dg -
proc(a, F) _- - i proc(c, sendc 5 Q)

aaf2uKEé

i -«
proc(a,) _- - i proc(c, sendc 5 Q)
aaf 2mKeéyY

4

Higher-Order Monitor - Cut

proc(a, P)

7l

proc(c, dH R; Q)

d:A

Higher-Order Monitor - Cut

proc(a, P) —- - i proc(c, dH R; Q)
d:A

proca, P —l - L
- ' ax proc(d ,R)

Higher-Order Monitor - S

-y
MM

proc(a, P)

e

proc(d ,R)

proc(c, sendc d Q)

d

Higher-Order Monitor - S
- ' aix proc(d ,R)

proc(a, P) —- - 1% S | proc(c, sendc d Q)
d

proc(a, P) —- d ' i proc(c, Q)
- ' s proc(d ,R)

Blame Challenges

» Passing channels along channels
complicates the communication

« |If an alarm is raised during higherder
communication, it is not clear which
processes are to be blamed

Non-higher Order Case

Process configuration

Non-higher Order Case

Process configuration

Non-higher Order Case

Process configuration

Higher-Order Case

Process configuration

Higher-Order Case

Communication
configuration

Process configuration

Higher-Order Case

Communication
configuration

Process configuration

Incorrect Blame

Communication
configuration

Process configuration

Correct Blame

Communication
configuration

Process configuration

Intuition @

Communication H

configuration

Process configuration

Intuition @

Communication H

configuration

Process configuration

Communication
configuration

Process configuration

Communication H

Process configuration :)
configuration

Blame Summary

Regardless of communication configuration,
our higherorder monitors are able to
produce a correct blame set by using the
process configuration

Theoretical Results

 Correctness of blame

* Well typed configurations do not raise
alarms

* Monitor transparency
* Minimality*

Correctness of Blame

In case of an alarm, one of the indicated
set of possible culprits must have been
compromised.

Definition 1 (Correctness of blame). A set of processes N is
correct to be blamed w.r.t. the execution trace T = (1, G —"
(), alarm(a) with = Q) : wf if there is a b € N such that b has

made a havoc transition in T.

Well Typed Configurations

A havoc transition Is necessary for the
monitor to halt execution and assign blame

Definition 2 (Well-typed configurations do not raise alarms).
Given any T = Q,G —* Q' G’ such that = Q : wf and T
does not contain any havoc transitions, there does not exists an a
such that alarm(a) € €V’

Monitor Transparency

« Dynamic monitoring does not change
system behavior for wetyped processes

Definition 3 (Monitor transparency). Given any | = (0, G —~
Q.G such that = Q : wf and T does not contain any havoc
transitions. Then Q(—~)*Q", where Q)" is obtained from €)' by
removing typing information from queues.

Minimality*

* The set of processes Is as minimal as

possible with respect to the observational
model of the monitor

* This Is a conjecture

Blame Proof Sketch

* (Glant messy) Preservation proof over the
monitoring rules (operational semantics
augmented with monitor actions)

* Track havoc processes in a graph to later
blame if alarm Is raised

Blame Proof Challenges

* Havoc transitions can violate the linearity
condition

« Can now have channels being dropped or
duplicated which complicates the
communication even further

Minimality Revisited

* The set of processes
IS as minimal as
possible with respect
to the observational
model of themonitor

Process configuration

Can we do better?

« How much more
power do the
monitors have to have
to make our blame
assignment more
precise?

Process configura

New monitor capabilities

* The monitor verifies that any new spawned
process has the appropriate type

* Processes are no longer black boxes

Higher-Order Monitor - Cut

proc(a, P)

7l

proc(c, dH R; Q)

d:A

Higher-Order Monitor - Cut

proc(a, P) —- - i proc(c, dH R; Q)
d:A

proca, P —nl Il L
- ‘ ax proc(d ,R)

R::(d:A)

Example Take 2 @

Communication H

configuration

Process configuration

@ Cam

Communication H

Process configuration :)
configuration

Communication H

Process configuration :)
configuration

Cam

Correct Blame @
=

Communication H

configuration

Process configuration

Blame Correctness Take 2

* |Incase of an alarm, one of the indicated
set of possible culprits must have been
compromised.

Definition 1 (Correctness of blame). A set N is correct to be
blamed w.r.t. the execution trace T = I',QQ, H —" alarm(a)
with = Q : wf if N contains a single process that has made a
havoc transition in T .

Blame Proof Sketch

* (Not messy) Preservation proof over the
monitoring rules (operational semantics
augmented with monitor actions)

* Track types of channels at each step of the
communication taypechecknew spawned
processes

Monitoring Tradeoffs

Monitor Capabilities Maximum Size of the Blame Set

- Monitorsc an’ t acces s The lomgesepsatls from the root of the
internals processconfiguration tree to a leaf

- Communications over channels are
monitored

- Everynew spawned process is One process
typechecked

- Communications over channels are
monitored

Takeaways

« Using session types as communication
contracts enables dynamic monitoring

* The monitors assign blame correctly which
IS a significant theoreticaésult

« There are tradeoffs between monitor
capablility and blame precision

Future Work

e Communication contracts

* More expressive securitgroperties via
dependenttypes

Questions?

Related Work

« Blame Calculfindleret al. (2002)Wadler
et al. (2009)Dimoulaset al. (2011, 2012),
Ahmed et al. (2011), Fennel et al. (2012),
Kellet al. (2015)Sieket al. (2015)

* Multiparty Session TypeBocchiet al.
(2013), Chen at al. (2011), Thiemann
(2014)

