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Anna Problems 
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Good Communication 
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Bad Communication 
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What happened? 
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Or… 
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Contributions 
 

• Use session types to dynamically monitor 
communication between processes to 
detect undesirable behavior  

• Correctly blame the party that violated 
the communication contract 
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Static Checking? 
 

• Need to run checker on each node on 
code written in different languages 

• Unrealistic to assume that will have access 
to whole computing base  

• Use session types as invariants to check 
dynamically 
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Process Model 
 

• Processes communicate asynchronously 
over channels by using message queues  

• A process provides a service along a single 
channel, ex. proc(c, P) 
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proc(c, P) 



Attacker Model 
 

• Takes control of a process by replacing it  
by another  

▬►▫╬╬ȟ╟  
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

▬►▫╬╬ȟ╟  m ▬►▫╬╬ȟ╠   
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

havoc: ▬►▫╬╬ȟ╟ ᵐ▬►▫╬╬ȟ╠   
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Attacker Model 
 

• Takes control of a process by replacing it  
by another  

havoc: ▬►▫╬╬ȟ╟ ᵐ▬►▫╬╬ȟ╠   

• Q cannot invent new channels, must have 
knowledge of existing ones  
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Communication Contracts 
 

Session types express 
communication contracts 

between concurrent 
processes.  

 

 

 

 
14 



Related Work 
 

• Session types as a model for concurrent 
communicating processes (Honda 1998) 

• Blame theorems for higher-order 
contracts (Findler & Felleisen 2002) 
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Session Types 
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proc(a, P) 
╬ȡ░▪◄ ᷈═ 5 

proc(c , send c 5; Q) 



Session Types 
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proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(a, P) 
╬ȡ═ 

5 

5 

proc(c , send c 5; Q) 

proc(c , Q) 



Linearity 
 

 

 

 

╬ȡ═ ȣ╬▪ȡ═▪Ṳ╟ḋ╬ȡ═ 

where A is a session type 
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A process always provides along a single channel, but 
it may be a client of multiple channels.  



Example 
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Example 
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21 



Example 
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Example 
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Example 
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Example 
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Example 
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Example 
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Example 
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Example 
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Example 
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Session Types 

Type Meaning 

╬ȡ Ⱳ ᷈═ Send ○ȡⱲ along ╬, continue as ═ 

╬ȡⱲO ═ Receive ○ȡⱲ along ╬, continue as ═ 

╬ȡ Close channel ╬ and terminate 

╬ȡ═ṧ║ Send channel ▀ȡ═ along ╬, continue as ║ 

╬ȡ═ Ẋ║ Receive channel ▀ȡ═ along ╬, continue ║ 

╬ȡ ṥ ■░ȡ═░ Send label ■░ along ╬, continue as ═░ 

╬ȡǪ■░ȡ═░ Receive label ■░ along ╬, continue as ═░ 
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Monitor Capabilities 
 

• Placed at the ends of each queue, 
typecheck message as it gets enqueued 

• Can ONLY observe communicated values  

• No access to process internals 

• Raise alarms, which stop computation 
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M M 



System Assumptions 
 

• All processes are untrusted 

• All monitors are trusted 

• All message queues are trusted 
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Simple Monitor 
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5 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 



Simple Monitor 
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5 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

5: int 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 



Simple Monitor 
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╬ȡ═ 

5 

proc(c , Q) 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

5: int 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

proc(a, P) M M 5 



Simple Monitor 
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proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

άǎƭƻǘƘέ 



Simple Monitor 

40 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

άǎƭƻǘƘέ 

άǎƭƻǘƘέΥ int 



Simple Monitor 
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proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

proc(a, P) 
╬ȡ░▪◄ ᷈═ 

proc(c , send c 5; Q) M M 

άǎƭƻǘƘέ 

άǎƭƻǘƘέΥ int 



Higher-Order Monitor - Cut 
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proc(a, P) proc(c , d ҥ R; Q) M M 
╬ȡ║ 

d : A 



Higher-Order Monitor - Cut 
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proc(a, P) 
╬ȡ║ 

proc(c , Q) M M 

proc(a, P) proc(c , d ҥ R; Q) M M 
╬ȡ║ 

proc(d , R) 
▀ȡ═ 

M M 

d : A 



Higher-Order Monitor - ṧ  
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d 

proc(a, P) proc(c , send c d; Q) M M 

proc(d , R) 
▀ȡ═ 

M M 

╬ȡ═ ṧ║ 



Higher-Order Monitor - ṧ 
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d 

proc(a, P) 
╬ȡ║ 

proc(c , Q) M M 

proc(a, P) proc(c , send c d; Q) M M 

proc(d , R) 
▀ȡ═ 

M M 

╬ȡ═ ṧ║ 

d 

proc(d , R) 
▀ȡ═ 

M M 



Blame Challenges 
 

• Passing channels along channels 
complicates the communication  

• If an alarm is raised during higher-order 
communication, it is not clear which 
processes are to be blamed 

 

46 



Non-higher Order Case 
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Process configuration 



Non-higher Order Case 
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Process configuration 



Non-higher Order Case 
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Process configuration 



Higher-Order Case 
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Process configuration 



Higher-Order Case 
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Process configuration Communication 
configuration 



Higher-Order Case 
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Process configuration Communication 
configuration 



Incorrect Blame 
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Process configuration Communication 
configuration 



Correct Blame 
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Process configuration Communication 
configuration 



Intuition 
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Incorrect Blame 
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Correct Blame 
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Blame Summary 
 

Regardless of communication configuration, 
our higher-order monitors are able to 

produce a correct blame set by using the 
process configuration 
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Theoretical Results 
 

• Correctness of blame 

• Well typed configurations do not raise 
alarms 

• Monitor transparency 

• Minimality*  
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Correctness of Blame  

 

• In case of an alarm, one of the indicated 
set of possible culprits must have been 
compromised.  
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Well Typed Configurations 
 

• A havoc transition is necessary for the 
monitor to halt execution and assign blame 
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Monitor Transparency 
 

• Dynamic monitoring does not change 
system behavior for well-typed processes 
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Minimality* 
 

• The set of processes is as minimal as 
possible with respect to the observational 
model of the monitor 

• This is a conjecture 
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Blame Proof Sketch 
 

• (Giant messy) Preservation proof over the 
monitoring rules (operational semantics 
augmented with monitor actions) 

• Track havoc processes in a graph to later 
blame if alarm is raised  
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Blame Proof Challenges 
 

• Havoc transitions can violate the linearity 
condition 

• Can now have channels being dropped or 
duplicated which complicates the 
communication even further 
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Minimality Revisited 
 

• The set of processes 
is as minimal as 
possible with respect 
to the observational 
model of the monitor 

67 

Process configuration 



Can we do better? 
 

• How much more 
power do the 
monitors have to have 
to make our blame 
assignment more 
precise? 
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Process configuration 



New monitor capabilities 
 

• The monitor verifies that any new spawned 
process has the appropriate type  

• Processes are no longer black boxes 

69 



Higher-Order Monitor - Cut 
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proc(a, P) proc(c , d ҥ R; Q) M M 
╬ȡ║ 

d : A 



Higher-Order Monitor - Cut 
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proc(a, P) 
╬ȡ║ 

proc(c , Q) M M 

proc(a, P) proc(c , d ҥ R; Q) M M 
╬ȡ║ 

proc(d , R) 
▀ȡ═ 

M M 

d : A 

R :: (d : A) 



Example Take 2 
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Incorrect Blame 
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Blame Correctness Take 2 
 

 

 

• In case of an alarm, one of the indicated 
set of possible culprits must have been 
compromised.  
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Blame Proof Sketch 
 

• (Not messy) Preservation proof over the 
monitoring rules (operational semantics 
augmented with monitor actions) 

• Track types of channels at each step of the 
communication to typecheck new spawned 
processes  
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Monitoring Tradeoffs 

Monitor Capabilities Maximum Size of the Blame Set  

- Monitors can’t access process 
internals 

- Communications over channels are 
monitored 

The longest path from the root of the 
process configuration tree to a leaf  

- Every new spawned process is 
typechecked  

- Communications over channels are 
monitored 
 

One process  
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Takeaways 
 

• Using session types as communication 
contracts enables dynamic monitoring 

• The monitors assign blame correctly which 
is a significant theoretical result 

• There are tradeoffs between monitor 
capability and blame precision 
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Future Work 
 

• Communication contracts 

• More expressive security properties via 
dependent types  
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Questions? 
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