
Faster Algorithm for Converting an STNU into1

Minimal Dispatchable Form2

Luke Hunsberger # Ñ �3

Vassar College, USA4

Roberto Posenato # Ñ �5

University of Verona, Italy6

Abstract7

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and8

reasoning about temporal constraints on activities, including those with uncertain durations. An9

STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing10

that all relevant constraints are satisfied. The number of edges in a dispatchable network affects11

the computational work that must be done during real-time execution. Recent work presented an12

O(kn3)-time algorithm for converting a dispatchable STNU into an equivalent dispatchable network13

having a minimal number of edges, where n is the number of timepoints and k is the number of14

actions with uncertain durations. This paper presents a modification of that algorithm, making it15

an order of magnitude faster, down to O(n3). Given that in typical applications k = O(n), this16

represents an effective order-of-magnitude reduction from O(n4) to O(n3).17
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1 Background22

Temporal constraint networks facilitate representing and reasoning about temporal constraints23

on activities. Simple Temporal Networks with Uncertainty (STNUs) are one of the most24

important kinds of temporal networks because they allow the explicit representation of actions25

with uncertain durations [13]. An STNU is dispatchable if it can be executed by a flexible26

and efficient real-time execution algorithm while guaranteeing that all of its constraints will27

be satisfied. This paper modifies an existing algorithm for converting a dispatchable network28

into an equivalent dispatchable network having a minimal number of edges, making it an29

order of magnitude faster.30

1.1 Simple Temporal Networks31

A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables32

called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for33

X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a solution as a constraint satisfaction34

problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes35

and the constraints correspond to labeled, directed edges. In particular, each constraint36

(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. For convenience, such edges may37

be notated as (X, δ, Y ) or, if the weight is not being considered, simply XY . Similarly, a path38

from X to Y may be notated by listing the timepoints visited by the path (e.g., XUVWY )39

or, if the context is clear, simply XY .40

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs41

that maintains time windows for each timepoint and, as each timepoint X is executed, only42

propagates constraints locally, to neighbors of X in the STN graph [16, 14]. An STN is called43
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dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no44

matter how the flexibility afforded by the algorithm is exploited during execution. Morris [12]45

proved that a consistent STN is dispatchable if and only if every pair of timepoints that are46

connected by a path in the STN graph are connected by a shortest vee-path (i.e., a shortest47

path comprising zero or more negative edges followed by zero or more non-negative edges).48

Algorithms for generating equivalent dispatchable STNs having a minimal number of edges49

have been presented [16, 14]. Minimizing the number of edges is important since it directly50

impacts the real-time computations required during execution.51

1.2 Simple Temporal Networks with Uncertainty52

A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent53

links that represent actions with uncertain, but bounded durations [13]. An STNU is a54

triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form55

(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensures56

that regardless of when the activation timepoint A is executed, the contingent timepoint C57

will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable, but bounded.58

Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is59

the graph for the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the60

contingent durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case61

(LC) edge A c:x C in Elc that represents the uncontrollable possibility that the duration might62

take on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents63

the possibility that it might take on its maximum value y. For convenience, edges such as64

A c:x C and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.65

An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution66

strategy that guarantees that all constraints in C will be satisfied no matter how the contingent67

durations turn out [13, 4]. A strategy is dynamic in that its execution decisions can react68

to observations of contingent executions, but with no advance knowledge of future events.69

Morris [10] proved that an STNU is DC if and only if it does not include any semi-reducible70

negative cycles (SRN cycles). (A path P is semi-reducible if certain constraint-propagation71

rules can be used to provide new edges that effectively bypass each occurrence of an LC edge72

in P.) In 2014, Morris [11] presented the first O(n3)-time DC-checking algorithm.1 In 2018,73

Cairo et al. [1] presented their O(mn + k2n + kn log n)-time RUL− DC-checking algorithm.74

Hunsberger and Posenato [6] subsequently presented a faster version, called RUL2021, that75

has the same worst-case complexity but achieves an order-of-magnitude speedup in practice76

by restricting the edges it inserts into the network during constraint propagation.77

1.3 Flexible and Efficient Real-time Execution78

Most DC-checking algorithms generate conditional wait constraints that must be satisfied79

by any valid execution strategy. Each wait is represented by a labeled edge of the form80

W C:−w A, which may be notated as (W, C:−w, A). (Despite the similar notation, a wait is81

distinguishable from the original UC edge since its source timepoint is not the contingent82

timepoint C.) Such a wait can be glossed as: “While C remains unexecuted, W must wait at83

least w after A.” Morris [11] defined an Extended STNU (ESTNU) to be an STNU augmented84

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.



L. Hunsberger and R. Posenato 8:3

with such waits. Thus, the graph for an ESTNU includes a set Eucg of generated wait edges.85

For convenience, we intentionally blur the distinction between an ESTNU and its graph.86

Morris then extended the notion of dispatchability to ESTNUs, defining it in terms of the87

ESTNU’s STN projections. A projection of an ESTNU is the STN derived from assigning88

fixed values to the contingent durations. In any projection, each edge from the ESTNU89

projects onto an ordinary edge [12, 9]. For example, consider the contingent link (A, 1, 10, C)90

and the projection where its duration C − A equals 4. In that projection, the LC and UC91

edges, (A, c:1, C) and (C, C:−10, A), project onto the respective ordinary edges, (A, 4, C)92

and (C, −4, A), representing that C − A = 4. Meanwhile, the wait edges, (W, C:−7, A) and93

(V, C:−3, A), project onto (W, −4, A) and (V, C:−3, A), respectively, since the wait on W94

expires when C executes at A + 4, and the wait on V is satisfied at time A + 3.95

Morris defined an ESTNU to be dispatchable if all of its STN projections are dispatchable96

(as STNs). He then argued that a dispatchable ESTNU would necessarily provide a guarantee97

of flexible and efficient real-time execution. Hunsberger and Posenato [9] later: (1) formally98

defined a flexible and efficient real-time execution algorithm for ESTNUs, called RTE∗;99

(2) defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of100

the ESTNU’s constraints; and (3) proved that an ESTNU satisfying their definition of101

dispatchability necessarily satisfies Morris’ definition (i.e., all of its STN projections are102

STN-dispatchable). The RTE∗ algorithm provides maximum flexibility during execution,103

unlike the earliest-first strategy used for non-dispatchable networks [5].104

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [11]105

argued that his O(n3)-time DC-checking algorithm could be modified, without impacting106

its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [7]107

presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm called108

FDSTNU. However, neither of these algorithms provides any guarantees about the number of109

edges in the dispatchable output. Since the number of edges in the network directly impacts110

the real-time computations required to execute the network, it is important to minimize that111

number. Hunsberger and Posenato [8] subsequently presented the first ESTNU-dispatchability112

algorithm, called minDispESTNU, that, in O(kn3) time, generates an equivalent dispatchable113

ESTNU having a minimal number of edges. To date, it is the only such algorithm. The114

main contribution of this paper is to modify minDispESTNU so that it solves the same problem115

in O(n3)-time, an order of magnitude faster, especially since it is common that k = O(n),116

meaning the reduction in complexity is effectively from O(n4) to O(n3).117

2 Overview of the Existing minDispESTNU Algorithm118

The minDispESTNU algorithm [8] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Eucg) as its119

only input and generates as its output an equivalent dispatchable ESTNU having a minimal120

number of edges. (Such an ESTNU is called a µESTNU for S.) It has four steps:121

1. Compute the set Esi
o of so-called stand-in edges: ordinary edges that are entailed by122

various combinations ordinary, LC, UC, and wait edges from the ESTNU.123

2. Apply the STN-dispatchability algorithm from Tsamardinos et al. [16] to the resulting124

set of ordinary edges, thereby generating a dispatchable STN subgraph, (T , E∗
o ).125

3. Let Ê∗
o = E∗

o \Esi
o be the result of removing any remaining stand-in edges from E∗

o .126

4. Compute the set of wait edges that are not needed for dispatchability and remove them127

from Eucg; call the resulting set Êucg; then return the µESTNU (T , Ê∗
o , Elc, Euc, Êucg).128

The worst-case time complexity of the minDispESTNU algorithm is dominated by the first step:129

finding the set Esi
o of so-called stand-in edges. Therefore, our new, faster algorithm modifies130

TIME 2024
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A CX C:−6
c:1

C:−10

−1 10

−1

Figure 1 (Dashed) stand-in edges entailed by individual labeled edges

only that step, achieving an order-of-magnitude reduction in the overall worst-case time131

complexity. The rest of this section gives an overview of Step 1 of the existing minDispESTNU132

algorithm, as implemented by its genStandIns helper algorithm.133

2.1 Generating Stand-in Edges134

Following Morris [11, 12], an ESTNU is dispatchable if all of its STN projections are135

dispatchable (as STNs). That, in turn, requires that in each STN projection, each pair of136

timepoints V and W that are connected by a path be connected by a shortest vee-path (i.e.,137

a path comprising zero or more negative edges followed by zero or more non-negative edges).138

A key insight behind the minDispESTNU algorithm is that in different projections, the shortest139

vee-paths from V to W may take different routes and may have different lengths.140

Before addressing more complex cases, genStandIns generates stand-in edges entailed141

by individual labeled edges. For example, given a contingent link (A, x, y, C), the LC edge142

(A, c:x, C) entails a stand-in edge (A, y, C) because in any projection where ω = C−A ∈ [x, y],143

the LC edge projects onto the ordinary edge (A, ω, C), whose length is ω ≤ y. Similarly,144

the UC edge (C, C:−y, A) entails a stand-in edge (C, −x, A) since in any projection the UC145

edge projects onto the ordinary edge (C, −ω, A), whose length is −ω ≤ −x. Finally, a wait146

edge (V, C:−v, A), where −v < −x, projects onto the ordinary edge (V, max{−ω, −v}, A)147

and hence entails a stand-in edge (V, −x, A), since −ω ≤ −x and −v < −x.2 Figure 1 shows148

an example of the stand-in edges entailed by individual labeled edges.149

The most computationally costly part of the genStandIns algorithm is its computation150

of stand-in edges entailed by different combinations of ESTNU edges. For example, consider151

the ESTNU in Figure 2a, commonly referred to as a diamond structure. In the projection152

where ω = C − A = 2, the projected path VACW , shown in blue in Figure 2b, is the153

shortest vee-path from V to W : its length is 8. But in the projection where ω = C − A = 9,154

the projected path VAW , shown in orange in Figure 2c, is the shortest vee-path from V155

to W : its length is 7. The plots of the lengths, |VACW | and |VAW |, in Figure 2e, show156

that across all projections the maximum length of the shortest vee-path from V to W ,157

indicated by the dashed green line, is 8. In other words, the combination of edges in158

the diamond structure entails the stand-in edge (V, 8, W ), shown as dashed and green in159

Figure 2d. Since the constraint, W − V ≤ 8, must be satisfied in all projections, it must160

also be satisfied by any dynamic execution strategy for the ESTNU. Similarly, the path161

VAC satisfies |VAC | = max{−ω, −6} + ω = max{0, ω − 6} ≤ 4, for all ω ∈ [1, 10]. Thus,162

that path entails the stand-in edge (V, 4, C), shown as dashed and purple in Figure 2d. Like163

all stand-in edges, it must be satisfied by any dynamic execution strategy. The purpose of164

the genStandIns helper algorithm is to make all such constraints temporarily explicit so165

that Step 2 of minDispESTNU can determine which ordinary edges can be removed without166

threatening the dispatchability of the ESTNU.167

2 As a first step, genStandIns replaces weak waits (i.e., those where −v ≥ −x) by ordinary edges and
adjusts misleading waits (i.e., those where −v < −y). But those details are not important for this paper.
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Figure 2 (a) Sample ESTNU, (b) and (c) two of its projections with (colored) shortest vee-paths,
(d) entailed (dashed) stand-in edges, (e) plots of vee-path lengths, and (f) the general case

Each iteration of the genStandIns algorithm’s main loop explores O(n2k) diamond168

structures (n choices for V , n choices for W , and k choices for the contingent link), as169

illustrated in Figure 2f, where the distances δ and γ are provided by the all-pairs shortest-170

paths (APSP) matrix for the ordinary edges in the ESTNU. (The APSP matrix for the171

ordinary edges is commonly called the distance matrix, denoted by D.) The lengths of the172

alternative vee-paths, VACW and VAW , are given by |VACW | = max{−ω, −v} + ω + γ and173

|VAW | = max{−ω, −v} + δ. Their intersection occurs where ω = δ − γ. If that value falls174

within the interval (x, y), it is not hard to show that the maximum length of any shortest175

vee-path from V to W across all projections is θ = max{γ, δ −v}, represented by the stand-in176

edge (V, θ, W ), shown as dashed in Figure 2f. The other stand-in edge (V, y − v, C) derives177

from the two-edge path, VAC , whose length in the projection where ω = C − A is given178

by: |VAC | = max{−ω, −v} + ω = max{0, ω − v} ≤ y − v. After exploring all such diamond179

structures, Johnson’s algorithm [2] is called to update the APSP matrix.180

2.2 Stand-in edges arising from nested diamond structures181

Because the distances involved in the analysis of diamond structures depend on shortest paths182

in the subgraph of ordinary edges (e.g., γ = D(C, W ) and δ = D(A, W ) in Figure 2f), which183

can be affected by inserting (ordinary) stand-in edges into the ESTNU, it follows that stand-in184

edges can derive from nested diamond structures, for example, as illustrated in Figure 3. That185

figure shows a more complicated ESTNU, where the diamond structure involving the solid186

green edges is nested inside the diamond structure involving the solid purple edges. Ignoring187

the green edges, for now, the solid purple edges can be shown to entail the (purple, dashed)188

stand-in edge (V2, 3, W ). In particular, in projections where ω2 = C2 − A2 ≤ 7, the length of189

the path V2A2C2W is: max{−ω2, −6} + ω2 + 2 = max{2, ω2 − 4} ≤ 3. In contrast, if ω2 ≥ 7,190

the length of the alternative path V2A2W is: max{−ω2, −6} + 9 = max{9 − ω2, 3} ≤ 3.191

Next, since the green diamond is isomorphic to the diamond from Figure 2d, it entails192

the (green, dashed) stand-in edge (A2, 8, W ). But now, using that stand-in edge instead of193

TIME 2024
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Figure 3 Deriving stand-in edges from nested diamond structures

the purple edge (A2, 9, W ), a new analysis of the purple structure shows that it entails a194

stronger (blue, dashed) stand-in edge (V2, 2, W ). In other words, nested diamond structures195

can sometimes combine to entail stronger stand-in edges.196

Hunsberger and Posenato [8] proved that it suffices to explore nested diamond structures197

up to a maximum depth of k. Thus, the genStandIns algorithm does up to k iterations of198

its main loop. Since each iteration ends by calling Johnson’s algorithm on up to n2 edges,199

the overall complexity of genStandIns is O(kn3).200

3 Speeding up the minDispESTNU Algorithm201

The complexity of the minDispESTNU algorithm is driven by the O(kn3)-time complex-202

ity of genStandIns. Our modification of minDispESTNU replaces genStandIns with203

newGenStandIns, which, taking a more focused and efficient approach to dealing with204

nested diamond structures, works in O(n3) time. Since k = O(n) is common in applications205

(e.g., k ≈ n/10 in some benchmarks [15]), the reduction in worst-case time-complexity is206

effectively from O(n4) to O(n3).207

3.1 Stand-in Edges Derived from Nested Diamond Structures208

Figure 4 illustrates the nested relationship between an inner diamond Di (involving timepoints209

Vi, Ai, Ci and Wi, shaded dark gray) and an outer diamond Dj (involving timepoints210

Vj , Aj , Cj and Wj , shaded light gray), where the arrows labeled by a, b, δi, γi and γj represent211

ordinary edges or paths, and the dashed arrows represent the stand-in edges (Vi, τi, Wi) and212

(Vj , τj , Wj) entailed by the diamonds.3 Lemma 1, below, ensures that in any such nesting,213

there must be a path from Aj to Ai that comprises zero or more negative ordinary edges214

followed by one (negative) wait edge, which for convenience we call a negOrdWait path.215

This implies that the activation timepoints involved in nested structures can be put into a216

strict partial order which, in turn, implies that generating the stand-in zedges associated217

with nested diamonds can be done in just one pass, instead of the k passes through the218

main loop of genStandIns. Furthermore, to determine the length of the stand-in edge from219

3 Hunsberger and Posenato [8] proved that when considering vee-paths from Aj to Wj , the only relevant
nesting of diamonds occurs if the inner diamond Di resides along the path from Aj to Wj in the outer
diamond Dj , as shown in the figure. Since the inner diamond begins with a negative wait edge, any
path from Aj to Wj that included Di between Cj and Wj could not be a vee-path.
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Vj to any Wj , taking advantage of the nesting of Di within Dj , it suffices to know the220

length of the shortest ordinary path from Aj to Wj . (Recall that the length of the entailed221

stand-in edge depends only on the values of D(Cj , Wj), D(Aj , Wj) and −vj .) In other222

words, when generating stand-in edges derived from diamonds involving the labeled edges223

(Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai), it is not necessary to find all ordinary distances affected224

by those stand-in edges (which is what the existing genStandIns algorithm uses Johnson’s225

algorithm to do—on each of up to k passes); instead, it suffices to focus on the distances of226

ordinary paths emanating from Aj that are affected by those stand-in edges. In the case of Aj227

shown in the figure, it suffices to record distances of the form, D(Aj , Wi) = b + τi, resulting228

from new stand-in edges. Crucially, all of these distances correspond to paths emanating229

from a single source, Aj . After exploring all inner diamonds Di and recording the new230

distances, D(Aj , Wi), then all values D(Aj , ·) can be updated using Dijkstra’s single-source231

shortest-paths algorithm, guided by a potential function [2]. These observations enable232

the newGenStandIns algorithm, presented later in this section, to call Dijkstra’s algorithm233

k times, instead of calling Johnson’s algorithm k times, leading to an order-of-magnitude234

reduction in worst-case time complexity, from O(kn3) down to O(n3).235

▶ Lemma 1. Let S be any dispatchable ESTNU. Suppose that E is a stand-in edge derived236

from nested diamond structures in which the diamond structure Di associated with the237

contingent link (Ai, xi, yi, Ci) is nested directly inside the diamond structure Dj associated238

with the contingent link (Aj , xj , yj , Cj). Furthermore, suppose that the labeled edges from239

these contingent links are needed for E (i.e., without their labeled edges, E would not be240

entailed by the remaining edges in S). Then there must be a path from Aj to Ai in S that241

consists of zero or more negative ordinary edges, followed by a single wait edge of the form242

(Vi, Ci:−vi, Ai) (i.e., a negOrdWait path).243

Proof. Suppose that E is the stand-in edge (Vj , τj , Wj). Since the labeled edges from these244

contingent links are needed for E, it follows that in at least one STN projection, the shortest245

vee-path from Vj to Wj must include the path from Aj to Vi to Ai. Since any subpath of a246

TIME 2024
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vee-path is also a vee-path, and the wait edge (Vi, Ci:−vi, Ai) has negative length, it follows247

that all of the ordinary edges represented in the figure by (Aj , b, Vi) must be negative. ◀248

Given Lemma 1, the activation timepoints participating in a nested diamond structure249

must be linked by a chain of negOrdWait paths. In addition, for a DC STNU, there can250

be no cycles of such paths because they would constitute a negative cycle in the OU-graph,251

i.e., Gou = (T , Eo ∪ Euc ∪ Eucg), the graph containing all the original and derived edges but252

the lower-case ones. However, a single activation timepoint may participate in multiple253

nested structures. Hence, the set of all negOrdWait paths among the activation timepoints254

necessarily forms a strict partial order (equivalently, a forest of one or more directed acyclic255

graphs in the OU-graph).256

For each pair of activation timepoints, Aj and Ai, for which there is a negOrdWait path257

from Aj to Ai, we say that Aj is a parent of Ai, and that Ai is a child of Aj . The relevant258

information for determining the stand-in edges emanating from Aj and passing through259

a diamond structure involving labeled edges from (Ai, xi, yi, Ci) is: (1) ℓ, the (negative)260

length of the negOrdWait path from Aj to Ai; and (2) −vi, the (negative) length of the261

wait edge, (Vi, Ci:−vi, Ai), terminating that negOrdWait path. These lengths are shown in262

Figure 4, where b = ℓ + vi is the length of the prefix of the negOrdWait path that includes263

only the ordinary edges (i.e., everything except the terminal wait edge). Then, as shown by264

Hunsberger and Posenato [8], for any timepoint Wi ∈ T \{Ai, Ci, Aj , Cj}, the length of the265

potential stand-in edge from Aj to Wi is given by b + max{γi, δi − vi} = max{b + γi, ℓ + δi},266

where γi = D(Ci, Wi) and δi = D(Ai, Wi), also shown in the figure. Then, for any Wj , the267

ordinary distance D(Aj , Wj) affected by such a stand-in edge can be determined by the268

previously mentioned call to Dijkstra’s algorithm, guided by a potential function.269

3.2 The getPCinfo (get parent/child info) Algorithm270

The getPCinfo algorithm (Algorithm 1) efficiently computes the relevant parent/child271

information, returning a pair of vectors of hash tables, called parent and child. For each272

activation timepoint Ai, parent[Ai] is a hash table containing entries where some Aj is the273

key and (ℓ, −vi) is the value (i.e., Aj is the parent, ℓ is the length of the negOrdWait path274

from Aj to Ai, and −vi is the length of its terminating wait edge). Similarly, for each275

activation timepoint Aj , child[Aj ] is a hash table containing entries linking some child Ai to276

the corresponding pair (ℓ, −vi), where ℓ is the length of the negOrdWait path from Aj to Ai,277

and −vi is the length of its terminal wait edge.278

An important factor is that if two negOrdWait paths from Aj to Ai have the same length,279

but one has a stronger (i.e., more negative) terminating wait edge, then the negOrdWait280

path terminated by the weaker wait dominates the one with the stronger wait because in281

any projection the projected length of the one with the weaker wait will be shorter than (or282

the same as) that of the one with the stronger wait. For example, if ℓ is the length of two283

negOrdWait paths from Aj to Ai, but −v1 > −v2, where the corresponding terminal wait284

edges are (V1, Ci:−v1, Ai) and (V2, Ci:−v2, Ai), then |AjV1 Ai | = (ℓ + v1) + max{−ω, −v1} =285

max{ℓ + v1 − ω, ℓ} ≤ max{ℓ + v2 − ω, ℓ} = (ℓ + v2) + max{−ω, −v2} = |AjV2 Ai |. Another286

important factor involves negOrd paths (i.e., paths comprising solely negative ordinary edges).287

If a negOrd path has the same length as a negOrdWait path, then the negOrd path dominates288

the negOrdWait path since in every projection the length of the negOrd path will be the289

same as or shorter than the length of the projected negOrdWait path.290

At Line 1, getPCinfo calls the Bellman-Ford algorithm [2] to generate a solution to the291

OU-graph that will be used as a potential function to guide the traversal of negOrd and292
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Algorithm 1 getPCinfo: find negOrdWait paths between pairs of activation timepoints

Input: G = (T , Eo, Elc, Euc, Eucg), an ESTNU graph
Output: (parent, child), where parent and child are k-vectors of hash tables signaling the

presence of negOrdWait paths between pairs of activation timepoints
1 f ··= bellmanFord(Gou) // A potential function for Gou = (T , Eo ∪ Euc ∪ Eucg)
2 parent ··= (∅, . . . , ∅)
3 child ··= (∅, . . . , ∅) // k-vectors of hash tables
4 foreach (A, x, y, C) ∈ L do // Back-propagate from A along negOrdWait paths
5 negLen ··= (∞, . . . , ∞) // An n-vector of accum. lengths of negOrdWait paths ending in A

6 negWait ··= (⊥, . . . , ⊥) // An n-vector of corresp. neg. wait values (or ⊥ for ord paths)
// Initialize min priority queue Q with entries for negative ord and wait edges incoming to A

// Element = U , a timepoint
// Key = Non-negative accumulated length adjusted by potential function, f

7 Q ··= new priority queue
8 foreach (U, δ, A) with δ < 0 do // Negative ordinary edges incoming to A

9 Q.insert(U, δ − f(A) + f(U)) // f(A) − f(U) ≤ δ ⇐⇒ δ − f(A) + f(U) ≥ 0
10 negLen[U ] ··= δ

11 foreach (V, C:−v, A) ∈ Eucg do // (Negative) wait edges incoming to A

12 Q.insert(V, −v − f(A) + f(V )) // f(A) − f(V ) ≤ −v ⇐⇒ −v − f(A) + f(V ) ≥ 0
13 negLen[V ] ··= −v; negWait[V ] ··= −v

// Use back-propagation to find shortest negOrd or negOrdWait paths terminating at A

14 while ¬Q.empty() do
15 U ··= Q.extractMin()
16 if U = A′ is an activation timepoint and negWait[A′] ̸= ⊥ then

// Record negOrdWait path found from A′ to A

17 parent[A].insert(A′, (negLen[A′], negWait[A′]))
18 child[A′].insert(A, (negLen[A′], negWait[A′]))

// Continue back-propagating along negative ordinary edges
19 foreach (V, v, U) ∈ Eo | v < 0 do
20 newLen ··= v + negLen[U ]
21 if newLen < negLen[V ] or ((newLen == negLen[V ]) and

((negWait[U ] == ⊥) or (negWait[U ] > negWait[V ]))) then
// Record new shortest negOrd or negOrdWait path from V to A (via U)

22 if negLen[V ] == ∞ then Q.insert(V, newLen − f(A) + f(V ))
23 else Q.decreaseKey(V, newLen − f(A) + f(V ))
24 negLen[V ] ··= newLen
25 negWait[V ] ··= negWait[U ]

26 return (parent, child) // Return the vectors of parent/child hash tables

negOrdWait paths. Line 2 initializes the parent and child vectors of hash tables.293

Each iteration of the for loop at Lines 4–25 processes one activation timepoint A, looking294

for shortest negOrd or negOrdWait paths from A backward to other activation timepoints.295

Lines 5–6 initialize the negLen and negWait vectors. For each X, negLen[X] specifies the296

length of the shortest negOrd or negOrdWait path from X to A that has been found so far297

(or ∞). If a shortest negOrdWait path from X to A has been found that is not dominated298

by a negOrd path, then negWait[X] specifies the length of its terminating wait edge.299

Lines 7–13 initialize a min priority queue [2] to include an entry for each negative ordinary300

edge and each wait edge incoming to A. Like in Johnson’s algorithm, the potential function301

f is used to adjust the distances in the OU-graph to be non-negative to enable the use of302
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Dijkstra’s algorithm to guide the exploration of negOrd and negOrdWait paths.303

Each iteration of the while loop (Lines 14–25) pops a timepoint U off the queue. If304

U happens to be an activation timepoint A′ for which an undominated negOrdWait path305

has been found, then entries linking A (the child) to A′ (the parent) are inserted into the306

relevant hash tables (Lines 16–18). Next, back-propagation along negative ordinary edges307

continues at Lines 19–25. The complicated if condition at Line 21 covers cases where a308

new shortest negOrd or negOrdWait path from V to A (via U) has been found. First, if309

newLen < negLen[V ] (which includes negLen[V ] = ∞), then the path via U is a new shortest310

path. Second, if newLen = negLen[V ], then the path via U dominates a pre-existing path311

from V to A if: (1) the path via U is a negOrd path (whence negWait[U ] = ⊥); or (2) the312

wait terminating the path via U is weaker than the terminal wait in the pre-existing path (i.e.,313

negWait[U ] > negWait[V ]). In any of these cases, the values of negLen[V ] and negWait[V ]314

are updated, and V is either newly inserted into the queue or its key is updated (Lines 22–25).315

After the main for loop is completed, the parent and child vectors of hash tables are returned316

at Line 26.317

3.3 The newGenStandIns Algorithm318

The section presents our newGenStandIns algorithm (Algorithm 2). It uses the parent and319

child hash tables computed by getPCinfo to more efficiently generate all of the stand-in edges320

arising from nested diamond structures. Its time-complexity is O(n3), an order-of-magnitude321

improvement over the O(kn3)-time complexity of genStandIns.322

For simplicity, we assume that all stand-in edges entailed by individual labeled edges323

have already been computed and have been passed as an input Eisi into newGenStandIns.324

At Line 1, newGenStandIns calls the Bellman-Ford algorithm on the subgraph of ordinary325

edges which will be used as a potential function to enable the use of Dijkstra’s single-source326

shortest-paths algorithm to update distance-matrix entries. At Line 2, Et
o is initialized; it will327

accumulate changes to D(Aj , ·) values, stored as temporary edges, that are derived directly328

from nested stand-in edges. Next, at Lines 3–7, the list, readyToGo, of activation timepoints329

that are ready to process is initialized. Since the activation timepoints form a strict partial330

order, this list is initially populated by those having no children. The vector, numUnprocd,331

keeps track of how many unprocessed children each activation timepoint has. Later on, as332

each activation timepoint is processed, its parent’s entry in numUnprocd will be decremented.333

Each iteration of the while loop (Lines 8–28) pops one activation timepoint Aj off the334

readyToGo list and, at Lines 12–19, for each child Ai, and each timepoint Wi, explores335

diamond structures involving the labeled edges from the contingent link (Ai, xi, yi, Ci), to336

determine whether the distance D(Aj , Wi) can be affected by a nested diamond. (Recall337

Figure 3.) Instead of explicitly dealing with the wait edge (Vi, Ci:−vi, Ai) shown in the338

figure, newGenStandIns uses the ℓi and −vi values retrieved from the child[Aj ] hash table at339

Line 12 (where b in the figure equals ℓi + vi), along with the distances, γi = D(Ci, W ) and340

δi = D(Ai, Wi), obtained from the distance matrix at Line 14. This information is sufficient341

to determine whether the paths ViAiCiWi and ViAiWi combine to entail a new stand-in342

edge, (Vi, τi, Wi), where τi = max{γi, δi − vi}. In particular, as in genStandIns, ωi = δi − γi343

(at Line 15) specifies the projection where |ViAiCiWi | = |ViAiWi |; and a new stand-in edge344

from Vi to Wi is entailed if ωi ∈ (xi, yi) and if that new stand-in edge is at least as strong345

as any existing ordinary path from Vi to Wi. However, here, the goal is not to generate346

that stand-in edge, but instead to provide the D(Aj , Wi) value affected by it. Therefore, the347

only information accumulated in the newLengths hash table is the pair (Wi, newVal), where348

newVal = b + τi = ℓi + vi + τi = max{ℓi + vi + γi, ℓi + δi} (at Lines 16–18).349
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Algorithm 2 newGenStandIns: Compute the stand-in edges arising from nested diamonds
Input: (T , Eo, Elc, Euc, Eucg), dispatchable ESTNU; parent, child, vectors of hash tables

computed by getPCinfo; D, distance matrix for Go = (T , Eo); Eisi ⊆ Eo, stand-in edges
entailed by individual labeled edges

Output: Esi, the set of all stand-in edges (including Eisi); and D, the updated distance matrix.
1 f ··= bellmanFord(Go) // Initialize a potential function f on the ordinary subgraph Go

2 Et
o ··= ∅ // Used to collect all temporary (ordinary) edges

3 readyToGo ··= ∅ // A list of activation timepoints ready for processing
4 numUnprocd ··= (0, . . . , 0) // For each activ’n. timepoint, the num of its unprocessed children
5 foreach (A, x, y, C) ∈ L do
6 numUnprocd[A] ··= child[A].count() // Fetch the number of A’s children
7 if numUnprocd[A] == 0 then readyToGo.push(A) // If no children, then ready to process
8 while readyToGo ̸= ∅ do
9 Aj ··= readyToGo.pop() // Contingent link for Aj is (Aj , xj , yj , Cj)

10 anyChange ··= ⊥
11 newLengths ··= empty hash table // For collecting new D(Aj , ·) values
12 foreach (Ai, (ℓi, −vi)) ∈ child[Aj ] do // Contingent link for Ai is (Ai, xi, yi, Ci)
13 foreach Wi ∈ T \{Ai, Ci, Aj , Cj} do
14 γi = D(Ci, Wi); δi = D(Ai, Wi); ωi ··= δi − γi

15 if ωi ∈ (xi, yi) then // ωi specifies proj’n. where max shortest vee-path occurs
16 newVal ··= max{ℓi + vi + γi, ℓi + δi} // Length of potential new D(Aj , Wi) value
17 if newVal < D(Aj , Wi) then
18 newLengths.insert(Wi, newVal) // Record new D(Aj , Wi) value
19 anyChange ··= ⊤

20 if anyChange == ⊤ then // Need to update potential function and D(Aj , ·) values
21 E+

o ··= ∅ // Collect set of changed D(Aj , ·) values as temporary edges
22 foreach (Wi, newVal) ∈ newLengths do E+

o ··= E+
o ∪ {(Aj , newVal, Wi)}

23 f ··= updatePotFn((T , Eo ∪ E+
o ), f) // Update pot’l. fn. to accommodate temp edges

24 D(Aj , ·) ··= dijkstra(Aj , Eo ∪ E+
o , f) // Update D(Aj , ·) values for next iteration

25 Et
o ··= Et

o ∪ E+
o // Accumulate temp edges RE: Aj in global set Et

o

26 foreach A ∈ parent[Aj ] do // Update info for Aj ’s parents now that Aj is done
27 numUnprocd[A] ··= numUnprocd[A] − 1
28 if numUnprocd[A] == 0 then readyToGo.push(A)

// Fully updated D ensures that one iteration of genStandIns will generate all stand-in edges
29 D ··= johnson(T , Eo ∪ Et

o) // After this, temp edges are discarded
30 Esi ··= genStandInsOnce((T , Eo, Elc, Euc, Eucg), Eisi, D)
31 D ··= johnson(T , Eo ∪ Esi) // Final update of D to accommodate the generated stand-in edges
32 return (Esi, D)

Afterward, at Line 20, if processing Aj led to changes in any D(Aj , ·) values, then350

newGenStandIns collects all of the changes as a set E+
o of temporary edges (Lines 21–22)351

that it then uses to (1) incrementally update the potential function f (at Line 23), and352

(2) propagate the new D(Aj , ·) values to update all affected D(Aj , ·) values (at Line 24). For353

updating the potential function, it calls the updatePotFn, which is a simplified version of the354

UpdPF algorithm from the RUL2021 algorithm [6]; here, it explores paths emanating from Aj355

as long as changes to the potential function are needed. For updating D(Aj , ·) values, it calls356

Dijkstra’s single-source shortest-paths algorithm using Aj as the source and f as a potential357

function to re-weight the edges to non-negative values. This use of Dijkstra is similar to its358

use in Johnson’s algorithm [2]. Note that after these updates the temporary edges in E+
o are359
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Algorithm 3 The updatePotFn function

Input: Go = (T , Eo), STN; A, timepoint; h, pot’l. fn. for Go, excluding edges emanating from A

Output: A pot’l. fn. h′ for Go (including edges emanating from A); or ⊥ if Go is inconsistent
1 h′ := copy-vector(h)
2 Q := new empty priority queue
3 Q.insert(A, 0) // Initialize queue for forward propagation from A

4 while (!Q.empty()) do
5 (V, key(V )) := Q.extractMinNode()
6 foreach ((V, δ, W ) ∈ Eo) do // Propagate along ordinary edges emanating from V

7 if (h′(W ) > h′(V ) + δ) then
8 h′(W ) := h′(V ) + δ // Update pot’l. fn. h′ and insert W into Q or decrease its key
9 if (Q.state(W ) == notYetInQ) then Q.insert(W, h(W ) − h′(W ))

10 else Q.decreaseKey(W, h(W ) − h′(W ))

11 return h′

not inserted into the ESTNU graph, but they are accumulated in Et
o for later use at Line 25.360

The processing of Aj ends at Lines 26–28, where for each parent A of Aj , the number361

of A’s unprocessed children is decremented by 1 and, if that number reaches 0, then A is362

pushed onto the readyToGo list, indicating that it is ready for processing.363

Once all activation timepoints have been processed, all distance values D(Aj , ·) needed364

to account for arbitrary nestings of diamond structures have been accumulated. All that365

remains is to use these values to generate all of the stand-in edges. For example, suppose that366

the diamond formed by Vj , Aj , Cj and Wj from Figure 3 is the outermost diamond in a nested367

sequence that entails a stand-in edge of the form, (Vj , τj , Wj). Then the resulting D(Aj , Wj)368

value, determined by the inner levels of nesting, was computed when Aj was processed by369

the while loop at Lines 8–19. But the stand-in edge (Vj , τj , Wj) has not yet been generated.370

However, given all of the D(Aj , ·) values computed so far (for all Aj), generating all such371

stand-in edges, including those that are not involved in any nesting, can be accomplished372

by an O(kn2)-time exploration of diamond structures involving any timepoints, V, A, C, W ,373

where A and C are timepoints associated with a contingent link (A, x, y, C), and V and W374

are any timepoints other than A or C. This is precisely what a single iteration of the for375

loop at Lines 13-27 of genStandIns does. Here, it is called genStandInsOnce, at Line 30.376

Afterward, at Line 31, a final call to Johnson’s algorithm computes the full distance matrix377

to accommodate all of the new stand-in edges, including those in Eisi passed in as an input.378

3.4 Complexity of newGenStandIns379

Our modification of the minDispESTNU algorithm replaces the genStandIns helper by the380

newGenStandIns algorithm presented above. The complexity of newGenStandIns is de-381

termined as follows. Its k calls of Dijkstra’s algorithm on at most m + nk edges cost382

O(mk + nk2 + kn log n) time. Its k calls of the updatePotFn function similarly require383

O(mk + nk2 + kn log n) time. The call to genStandInsOnce, as reported by Hunsberger384

and Posenato [8], requires O(kn2) time (n choices for V , n choices for W , and k choices for385

(A, x, y, C)). The most costly computation, however, is the last one: the call to Johnson’s386

algorithm on at most m = n2 edges costs O(n3) time. Therefore, the overall complexity of387

newGenStandIns is O(n3). This is an order-of-magnitude reduction compared to the O(kn3)388

complexity of genStandIns, especially since, for applications, k = O(n) (e.g., k ≈ n/10 in389

some benchmarks [15]), implying an effective reduction from O(n4) to O(n3).390
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The complexity of steps 2, 3 and 4 of minDispESTNU, which we do not change, is dominated391

by the call to the STN-dispatchability algorithm on at most n2 edges, which is also O(n3).392

So the overall complexity of our modification of minDispESTNU is O(n3).393

4 Conclusions394

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an395

important problem for applications involving actions with uncertain but bounded durations.396

The number of edges in the dispatchable network is important because it directly impacts397

the real-time computations that are necessary when executing the network. Therefore, for398

time-sensitive applications it is important to generate an equivalent dispatchable ESTNU399

having a minimal number of edges, called a µESTNU. This paper modified the only existing400

algorithm for generating a µESTNU, making it an order-of-magnitude faster. It reduced the401

worst-case time-complexity from O(kn3) to O(n3) which, given that in typical applications402

k = O(n), implies an effective reduction from O(n4) to O(n3).403
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