
Robust Execution of Probabilistic STNs1

Luke Hunsberger # Ñ �2

Vassar College, USA3

Roberto Posenato # Ñ �4

University of Verona, Italy5

Abstract6

A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and reasoning7

about actions subject to temporal constraints, where some action durations may be uncontrollable,8

modeled using continuous probability density functions. Recent work aims to manage this kind9

of uncertainty during execution by approximating a PSTN by a Simple Temporal Network with10

Uncertainty (STNU) (for which well-known execution strategies exist) and using an STNU execution11

strategy to execute the PSTN, hoping that its probabilistic action durations will not cause any12

constraint violations.13

This paper presents significant improvements to the robust execution of PSTNs. Our approach is14

based on a recent, faster algorithm for finding negative cycles in non-DC STNUs. We also formally15

prove that many of the constraints included in others’ work are unnecessary and that our algorithm16

can take advantage of a flexible real-time execution algorithm to react to observations of contingent17

durations that may fall outside the fixed STNU bounds. The paper presents an empirical evaluation18

of our approach that provides evidence of its effectiveness in robustly executing PSTNs derived from19

a publicly available benchmark.20

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of21

computation → Dynamic graph algorithms22

Keywords and phrases Temporal constraint networks, probabilistic durations, dispatchable networks23

Digital Object Identifier 10.4230/LIPIcs.TIME.2024.924

Supplementary Material Software (Source code): https://profs.scienze.univr.it/~posenato/25

software/cstnu/ [26]26

1 Introduction27

In many sectors of real-world industry, it is necessary to plan and schedule tasks allocated28

to agents participating in complex processes [19, 1]. Temporal planning aims to schedule29

tasks while respecting temporal constraints such as release times, maximum durations, and30

deadlines, which requires quantitative temporal reasoning. Over the years, major application31

developers have highlighted the need for explicit representation of actions with uncertain32

durations; and efficient algorithms for checking whether plans involving such actions are33

controllable, and for converting such plans into forms that enable them to be executed in34

real time with minimal computation, while preserving maximum flexibility.35

A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and36

reasoning about actions subject to temporal constraints, where some action durations may37

be uncontrollable, modeled using continuous probability density functions. Recent work aims38

to manage this kind of uncertainty during execution by:39

1. computing a dynamically controllable (DC) Simple Temporal Network with Uncertainty40

(STNU) whose bounded action durations capture as much of the combined probability41

mass of the corresponding probabilistic durations as possible;42

2. deriving a dynamic execution strategy for the approximating STNU; and43

3. using that strategy to execute the PSTN, hoping that its probabilistic action durations44

will not cause any constraint violations.45

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

31st International Symposium on Temporal Representation and Reasoning (TIME 2024).
Editors: Pietro Sala, Michael Sioutis, and Fusheng Wang; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2024.9
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://profs.scienze.univr.it/~posenato/software/cstnu/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Robust Execution of Probabilistic STNs

Since unlikely action durations may nonetheless occur, this approach incurs a non-zero risk46

of failure. The typical goal is to minimize this risk, although some have sought to optimize a47

different objective function while accepting a pre-determined bound on the risk of failure.48

This paper presents significant improvements to this approach that derive from recent,49

faster algorithms for solving several closely related problems, as well as some new theoretical50

results:51

1. Since the iterative process of computing a DC STNU to approximate a PSTN relies52

on efficiently finding negative cycles in non-DC STNUs so that they can be resolved53

(e.g., by tightening the bounds on participating contingent durations), this paper uses a54

recent, faster algorithm for finding such cycles (Algorithm FindSRNC [16]). Its compact55

representation of such cycles avoids exponential blow-up. Like some recent work, our56

approximating algorithm (Algorithm genApproxSTNU) uses a general-purpose non-linear57

optimization solver to aid in this process; however, genApproxSTNU explicitly aims to58

maximize the combined probability mass of the probabilistic durations captured by the59

STNU’s contingent durations. We also formally prove that many constraints included in60

others’ work are unnecessary.61

2. Given an approximating DC STNU, we then propose to use a recent, fast algorithm62

(Algorithm minDispESTNU [17]) to compute an equivalent dispatchable STNU having a63

minimal number of edges. Doing so allows the use of a flexible and efficient real-time64

execution strategy, implemented by the algorithm RTE∗ [18], instead of, for example, the65

inflexible earliest-first strategy used by many researchers.66

3. Hence, we propose to execute the PSTN using RTE∗ to exploit the strategy’s flexibility67

to react to observations of contingent durations that may fall outside the fixed STNU68

bounds.69

The paper presents an empirical evaluation of our approach that provides evidence of its70

effectiveness in robustly executing PSTNs derived from a publicly available benchmark. In71

particular, it shows that taking advantage of a flexible real-time execution algorithm can72

increase the chances of successful executions.73

2 Background74

In this section, we recall the basic concepts and results about Simple Temporal Networks,75

Simple Temporal Networks with Uncertainty (STNUs), Probabilistic Simple Temporal76

Networks (PSTNs) and the known methods for approximating PSTNs by STNUs.77

2.1 Simple Temporal Networks78

A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables79

called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for80

X, Y ∈ T and δ ∈ R [5]. An STN is consistent if it has a solution as a constraint satisfaction81

problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes,82

and the constraints correspond to labeled, directed edges. In particular, each constraint83

(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such edges may be notated as84

(X, δ, Y) for convenience.85

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs86

that maintains time windows for each timepoint and, as each timepoint X is executed, only87

propagates constraints locally, to neighbors of X in the STN graph [28, 24]. An STN is88

called dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints89

L. Hunsberger and R. Posenato 9:3

A C

B D

c:1
C:−10

d:1
D:−10

−107

A C

B D

c:1
C:−10

d:1
D:−10

−
17 0

Figure 1 A semi-reducible path (shaded gray on the left) and a Semi-Reducible Negative (SRN)
cycle (shaded gray on the right).

no matter which execution decisions are made subject to the time-window constraints.90

Algorithms for generating equivalent dispatchable STNs have been presented [28, 24].91

2.2 Simple Temporal Networks with Uncertainty92

A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent93

links that represent actions with uncertain, but bounded durations [23]. An STNU is a94

triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form95

(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensure96

that regardless of when the activation timepoint A is executed, the contingent timepoint97

C will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable but98

bounded. The graph of an STNU S = (T , C, L) is the graph of the STN (T , C) augmented99

to include labeled edges representing the contingent durations. In particular, each contingent100

link (A, x, y, C) has two corresponding edges in the STNU graph: a lower-case (LC) edge101

A c:x C, notated as (A, c:x, C), representing the uncontrollable possibility that the duration102

might take on its minimum value x; and an upper-case (UC) edge C C:−y A, notated as103

(C, C:−y, A), representing the possibility that it might take on its maximum value y.104

The most important property of an STNU is whether it is dynamically controllable105

(DC). An STNU is dynamically controllable (DC) if there exists a dynamic, real-time106

execution strategy that guarantees that all constraints in C will be satisfied no matter how107

the contingent durations turn out [23, 10]. A strategy is dynamic because its execution108

decisions can react to observations of contingent executions without advance knowledge of109

future events. Morris [21] proved that an STNU is DC if and only if it does not include110

any semi-reducible negative cycles (SRN cycles). A path P is semi-reducible if certain111

constraint-propagation rules can be used to provide new edges that effectively bypass each112

occurrence of an LC edge in P. As an example of a semi-reducible path and an SRN cycle,113

consider Figure 1. In the left network, the path Π = (A, c:1, C, −1, B) is semi-reducible114

because it is possible to combine constraints (A, c:1, C) and (C, −1, B) to create an equivalent115

constraint (A, 0, B) (dashed red) that bypasses (A, c:1, C) in Π. In the right network, the116

path (cycle) Π = (A, c:1, C, −1, D, D:−10, B, 7, A) is an SRN cycle because as before, it117

is possible to bypass (A, c:1, C) by constraint (A, 0, D) (dashed red), and the value of the118

resulting cycle (A, 0, D, D:−10, B, 7, A) (sum of constraint values discarding possible labels)119

is negative. Indeed, this network is not DC because A must be executed after or as soon as120

D occurs to satisfy (A, 0, D), and in the case that the contingent link (B, 1, −10, D) duration121

outcomes to be 10, the constraint (B, 7, A) will be violated.122

In 2014, Morris [22] presented the first O(n3)-time DC-checking algorithm.1 In 2018,123

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.

TIME 2024

9:4 Robust Execution of Probabilistic STNs

Cairo et al. [2] presented their O(mn + k2n + kn log n)-time RUL− algorithm. In 2022,124

Hunsberger and Posenato [14] subsequently presented a faster version, called RUL2021, that125

has the same worst-case complexity but achieves an order-of-magnitude speedup in practice126

by restricting the edges it inserts into the network during constraint propagation.127

Following the literature, we refer to ordinary or LC edges as LO-edges and ordinary or128

UC edges as OU-edges. An ESTNU graph has the form (T , Eo ∪ Elc ∪ Euc ∪ Eucg), where Eo is129

the set of ordinary edges, Elc and Euc are the sets of LC and UC edges, and Eucg is the set of130

generated wait edges (described later). The graphs, Gℓo and Gou, of the LO- and OU-edges,131

respectively, can be viewed as STNs by ignoring the alphabetic labels on LC or UC edges.132

2.3 Probabilistic Simple Temporal Networks133

A Probabilistic Simple Temporal Network (PSTN) is similar to an STNU, except that each134

contingent duration, C − A, is modeled as a random variable with a specified probability135

density function (pdf) p [27, 7]. This paper assumes that each probabilistic duration has a136

log-normal distribution.2137

Since pdfs can have infinite tails, successfully executing a PSTN cannot be guaranteed in138

general. Instead, researchers have focused on approximating PSTNs by STNUs [7, 33, 30, 31].139

The approximating STNU differs from the PSTN only in representing the contingent durations;140

the ordinary constraints all stay the same. The aim is to choose bounds for the approximating141

STNU’s contingent links that capture as much probability mass of the probabilistic durations142

as possible while preserving the STNU’s controllability. For example, if (A, x, y, C) is a143

contingent link approximating a probabilistic duration (A, C, p), then the probability mass144

captured by the contingent link is
∫ y

x
p(t)dt = F (y) − F (x), where F is the associated145

cumulative distribution function (cdf).146

2.3.1 Approximating PSTNs by Strongly Controllable STNUs147

Early work sought to approximate PSTNs by strongly controllable STNUs. (An STNU148

S = (T , C, L) is strongly controllable (SC) if there exists a fixed schedule for its controllable149

timepoints that guarantees that all constraints in C will be satisfied no matter how the150

durations of the contingent links in L turn out.) Tsamardinos [27] aimed to find a fixed151

schedule for a PSTN that maximized the probability that all of its constraints would be152

satisfied. However, his approach was too restrictive: it did not allow ordinary constraints153

between pairs of contingent timepoints.154

Fang et al. [7] defined a similar problem, called the chance-constrained probabilistic Simple155

Temporal Problem (cc-pSTP). Instead of aiming to minimize the risk of failure, the cc-pSTP156

is the problem of finding a static schedule that optimizes a given objective function (e.g.,157

complete all tasks as early as possible) while keeping the risk of failure below a given bound158

(e.g., less than 5 percent). In other words, the cc-pSTP accepts a bounded risk of failure159

(a.k.a. a chance constraint). To solve the cc-pSTP, they create an initial approximating STNU160

in which the bounds on each contingent link are variables, not constants. Their algorithm161

then applies constraint-propagation/edge-generation rules (a.k.a. reduction rules) to enforce162

the SC property. These rules are generalized from prior work on strong controllability [29, 27]163

to accommodate the bounds on the contingent links being variables instead of constants.164

2 Chen et al. [3] observed that “Existing experiments data . . . showed that heavy-tailed distributions,
such as lognormal, best fit the task uncertainty introduced by humans in collaborative tasks [6]. This is
corroborated by work that showed the human reaction time is also best modeled as log-normal [32].”

L. Hunsberger and R. Posenato 9:5

The result is at most n2 linear constraints, each involving the contingent link bounds-as-165

variables. In contrast, the chance constraint is non-linear since it depends on the cdfs for the166

probabilistic durations. They approximate the chance constraint using Boole’s inequality,167

which does not require assuming independence of the probabilistic durations, as follows:168

(actual probability of failure) ≤
∑k

i=1(Fi(xi) + (1 − Fi(yi)) ≤ ∆, where each Fi is a the cdf169

for the ith probabilistic link, and ∆ is the given bound on the risk of failure. The objective170

function, which is provided as an input, can also be non-linear. After constructing their171

non-linear optimization problem, they solve it using an off-the-shelf solver, called SNOPT [9].172

Wang and Williams [30] presented the Rubato algorithm, which tackles the cc-pSTP by173

decoupling the risk-allocation problem (i.e., assigning fixed bounds to the STNU’s contingent174

links) from strong-controllability checking. In this way, the risk-allocation problem, solved175

by a non-linear solver, need not include the O(n2) constraints generated by the previously176

mentioned constraint-propagation rules, keeping the optimization problem small. Once risk177

allocation is done, the SC checker is run which, in negative instances, outputs a simple178

negative cycle. In such cases, they then accumulate a new constraint stipulating that that179

cycle must be made non-negative. They iteratively run this risk-allocation/SC-checking180

process until an SC STNU is found, which then yields a static schedule for the PSTN.181

2.3.2 Approximating a PSTN by a Dynamically Controllable STNU182

Wang [31] defined a dynamic version of the cc-pSTP that aims to approximate a PSTN183

by a DC STNU. Analogous to Rubato, Wang used an iterative approach that decouples184

risk-allocation from DC checking. For the first risk-allocation step, a non-linear optimization185

solver generates initial bounds for the STNU’s contingent durations that capture as much of186

the probability mass of the PSTN’s probabilistic durations as possible while also satisfying187

the ordinary constraints from the STNU. For the DC-checking step, Morris’ O(n4)-time188

DC-checking algorithm is modified so that it outputs an SRN cycle for non-DC networks.189

Wang noted that such cycles may not be simple, but presented no details on how to compute190

or represent them. (In the worst case, SRN cycles can involve exponentially many edges [12].)3
191

If the candidate STNU happens to be non-DC, it must contain an SRN cycle, which can be192

resolved by making it non-negative or non-semi-reducible. Following Morris [21], Wang noted193

that semi-reducibility requires that each LC edge can be reduced away by a (negative-length)194

extension subpath.4 Thus, he argued that modifying any one of the participating extension195

sub-paths by making it non-negative would cause the entire cycle to be non-semi-reducible.196

(However, as shown below, this is often not the case.) Thus, Wang’s approach to resolving197

an SRN cycle involved accumulating a disjunction of potentially very many new constraints,198

one for each participating extension subpath. Hence, his approach requires the use of a199

disjunctive linear program solver. Although he gives some empirical evaluations, only very200

high-level implementation details are provided, making the results difficult to evaluate.201

3 Yu, Fang and Williams [33] addressed resolving a non-DC STNU by finding an SRN cycle within it and
then tightening the bounds on participating contingent durations. However, unlike Wang, they failed to
recognize that individual labeled edges can appear multiple times in an SRN cycle.

4 An extension subpath for an LC edge e in a path P is a negative-length subpath Pe that immediately
follows e in P and such that the constraint-propagation/edge-generation rules given by Morris [21] can
be used to generate a new edge E that effectively bypasses e in P.

TIME 2024

9:6 Robust Execution of Probabilistic STNs

3 Preliminary Steps202

In this section, we introduce some preliminary results that allow the determination of a new203

algorithm for a robust execution of PSTNs.204

3.1 Efficiently Finding and Representing SRN Cycles205

Iteratively finding a DC STNU to approximate a PSTN typically requires numerous calls206

to an algorithm for finding SRN cycles in non-DC STNUs. For this, Wang used a modified207

version of Morris’ O(n4)-time DC-checking algorithm. Instead, this paper takes advantage of208

a new, faster O(mn + kn2 + kn log n)-time algorithm, FindSRNC, for finding and compactly209

representing SRN cycles [16]. Aside from its greater speed, there are two main features that210

are important for this paper. First, because an indivisible SRN cycle in a non-DC STNU can211

have, in the worst case, an exponential number of occurrences of LC and UC edges [12], the212

output of FindSRNC includes a hash table that compactly represents the repeating structures213

that necessarily occur in such cycles, while requiring only O(mk + k2n) space. Second,214

FindSRNC, like the RUL2021 algorithm [14] on which it is based, detects three different kinds215

of SRN cycles: (1) a negative cycle in the LO-graph; (2) a special kind of cycle, called a CC216

loop; and (3) a cycle arising from a cycle of interruptions of its recursive processing of UC217

edges. The following section recalls how Wang’s approach to resolving SRN cycles introduces218

potentially very many disjunctive constraints and then rigorously addresses the different219

ways that each kind of SRN cycle returned by FindSRNC can be resolved, in one case without220

requiring any disjunctions, in another case requiring only a single disjunction, and in a third221

case requiring a bounded number of disjunctions.222

3.2 More Efficient Resolution of SRN Cycles223

To resolve an SRN cycle L, Wang generates a disjunctive collection of linear constraints. The224

main constraint is to make |L| non-negative. The other constraints, which can be numerous,225

aim to make L non-semi-reducible by, for each occurrence of an LC edge e in L, constraining226

its extension subpath Pe to be non-negative. (Each occurrence of an LC edge in L can have227

a very different extension subpath.) The idea is that if any of these constraints are satisfied,228

then L will either be non-negative or non-semi-reducible (or both). However, while it is229

true that modifying an extension subpath Pe by making it non-negative renders it unable to230

reduce away the LC edge, it does not necessarily make L non-semi-reducible. Why? Because231

other edges following Pe in L might combine with Pe to create a new extension subpath for232

e, as illustrated below.233

A. . . C A′ C ′ F G H . . .c:5 1 c′:4 −6 −2 −3234

In this example, the extension subpath for the LC edge e = (A, c:5, C) is the negative-length235

subpath from C to F , shaded dark gray. This subpath can be made non-negative by increasing236

the lower bound on the LC edge (A′, c′:4, C ′) from 4 to 5. However, doing so would not make237

the overall path non-semi-reducible because the path from C to G, shaded light gray, would238

still be negative and hence could be used to reduce away e. As a result, a subsequent iteration239

of Wang’s algorithm might return the very same SRN cycle, albeit with a slightly different240

length. Even worse, a chain of negative edges following an existing extension subpath for e241

might lead to numerous nearly identical iterations. Furthermore, a single SRN cycle might242

have many LC edges leading to numerous disjunctive constraints, thereby compounding the243

problem for the disjunctive optimization solver, making it expensive for larger networks.244

L. Hunsberger and R. Posenato 9:7

ACXC2A2WTS
C:−2013c2:2352

14 ≥ ∆C

−6

Figure 2 Generating a (blue, dashed) bypass edge for a (red) UC-edge, assuming that ∆C = 12

A C

A2 C2

A3

C3V(∆C = 9)

c:1
C:−10

3

c2:1

−6

c 3
:1

−6

7

A C

A2 C2

A3

C3V

c:1
C:−10

3

c2:1

−6

c 3
:1

−6

7

−2

−1

C:−8

A C

A2 C2

A3

C3V

c:1
C:−10

3

c2:4

−6

c 3
:5

−6

7

Figure 3 A CC loop (left); a CC-based SRN cycle (center); and resolving the SRN cycle (right)

3.3 Three Kinds of SRN Cycles Computed by FindSRNC245

Before addressing how to resolve the SRN cycles output by FindSRNC, we must discuss how246

FindSRNC works. As shown in Figure 2, FindSRNC processes each UC edge E = (C, C:−y, A),247

propagating backward from C along LO-edges aiming to generate edges that effectively248

bypass E. Back-propagation continues while the subpath being explored has length less than249

∆C = y − x. If that distance ever becomes greater than or equal to ∆C , as in the path250

from T to C in Figure 2, then a bypass edge, shown as blue and dashed, is generated, and251

back-propagation stops.252

As in Johnson’s algorithm [4], the back-propagation is guided by a potential function253

that is a solution to the graph of LO-edges viewed as an STN. The potential function is254

initialized by a call to Bellman-Ford [4] and, after the processing of each UC edge, is updated255

to accommodate any newly generated edges. If the updating reveals a negative cycle in the256

LO-graph, then the STNU cannot be DC. Therefore, FindSRNC outputs that negative cycle.257

There are two ways that FindSRNC’s back-propagation can be blocked: (1) by a CC loop,258

or (2) by bumping into another UC edge. A CC loop is where back-propagation from C259

cycles back to C with all encountered distances less than ∆C , as illustrated on the lefthand260

side of Figure 3. A CC loop does not necessarily entail an SRN cycle, but it can: if there261

exists a negative-length LO-path emanating from C that can be used to reduce away the262

LC edge (A, c:x, C) [14]. An example of this is shown in the center of Figure 3. Based on263

the edge-generation rules from Morris [21], the negative-length (dotted) path from C to A3264

can be used to generate the (dashed, green) bypass edge (A, −1, A3). Meanwhile, the path265

from A3 to A can be used to generate the (dashed, orange) wait edge (A3, C:−8, A), thereby266

forming a negative cycle in the OU-graph, which implies that the network cannot be DC. In267

such a case, FindSRNC outputs the SRN cycle formed by the matching LC and UC edges268

together with the CC loop. We call such a cycle a CC-based SRN cycle for convenience.269

Back-propagation from C can also be blocked by bumping into another UC edge, say270

E2, while encountered distances remain less than ∆C . In such cases, E’s processing is271

interrupted until E2 is fully processed. Once all edges bypassing E2 have been generated,272

back-propagation from C continues. But if a cycle of such interruptions is found, all processing273

is blocked, and the network cannot be DC [2]. In that case, FindSRNC returns the SRN cycle274

formed by concatenating the interrupted subpaths, including the corresponding UC edges, as275

shown on the left of Figure 4, where it is assumed that the length of each LC edge is 1.276

TIME 2024

9:8 Robust Execution of Probabilistic STNs

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10
c:1 5 C2:−9

−1

c
4 :1

5C3:−8

4
<

∆
C

6 < ∆C2

5
<

∆
C

3

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10

c:1 5 C2:−9

−1

c
4 :1

5C3:−8

−1

−1

A C C2 A2

C A4

C4C3A3Q −1

5

C
:−

10

c:1 5 C2:−4

−1

c
4 :2

5C3:−6

0

0

1

1

Figure 4 A cycle of interruptions (left); a weakened version with a (shaded) CC loop (center);
making it non-semi-reducible by constraining subpaths emanating from C to be non-negative (right)

3.4 Resolving SRN Cycles Output by FindSRNC277

SRN cycles are, by definition, negative and semi-reducible, so such cycles can be resolved by278

making them non-negative or non-semi-reducible. As in earlier work, we restrict attention to279

resolving an SRN cycle by increasing the lengths of LC or UC edges contained within it (i.e.,280

by tightening the bounds on the corresponding contingent links). Although the bypass edges281

computed by FindSRNC are invariably ordinary, the paths they bypass may have multiple LC282

and UC edges. Increasing the lengths of those LC or UC edges in turn increases the lengths283

of the bypass edges.284

Since resolving an SRN cycle by making it non-negative is always an option, this section285

focuses on cases where an SRN cycle can be made non-semi-reducible without making it286

non-negative. The lemmas below address the three kinds of SRN cycles output by FindSRNC.287

▶ Lemma 1. If an SRN cycle comprises only LO-edges, then the only way to resolve the288

cycle is by making it non-negative.289

Proof. A negative cycle comprising only LO-edges is necessarily semi-reducible [13]. ◀290

▶ Lemma 2. Let L be a CC-based SRN cycle where (C, C:−y, A) and (A, c:x, C) are the291

relevant UC and LC edges. Then, the only way to make L non-semi-reducible is by making292

the length of each subpath emanating from C in the CC loop non-negative.293

The righthand side of Figure 3 shows an example of making a CC-based SRN cycle non-semi-294

reducible, in this case, by increasing the lengths of the LC edges A2C2 and A3C3 to ensure295

that every subpath emanating from C is non-negative. (The modified lengths are shown in296

blue.) Notice that the length of the entire CC-based cycle is still negative: −2.297

Proof. If any subpath emanating from C in the CC loop has negative length, then it can be298

used to reduce away (bypass) the LC edge (A, c:x, C), preserving the SRN cycle [14]. ◀299

Although each subpath emanating from C needs to be non-negative, that need not300

require an explicit constraint for each timepoint following C. First, since the only allowed301

modifications involve lengthening edges, any subpath emanating from C that is already302

non-negative in L does not need to be explicitly constrained. In addition, if a subpath from C303

to X is constrained to be non-negative, and the path from X to Y is non-negative, then the304

subpath from C to Y will automatically be non-negative. A one-time traversal of the edges in305

L suffices to determine the conjunction of constraints needed to make L non-semi-reducible.306

L. Hunsberger and R. Posenato 9:9

▶ Lemma 3. Let L be an SRN cycle obtained from a cycle of interruptions of processings307

of UC edges (e.g., as shown on the lefthand side of Figure 4). If E = (C, C:−y, A) and308

e = (A, c:x, C) are adjacent in L, then L can be made non-semi-reducible by making the309

length of each subpath emanating from C that does not include E non-negative. Although310

there can be multiple pairs of adjacent labeled edges providing such opportunities for making311

L non-semi-reducible, there are no other ways of making L non-semi-reducible.312

Proof. A cycle of interruptions necessarily entails an SRN cycle [2], so resolving L requires313

breaking that cycle of interruptions. One way is to lengthen edges in L enough to enable the314

generation of bypass edges for all UC edges in L. But that would yield a cycle comprising315

only LO-edges and, since negative LO-cycles are invariably semi-reducible, resolving the SRN316

cycle in this way would still require making |L| non-negative. The only other outcome that317

can arise from increasing the lengths of edges preceding a UC edge would be the creation318

of a CC loop, as illustrated in Figure 4 (center), where the UC edges C2A2 and C3A3 have319

been bypassed by dashed, blue edges, creating a CC loop from C back to C. Since a CC320

loop contains only LO-edges, a CC loop can only be created if all other UC edges have been321

bypassed.322

Claim: Constraining every subpath emanating from C that terminates at or before the323

UC edge (C, C:−y, A), as illustrated on the righthand side of Figure 4, will ensure that L324

is non-semi-reducible. (In the figure, constraining the subpath from C to A4 to be non-325

negative automatically ensures that the subpaths terminating at A2, C4 and C3 will also be326

non-negative, given the negative edge from A2 to A4, and the non-negative paths from A4 to327

C4 and C3. Similarly, constraining the subpath from C to Q to be non-negative ensures that328

the subpaths terminating at A3 and C will also be non-negative.)329

Proof of Claim. If every subpath emanating from C is non-negative, then every UC330

edge other than (C, C:−y, A) must be bypassable. For example, the first encountered UC331

edge (C ′, C ′:−y′, A′) must be bypassable since the subpath from C to A′ being non-negative332

implies that the subpath from C to C ′ must be at least y′ > ∆C′ . An inductive argument333

ensures that all following UC edges are bypassable. But then Lemma 2 ensures that the334

CC-based cycle formed using those bypass edges is non-semi-reducible. (End proof of claim.)335

Finally, if any subpath emanating from C is negative, then the LC edge (A, c:x, C) can336

be bypassed, yielding a cycle of interruptions that cannot be resolved via a CC loop involving337

(C, C:−y, A) and (A, c:x, C); hence the only options for making L non-semi-reducible must338

involve forming a CC loop using a different pair of adjacent, matching UC and LC edges. ◀339

Summary. All three types of SRN cycles L returned by FindSRNC can be resolved by making340

L non-negative. Alternatively, L can be made non-semi-reducible if: (1) it is a CC-based SRN341

cycle for a contingent timepoint C, where each subpath emanating from C is non-negative; or342

(2) L arises from a cycle of interruptions and L includes at least one adjacent pair of matching343

UC and LC edges. This analysis of SRN cycles greatly reduces the need for disjunctive344

constraints as compared to the approach of Wang. It also avoids the problem of repeatedly345

revisiting the same SRN cycle, when making the length of an extension subpath non-negative,346

fails to make it non-semi-reducible. Finally, we conjecture that occurrences of CC loops347

and (especially) cycles of interruptions that can be weakened to reveal a CC loop will occur348

only rarely in practice and, therefore, our new algorithm, presented in Section 4, focuses349

exclusively on constraining the SRN cycle itself to be non-negative (i.e., a single constraint).350

TIME 2024

9:10 Robust Execution of Probabilistic STNs

4 New Algorithm for Robustly Executing PSTNs351

Given any PSTN, our new algorithm for robustly executing PSTNs: (1) computes an352

approximating STNU that is DC, using the FindSRNC algorithm to efficiently compute353

and compactly represent SRN cycles in non-DC STNUs; (2) converts that STNU into354

an equivalent dispatchable ESTNU; and (3) executes the original PSTN using the RTE∗
355

algorithm, leveraging its flexibility to react to possibly extreme contingent durations.356

Algorithm 1 genApproxSTNU: generate a DC STNU that approximates a given PSTN

Input: S = (T , C, M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) | i ∈ {1, . . . , k}}
Output: (Su, F), where Su = (T , C, L) is an approximating DC STNU for S, and F is the joint

probability mass of the durations in M captured by the links in L). Or ⊥ if unable.
// Initialize the approximating STNU

1 Su ··= (T , C, L), where L = {(Ai, xi = eµi−3.3σi , yi = eµi+3.3σi , Ci) | i ∈ {1, . . . , k}}
2 (L, H) ··= FindSRNC(copy(Su)) // L = SRN cycle; H = edge-annotation hash table
3 while L do

// Below, len = |L|; ai, bi = num. occurrences of ith LC, UC edges in (fully expanded) L

4 (len, (a1, . . . , an), (b1, . . . , bn)) ··= fetchEdgeInfo(negCycle, edgeAnnHash)
5 if Σk

i=1(ai + bi) == 0 then return ⊥ // No labeled edges in expanded SRN cycle
6 A ··= {i | ai > 0 or bi > 0} // Collect indices of contingent links participating in SRN cycle
7 κ ··= |A| // κ ≤ k is num. contingent links participating in SRN cycle
8 Let π : {1, . . . , κ} 7→ A be a re-ordering of the indices of A from 1 to κ

9 bounds ··= (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ))
10 muVec ··= (µπ(1), . . . , µπ(κ)); sigVec ··= (σπ(1), . . . , σπ(κ))
11 coeffs ··= (aπ(1), −bπ(1), . . . , aπ(κ), −bπ(κ))
12 const ··= −len +

∑
1≤i≤κ

(aπ(i)xπ(i) − bπ(i)yπ(i))
13 ((x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)), F̂) ··= nlpOpt(κ, muVec, sigVec, coeffs, const, bounds)
14 if F̂ == ⊥ then return ⊥
15 foreach i ∈ {1, . . . , κ} do xπ(i) ··= x̂π(i) and yπ(i) ··= ŷπ(i) // Update bounds
16 (negCycle, edgeAnnHash) ··= FindSRNC(copy(Su)) // Prepare for next iteration

// Su is dynamically controllable. Re-compute objective function over all contingent links.
17 F ··= Π1≤i≤k (lnCDF(yi, µi, σi) − lnCDF(xi, µi, σi))
18 return (Su, F), where Su has updated bounds (x1, y1, . . . , xk, yk)

4.1 Generating a DC STNU to Approximate a PSTN357

The genApproxSTNU algorithm (Algorithm 1) takes as its input a PSTN S with k probabilistic358

durations of the form (Ai, Ci, Lognormal(µi, σi)).5 It aims to generate an approximating359

STNU for S that is DC by providing bounds for the contingent links that maximize the360

joint probability mass of the probabilistic durations they capture while preserving the DC361

property.362

At Line 1, the approximating STNU is initialized by setting the bounds for each contingent363

link (Ai, xi, yi, Ci) to xi = eµi−3.3σi and yi = eµi+3.3σi , which represent ±3.3 standard364

deviations for the underlying normal distribution, which ensures capturing approximately365

99.96% of the probability mass. As a result, we expect that the initial STNU will not be DC.366

Next, at Line 2, it calls the FindSRNC algorithm on a copy of the STNU. (FindSRNC367

destructively modifies its input.) For non-DC STNUs, FindSRNC outputs a compact repre-368

5 In other words, Lognormal(µi, σi) = eµi+σiZ , where Z is a standard normal random variable.

L. Hunsberger and R. Posenato 9:11

sentation of an SRN cycle as a pair, (L, H), where L is a list of ordinary, LC and UC edges369

with no repeats, and H is an edge-annotation hash table [16]. Although L has no repeat370

edges, some of its ordinary edges may be bypass edges. Each bypass edge E in L has an entry371

in the hash table H that identifies the path PE bypassed by E. In addition, the bypassed372

paths may recursively include other bypass edges. In the worst case, fully expanding L by373

recursively replacing each occurrence of a bypass edge by the path it bypassed can lead to an374

exponential number of edges due to the presence of repeated structures [11]. In contrast, the375

edge-annotation hash table uses only O(k2n) space to store the relevant information [16].376

As long as FindSRNC returns an SRN cycle, the while loop at Lines 3–16 aims to resolve377

the cycle by tightening the bounds on the participating contingent links while retaining as378

much of the probability mass from the corresponding probabilistic durations as possible. Each379

iteration begins, at Line 4, by calling the fetchEdgeInfo algorithm (Algorithm 2) which380

returns the following information: len, the length of (one traversal of) the SRN cycle; and381

two vectors (a1, . . . , ak) and (b1, . . . , bk), where each ai specifies the number of occurrences382

of the LC edge (Ai, ci:xi, Ci) in the (fully expanded) SRN cycle, and each bi the number of383

occurrences of the UC edge (Ci, Ci:−yi, Ai). Crucially, as will be seen later, this can be done384

in O(nk2) time, even if the (fully expanded) cycle contains an exponential number of edges.385

At Line 5, if there are no labeled edges in the (fully expanded version of) the SRN cycle,386

genApproxSTNU returns ⊥, since such a cycle cannot be resolved by adjusting the bounds on387

contingent links. Otherwise, at Lines 6–12, it prepares data for the the constraint optimization388

problem of finding new bounds for the contingent links that maximize the captured joint389

probability mass subject to the constraint of making the SRN cycle non-negative.390

At Line 6, the set A collects the indices i for the contingent links whose labeled edges391

participate in the SRN cycle L. At Line 7, κ = |A| ≤ k denotes the number of contingent392

links participating in L. Since resolving the SRN cycle only requires dealing with those393

κ contingent links, Line 8 specifies a bijection π from {1, 2, . . . , κ} to A that facilitates394

preparing data for the non-linear solver, focusing only on the participating contingent links.395

Lines 9–10 collect, for each participating contingent link, the current values of the bounds,396

xπ(i) and yπ(i), and the µi and σi values of the associated log-normal distributions. Lines 11–397

12 collect information needed to specify the constraint, |L| ≥ 0. First, coeffs collects the398

number of occurrences of the labeled edges from participating contingent links. These counts399

are important because, for example, increasing the value of some xi to x̂i increases |L| by400

ai(x̂i − xi), while decreasing yi to ŷi increases |L| by bi(yi − ŷi). Overall, changing the values401

in (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ)) to (x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)) increases |L| by:402 ∑κ
i=1(aπ(i)(x̂π(i) − xπ(i)) + bπ(i)(yπ(i) − ŷπ(i)))403

Therefore, satisfying |L| ≥ 0 requires choosing values, x̂π(i) and ŷπ(i), such that:404 ∑κ
i=1(aπ(i)x̂π(i) − bπ(i)ŷπ(i)) ≥ −|L| +

∑κ
i=1(aπ(i)xπ(i) − bπ(i)yπ(i))405

The lefthand sum is a linear combination of the variables, x̂π(i) and ŷπ(i), while the quantity406

on the righthand side is a constant. That constant is assigned to const at Line 12.407

Line 13 calls a non-linear optimization solver, here called nlpOpt. Currently, our algorithm408

uses the fmincon solver provided by Matlab; others have used the SNOPT solver. If the409

solver is unable to find a new set of bounds for the contingent links to resolve the SRN410

cycle, then the entire algorithm fails. However, if successful, it returns a vector of the new411

bounds, x̂i and ŷi, and the value of the objective function F . Line 15 updates the bounds412

in the STNU to reflect the new values. Line 16 calls FindSRNC in preparation for the next413

iteration of the while loop. If Line 18 is reached, then the STNU Su has been made DC. It414

is returned by the algorithm, along with the updated value of the objective function.415

TIME 2024

9:12 Robust Execution of Probabilistic STNs

Algorithm 2 fetchEdgeInfo

Input: k, the number of contingent links; P, a path in an STNU graph; edgeAnnHash, a
hash-table of (E, PE) pairs where PE is the path bypassed by the edge E

Output: (len, (a1, . . . , ak), (b1, . . . , bk)), where len = |P|, and ai and bi are the numbers of
times (Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai) appear in the fully unwound version of P

1 infoHash ··= new hash table; len ··= 0
2 lcCounts ··= (0, . . . , 0); ucCounts ··= (0, . . . , 0) // Counts of occurrences of LC/UC edges
3 foreach E ∈ P do
4 if E = (Ai, ci:xi, Ci) is an LC edge for some i then
5 len ··= len + xi; lcCounts[i] ··= lcCounts[i] + 1
6 else if E = (Ci, Ci:−yi, Ai) is a UC edge for some i then
7 len ··= len − yi; ucCounts[i] ··= ucCounts[i] + 1
8 else if ∃(E, PE) ∈ edgeAnnHash then // E is a bypass edge for path PE

9 if ∃(E, ·) ∈ infoHash then // E has already been processed by fetchEdgeInfo
10 (len′, lcCounts′, ucCounts′) ··= infoHash.getValue(E)
11 else
12 (len′, lcCounts′, ucCounts′) ··= fetchEdgeInfo(k, PE) // Recursively process PE

13 infoHash.setValue(E, (len′, lcCounts′, ucCounts′)) // Store results in infoHash

14 len ··= len + len′

15 foreach i ∈ {1, 2, . . . , k} do
16 lcCounts[i] ··= lcCounts[i] + lcCounts′[i]; ucCounts[i] ··= ucCounts[i] + ucCounts′[i]

17 else len = len + |E| // E is an ordinary edge from the original STNU
18 return (len, lcCounts, ucCounts)

The fetchEdgeInfo Algorithm416

The fetchEdgeInfo algorithm (Algorithm 2) accumulates the numbers of occurrences of LC417

and UC edges in the SRN cycle L. Crucially, it does not need to expand L fully. Instead, it418

uses a hash table, infoHash, to keep track of the numbers of occurrences of labeled edges419

recursively hiding within each encountered bypass edge. When it first sees a bypass edge420

E, it recursively processes it, then stores the vectors of counts in the infoHash hash table.421

Subsequent encounters with E only need to do a constant-time look-up in the hash table422

(cf. Lines 9–13 in Algorithm 2). fetchEdgeInfo requires O(nk2) space due to at most O(kn)423

entries stored in the infoHash hash table, each of size O(k). This is less than the O(n2k)424

size of the edge-annotation hash table, H, passed in as an input.425

4.2 Flexible and Efficient Real-time Execution426

Most DC-checking algorithms generate conditional wait constraints that must be satisfied427

by any valid execution strategy. Each wait is represented by a labeled edge of the form428

(W, C:−w, A), which can be glossed as: “While C remains unexecuted, W must wait at least429

w after A.” (Despite the similar notation, a wait is distinguishable from the original UC430

edge since its source timepoint is not the contingent timepoint C.) Morris [22] defined an431

Extended STNU (ESTNU) to be an STNU augmented with such waits. He then extended432

the notion of dispatchability to ESTNUs, defining an ESTNU to be dispatchable if all of its433

L. Hunsberger and R. Posenato 9:13

STN projections are STN-dispatchable.6 He then argued that a dispatchable ESTNU would434

necessarily provide a guarantee of flexible and efficient real-time execution.435

Hunsberger and Posenato [18] later:436

1. formally defined a flexible and efficient real-time execution algorithm for ESTNUs, called437

RTE∗;438

2. defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of the439

ESTNU’s constraints; and440

3. proved that an ESTNU satisfying their definition of dispatchability necessarily satisfies441

Morris’ definition (i.e., all of its STN projections are STN-dispatchable).442

The RTE∗ algorithm provides maximum flexibility during execution, unlike the earliest-443

first strategy used for non-dispatchable networks.444

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [22]445

argued that his O(n3)-time DC-checking algorithm could be modified, without impacting446

its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [15]447

presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm. However,448

neither of these algorithms provides any guarantees about the number of edges in the449

dispatchable output. More recently, Hunsberger and Posenato [17] presented minDispESTNU,450

the first ESTNU-dispatchability algorithm that, in O(kn3) time, generates an equivalent451

dispatchable ESTNU having a minimal number of edges, which is important since it directly452

affects the real-time computations of the RTE∗ algorithm.453

Our new approach to executing PSTNs in real time is the first to explore the use of the454

flexible and efficient RTE∗ algorithm. To enable this, we first use the minDispESTNU algorithm455

to convert the DC STNU output by genApproxSTNU into an equivalent, dispatchable ESTNU456

having a minimal number of edges. Then, we execute the PSTN using the RTE∗ algorithm457

as if it were being applied to the dispatchable ESTNU. In other words, the time-windows and458

wait constraints maintained by RTE∗ are determined by the ESTNU’s edges. In addition, to459

increase the chances of successful execution, RTE∗ is run not with the needlessly inflexible460

earliest-first strategy that has been used by others [3, 31, 8], but with a more flexible midpoint461

strategy made available by RTE∗. In particular, if a currently enabled timepoint X has a462

time-window [a, b], then instead of executing X at a, we execute it at a+b
2 . This enables463

RTE∗ to adapt to unexpected durations that fall outside the STNU’s fixed bounds.464

5 Empirical Evaluation465

We evaluated the robust execution of PSTNs by generating random PSTN instances, then466

executing them using the RTE∗ algorithm based on the approximating STNU, converted to a467

dispatchable ESTNU. We randomly generated durations for the probabilistic links according468

to their distributions. Since the probabilistic durations could fall outside the contingent469

bounds of the ESTNU, RTE∗ might not succeed in all instances, but the percentage of470

successful executions across random trials provides a measure of the PSTN’s robustness.471

We wanted to evaluate whether (1) creating a dynamically controllable STNU to approx-472

imate a PSTN; and (2) taking advantage of the flexibility offered by the RTE∗ execution473

algorithm might lead to a greater percentage of successful PSTN executions, even in cases474

6 A projection of an ESTNU is the STN derived from forcing its contingent durations to take on fixed
values. Each edge in an ESTNU projects onto an ordinary STN edge. For example, in the projection
where C − A = 4, the edges (A, c:2, C), (C, C:−9, A), (W, C:−7, A) and (V, C:−3, A) project onto the
ordinary edges (A, 4, C), (C, −4, A), (W, −4, A) and (V, C: − 3, A), respectively [18].

TIME 2024

9:14 Robust Execution of Probabilistic STNs

Table 1 Results using genApproxSTNU to generate DC approximating STNUs for PSTNs

#PSTNs n k m exTime [s] optTime [s] #NLOprobs %probMass #RCs
24 500 50 1558 0.191 0.141 0.96 77 11
24 1000 100 3136 0.223 0.042 1.00 67 17
14 1500 150 4713 0.573 0.100 1.21 43 10
17 2000 200 6289 0.914 0.046 1.11 53 16

Table 2 Results of RTE∗ execution algorithm on PSTNs: Earliest-First (EF) vs. Midpoint (MP)

#PSTNs n k m execTP
(µs)

%trials-
in succ

EF MP

%trials-
out succ
EF MP

%trials-
out fail

EF MP

num out
if succ

EF MP

num out
if fail

EF MP
24 500 50 2500 9.16 73 73 5 5 22 22 1.08 1.09 1.06 1.06
24 1000 100 5119 14.98 66 66 8 6 26 28 1.03 1.03 1.10 1.12
14 1500 150 7883 26.14 58 58 4 7 38 35 1.07 1.08 1.16 1.15
17 2000 200 106522 31.05 53 53 8 8 39 39 1.10 1.11 1.21 1.23

where the sampled durations fall outside the STNU’s fixed bounds. Toward that end, we475

took non-DC STNUs from a published benchmark [25] and converted them into PSTNs as476

described in the Appendix (cf. the GenPSTN algorithm, Algorithm 4). The results of this477

phase are summarized in Table 1, where n, k, and m are the numbers of timepoints, contin-478

gent durations, and constraints; “exTime” is the average time to execute genApproxSTNU;479

“optTime” is the average time spent running the non-linear optimization solver; “#NLOprobs”480

is the average number of calls to the non-linear optimization solver; “%probMass” is the481

average probability mass of the probabilistic links captured by the approximating STNU; and482

“#RCs” is the number of approximating STNUs having one or more activation timepoints483

participating in rigid components. As expected, the percentage of the probability mass484

captured by the approximating STNU fell as the number of contingent durations increased485

since, for example, .99550 ≈ .778, whereas .995200 ≈ .367. In addition, since the initial STNU486

was non-DC, making it DC could require reducing contingent ranges significantly.487

After converting the STNU instances into their minimal dispatchable form [17], we ran the488

RTE∗ algorithm 200 times on each dispatchable ESTNU, where the contingent durations were489

obtained by randomly sampling the associated log-normal distributions (15800 executions in490

total). To test the impact of the execution strategy on the rate of successful execution, the491

execution of each network in the same situation (i.e., in the same projection) was run twice:492

once with the earliest-first strategy, which executes timepoints as soon as possible, and once493

with the midpoint strategy, which executes timepoints at the midpoints of their time-windows.494

Table 2 summarizes our results, where: “execTP” reports the average time (in µsecs) to495

schedule each timepoint; “%trials-in succ”, the percentage of executions/trials where all496

sampled durations fell within the respective contingent bounds of the ESTNU. For such cases,497

the execution strategy (earliest-first results in plain text, midpoint in italic) is irrelevant498

because any RTE∗ execution is guaranteed to succeed for dispatchable ESTNUs. Column499

“%trials-out succ” reports the percentage of trials where one or more contingent durations fell500

outside the ESTNU’s contingent bounds (called outlier trials), but the execution succeeded501

anyway due to the flexibility of RTE∗ (higher value represents the best performance); while502

“%trials-out fail” reports the average number of outlier trials where the execution failed503

(lower value represents the best performance). Column “num out if fail” reports the average504

number of outlier durations in failed executions; while “num out if succ” reports the average505

number of outlier durations in successful executions. The comparison of the “%probMass”506

L. Hunsberger and R. Posenato 9:15

values from Table 1 and “%trials-in succ” from Table 2 confirms that the probability mass507

captured by the ESTNU’s contingent links corresponds to situations that always generate508

successful executions. It is not clear if the execution strategy for the controllable timepoints509

(earliest-first or midpoint) can increase the rate of successful executions, given that the510

number of different PSTNs is limited. Further investigation is necessary, including on PSTNs511

from real-world applications. Nonetheless, our results provide evidence that the RTE∗
512

algorithm makes it possible to have successful executions even when one or more contingent513

durations are outside the ESTNU’s bounds.514

Our implementations are publicly available [26].515

6 Conclusions516

The paper presented a new approach to the robust execution of PSTNs that takes advantage517

of several recent efficient algorithms for:518

1. finding and compactly representing SRN cycles in non-DC STNUs;519

2. converting DC STNUs into equivalent, dispatchable ESTNUs having a minimal number520

of edges; and521

3. flexibly and efficiently executing ESTNUs in real time.522

We presented a new algorithm to generate an approximating STNU that aims to maximize523

the combined probability mass of the PSTN’s probabilistic durations while maintaining the524

dynamic controllability of the STNU; and a formal analysis of SRN cycles that provided new525

insights into how to efficiently resolve them while avoiding issues arising in past approaches.526

Our empirical evaluation of our approach provides evidence of its effectiveness on robustly527

executing PSTNs derived from a publicly available benchmark. In particular, it shows that528

approximating a PSTN by a dispatchable ESTNU and taking advantage of a flexible real-time529

execution algorithm can increase the chances for a successful execution of that PSTN.530

References531

1 Nikhil Bhargava. Multi-Agent Coordination under Uncertain Communication. 33rd AAAI532

Conference on Artificial Intelligence (AAAI-19), 33(1):9878–9879, 2019. doi:10.1609/aaai.533

v33i01.33019878.534

2 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking535

for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal536

Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.537

doi:10.4230/LIPIcs.TIME.2018.8.538

3 Rosy Chen, Yiran Ma, Siqi Wu, and James C. Boerkoel, Jr. Sensitivity analysis for dynamic539

control of pstns with skewed distributions. In 33rd International Conference on Automated540

Planning and Scheduling (ICAPS 2023), volume 33, pages 95–99, 2023. doi:10.1609/icaps.541

v33i1.27183.542

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to543

Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/544

introduction-to-algorithms.545

5 Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,546

49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.547

6 Maya Abo Dominguez, William La, and James C. Boerkoel Jr. Modeling human temporal548

uncertainty in human-agent teams. CoRR, abs/2010.04849, 2020. URL: https://arxiv.org/549

abs/2010.04849, arXiv:2010.04849.550

7 Cheng Fang, Peng Yu, and Brian C. Williams. Chance-constrained probabilistic simple temporal551

problems. In 28th AAAI Conference on Artificial Intelligence (AAAI-2014), volume 3, pages552

2264–2270, 2014. doi:10.1609/aaai.v28i1.9048.553

TIME 2024

https://doi.org/10.1609/aaai.v33i01.33019878
https://doi.org/10.1609/aaai.v33i01.33019878
https://doi.org/10.1609/aaai.v33i01.33019878
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.1609/icaps.v33i1.27183
https://doi.org/10.1609/icaps.v33i1.27183
https://doi.org/10.1609/icaps.v33i1.27183
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://doi.org/10.1016/0004-3702(91)90006-6
https://arxiv.org/abs/2010.04849
https://arxiv.org/abs/2010.04849
https://arxiv.org/abs/2010.04849
https://arxiv.org/abs/2010.04849
https://doi.org/10.1609/aaai.v28i1.9048

9:16 Robust Execution of Probabilistic STNs

8 Michael Gao, Lindsay Popowski, and James C. Boerkoel, Jr. Dynamic Control of Probabilistic554

Simple Temporal Networks. In 34th AAAI Conference on Artificial Intelligence (AAAI-20),555

volume 34, pages 9851–9858, 2020. doi:10.1609/aaai.v34i06.6538.556

9 Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algorithm for557

large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005. doi:10.1137/558

S0036144504446096.559

10 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more560

practical characterization of dynamic execution strategies. In 16th International Symposium561

on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/562

TIME.2009.25.563

11 Luke Hunsberger. Magic Loops in Simple Temporal Networks with Uncertainty–Exploiting564

Structure to Speed Up Dynamic Controllability Checking. In 5th International Conference565

on Agents and Artificial Intelligence (ICAART-2013), volume 2, pages 157–170, 2013. doi:566

10.5220/0004260501570170.567

12 Luke Hunsberger. Magic Loops and the Dynamic Controllability of Simple Temporal Networks568

with Uncertainty. In Joaquim Filipe and Ana Fred, editors, Agents and Artificial Intelligence,569

volume 449 of Communications in Computer and Information Science (CCIS), pages 332–350,570

2014. doi:10.1007/978-3-662-44440-5_20.571

13 Luke Hunsberger. Efficient execution of dynamically controllable simple temporal networks572

with uncertainty. Acta Informatica, 53(2):89–147, 2015. doi:10.1007/s00236-015-0227-0.573

14 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-574

Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference575

on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785. AAAI Pres, 2022. doi:576

10.1609/aaai.v36i9.21213.577

15 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Tem-578

poral Networks with Uncertainty into Dispatchable Form. Information and Computation,579

293(105063):1–21, 2023. doi:10.1016/j.ic.2023.105063.580

16 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Finding Negative Cycles581

in Simple Temporal Networks with Uncertainty. In The 31st International Symposium on582

Temporal Representation and Reasoning (TIME-2024), volume 318 of LIPIcs, 2024. doi:583

10.4230/LIPIcs.TIME.2024.8.584

17 Luke Hunsberger and Roberto Posenato. Converting Simple Temporal Networks with Un-585

certainty into Minimal Equivalent Dispatchable Form. In Proceedings of the Thirty-Fourth586

International Conference on Automated Planning and Scheduling (ICAPS 2024), volume 34,587

pages 290–300, 2024. doi:10.1609/icaps.v34i1.31487.588

18 Luke Hunsberger and Roberto Posenato. Foundations of Dispatchability for Simple Tem-589

poral Networks with Uncertainty. In 16th International Conference on Agents and Arti-590

ficial Intelligence (ICAART 2024), volume 2, pages 253–263. SCITEPRESS, 2024. doi:591

10.5220/0012360000003636.592

19 Erez Karpas, Steven J. Levine, Peng Yu, and Brian C. Williams. Robust Execution of Plans for593

Human-Robot Teams. In 25th Int. Conf. on Automated Planning and Scheduling (ICAPS-15),594

volume 25, pages 342–346, 2015. doi:10.1609/icaps.v25i1.13698.595

20 Dimitri Kececioglu et al. Reliability Engineering Handbook, volume 1. DEStech Publications,596

Inc, 2002.597

21 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles598

and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.599

doi:10.1007/11889205_28.600

22 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf.601

on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-602

search (CPAIOR-2014), volume 8451 of LNCS, pages 464–479. Springer, 2014. doi:603

10.1007/978-3-319-07046-9_33.604

https://doi.org/10.1609/aaai.v34i06.6538
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.5220/0004260501570170
https://doi.org/10.5220/0004260501570170
https://doi.org/10.5220/0004260501570170
https://doi.org/10.1007/978-3-662-44440-5_20
https://doi.org/10.1007/s00236-015-0227-0
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://doi.org/10.4230/LIPIcs.TIME.2024.8
https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.5220/0012360000003636
https://doi.org/10.5220/0012360000003636
https://doi.org/10.5220/0012360000003636
https://doi.org/10.1609/icaps.v25i1.13698
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33

L. Hunsberger and R. Posenato 9:17

23 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal605

uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages606

494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.607

24 Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating temporal plans608

for efficient execution. In Proceedings of the Sixth International Conference on Principles of609

Knowledge Representation and Reasoning, KR’98, page 444–452, 1998.610

25 Roberto Posenato. STNU Benchmark version 2020, 2020. Last access 2022-12-01. URL:611

https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html.612

26 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,613

17:100905, 2022. doi:10.1016/j.softx.2021.100905.614

27 Ioannis Tsamardinos. A probabilistic approach to robust execution of temporal plans with615

uncertainty. In Methods and Applications of Artificial Intelligence (SETN 2002), volume616

2308 of Lecture Notes in Artificial Intelligence (LNAI), pages 97–108, 2002. doi:10.1007/617

3-540-46014-4_10.618

28 Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of Temporal619

Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),620

pages 254–261, 1998. URL: https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf.621

29 Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks:622

from consistency to controllabilities. J. of Experimental & Theoretical Artificial Intelligence,623

11(1):23–45, 1999. doi:10.1080/095281399146607.624

30 Andrew Wang and Brian C. Williams. Chance-Constrained Scheduling via Conflict-Directed625

Risk Allocation. In 29th Conference on Artificial Intelligence (AAAI-2015), volume 29, 2015.626

doi:10.1609/aaai.v29i1.9693.627

31 Andrew J. Wang. Risk-bounded Dynamic Scheduling of Temporal Plans. PhD thesis, Mas-628

sachusetts Institute of Technology, 2022. URL: https://hdl.handle.net/1721.1/147542.629

32 Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. Silence is also evidence: interpreting630

dwell time for recommendation from psychological perspective. In Proceedings of the 19th631

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13,632

pages 989–997, 2013. doi:10.1145/2487575.2487663.633

33 Peng Yu, Cheng Fang, and Brian Charles Williams. Resolving uncontrollable conditional tem-634

poral problems using continuous relaxations. In 24th International Conference on Automated635

Planning and Scheduling, ICAPS 2014. AAAI, 2014. doi:10.1609/icaps.v24i1.13623.636

Appendix637

A Procedure for Tighten Contingent Bounds to Resolve an SRN638

In this section, we propose nlpOpt, a possible algorithm that tightens contingent bounds to639

resolve an SRN cycle using “Sparse Nonlinear OPTimizer” (SNOPT) library [9]. SNOPT640

is a software package for solving large-scale optimization problems (linear and nonlinear641

programs). It employs a sparse Sequential quadratic programming (SQP) algorithm with642

limited-memory quasi-Newton approximations to the Hessian of Lagrangian.643

In nlpOpt we assume that the bounds on contingent links are monotonically tightened,644

using only a single linear constraint per iteration. A different possibility is to collect the linear645

constraints from each iteration and run the optimization solver on all of the accumulated646

constraints.647

In the experimental evaluation, it was not possible to use the SNOPT library due to a648

compatibility problem. MatLab-Optimization Toolbox library offers the fmincon function649

to solve minimization constrained nonlinear problems using a sparse Sequential quadratic650

programming (SQP) algorithm, the same technique used by SNOPT. Therefore, we adapted651

TIME 2024

https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html
https://doi.org/10.1016/j.softx.2021.100905
https://doi.org/10.1007/3-540-46014-4_10
https://doi.org/10.1007/3-540-46014-4_10
https://doi.org/10.1007/3-540-46014-4_10
https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf
https://doi.org/10.1080/095281399146607
https://doi.org/10.1609/aaai.v29i1.9693
https://hdl.handle.net/1721.1/147542
https://doi.org/10.1145/2487575.2487663
https://doi.org/10.1609/icaps.v24i1.13623

9:18 Robust Execution of Probabilistic STNs

Algorithm 3 The nlpOpt algorithm: tighten contingent bounds to resolve an SRN cycle

Input: k: the number of contingent durations; (µ1, . . . , µk) and (σ1, . . . , σk): k-vectors of µ and
σ parameters for log-normal distributions; coeffs and const: a matrix of coefficients
and a corresponding vector of lower bounds for one or more linear constraints;
(x1, y1, . . . , xk, yk): a vector of initial bounds for the contingent durations

Output: (v, F), where v contains optimized bounds for the k contingent durations, and F is the
corresponding value of the objective function

1 snN ··= 2k

2 numCs ··= numRows(coeffs) // numCs is the number of linear constraints
3 snNF ··= 1 + numCs // snNF includes 1 for the objective function
4 F ··= a new vector with snNF slots // F will hold values of objective function and linear constraints

// Initialize v, the vector of variables
5 v ··= (x1, y1, . . . , xk, yk)

// Set lower and upper bounds for the variables in v
6 vlow ··= (x1, eµ1 , x2, eµ2 , . . . , xk, eµk)
7 vupp ··= (eµ1 , y1, eµ2 , y2, . . . , eµk , yk)

// Set lower and upper bounds for the objective function (in [−1, 0]) and the linear constraints
8 Flow ··= (−1, const[1], const[2], . . . , const[numCs])
9 Fupp ··= (0, ∞, ∞, . . . , ∞)

// Local function that SNOPT uses to compute the objective function and linear constraints
10 Function stnuUsrFun(v): // v = (ℓ1, u1, . . . , ℓk, uk)

// Store the value of the objective function in F[1]
11 F[1] ··= Π1≤i≤k (lnCDF(ui, µi, σi) − lnCDF(ℓi, µi, σi)) // lnCDF = log-normal CDF

// Store the values of the lefthand sides of the linear constraints in F[2], . . . , F[snNF]
12 foreach j ∈ {1, . . . , numRows(coeffs)} do
13 F[j + 1] ··= coeffs[j][1] ∗ v[1] + . . . coeffs[j][2k] ∗ v[2k]

// Call the SNOPT solver, which destructively modifies v
14 (v, F, . . .) ··= snSolveA(v, vlow, vupp, Flow, Fupp, &stnuUsrFun)
15 return (v, F)

Algorithm 4 The GenPSTN algorithm: generation of a PSTN candidate from an STNU
Input: N = (TN , CN , L): an STNU where L is a set of k contingent links, each of the form

(Ai, xi, yi, Ci), where A, C ∈ T and 0 < x < y < ∞.
Output: S = (TS , CS , M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) |∈ {1, . . . , k}}

1 TS := TN

2 CS := CN

3 M := ∅
4 σf := 0.3 // Factor to limit the final σ value
5 foreach (A, x, y, C) ∈ L do
6 M = (x + y)/2
7 S = σf (y − x)/2
8 µ = ln(M2/

√
M2 + S2)

9 σ =
√

ln(1 + S2/M2)
10 M := M ∪ {(A, C, Lognormal(µ, σ))}
11 return (TS , CS , M)

the nlpOpt algorithm, reformulating the optimization problem as a minimization one and652

using a MatLab script to represent the non-linear objective function.653

L. Hunsberger and R. Posenato 9:19

B PSTN Generation654

To generate a set of PSTN instances for our benchmark, we considered the set of random655

non-DC STNUs from a published benchmark [25]. Such instances aim to represent the656

temporal representation of business processes organized in worker lanes. Contingent links657

represent tasks and ordinary links represent temporal deadlines or release times of such tasks.658

Each random STNU was converted into a PSTN using the GenPSTN algorithm described659

in Algorithm 4. For each contingent link (A, x, y, C) in the STNU, GenPSTN creates a660

probabilistic duration with a log-normal distribution with parameters µ and σ chosen to661

ensure that the mean of the distribution is (x + y)/2, and three standard deviations captures662

the entire range [x, y] [20]. Starting with a non-DC STNU guarantees that the initial STNU663

candidate generated by genApproxSTNU would not be DC and, hence, would require multiple664

iterations to find an approximating STNU that was DC. However, because some non-DC665

STNUs have negative cycles comprising only ordinary edges and, hence, cannot be made DC666

by restricting their contingent ranges, only the PSTNs for which DC approximating STNUs667

can be created were kept.668

TIME 2024

	1 Introduction
	2 Background
	2.1 Simple Temporal Networks
	2.2 Simple Temporal Networks with Uncertainty
	2.3 Probabilistic Simple Temporal Networks
	2.3.1 Approximating PSTNs by Strongly Controllable STNUs
	2.3.2 Approximating a PSTN by a Dynamically Controllable STNU

	3 Preliminary Steps
	3.1 Efficiently Finding and Representing SRN Cycles
	3.2 More Efficient Resolution of SRN Cycles
	3.3 Three Kinds of SRN Cycles Computed by FindSRNC
	3.4 Resolving SRN Cycles Output by FindSRNC

	4 New Algorithm for Robustly Executing PSTNs
	4.1 Generating a DC STNU to Approximate a PSTN
	4.2 Flexible and Efficient Real-time Execution

	5 Empirical Evaluation
	6 Conclusions
	A Procedure for Tighten Contingent Bounds to Resolve an SRN
	B PSTN Generation

