
Speeding Up the RUL− Dynamic-Controllability-Checking Algorithm for Simple
Temporal Networks with Uncertainty

Luke Hunsberger,1 Roberto Posenato2

1Department of Computer Science, Vassar College, Poughkeepsie, NY USA,
2Dipartimento di Informatica, Università di Verona, Verona, Italy

hunsberger@vassar.edu, roberto.posenato@univr.it

Abstract

A Simple Temporal Network with Uncertainty (STNU) in-
cludes real-valued variables, called time-points; binary differ-
ence constraints on those time-points; and contingent links that
represent actions with uncertain durations. STNUs have been
used for robot control, web-service composition, and business
processes. The most important property of an STNU is called
dynamic controllability (DC); and algorithms for checking
this property are called DC-checking algorithms. The DC-
checking algorithm for STNUs with the best worst-case time-
complexity is the RUL− algorithm due to Cairo, Hunsberger
and Rizzi. Its complexity is O(mn+ k2n+ kn logn), where
n is the number of time-points,m is the number of constraints,
and k is the number of contingent links. It is expected that this
worst-case complexity cannot be improved upon. However,
this paper provides a new algorithm, called RUL2021, that
improves its performance in practice by an order of magnitude,
as demonstrated by a thorough empirical evaluation.

Background
Simple Temporal Networks (STNs) were introduced by
Dechter, Meiri, and Pearl (1991) to facilitate reasoning about
time. An STN is a pair (T , C), where T is a set of real-valued
variables called time-points, and C is a set of binary difference
constraints on those time-points. Each constraint in an STN
has the form, Y −X ≤ δ, where X,Y ∈ T and δ ∈ R. Typ-
ically, the number of time-points is denoted by n = |T |, and
the number of constraints by m = |C|. Each STN has a corre-
sponding graph G = (T , E), where the time-points serve as
nodes, and the constraints correspond to edges. Specifically,
for each constraint (Y − X ≤ δ) in C, there is a labeled
directed edge, called an ordinary edge, X δ Y in E .

An STN is consistent (i.e., has a solution as a constraint
satisfaction problem) if and only if its graph has no negative
cycles (Dechter, Meiri, and Pearl 1991). The consistency of
an STN can be determined, for example, by the Bellman-Ford
(BF) Single-Source Shortest-Paths (SSSP) algorithm (Cor-
men et al. 2009). This paper uses the version of BF in which
a new node S 6∈ T is used as the source node. For consistent
networks, BF generates a distance function d, where for each
time-point X ∈ T , d(X) equals the length of the shortest
path from S to X . (Initially, for each X ∈ T , d(X) = 0,

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simulating an edge S 0 X .) Such a d will be a solution to
the original STN. Otherwise, BF detects a negative cycle.

The algorithms in this paper use variants of Dijkstra’s
SSSP algorithm (Cormen et al. 2009), propagating either
forward from a source node or backward from a sink node.
Although Dijkstra typically applies only to STNs whose edge-
weights are all non-negative, it may also be used for STNs
having some negative edges—if those negative edges either
all emanate from or all terminate in a single time-point (Mor-
ris 2014). As in Johnson’s algorithm (Cormen et al. 2009), a
potential function can be used to convert edge-weights in a
consistent STN to non-negative values, thereby enabling the
use of Dijkstra to guide the traversal of shortest paths.

Simple Temporal Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) is an
STN augmented with contingent links that can be used to rep-
resent actions with uncertain durations (Morris, Muscettola,
and Vidal 2001). STNUs are used for robot control (Karpas
et al. 2015), web-service composition (Franceschetti and
Eder 2019), and business processes (Franceschetti and Eder
2020a,b). Faster algorithms for managing STNUs will make
them practical for a wider range of applications.

An STNU is a triple (T , C,L) where (T , C) is an STN
and L = {(Ai, xi, yi, Ci)}0≤i<k is a set of contingent links,
where for each i, 0 < xi < yi < ∞; Ai, Ci ∈ T ; and
Ci ≡ Cj iff i = j.1 The number of contingent links (CLs)
is denoted by k. For each (Ai, xi, yi, Ci) ∈ L, Ai is its acti-
vation time-point (ATP), Ci its contingent time-point (CTP),
and ∆i = yi − xi the uncertainty in its duration. We also let
TC = {Ci | ∃(Ai, xi, yi, Ci) ∈ L} denote the set of CTPs;
and TX = T \TC the set of executable time-points. A sys-
tem using an STNU controls the execution of the executable
time-points (i.e., assigns values to them), but only observes
the execution of contingent time-points as they occur.

Each STNU S = (T , C,L) has a graph G = (T , E), where
the time-points in T serve as nodes, and the constraints in
C and contingent links in L together correspond to edges.
Specifically, E = Eo ∪ E` ∪ Eu where:

• for each ordinary constraint (Y −X ≤ δ) in C, there is
an ordinary edge, X δ Y in Eo (as in an STN); and

1The notation X ≡ Y represents that X and Y are the same
variable, not that their values are equal.

X C1

A1 A2

C2

c1:1 C1:−3 c2:1 C2:−10

11

−7

8

−1

Figure 1: A sample STNU graph

• for each contingent link (Ai, xi, yi, Ci) in L, there is a
lower-case (LC) edge Ai

ci:xi Ci in E`, and an upper-case
(UC) edge Ci

Ci:−yi Ai in Eu.

Figure 1 shows the graph for an STNU whose time-points
are A1, C1, A2, C2 and X . The ordinary edges between X
and C1, and between C1 and C2 correspond to ordinary con-
straints (as in an STN). A1 and A2 are ATPs, C1 and C2 are
CTPs, and X,A1 and A2 are executable. The LC edges from
A1 to C1, and A2 to C2 represent the uncontrollable possibil-
ities that the durations of the contingent links, (A1, 1, 3, C1)
and (A2, 1, 10, C2), may each turn out to be as low as 1. The
UC-edges represent the uncontrollable possibilities that their
durations may be as high as 3 and 10, respectively.

For convenience, an ordinary edge X δ Y may be no-
tated as (X, δ, Y); an LC-edge Ai

ci:xi Ci as (Ai, ci:xi, Ci);
and a UC-edge Ci

Ci:−yi Ai as (Ci, Ci:−yi, Ai); and a path
may be notated by combining its constituent edges within
a single expression. For example, the path containing the
edges (A, c:1, C), (C, 5, X) and (X,−7, Y) may be notated
as (A, c:1, C, 5, X,−7, Y). We also adopt the following no-
tation from Hunsberger (2015): The LO-edges comprise
the LC and ordinary edges (i.e., E` ∪ Eo); the LO-graph
G`o = (T , E`∪Eo) contains just the LO-edges; the OU-edges
comprise the ordinary and UC-edges (i.e., Eo ∪ Eu); and the
OU-graph Gou = (T , Eo ∪ Eu) contains just the OU-edges.

Dynamic Controllability of an STNU
The most important property of an STNU is called dynamic
controllability (DC) (Morris, Muscettola, and Vidal 2001).
An STNU (T , C,L) is DC if there exists a dynamic strat-
egy for executing its executable time-points that guarantees
that all ordinary constraints will be satisfied no matter how
the durations of the contingent links turn out. Crucially, a
dynamic strategy can react to observations of executions of
contingent time-points, but its execution decisions cannot
depend on advance knowledge of future events. This paper
assumes the version of DC in which dynamic strategies can
react instantaneously to observations of contingent execu-
tions (Morris 2006). Thus, execution decisions may depend
on past or present observations. The formal definition of the
DC property appears in Hunsberger and Posenato (2021).

The sample STNU is not DC; (i.e., there is no strategy for
executing X , A1 and A2 that can guarantee that all ordinary
constraints will be satisfied no matter how the contingent
durations, C1 −A1 and C2 −A2, turn out). However, weak-
ening the edge (X, 11, C1) to (X, 14, C1) would make it DC.
In fact, the following dynamic strategy would ensure that all
ordinary constraints would be satisfied: Execute X and A2 at
time 0. If C2 happens to execute before time 6, then execute
A1 at time 6; else, execute A1 at time C2 + 1.

Rule Graphical Representation Conditions
(NC) X Y Wv w

v + w
(none)

(UC) X Y Av C:w

C:v + w
(none)

(LC) A C Xc:x w

x + w
w < 0

(Cr) A C Bc:x K:w

K:x + w
K 6≡ C, w < 0

(LR) X A CC:w c:x

w
w ≥ −x

Table 1: Edge-generation rules (Morris and Muscettola 2005)

Rule Graphical representation Applicability Conditions

R
P Q Ci

v w

v + w Q ∈ TX , w < ∆i, Ci ∈ TC

L
Aj Cj Ci

cj :xj w

xj + w Cj 6≡ Ci, w < ∆i, Ci ∈ TC

U
P Ci Ai

v Ci:−yi

max{v − yi,−xi} (Ai, xi, yi, Ci) ∈ L

Table 2: The edge-generation rules for the RUL− algorithm

Morris (2006) introduced an O(n4)-time DC-checking al-
gorithm based on the edge-generation rules shown in Table 1.
(For each rule, the edge generated by the rule is shown as a
dashed edge.) That algorithm uses the rules to generate OU-
edges that effectively bypass (or “reduce away”) LC edges.
Once the LC edges have been bypassed, the DC-checking
problem reduces to checking whether the OU-graph (aug-
mented with the bypass edges) has a negative cycle. Intu-
itively, the LC edges are important for that algorithm only
insofar as they are able to contribute new edges to the OU-
graph. Later, Morris (2014) introduced an O(n3)-time DC-
checking algorithm that uses the same rules, but in a different
way, back-propagating from negative nodes (i.e., nodes hav-
ing one or more incoming negative edges), aiming to bypass
all negative OU-edges with non-negative edges. For this al-
gorithm, the input STNU is DC if and only if all negative
OU-edges can be reduced away.

The RUL− DC-Checking Algorithm
Cairo, Hunsberger, and Rizzi (2018) introduced an O(mn+
k2n+kn log n)-time DC-checking algorithm, called RUL−,
that is the fastest so far.2 Although its complexity for dense
grahps is O(n3), for sparse graphs, whre k = O(

√
n) and

m = O(n log n), its complexity reduces to O(n2 log n).
The RUL− algorithm uses the rules in Table 2. (R,U and

L are abbreviations for Relax, Upper and Lower.) These rules
differ from those in Table 1 as follows: (1) the RUL− rules
only generate ordinary edges; (2) the R rule is the same as
the NC rule, but with stricter applicability conditions; (3) the
L rule is like the LC rule, but with different conditions; (4) the
U rule is similar to the UC rule, but is not length preserving
when v − y < −x; and (5) since the RUL− rules never

2More recently, Bhargava and Williams (2019a,b) presented
a sound-but-incomplete algorithm that combines features of the
Morris 2014 and RUL− algorithms.

ACXC2A2WTS
C:−2013c2:2352

(R) 4(L) 6(R) 9(R) 14

(Unlp)−8(Unlp)−8

(U
nlp)−8

(U
nlp)−8

(U
lp)−6

Figure 2: RUL− generating bypass edges for a UC-edge

generate UC-edges, the LR and Cr rules are not needed.
The RUL− algorithm focuses on the k UC edges, seeking

to use the rules from Table 2 to generate (ordinary) edges
that bypass the UC edges. Once all UC edges have been
bypassed, the DC-checking problem reduces to checking the
consistency of the LO-graph (including the bypass edges).

Figure 2 illustrates the two phases of processing for a sam-
ple UC edge (C,C:−20, A), shown in red, associated with a
contingent link (A, 8, 20, C). In the first phase, the algorithm
propagates backward from C, along edges in the LO-graph,
looking for opportunities to apply the R and L rules to gen-
erate new edges terminating at C, shown as dotted edges at
the top of Figure 2. (The rule used to generate each edge is
given in parentheses.) For example, applying the R rule to the
edges (C2, 3, X) and (X, 1, C) generates the (dotted) edge
(C2, 4, C); and then applying the L rule to (A2, c2:2, C2) and
(C2, 4, C) generates the (dotted) edge (A2, 6, C). Since the
R and L rules only apply when the righthand edge has length
less than ∆C = 20 − 8 = 12, this backward propagation
stops when the edge T 14 C is generated, since 14 ≥ 12.

To make the first phase’s exploration of paths in the LO-
graph efficient, the algorithm uses a potential function, as in
Johnson’s algorithm, to re-weight the LO-edges to be non-
negative. This enables the use of Dijkstra’s algorithm to guide
the exploration of shortest LO-paths. (More on this later.)

In the second phase, for each (new or pre-existing) LO-
edge terminating at C, the algorithm uses the U rule to com-
bine that edge with the (red) UC edge to generate a bypass
edge. For example, applying the U rule to (X, 1, C) and
(C,C:−20, A) generates the bypass edge (X,−8, A), shown
as a dashed edge at the bottom of Figure 2. This is an example
of the non-length-preserving case of the U rule, which we
call Unlp. In general, this case arises whenever v− yi < −xi
(equiv., v < ∆i). In the example, v−y = 1−20 < −8 = −x
(equiv., v = 1 < 12 = ∆C). Note that every edge terminat-
ing at C in Figure 2, except the last one, has length less than
∆C = 12. (That is why back-propagation in the first phase
stopped at T .) Therefore, every bypass edge, except the one
from T to A, has length −x = −8. In contrast, because the
length of the edge (T, 14, C) is 14 ≥ 12 = ∆C , the length-
preserving case of the U rule, which we call Ulp, generates
the edge (T,−6, A), where −6 = 14− 20.

The RUL− algorithm can now be summarized as follows:
(1) it runs Bellman-Ford once to compute an initial potential
function for the LO-graph; (2) it propagates backward from
each of the k UC-edges along edges in the LO-graph, seeking
to generate edges that bypass those UC-edges; (3) after each
processing of a UC-edge, it incrementally updates the poten-

A1C1

C2

X

C1:−3

(Ulp) 5

(Ulp) 8

8

11

(a) Processing the UC edge, (C1, C1:−3, A1)

A2C2C1

A1

X

C2:−10

(L) 0
(R) 8

(Unlp
)−1

−1

c1:1

8

(b) Processing the UC edge, (C2, C2:−10, A2)

C1

A1

C1 C2 A2 C2 C1

A1

C1X

c
1

:1

c
1 :1

c2:1

C
1

:−
3

C
1 :−

3

C2:−10−1 8

−711

C
1

:−
3

C
1 :−

3

C2:−10

(U
lp) 8

(R) 8

(U
n
lp

)−
1

(U
lp) 5

(L) 0

−1

(c) The resulting negative cycle in the LO-graph

Figure 3: RUL− processing the STNU from Figure 1

tial function; (4) if the back-propagation from a UC-edge ever
encounters another UC edge that has not already been pro-
cessed, then it interrupts its processing of the first UC-edge;
and (5) after an interruption, which typically generates new
edges, the potential function is updated and the processing of
the interrupted UC-edge is re-started from scratch.

Figure 3 illustrates how the RUL− algorithm discovers
that the sample STNU from Figure 1 is not DC. In the fig-
ure, the UC edges are shown in red. First, back-propagation
from the UC edge (C1, C1:−3, A1) generates the bypass
edges (C2, 5, A1) and (X, 8, A1), shown as blue dashed
edges in Figure 3a. Next, back-propagation from the UC edge
(C2, C2:−10, A2) generates the bypass edge (X,−1, A2),
shown as an orange dashed edge in Figure 3b. With these
bypass edges, there is now a negative cycle in the LO-graph:
(X,−1, A2, c2:1, C2, 5, A1, c1:1, C1,−7, X), as shown in
Figure 3c. Hence, the next attempt to update the potential
function will fail, signaling that the STNU must be non-DC.

A New Approach to the RUL− Algorithm
This section introduces a new DC-checking algorithm for
STNUs that we call RUL2021. It achieves an order of mag-
nitude improvement in performance over the RUL− algo-
rithm. Like the RUL− algorithm, the RUL2021 algorithm
aims to generate edges that bypass UC edges; and its back-
propagation in the LO-graph is guided by Dijkstra’s algo-
rithm, using a potential function created by an initial call to
Bellman-Ford, then incrementally updated as new edges are
added. However, its substantial differences include:

• It dramatically reduces the number of edges that are in-
serted into the STNU graph, thereby significantly reduc-
ing the amount of constraint propagation required by the
many calls to Dijkstra. In particular, the new algorithm:

◦ only inserts (dashed) edges generated by the Ulp rule.

A

CX

C

C
:−

1
0

c:1

4

−2

(U
nlp)−1

−2

A

CX

C

C
:−

1
0

c:1

−2

4

(U
nlp)−1

4

ACX
C:−10

c:1

4

−2

(Unlp)−1

ACX
C:−10

c:1

−2

4

(Unlp)−1

(a) Non-DC (b) DC

Figure 4: Two scenarios in which back-propagation from the
UC edge (C,C:−10, A) encounters a non-negative cycle L
from C back to C such that 0 ≤ |L| = 2 < 9 = ∆C

◦ only accumulates, but does not insert any (dotted)
edges generated by the R or L rules; and

◦ does not use the (non-length-preserving) Unlp rule.
As will be seen, not using the Unlp rule sometimes re-
quires making extra calls to Dijkstra to check whether
certain non-negative cycles in the LO-graph lead to nega-
tive cycles in the OU-graph, making the STNU not DC.
However, our extensive empirical evaluation shows that
this cost is more than offset by the overwhelming benefit
of reducing the number of edges inserted into the graph.
• The new algorithm keeps track of the work done so far

while processing a UC edge so that when any interrup-
tions (i.e., processings of other encountered UC edges) are
finished, it can resume processing where it left off, even if
the potential function has been updated multiple times in
the interim. This enables the new algorithm to be imple-
mented recursively, like Morris’ 2014 algorithm, making
at most k recursive calls to process UC edges, instead of
at most 2k iterative calls in the RUL− algorithm.
• When processing a UC edge, the new algorithm does not

insert any new edges into the STNU graph until all recur-
sive processing of any interrupting UC edges is completed,
thereby requiring fewer updates of the potential function.

The novel features are described in more detail below.
Avoiding the Unlp rule. The correctness proof for the

RUL− algorithm uses the Unlp rule for only two purposes:
(1) to prove that a cycle of interrupted processings of UC
edges implies that the original STNU is not DC; and (2) to
deal with the case where back-propagation from a UC edge
(C,C:−y,A) encounters a non-negative cycle L in the LO-
graph from C back to C, where 0 ≤ |L| < ∆C . Regarding
Case (1), it is true that inserting the edges generated by the
Unlp rule ensures that a cycle of interruptions will be de-
tected the next time the potential function for the LO-graph
is updated, but it is not the only way. Instead, as in Morris’
2014 algorithm, it suffices to merely monitor for the presence
of a cycle of recursive interruptions and, if such a cycle is
ever found, immediately conclude that the network is not DC.

Case (2) is illustrated by the contrasting scenarios shown
in Figure 4: one non-DC, one DC. For each scenario, the
bottom picture shows the STNU graph and the top shows
the cycle being considered. In each scenario, processing the
UC edge (C,C:−10, A) involves back-propagating along a

A

CX

C

C
1 :−

1
0

c:1

4

−2
(R) 2(LC)−1

A

CX

C

C
1 :−

1
0

c:1

−2

4
(R) 2

ACX
4

−2

C1:−10

c:1

(R) 2

(LC)−1 ACX
−2

4

C1:−10

c:1

(R) 2

(a) Non-DC graph (b) DC graph

Figure 5: How the new RUL algorithm processes the scenar-
ios from Figure 4 without using the Unlp rule

cycle L from C to X to C, where 0 ≤ |L| = 2 < 9 = ∆C ;
however, on the left, L = (C,−2, X, 4, C), whereas on the
right, L = (C, 4, X,−2, C). This slight difference makes the
lefthand graph non-DC, and the righthand graph DC.

When the RUL− algorithm processes the lefthand graph,
the UC edge is immediately reduced away by applying the
Unlp rule to the edges (X, 4, C) and (C,C:−10, A), gen-
erating the (dashed) bypass edge (X,−1, A). This creates
a negative cycle (A, c:1, C,−2, X,−1, A) in the LO-graph,
which the algorithm detects when it tries to update the po-
tential function. The key features are that the lengths of the
LC edge (A, c:1, C) and the generated edge (X,−1, A) sum
to zero, while the edge from C to X has negative length. In
contrast, although back-propagating from C in the righthand
graph also generates the dashed edge (X,−1, A), no nega-
tive cycle in the LO-graph arises because, in this scenario, the
weight on the edge (C, 4, X) is non-negative. In particular,
the cycle (A, c:1, C, 4, X,−1, A) has length 4 ≥ 0.

While the RUL− algorithm uses the Unlp rule to distin-
guish the scenarios in Figure 4, our new algorithm distin-
guishes them without using Unlp. First, as it back-propagates
from a UC edge (C,C:−y,A), the new algorithm keeps track
of whether it ever encountered a cycle from C back to C of
length less than ∆C , which we call a CC loop. If so, after
completing its back-propagation, it then carries out a separate
forward propagation from C in the LO-graph, looking for
opportunities to generate bypass edges for the lower-case
edge (A, c:x,C). This forward propagation is similar to that
used by the Morris 2006 algorithm, except that: (1) it only
visits LO-edges, not OU-edges; and (2) it only visits nodes
that were encountered during the back-propagation from C
along paths of length less than ∆C (i.e., those nodes for
which the Unlp rule would apply if it were being used). If it
is able to generate a bypass edge for the LC edge, then the
algorithm immediately halts, reporting that the STNU is not
DC; otherwise, it resumes normal processing.

Figure 5 illustrates how our new algorithm deals with the
scenarios in Figure 4. In each case, back-propagation from
C does not use the Unlp rule to generate a (dashed) bypass
edge from X to A. Instead, propagation from C continues
past X , using the R rule to generate (but not insert) the (dot-
ted) edge/loop (C, 2, C). Since 0 ≤ 2 < 9 = ∆C , this CC
loop triggers, in each scenario, a separate forward propaga-
tion from C, looking for opportunities to bypass the LC edge

A

C

X

C

c:x
α < 0

β <
y − xC:−y

x+ α

< 0

Figure 6: Forward propagation generating an OU-loop of
length x+ α+ β − y < x+ 0 + (y − x)− y = 0

A1C1

C2

X

C1:−3

(Ulp) 5

(Ulp) 8

8

11

(a) Processing (C1, C1:−3, A1)

A2C2C1A1

X

C2 5

C2:−10

(L) 0
(R) 8

−1c1:1
8

(R) 5 < ∆C

(b) Back-propagating from UC edge (C2, C2:−10, A2) reveals
CC loop (C2, 5, A1, c1:1, C1,−1, C2) of length 5 < ∆C2

A2 C2 A1 C1 X
c2:1 5 c1:1 −7

6
−1

0

(c) Forward propagation from C2 along LO-edges generates a
(green, dashed) bypass edge for the LC-edge (A2, c2:1, C2)

A2 X

C2

0

8C2 :−10

−2

(d) Leading to a negative loop in the OU-graph

Figure 7: The RUL2021 algorithm’s processing of a tighter
version of the STNU from Figure 1

(A, c:1, C). On the left, forward propagation generates the by-
pass edge (A,−1, X) using the LC rule from Table 1, which
creates a negative loop in the OU-graph, implying that the
STNU is not DC. More generally, as shown in Figure 6, any
such bypass edge (A, x+ α,X) necessarily combines with
the dotted edge (X,β,C) and the UC edge (C,C:−y,A) to
form a negative loop in the OU-graph, since α must be nega-
tive, and β < ∆C = y − x. Our algorithm returns ⊥ as soon
as a bypass edge is found. In contrast, on the right of Fig-
ure 5, forward propagation from C in the LO-graph ends at
the other occurrence of C, without generating a bypass edge.
Hence, our algorithm would resume normal processing—if
there were other UC edges to process.

Next, recall Figure 3 which shows how the RUL− al-
gorithm processes the STNU from Figure 1. Recall fur-
ther that RUL− uses the Unlp rule to generate the edge
(X,−1, A2) which contributes to a negative cycle in the LO-
graph. Figure 7 shows how our new algorithm would process
this STNU without using the Unlp rule. First, the UC-edge
(C1, C1:−3, A1) is processed as shown in Figure 7a. Next, as
shown in Figure 7b, back-propagation from C2 detects a (red,
dotted) loop from C2 back to C2 of length 5 < ∆C2

. This

A2C2C1

A1

X

C1
C1:−3

C2:−10

(L) 0 < ∆
C
2

(R) 10 ≥
∆C2

11

−1

c1 :1 d(C1) = −1
d(X) = 10
d(A1) = 0

(a) Processing (C2, C2:−10, A2) first encounters interruption atA1

A2C2A1

X

C2

C2:−10

(R) 8 < ∆C2

(R) 5 < ∆
C
2

8

5

0

d(C1) = −1
d(X) = 8
d(A1) = 0
d(C2) = 5

(b) Resuming after processing (C1, C1:−3, A1) (as in Figure 7a)

Figure 8: The new algorithm dealing with an interruption

triggers a separate forward propagation from C2 which, as
shown in Figure 7c, generates a bypass edge (dashed, green)
for the LC-edge (A2, c2:1, C2). Hence, the algorithm imme-
diately halts: because the analysis always comes out the same,
as shown previously in Figure 6 and here in Figure 7d.

Efficiently dealing with interruptions. If, while process-
ing a UC edge E, back-propagation encounters an as-yet-
unprocessed UC edge E′, the RUL− algorithm interrupts its
processing of E to deal with E′. Once it has generated all
bypass edges for E′, it updates the potential function and
restarts its processing of E from scratch. Additional interrup-
tions may require additional restarts. In all, this leads to a
maximum of 2k processings of UC edges (including restarts).

Like Morris’ 2014 algorithm, our new algorithm is recur-
sive, which facilitates keeping track of information accumu-
lated prior to interruptions so that, once interruptions are
finished, processing can resume from where it left off—even
if the potential function has been updated in the interim.

Figure 8 illustrates the approach using the sample
STNU, but starting by attempting to process the UC edge
(C2, C2:−10, A2) first, as shown in Figure 8a. In this case,
an interruption is encountered at A1. The relevant feature
is that the distance from A1 to C2 is 0 which, being less
than ∆C2

, would warrant further back-propagation; however,
back-propagation is not allowed past an unstarted UC edge.
Therefore, the processing of (C2, C2:−10, A2) is interrupted.
However, the accumulated information (i.e., the distance val-
ues shown on the righthand side) is not thrown away. After
(C1, C1:−3, A1) has been fully processed, as seen before in
Figure 7a, and the potential function has been updated, the
processing of (C2, C2:−10, A2) resumes. First, the queue
for the Dijkstra back-propagation is initialized with just A1.
The key for A1 in the queue is computed using the updated
potential function. (If there had been multiple interruptions,
the queue would have been initialized with the ATPs for
all the interrupting UC edges.) Figure 8b shows how back-
propagation continues from A1. When X is visited, it reveals
a shorter distance to C2; when C2 is visited, a loop from C2

to C2 of length 5 < ∆C2 is detected which would trigger
a separate forward propagation that, as seen before, would
show the network to be non-DC.

In general, recursion enables handling interruptions more
efficiently, avoiding redundant propagations incurred by the

Algorithm 1: The UpdPF function
Input: G, an STNU graph; A, an activation time-pt.; h, a

pot. func. for G`o, excluding edges ending at A
Output: A potential function h′ for G`o (including edges

terminating at A); or ⊥ if G`o is inconsistent
1 h′ := copy-vector(h)
2 Q := new empty priority queue
3 Q.insert(A, 0) // Init. queue for back-prop from A
4 while (!Q.empty()) do
5 (V, key(V)) :=Q.extractMinNode()

// Back-prop along ordinary edges ending at V
6 foreach ((U, δ, V) ∈ Eo) do
7 if (UpdVal((U, δ, V), h, h′,Q)==⊥) then return⊥

// Back-prop along LC-edge ending at V , if any
8 if (V is contingent) then
9 (AV , xV , yV , V) := contingent link for V
10 if (UpdVal((AV , xV , V), h, h′,Q) == ⊥) then

return ⊥

11 return h′

Algorithm 2: UpdVal, helper for UpdPF
Input: h, h′, potential functions; (U, δ, V), an edge; andQ, a

priority queue
Output: > iff h′ can be updated to satisfy (U, δ, V) without

detecting a negative loop
1 if (h′(U) < h′(V)− δ) then
2 h′(U) := h′(V)− δ
3 if (Q.state(U) == notYetInQ) then
4 Q.insert(U, h(U)− h′(U))

5 else if (Q.state(U) == inQ) then
6 Q.decreaseKey(U, h(U)− h′(U))

7 else return ⊥
8 return >

RUL− algorithm each time it restarts from scratch. In addi-
tion, our implementation can detect multiple interruptions,
thereby reducing the number of resumptions. Finally, our al-
gorithm does not insert any bypass edges for E until after all
interruptions have completed, resulting in fewer redundant
edge insertions and fewer updates to the potential function.

Pseudocode
Pseudocode for the RUL2021 algorithm is given as Algo-
rithms 1 to 7, discussed in detail below.

Updating the Potential Function. Like the RUL− algo-
rithm, whenever new bypass edges are inserted into the LO-
graph, the RUL2021 algorithm incrementally updates the po-
tential function for the LO-graph using a propagation-based
algorithm similar to that of Ramalingam et al. (1999). Pseu-
docode for the UpdPF (i.e., update potential) function is
given as Algorithm 1. Its inputs include an activation time-
point A, and a function h that satisfies all the edges in the
LO-graph, except possibly edges ending at A (e.g., new by-
pass edges). It aims to return a function h′ that satisfies all of
the LO-edges, including those terminating at A.

Initially, h′ is the same as h. UpdPF then propagates back-
ward from A along LO-edges, adjusting the values of h′ as

necessary to satisfy the edges it encounters. It uses a priority
queue Q where the key for each node X reflects the amount
by which h′(X) had to be changed. Propagation ceases at
nodes for which no adjustment of h′ is necessary.

For each encountered edge (U, δ, V), the UpdVal (i.e.,
update value) function in Algorithm 2 adjusts h′(U) if nec-
essary to ensure that it satisfies the constraint V − U ≤ δ.
If U is not yet in the queue, it inserts U into the queue; if U
is already in the queue, it decreases the key for U to reflect
the new value of h′(U); but if U has already been popped
from the queue, it immediately returns ⊥, since this can only
happen if this edge completed a negative cycle back to A.

Phase I. The first phase of processing a UC-edge in-
volves propagating backward from its contingent time-point
C, along edges in the LO-graph, looking for opportunities to
apply the R and L rules from Table 2. The phase1 function
in Algorithm 3 uses a potential function to re-weight the
edges in the LO-graph to enable a (single-sink) Dijkstra-like
traversal of the shortest paths. The key for each nodeX in the
priority queue is the distance from X to C in the re-weighted
graph, while δxc is the corresponding distance in the original
LO-graph. When X is popped from the queue, significant
processing only continues if δxc < ∆C . (For now, ignore the
loc.dist[X] variable.) The first three cases are those in
which back-propagation does not continue past X .

In Case 1, X ≡ C. If δxc < 0, then a negative cycle has
been found and ⊥ is immediately returned. Otherwise, a flag
loc.ccLoop is set, indicating that a non-negative cycle
from C back to C has been found. (More on this later.)

In Case 2, X is the ATP for a UC-edge EX that the algo-
rithm has not yet started processing. For now, that UC-edge
is accumulated in loc.UUCEs (i.e., unstarted UC-edges).

In Case 3, X is the ATP for a UC-edge EX that the algo-
rithm has started processing, but not yet finished. In other
words, a cycle of interrupted processings of UC edges has
been detected. Thus, the function immediately returns ⊥.

Case 4 is where back-propagation from X continues. The
apRL (i.e., apply relax/lower) function in Algorithm 4 con-
siders each LO-edge e = (W, θ,X) incoming to X and
accumulates (but does not insert) a new edge from W to C
by applying the R or L rule to e and (X, δxc, C). The edges
(W, δwc, C) returned by apRL are then used in Case 4 to
either insert W into the priority queue or decrease its key if it
is already in the queue. When W is eventually popped off the
queue, back-propagation from W will then be considered.

The RUL2021 algorithm. Algorithm 5 gives the high-
level structure of the RUL2021 algorithm. It takes an STNU
graph G as its input. It outputs > if and only if G is DC. It
first initializes a global data structure glo, whose fields are
pf and status. The pf field is initialized to a potential
function for the LO-graph obtained from a call to Bellman-
Ford. The status field is a vector that holds the processing
status of each UC-edge. The initial status of each UC-edge is
nYet (i.e., not yet started). It then calls the recursive helper
function RULbp (Algorithm 6) on each UC-edge.

The RULbp (RUL back-prop) function first checks the
status of the input UC-edge E (Lines 3 to 4). If E is already
started, then a negative cycle of recursive calls has been de-
tected, and RULbp returns ⊥. Alternatively, if E has already

Algorithm 3: The phase1 function
Input: G = (T , E), an STNU graph; C ∈ TC , a contingent TP;

Q, a priority queue; glo, instance of global struct; loc,
instance of local struct

Output: ⊥, iff back-prop. from C reveals G to be not DC
// Side Effect: Modifies contents of loc struct

1 h := glo.pf // Potential fn., a solution to the LO-graph
2 st := glo.status // Gives status of UC-edges
3 loc.UUCEs := {} // Collects unstarted UC-edges
4 while not(Q.empty()) do

// key(X) = dist. from X to C, adjusted using pot. fn.
5 (X, key(X)) := Q.extractMinNode()
6 δxc := key(X)− h(X) // δxc = XC dist. in G

// If X is an ATP, then EX is corresp. UC-edge; else ⊥
7 EX := G.UCEdgeFromATP(X)
8 if (δxc < loc.dist[X]) then
9 loc.dist[X] := δxc // Record shorter length
10 if (δxc < ∆C) then // Back-propagate
11 if (X ≡ C) then

// Case 1: CC loop of length δxc < ∆C

12 if (δxc < 0) then return ⊥ // Neg. cycle
13 else loc.ccLoop := > // Alert fwd. prop.
14 else if (EX and st[EX] == nYet) then

// Case 2: EX is an unstarted UC-edge
15 loc.UUCEs.add((EX , X))

16 else if (EX and st[EX] == std) then
// Case 3: Cycle of interruptions: not DC

17 return ⊥
18 else

// Case 4: Back-prop. along LO-edges
19 foreach(W, δWC)∈apRL(G, X,∆C , δxc)do
20 if δWC < G.ordEdgeWt(W,C) then
21 newKey := δWC + h(W)
22 Q.insOrDecrKey(W, newKey)

been fully processed, then RULbp returns >. The rest of
RULbp deals with the two-phase processing of E.

First, a local data structure loc is initialized. Its ccLoop
field is set to ⊥ because no loop from C back to C has
yet been found; and its dist vector is initialized so that
dist[X] = ∞ for each X , representing that no path from
any X to C has yet been explored. Next (Lines 10 to 11) a
priority queue Q is initialized to include each X for which
there is an ordinary edge (X, δxc, C), terminating at C. Back
propagation during phase one will begin at one of these Xs.

Each iteration of the while loop (Lines 13 to 22) at-
tempts to start/re-start processing the UC-edge E by calling
the phase1 function (Line 14). After that (Line 15), the
loc.UUCEs field is checked to see whether any unstarted
UC-edges were encountered by phase1. If so, processing
of E is interrupted to allow all of those as-yet-unstarted UC-
edges to be processed (Line 17). Any of these may, in turn,
result in further recursive calls to RULbp. If any of these
interrupting calls fail, then RULbp immediately returns ⊥.
Otherwise, at Lines 18 to 20, it prepares the queue for re-
starting the phase-one processing of E in the next iteration of
the while loop. After clearing the queue, the activation time-

Algorithm 4: The apRL algorithm
Input: G, an STNU graph; V ∈ TX ; ∆C ; δV C

Output: A list of pairs, (W, δWC), obtained by applying the R
and L rules to LO-edges incoming to V , with the edge
(V, δV C , C).

1 edges := {}
2 if (δV C ≥ ∆C) then return {} // RL rules don’t apply
3 if (V ∈ TC) then

// Apply the L rule to (AV , v:xV , V) and (V, δV C , C)
4 edges.add((AV , xV + δV C))

5 else
6 foreach ((W, δWV , V) ∈ Eo) do

// Apply R rule to (W, δWV , V) and (V, δV C , C)
7 edges.add((W, δWV + δV C))

8 return edges

Algorithm 5: The RUL2021 algorithm
Input: G = (T , E = Eo ∪ E` ∪ Eu), an STNU graph
Output: >, if G is DC; ⊥, otherwise. // Modifies G

1 glo := new global struct // Fields: pf, status
2 glo.pf := BellmanFord (G`o)
3 if (glo.pf == ⊥) then return ⊥

// Initialize processing status of each upper-case edge
4 glo.status := [nYet,. . . , nYet] // k-vector
5 foreach (E = (C,C:−y,A) ∈ Eu) do
6 if (RULbp (G, E, glo) == ⊥) then return ⊥
7 return >

point for each interrupting UC-edge is re-inserted into the
queue with a key based on the potential function that quite
likely was updated during the recursive call(s) to RULbp
(Line 20). Those ATPs provide starting points for resuming
the phase-one processing of E. The dist values for those
ATPs are set to∞ to ensure that when they are popped off
the queue by phase1 they will satisfy the conditional at
Line 8 in phase1. In contrast, the dist values for all other
time-points are preserved so that the phase-one processing of
E does not need to restart from scratch.

Eventually, some iteration of the while loop must result
in either detecting a cycle of recursive calls and returning ⊥
or successfully completing the phase-one processing of E. In
the latter case, the loc.ccLoop flag is checked (Line 23)
to see whether the processing of E detected a non-negative
CC loop. If so, the fwdPropNDC function, described below,
does a separate forward propagation from C to determine
whether the LC-edge (A, c:x,C) can be reduced away and,
if it can, cause RUL2021 to return ⊥. Otherwise, phase two
is carried out (Lines 23 to 28). It generates and inserts any
bypass edges derived from data in the loc.dist vector—
but only for cases in which the length-preserving Ulp rule
applies. If any new edges are inserted, the potential function
is updated (Line 30) and the status of E is set to done.

Separate forward propagation. The fwdPropNDC
function (Algorithm 7) takes as input information about the
phase-one processing of a UC-edge (C,C:−y,A) in which
a CC loop L was encountered with 0 ≤ L < ∆C . It does a
forward propagation along paths in the LO-graph emanating

Algorithm 6: The RULbp algorithm
Input: G = (T , E), STNU graph; E ∈ Eu; glo
Output: >, iff E can be successfully reduced away

1 st := glo.status // Gives status of UC-edges
2 h := glo.pf // Potential function for LO-graph
3 if (st(E) == std) then return ⊥ // Negative cycle
4 if (st(E) == done) then return > // E already done
5 st(E) := std // Set status of E to started
6 ∆C := y − x // E is UC-edge for cont. link (A, x, y, C)
7 loc := new loc struct // fields: ccLoop, dist, UUCEs
8 loc.ccLoop := ⊥ // No CC loop found yet
9 loc.dist := [∞, . . . ,∞] // n vector: dist from TPs to C
10 Q := a new priority queue (initialized below)

// key(X) = h(X) + δxc = adjusted distance from X to C
11 foreach ((X, δxc, C) ∈ Eo) do Q.ins(X,h(X) + δxc)
12 continue? := >
13 while (continue?) do
14 if !(phase1(G, C,Q, glo, loc)) then return ⊥
15 if loc.UUCEs!= {} then

// Proc. unstarted UC-edges seen by phase1
16 foreach (EX , X) ∈ loc.UUCEs do
17 if !(RULbp(G,EX , glo)) then return ⊥
18 Q.clear() // Prep. Q for next iteration of WHILE
19 foreach ((EX , X) ∈ loc.UUCEs) do
20 Q.ins(X, loc.dist[X] + glo.pf[X])
21 loc.dist[X] :=∞

22 else continue? := ⊥
23 if (loc.ccLoop and fwdPropNDC(G, C,∆C , loc.dist,

glo.pf)) then return ⊥
// Collect edges from applying Ulp rule to XC edges

24 edges? := ⊥
25 foreach (X ∈ T such that X 6≡ C) do
26 δxc := loc.dist[X]
27 if (∆C ≤ δxc <∞) then // Length-preserving case
28 G.insOrUpdateOrdEdge(X, δxc − y,A)
29 edges? := >

30 if (edges?) then glo.pf := UpdPF(G, A, glo.pf)
31 if (glo.pf == ⊥) then return ⊥
32 st[E] := done
33 return > // Processing of E completed

from the contingent time-point C looking for opportunities
to reduce away the corresponding LC-edge (A, c:x,C). In-
tuitively, if any time-point X in that CC loop is constrained
to occur before C, the network must not be DC, since the
loop has less flexibility than the contingent link. The forward
propagation restricts attention to time-points X for which
loc.dist[X] < ∆C . It uses the potential function to re-
weight the LO-edges so that Dijkstra can be used to guide the
exploration of paths. If it ever finds a path from C to some X
of negative length, it immediately returns >, indicating that
the LC-edge can be reduced away.

Experimental Evaluation
The performance of our new RUL2021 DC-checking algo-
rithm was compared against that of the pre-existing RUL−

and Morris 2014 algorithms. All algorithms/procedures were
implemented in Java and run on a JVM 11 having 8GB of

Algorithm 7: fwdPropNDC
Input: G, an STNU graph; C ∈ TC ; ∆C = y − x; dist,

vector of XC distances; h, potential function
Output: >, iff LC-edge (A, c:x,C) can be reduced away

1 Q := new priority queue // Key[X] = d(C,X)− h(C)
2 Q.insert(C,−h(C)) // Queue initially contains only C
3 while (!Q.empty()) do
4 (X, key(X)) :=Q.extractMinNode()
5 d(C,X) := key(X) + h(X) // CX distance in G`o
6 if (dist[X] < ∆C) then // Only visit these Xs

// Check if CX path can reduce-away the LC-edge
7 if (d(C,X) < 0) then return >

// Else iterate over edges emanating from X
8 foreach ((X, δXY , Y) ∈ E` ∪ Eo) do
9 newKey := d(C,X) + δXY − h(Y)

10 Q.insOrDecrKey(Y, newKey)

11 return ⊥ // Was unable to reduce-away the LC-edge

500 1,000 1,500 2,000 2,500

0.2s

1s
2s
5s

15s
30s
1m

4m

n

E
xe

cu
tio

n
tim

e

Morris14
RUL−

RUL2021

Figure 9: Test 1: Execution time vs. n; DC networks.

heap memory on a Linux box with one Intel(R) Xeon(R) CPU
E5-2637 v4 @ 3.50GHz. The implementations are freely
available as a Java library (Posenato 2022).

Due to space limitations, we present here a summary of the
tests and results. Full details are available from Hunsberger
and Posenato (2021).

We set up a generator that randomly generates realistic
STNUs with a chosen topology, tunable by multiple param-
eters. The benchmarks are available from Posenato (2022).
Because DC STNUs tend to be more challenging for DC-
checking algorithms, this section focuses on DC STNUs.

Test 1: Execution-time vs. number of nodes. For each
n ∈ {500, 1000, 1500, 2000, 2500}, we randomly generated
200 DC and 200 non-DC STNUs, each having n nodes, k =
n/10 contingent links, and m ≈ 6n edges.

Figure 9 displays the average execution times of the algo-
rithms for the DC networks. Each plotted point represents the
average execution time for an algorithm on the 200 instances
of the given size; each error bar shows the 95% confidence
interval. These results demonstrate that RUL2021 performs
significantly better (by an order of magnitude) than the other
algorithms over DC instances. Results for non-DC networks
were similar.

One of our principal motivating hypotheses was that our
new algorithm would be significantly faster than the RUL−

500 1,000 1,500 2,000 2,500

1

10

100

n

#
ad

de
d

ed
ge

s
(a

s
a

m
ul

tip
le

of
m

)

Morris14
RUL−

RUL2021

Figure 10: Test 1: Number of added edges (as a multiple
of m) vs. the number of nodes in DC networks.

150 250 350 500

3s
5s

15s

30s

1m

2m

k

E
xe

cu
tio

n
tim

e

Morris14
RUL−

RUL2021

Figure 11: Test 2: Execution time vs. number of contingent
links, k, in DC networks with 1500 nodes.

algorithm because it inserts significantly fewer new edges
into the STNU graph.

Figure 10 dramatically confirms this hypothesis. It shows
the number of edges inserted by each algorithm as a mul-
tiple of the number of edges m in the input graph, using a
logarithmic scale. For DC networks, our algorithm inserted,
on average, fewer than 0.4m new edges, while the other al-
gorithms inserted 20m to 80m edges. Although avoiding
the non-length-preserving Unlp rule sometimes requires our
algorithm to do extra forward propagations, this cost is far
outweighed by the benefit of inserting so few new edges.
Results for non-DC networks were similar.

Test 2: Execution-time vs. the number of contingent
links. For this test, we generated random STNUs, each hav-
ing 1500 nodes and between 150 and 500 contingent links.
We built eight new benchmarks—four with 200 DC instances
each, and four with 200 non-DC instances each—where
k ∈ {150, 250, 350, 500}.

Figure 11 plots the execution times of the three algorithms
across these new benchmarks for the DC instances. It con-
firms that the RUL2021 algorithm is fastest even when the
number of contingent links increases. It also shows that the
execution time of the Morris14 algorithm increases more
slowly than that of the RUL− algorithm as the number of
contingent links increases until, eventually, the Morris14 al-
gorithm runs faster than the RUL− algorithm (when there
are 500 contingent links). We believe this occurs because:

(1) just as the RUL2021 algorithm only inserts edges needed
to reduce away upper-case edges, the Morris14 algorithm
only inserts edges needed to reduce away negative edges; and
(2) as the number of contingent links increases, the numbers
of negative nodes and contingent links converge, hence the
max number of times the main processing functions of the
two algorithms are called also converge. These conjectures
are supported by extra plots in (Hunsberger and Posenato
2021), including cases where k ≈

√
n.

Summary. The RUL2021 algorithm achieves a dramatic
improvement over the performance of the RUL− algorithm
on STNU graphs by (1) inserting fewer edges into the STNU
graph to speed up the many instances of Dijkstra-like traver-
sals; and (2) avoiding redundant computations when the pro-
cessing of one UC edge is interrupted by one or more other
UC edges. The first goal was achieved by, first, only comput-
ing path-lengths associated with applications of the L and
R rules while refraining from inserting any new edges asso-
ciated with those paths and, second, only using the length-
preserving case of the U rule. Although avoiding the non-
length-preserving case occasionally requires performing sep-
arate forward propagations, the savings from not inserting
so many edges far outweighs the cost of those rare forward
propagations. The second goal was achieved by implement-
ing the processing of UC edges recursively, not inserting any
new edges until all recursive interruptions are completed,
and keeping track of work done prior to interruptions so that
propagation can continue from where it left off, even if the
potential function has been updated in the interim.

We conjecture that our RUL2021 algorithm provides the
most improvement over the RUL− algorithm in networks
with multiple pathways of relatively small non-negative
weights terminating in contingent time-points (i.e., in net-
works where tasks with uncertain durations face multiple
short-range deadlines arising from interactions with other
tasks). If there are only long-range (e.g., global) deadlines,
then the performance of the algorithms may be closer.

Conclusions
The STNU model is an established formalism for represent-
ing and reasoning about time. The most important problem
associated with STNUs is the DC-checking problem (i.e.,
checking whether a given STNU is dynamically controllable).
The RUL− DC-checking algorithm has the best worst-case
time-complexity: O(mn+ k2n+ kn log n). We believe that
this theoretical complexity cannot be improved upon. How-
ever, our empirical evaluation demonstrates that the perfor-
mance of our new RUL2021 algorithm can be up to ten times
faster. This improved performance is expected to increase
the practicality of STNUs for real-world applications.

All implementations and benchmarks used for our evalua-
tion are freely available at (Posenato 2022).

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1909739.

Experiments supported by Centro Piattaforme Tecno-
logiche (CPT) at University of Verona, Italy.

References
Bhargava, N.; and Williams, B. C. 2019a. Faster Dynamic
Controllability Checking in Temporal Networks with Integer
Bounds. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, 5509–5515. Inter-
national Joint Conferences on Artificial Intelligence Organi-
zation. ISBN 978-0-9992411-4-1.
Bhargava, N.; and Williams, B. C. 2019b. Faster Dynamic
Controllability Checking in Temporal Networks with Integer
Bounds. http://mers-papers.csail.mit.edu/Conference/2019/
IJCAI 2019 Bhargava/ijcai19.pdf. Accessed: 2021-12-07.
Cairo, M.; Hunsberger, L.; and Rizzi, R. 2018. Faster Dy-
namic Controllablity Checking for Simple Temporal Net-
works with Uncertainty. In 25th International Symposium
on Temporal Representation and Reasoning (TIME-2018),
volume 120 of LIPIcs, 8:1–8:16.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2009. Introduction to Algorithms. The MIT Press, 3rd
edition.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence, 49(1-3): 61–95.
Franceschetti, M.; and Eder, J. 2019. Computing Ranges for
Temporal Parameters of Composed Web Services. In 21st
International Conference on Information Integration and
Web-based Applications & Services, iiWAS2019, 537–545.
ISBN 978-1-4503-7179-7.
Franceschetti, M.; and Eder, J. 2020a. Designing Decen-
tralized Business Processes with Temporal Constraints. In
Advanced Information Systems Engineering, 51–63. ISBN
978-3-030-58135-0.
Franceschetti, M.; and Eder, J. 2020b. Negotiating Temporal
Commitments in Cross-Organizational Business Processes.
In 27th International Symposium on Temporal Representa-
tion and Reasoning (TIME-2020), volume 178 of Leibniz

International Proceedings in Informatics (LIPIcs), 4:1–4:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Hunsberger, L. 2015. Efficient Execution of Dynamically
Controllable Simple Temporal Networks with Uncertainty.
Acta Informatica, 53(2): 89–147.

Hunsberger, L.; and Posenato, R. 2021. A
note on speeding up DC-checking for STNUs.
https://iris.univr.it/handle/11562/1045707. Accessed:
2022-03-07.

Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust Execution of Plans for Human-Robot Teams. In 25th
Int. Conf. on Automated Planning and Scheduling (ICAPS-
15), volume 25, 342–346.

Morris, P. 2006. A Structural Characterization of Tempo-
ral Dynamic Controllability. In Principles and Practice of
Constraint Programming (CP-2006), volume 4204, 375–389.

Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In CPAIOR 2014, volume 8451 of LNCS, 464–
479. Springer.

Morris, P. H.; and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In 20th National Conference on
Artificial Intelligence (AAAI-2005), 1193–1198.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control Of Plans With Temporal Uncertainty. In 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
2001), 494–502.

Posenato, R. 2022. CSTNU Tool: A Java library for checking
temporal networks. SoftwareX, 17: 100905.

Ramalingam, G.; Song, J.; Joskowicz, L.; and Miller, R. E.
1999. Solving Systems of Difference Constraints Incremen-
tally. Algorithmica, 23(3): 261–275.

