
Distributing the Control of a Temporal Network among
Multiple Agents

Luke Hunsberger
124 Raymond Ave.

Box 444, Vassar College
Poughkeepsie, NY 12604-0444, USA

hunsberg@cs.vassar.edu

ABSTRACT
Agents collaborating on a set of tasks subject to temporal con-
straints must coordinate their activities to ensure that all of the
temporal constraints are ultimately satisfied. Simple Temporal Net-
works (STNs) can be used to concisely represent temporal con-
straints; however, most algorithms for manipulating such networks
presume that a single agent controls the network. Although recent
research considers the controllability of networks in which Nature
independently controls some temporal intervals, it nonetheless pre-
sumes that a single agent controls the rest of the network.

This paper makes the following contributions. First, it argues for
STNs augmented to accommodate the real-time execution of tasks.
Although borrowing from existing approaches, it differs by sharply
distinguishing between constraints in the network and the distribu-
tion of control over that network. Second, it introduces a more gen-
eral conception of distributing control of a temporal network, one
that is able to accommodate not only networks partially controlled
by Nature, but also networks controlled by multiple agents. Third,
it construes an existing algorithm for partitioning temporal net-
works into independent subnetworks as an algorithm for distribut-
ing control of a temporal network among multiple agents, each
agent having sole control over one subnetwork. It then presents
a more general algorithm that allows one of the subnetworks to re-
main dependent on the rest, thereby enabling the overall network
to be less constrained. Restrictions on the control of the dependent
subnetwork, specified in terms of necessary and sufficient bounds,
guarantee an effective distribution of control over the network.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Theory, algorithms

Keywords
Temporal reasoning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

z
−20

A2

30

A1
−10

45 D z A1 A2

z 0 25 45

A1 -10 0 30

A2 −30 -20 0

Figure 1: A graphical representation of an STN and its associ-
ated distance matrix

1. INTRODUCTION
This section uses a simple example of a task subject to temporal

constraints to introduce Simple Temporal Networks [2] and basic,
relevant definitions and results.

EXAMPLE 1. Let A be a task subject to the following:

• A must begin at or after time 10;
• A’s duration must be between 20 and 30; and
• A must end at or before time 45.

1.1 Simple Temporal Networks

DEFINITION 1. A Simple Temporal Network is a pair, (T , C),
where T is a set {t0, t1, . . . , tn} of time-point variables and C is a
set of binary constraints on those variables, each constraint having
the form tj − ti ≤ δ for some real number δ. The “variable”
t0 represents an arbitrary, fixed reference point on the time-line.
(In this paper, t0 is fixed at 0 and is referred to as z, or the zero
time-point variable.)

Example 1 can be represented by the STN ({z, A1, A2}, C),
where A1 and A2 represent the beginning and ending times for
task A, and C contains the following constraints:

z − A1 ≤ −10
A2 − A1 ≤ 30
A1 − A2 ≤ −20
A2 − z ≤ 45

(i.e., 10 ≤ A1)

(i.e., 20 ≤ A2 − A1 ≤ 30)

(i.e., A2 ≤ 45)

This STN is depicted graphically at the left side of Figure 1, where
each node in the graph corresponds to a time-point variable and
each labelled, directed edge corresponds to a binary temporal con-
straint. The label on an edge E is also called the length of E, and
is denoted by |E|.

Adding together explicit constraints in an STN yields implicit
constraints, as illustrated below:

z − A1 ≤ −10 (i.e., 10 ≤ A1)
A1 − A2 ≤ −20 (i.e., A1 + 20 ≤ A2)

=⇒ z − A2 ≤ −30 (i.e., 30 ≤ A2)

The implicit constraint, z −A2 ≤ −30, is represented in the graph
by a path from A2 to z (via A1) whose length is −30. For con-
venience, a path P may be denoted by the sequence of time-points
it contains, and its length by |P |. Thus, the path from A2 to A1

to z is written P = (A2, A1, z), and |P | = −30. In general,
shorter paths correspond to stronger constraints. For example, the
edge of length 30 from A1 to A2 corresponds to a stronger con-
straint (A2−A1 ≤ 30) than does the path (A1, z, A2) of length 35
(which corresponds to A2−A1 ≤ 35). For each pair of time-points
(ti, tj), it is useful to keep track of the strongest implicit constraint
(i.e., the shortest path) from ti to tj .

DEFINITION 2. Given an STN S = ({t0, t1, . . . , tn}, C), the
distance matrix for S is the (n + 1)-by-(n + 1) matrix D defined
by: D(ti, tj) = shortest path from ti to tj in S.

The distance matrix for an STN can be computed in time O(n3)
using Floyd-Warshall’s all-pairs shortest-path algorithm [1, 2]. The
distance matrix for the STN in Figure 1 is shown at the right side
of the figure; the entries corresponding to explicit constraints have
been highlighted.

DEFINITION 3. A solution to an STN ({z, t1, . . . , tn}, C) is a
set of variable assignments {z = 0, t1 = v1, . . . , tn = vn} sat-
isfying all of the constraints in C. An STN that has at least one
solution is called consistent.

Dechter et al. [2] showed that an STN is consistent if and only if
there are no negative cycles (i.e., loops with negative path-length)
in its associated graph or, equivalently, if and only if the diagonal
entries in the distance matrix are all non-negative. Since this holds
for the distance matrix in Figure 1, the corresponding STN is con-
sistent. That STN has many solutions, including:

{z = 0, A1 = 13, A2 = 37}.

1.2 Adding Constraints to an STN
As described above, an STN is a static entity: a fixed set of time-

point variables together with a fixed set of binary constraints on
those variables. However, when using an STN to represent tem-
poral constraints among tasks, it typically becomes necessary to
modify that STN over time (e.g., by adding new constraints to it).

Recall that task A is constrained to start at or after time 10. To
make room for some other task, it might be necessary to strengthen
this constraint, for example, to require that A start at or after time
16. Of course, this should be done only if it would not threaten
the consistency of the STN. As the following definition and theo-
rem show, the distance matrix contains the relevant information.1

Whereas D(ti, tj) gives the strongest implicit constraint from ti

to tj , the negative-transpose entry, −D(tj , ti), specifies the degree
to which the constraint from ti to tj may be strengthened without
threatening the consistency of that STN.

DEFINITION 4. The candidate constraint tj − ti ≤ δ satisfies
the negative-transpose criterion (NTC) with respect to the distance
matrix D if δ ≥ −D(tj , ti).

THEOREM 5. If a constraint c satisfies the NTC with respect to
the distance matrix D for a consistent STN (T , C), then the STN
(T , C ∪ {c}) is also consistent.

Given that −16 ≥ −25 = −D(z, A1), the candidate constraint,
z −A1 ≤ −16, satisfies the NTC. Thus, it may be safely added to
the network, as shown in Figure 2. Note that the edge from A1 to
1Definition 4 and Theorem 5 draw directly from Dechter et al. [2],
but the NTC terminology is new.

z
−20

A2

30

A1

45

−16

D′ z A1 A2

z 0 25 45

A1 -16 0 29

A2 −36 -20 0

Figure 2: The STN and distance matrix resulting from adding
a constraint to the STN in Figure 1

A2 is shown as a dashed line because the constraint corresponding
to the path (A1, z, A2) of length 29 is stronger than the constraint
corresponding to the edge from A1 to A2 of length 30.

In general, when adding a constraint to an STN, the entries in the
distance matrix either decrease or stay the same (i.e., the strongest
implicit constraints get stronger or stay the same). As a result, the
negative-transpose values in the NTC either increase or stay the
same. Thus, as constraints are added to the network, the NTC im-
poses stronger restrictions (in the form of greater lower bounds).

2. SINGLE-AGENT CONTROL OF AN STN
In the original research on STNs, the question of who controlled

an STN (i.e., had the authority to modify an STN) was not ad-
dressed. However, for a single agent in complete control of an STN,
the original results and algorithms suffice. The following corollary
to Theorem 5 shows that as long as an agent adds constraints that
at each stage satisfy the NTC, then the network shall remain con-
sistent.

COROLLARY 6. Let (T , C0), (T , C1), . . . , (T , Ck) be a se-
quence of STNs such that (T , C0) is consistent and, for each
i ∈ {1, . . . , k}, Ci = Ci−1 ∪ {ci}, where ci satisfies the NTC
for (T , Ci−1). Then each STN in the sequence is consistent.

If an agent is using an STN to represent some scenario in the
distant future, the above theory of STNs suffices. The question of
when constraints are added to the network is irrelevant—as long
as all modifications to the STN are completed (i.e., all time-point
variables are constrained to fixed values) prior to executing any of
the tasks. However, if the STN represents a set of tasks such that
modification of the STN is interleaved with the execution of tasks,
then the given theory is incomplete: it does not explain how to
accommodate the ever-changing present moment or the real-time
execution of tasks, both of which involve modifying the STN in
real-time. The next section addresses these issues.

3. HANDLING THE PASSAGE OF TIME
Several researchers have used STNs to model task-execution sce-

narios in which the effects of the passage of time on the network
must be accommodated [8, 10, 9, 7, 5, 6]. Because these ap-
proaches have used STNs that do not explicitly represent the ever-
changing present moment, reasoning about the effects of the pas-
sage of time must be done outside the representation of STNs. This
section argues for STNs augmented to include an explicit represen-
tation of the ever-changing present moment. One advantage of this
approach is that the execution of a time-point (i.e., the real-time
assignment of a time-point variable to the present moment) can be
defined as a formal operation on Augmented STNs.2 In addition,
Augmented STNs provide a framework for presenting the concept
2Other researchers have discussed executing time-points in
STNs [8, 6], but have not defined time-point execution as a formal
operator on STNs; nor have they explicitly represented the impact
of time-point execution in terms of constraints on the ever-changing
present-moment.

of distributing the control of a temporal network among a group of
agents.

3.1 Augmented STNs (ASTNs)
ASTNs differ from existing approaches, as follows.

• Each ASTN includes a time-point variable, now, that explic-
itly represents the ever-changing present moment.

• ASTNs do not require the use of a particular scheme for dis-
tributing control of a temporal network among a group of
agents and/or Nature.

• Executing time-points and adding new constraints are explic-
itly defined as operators on ASTNs.

ASTNs enable a sharp distinction to be drawn between constraints
in a temporal network and restrictions on who is authorized to
modify various portions of that network. In addition, ASTNs can
accommodate alternative schemes for distributing the control of a
temporal network among a group of agents. For example, ASTNs
can accommodate scenarios in which Nature controls certain task
durations, as well as scenarios in which multiple agents seek to co-
ordinate their execution of a set of temporally related tasks, each
agent controlling a portion of the temporal network.

Although ASTNs will be used throughout this paper, this section
restricts attention to the case of a single agent whose control over
a network is complete—except that it does not control the passage
of time. As will be seen, the passage of time can, by itself, threaten
the consistency of a network.

In addition to the zero time-point, z, and the present-moment
time-point, now, each ASTN includes two sets of time-points: Tx

and Tnx. Each time-point in Tx has already been executed and,
thus, is fixed on the time-line. Each time-point in Tnx has not yet
been executed and, thus, is explicitly constrained to occur at or after
now.

To represent the asymmetric flow of time into the future, each
ASTN includes a constraint of the form z − now ≤ −d (i.e.,
now ≥ d), where d is a variable quantity. Replacing d by a nu-
meric constant transforms an ASTN into an ordinary STN; thus, an
ASTN is a parameterized family of STNs.

DEFINITION 7. A 5-tuple (Tnx, Tx, C, Cν , b), where:

• {z}, {now}, Tnx and Tx are disjoint sets

• C is a set of binary temporal constraints over time-points in
{z} ∪ Tnx ∪ Tx

• Cν = {(now − t ≤ 0) | t ∈ Tnx} ∪ {(z − now ≤ −d)}

• b is a real number

is called an ASTN. This 5-tuple determines a parameterized family
of STNs, as follows. For each d ∈ [b,∞), the STN,

A(d) = ({z, now} ∪ Tnx ∪ Tx, C ∪ Cν)

is called the associate STN at d. The number b is called the creation
time of A.

A sample ASTN based on Example 1 is depicted in Figure 3,
where the open circles are used to indicate that A1 and A2 are as
yet unexecuted (i.e., A1, A2 ∈ Tnx). The creation time has been
arbitrarily set to 0.

For d ≤ 25, the associate STN at d is consistent. For example,
if d = 12, it has the following solution:

{now = 14, z = 0, A1 = 16, A2 = 38}.

30

now

z

45

A2

0

−20

A1

−10
0

−d
[Creation Time: 0]

Dd now z A1 A2

now 0 −d 25 − d 45 − d
z 25 0 25 45

A1 0 min{−10,−d} 0 min{30, 45 − d}
A2 −20 min{−30,−20 − d} −20 0

Figure 3: An Augmented STN (based on Example 1) together
with its distance matrix

For d > 25 (which implies now > 25), the associate STN at d is
inconsistent, as evidenced by the loop (now, z, A2, A1, now) hav-
ing negative path-length. Thus, the mere passage of time can cause
a consistent network to become inconsistent.

DEFINITION 8. Let A be an ASTN created at time b. A is
called consistent at its creation time if the associate STN A(b) is
consistent. The interval of consistency for an ASTN that is consis-
tent at its creation time is the unique interval [b, e] such that A(d)
is consistent if and only if d ∈ [b, e].

Given that the edge from now to z in an ASTN has the variable
length, −d, computing the distance matrix for an ASTN (i.e., a
parameterized family of STNs) is a little different from the case of
an ordinary STN. However, since only one edge has variable length,
the problem is easily solved.

DEFINITION 9. Given an ASTN A = (Tnx, Tx, C, Cν , b), let

S− = ({z, now} ∪ Tnx ∪ Tx, C ∪ Cν \ {(z − now ≤ −d)})

be the STN resulting from removing the edge, z − now ≤ −d, from
A. Let D− denote the distance matrix for S−.

Since a shortest path between two time-points in an ASTN A
either includes the edge, z − now ≤ −d, or does not, the distance
matrix for A(d) may be computed as follows:

Dd(ti, tj) = min{ D−(ti, tj), D−(ti, now) − d + D−(z, tj) }

The distance matrix for the ASTN in Figure 3 is shown at the bot-
tom of the figure. Since A(d) is inconsistent for d > 25, the values
shown are for d ≤ 25.

Since the edge, z − now ≤ −d, satisfies the NTC if and only
if −d ≥ −D−(z, now) (i.e., d ≤ D−(z, now)), the interval of
consistency for a ASTN that is consistent at its creation time is the
interval, [b,D−(z, now)]. For example, the interval of consistency
for the ASTN in Figure 3 is [0, 25].

3.2 Operations on Augmented STNs
This section defines two operations on ASTNs. The Add-Con-

straint (AC) operation modifies an ASTN by adding a constraint
to it; the Execute-Time-Point (EX) operation modifies an ASTN by
executing one of the as-yet-unexecuted time-points. In either case,
an ASTN modified at time T yields a new ASTN whose creation
time is T . For the AC operation, the constraint being added is not
allowed to involve the now time-point. (Such constraints are typi-
cally either redundant or impossible to satisfy.) The EX operation
assigns a previously unexecuted time-point t to a fixed value T by
adding binary constraints on t and z, while removing the constraint

A2

45

z

−d 0
now

Creation Time: 18

A1−18 −20

3018

Figure 4: The ASTN after executing A1 at time 18.

that t occur at or after now (since, otherwise, the network would
ever after be inconsistent). For the ASTN from Figure 3, executing
the time-point A1 at time 18 results in the ASTN shown in Figure 4.
In this ASTN, A1 is effectively constrained to be fixed at 18; in ad-
dition, the edge from A1 to now has been removed. The interval of
consistency for this ASTN is [18, 45]. In other words, by executing
a time-point, the network has gained some flexibility with respect
to the passage of time.

DEFINITION 10. Let A = (Tnx, Tx, C, Cν , b) be an ASTN, T a
real number such that T ≥ b, c an arbitrary constraint on time-
points in Tx ∪ Tnx ∪ {z}, and t an arbitrary time-point in Tnx.
Then, AC and EX are defined as follows:

AC(A, c, T) = (Tnx, Tx, C ∪ {c}, Cν , T) and
EX(A, t, T) = (Tnx\{t}, Tx ∪ {t}, C ∪ {c1, c2}, Cν\{cf}, T)

where: c1 is the constraint: t − z ≤ T (i.e., t ≤ T);
c2 is the constraint: z − t ≤ −T (i.e., t ≥ T); and
cf is the constraint: now − t ≤ 0 (i.e., t ≥ now).

3.3 Prior Work on Using STNs in Real-Time
Tsamardinos et al. [8] investigated the use of STNs in cases

where tasks are being executed in real time. They observed that
a consistent STN may always be successfully executed in real-time
by following a simple strategy. However, in practice, during the
time that an agent is computing updates to the distance matrix in
response to some change to the STN, the passage of time might
itself cause the network to become inconsistent. Thus, their paper
focuses on carrying out fast incremental updates of the distance ma-
trix in real time as time-points are being executed. By transforming
the graph of the STN into an equivalent STN, they show that the
distance matrix may be incrementally computed using only local
(i.e., one-step) propagation of constraints rather than full-fledged
propagation through the entire network. They do not explicitly rep-
resent the ever-changing present moment in their STNs; nor do they
formally define operations on STNs.

3.4 Single-Agent Control of an ASTN
If an agent is authorized to apply instances of the Add-Constraint

and Execute-Time-Point operations to an ASTN in any manner
whatsoever, then that agent is said to have complete control over
that ASTN. However, even in that case, the agent does not control
the passage of time. However, given an ASTN that is consistent
at its creation, the following strategy for executing time-points en-
sures that the ASTN will remain consistent over time—despite the
passage of time (which cannot be directly controlled).

Let A0 be an ASTN that is consistent at its creation time, b. Its
interval of consistency is [b, e], for some e ≥ b. Since any d > e

would introduce an inconsistency (i.e., a loop of negative path-
length), there must be some loop L of length 0 in the associate STN
A(e) that includes the edge from now to z. Since the only edges
terminating at now are those of length 0 from as-yet-unexecuted
time-points, one of those edges, say, now − ti ≤ 0, must be part of
the path L. Execute the time-point ti at time e, generating a new

A2A1

z
18

−18

30

−20

45

−d 0
now Creation Time: 18

Figure 5: The subnetwork controlled by Nature

ASTN A1 that is consistent at its creation time. Apply the preced-
ing strategy to this new ASTN, and so on, until all time-points have
been executed. Since the last ASTN is consistent at its creation
time, and there are no more edges terminating at now, that ASTN
will be forever consistent.

4. SHARING CONTROL WITH NATURE
Several researchers have investigated the use of STNs in cases

where a single agent shares control of a temporal network with Na-
ture, in particular, where Nature independently controls the dura-
tions of certain tasks [10, 9, 7, 5, 6]. For example, I might con-
trol when I turn on my television, but Nature controls how long it
takes for the picture tube to warm up. Morris et al. [6] provide a
polynomial-time algorithm for determining whether such a network
is dynamically controllable (i.e., whether there exists a real-time
strategy for executing time-points that guarantees that all temporal
constraints will ultimately be satisfied—regardless of the choices
made by Nature). Importantly, such a strategy can, at any given
time, only depend on what has already happened, not on what will
happen. They show that if a network is dynamically controllable,
then a strategy for controlling it can be expressed in terms of (self-
imposed) conditional restrictions on the agent’s authority to exe-
cute the time-points under its direct control. For example, an agent
might wait to execute a time-point B until Nature executes some
other time-point C or until at least ∆T units have elapsed since the
execution of yet another time-point A.

Their use of STNs does not include an explicit representation
of the ever-changing present moment. Also, they do not explicitly
define the execution of a time-point variable as a formal operation
on a temporal network.

Using ASTNs, the work of Morris et al. may be characterized
as follows. First, they restrict attention to the Execute-Time-Point
operation on ASTNs. Second, Nature is authorized to execute cer-
tain time-points in Tnx under certain restrictions; the agent is au-
thorized to execute all other time-points in Tnx. For example,
the agent might be authorized to execute A1 in the ASTN in Fig-
ure 3, whereas Nature might be authorized to execute A2. How-
ever, Nature’s use of the Execute-Time-Point operation is restricted
to ∆T ∈ [20, 30] time-units after the execution of A1. If the agent
executes A1 at time 18 (as shown in Figure 4), then Nature’s sub-
sequent control over the execution of A2 is equivalent to Nature
having complete control over the highlighted portion of the ASTN
in Figure 5, subject only to the constraint that that subnetwork re-
main consistent.

When multiple task durations are subject to Nature’s control,
they are assumed to be independently controlled. Thus, each such
duration is, in effect, controlled by a separate instance of a simple
Nature-agent. Each Nature-agent’s control over its corresponding
subnetwork is activated by the execution of a particular time-point
variable. In this scenario, control over the entire ASTN is dis-
tributed among the agent and multiple Nature-agents. Importantly,
each Nature-agent controls its subnetwork without considering the
impact of its Execute-Time-Point operation on the global network.

A

a

now

z

0

0

z

A

a
−u

−a −a
−uv v

C

B

C

B −d

y

−x −x

y

Figure 6: A canonical case covered by Morris et al.

Thus, ensuring the consistency of the entire network, over time, is
the sole responsibility of the agent.

Some of the canonical cases covered by Morris et al. have a nat-
ural interpretation in terms of ASTNs. For example, suppose an
agent directly controls the execution of time-points A and B, but
Nature controls C, subject to the constraints shown in the left-hand
side of Figure 6. Morris et al. derive the following rule: if Nature
has not yet executed C, then the agent must execute B no later than
(x − u) time-units after A is executed. However, if u < 0, then B

must be executed after C and, hence, this rule does not apply.
The ASTN on the right-hand side of Figure 6 represents the same

situation, except that it explicitly includes the now time-point vari-
able. The reason for the above rule is apparent from this ASTN. In
particular, the path (C, B, now, z, A) has length −u + 0 − d + a,
which, for values of d greater than a + (x − u), is less than −x

and, thus, represents a stronger constraint than that represented by
the edge from C to A. Since Nature’s control is governed solely
by the edges linking C and A, Nature might very well violate any
tighter constraint imposed by the agent. By executing B before
time a + (x − u), the edge from B to now is removed, thereby
deleting the threat represented by the path (C, B, now, z, A), which
no longer exists. This ASTN also illustrates why the rule does not
apply when u < 0: in that case, the path (C, B, now, z, A) is longer
(i.e., weaker) than the path (C, now, z, A).

The work by Morris et al. represents an important contribution to
the theory of STNs. However, they make several assumptions that
are not appropriate in many multi-agent scenarios. For example:

• Each subnetwork controlled by Nature corresponds, in effect,
to a single temporal interval.

• The time-points defining the interval controlled by Nature
are required to have a specified order.

• Nature’s authorization is limited to a single Execute-Time-
Point operation for each subnetwork it controls.

• Nature does not negotiate. If a network is not dynamically
controllable, all hope is lost.

The next section treats scenarios involving multiple agents (but no
Nature-agents) seeking to coordinate their execution of tasks sub-
ject to various temporal constraints. That work does not consider
real-time, dynamic controllability issues but does involve more com-
plex schemes for distributing the control of a temporal network
among a group of agents.

5. DISTRIBUTING CONTROL OF A NET-
WORK AMONG MULTIPLE AGENTS

An earlier paper [3] presents a Temporal Decoupling (TD) algo-
rithm that computes a set of constraints to add to a given STN suf-
ficient to partition that STN into a set of independent subnetworks.
The characteristic property of a decoupled STN, called the Merge-
able Solutions Property, is that arbitrary solutions to the decoupled
subnetworks may be combined to yield a solution to the entire net-
work. Thus, if each subnetwork corresponds to a set of tasks being

Subnetwork controlled by YSubnetwork controlled by X

100

4 −4

0
z

0 0

z

BAA B

10

Figure 7: The TD Algorithm on a simple example

done by a single agent, each agent may operate independently on its
own subnetwork without threatening the consistency of the overall
network. Thus, in a decoupled network, control over the network
can be effectively distributed to the participating agents such that
each agent independently controls its own subnetwork.

Consider the following example. Two time-points, A and B, are
subject to the following constraint: 0 ≤ A ≤ B ≤ 10. The corre-
sponding STN is shown in the left-hand side of Figure 7. The goal
is to distribute control over the network to two agents, X and Y ,
such that X controls the execution of A, and Y controls the execu-
tion of B. As things currently stand, X and Y cannot be given in-
dependent and complete control over their respective subnetworks:
were they to execute their time-points independently, they might
violate the constraint that A be executed before B.

The TD algorithm computes a set of constraints to add to the net-
work sufficient to temporally decouple specified subnetworks. The
right-hand side of Figure 7 shows a possible result of running the
TD algorithm on the STN at the left-hand side of the figure. Notice
that the edge from A to B (which represents an inter-subnetwork
constraint) has been made redundant by the new path (B, z, A). As
a result, no matter when X executes A (while maintaining the con-
sistency of its local subnetwork) and no matter when Y executes
B (while maintaining the consistency of its local subnetwork), the
consistency of the global network is ensured. Although this exam-
ple is quite simple, it represents the canonical trick employed by
the TD algorithm to decouple an arbitrarily complex network. The
main result of that paper is that any consistent STN can be decou-
pled into independent subnetworks according to any pre-defined
partition of the non-z time-points. In addition, the network can be
fully decoupled by processing only the inter-subnetwork edges of
the sort shown in Figure 7 and ignoring all other inter-subnetwork
paths. A more recent work [4] extended that result by showing that
the resultant decoupling can be required to be minimal in the sense
that any weakening of its constraints would foil the Mergeable So-
lutions Property.

Although the TD algorithm does not address real-time issues
such as dynamic controllability, it enables a group of agents work-
ing on a set of temporally related tasks to distribute their control
of that network among themselves such that if each agent main-
tains the consistency of its local subnetwork, the consistency of the
global network will be ensured. This type of control distribution
is more general than that considered by Morris et al. in that the
subnetworks controlled by each agent can be arbitrarily complex.

One shortcoming of a temporally decoupled network is that all
of the subnetworks are required to be fully decoupled from one
another. As a result, temporally decoupled networks can sometimes
be tightly constrained. The next section introduces a relaxed form
of temporal decoupling that results in less-constrained networks.

6. A MORE GENERAL METHOD FOR DIS-
TRIBUTING CONTROL OF AN STN

This section introduces relative temporal decouplings, which are
the same as ordinary temporal decouplings, except that one of the
subnetworks (comprising the set of time-points TW in the formal

z

T3T1

T2

TW

Figure 8: A sample relative z-partition

treatment that follows) is not required to be fully decoupled from
the others. There are several important reasons that such a slight
change can have a non-trivial impact for agents using a temporal
network to coordinate their activities. First, the Relative Temporal
Decoupling (RTD) algorithm (presented in this section) generates
networks that are less constrained than those generated by the TD
algorithm. Second, the RTD algorithm can be recursively applied
to subnetworks, generating a hierarchically decoupled network in
which each level of the hierarchy is less constrained than its fully
decoupled counterpart. Third, the subnetworks at any level of such
a hierarchy (including the top level) are controllable according to a
simple scheme described in this section.

The RTD algorithm enables agents to distribute independent con-
trol to those agents that require greater flexibility. Furthermore,
even those agents whose control is partially restricted can, in the
long run, end up having greater flexibility than they would have
had in a fully decoupled network.

The rest of this section defines a relative temporal decoupling,
presents an algorithm for generating such decouplings, and presents
a scheme for distributing the control of a decoupled network among
a group of agents based on a relative temporal decoupling. The
control scheme distinguishes two types of subnetworks: one that is
independently controlled and one whose control is restricted in that
an agent may only add constraints that satisfy a set of necessary and
sufficient bounds, called Lambda Bounds. Space limitations pre-
clude giving detailed proofs of the theorems (which can be found
in a longer work [4]); however, sketches are provided.

6.1 The RTD Problem
For an ordinary temporal decoupling, the time-points must first

be partitioned into disjoint subsets—except that each subset con-
tains the fixed time-point, z. For a relative temporal decoupling,
the subset, TW , does not contain z.

DEFINITION 11 (RELATIVE Z-PARTITION). Let T , TW , and
T1, . . . , Tm be sets of time-points. A z-partition of T relative to TW

is a sequence (T1, . . . , Tm; TW) such that:

• Tr ∩ Ts = {z}, for all r 6= s, 1 ≤ r, s ≤ m; and

• T1 ∪ . . . ∪ Tm = T \ TW .

A relative z-partition (with m = 3) is depicted in Figure 8.
In an ordinary temporal decoupling, the merger of arbitrary so-

lutions to the decoupled subnetworks is guaranteed to be a solu-
tion for the global network. In a relative temporal decoupling, the
merger of arbitrary solutions to the subnetworks corresponding to
T1, . . . , Tm (i.e., all time-points except those in TW) must be ex-
tendible to a solution for the global network.

DEFINITION 12 (EXTENDIBLE PARTIAL SOLUTION). LetS
be an STN over time-points in T . Let T ′ ⊆ T be a set of time-
points. An extendible partial solution for S over T ′ is a set of as-
signments for the time-points in T ′ that is extendible to a solution
for S .

z

T3T1

T2

TW

Figure 9: A sample tight, proper, mixed path

DEFINITION 13 (RELATIVE TEMPORAL DECOUPLING).
S1 = (T1, C1), . . . , Sm = (Tm, Cm) are said to temporally de-
couple S = (T , C) relative to TW if:

• (T1, . . . , Tm; TW) is a z-partition of T relative to TW ;

• S1, . . . , Sm are consistent STNs; and

• (Relative Mergeable Solutions Property) Any solutions
X1, . . . ,Xm to S1, . . . ,Sm may be merged to form an
extendible partial solution for S over T1 ∪ . . . ∪ Tm.

DEFINITION 14 (RTD PROBLEM). Given an STN S whose
time-points T are z-partitioned by T1, . . . , Tm relative to TW ,
find sets of constraints C1, . . . , Cm such that the STNs (T1, C1),
. . . , (Tm, Cm) temporally decouple S relative to TW .

6.2 The RTD Algorithm
When generating an ordinary temporal decoupling, constraints

must be added to the network to ensure that each inter-subnetwork
edge is made redundant, as illustrated in Figure 7. As already ob-
served, this ensures that each inter-subnetwork path is also made
redundant. When generating a relative temporal decoupling, inter-
subnetwork paths must similarly be made redundant. As will be
seen, it suffices to deal with tight, proper, mixed (TPM) paths.

DEFINITION 15 (TIGHT, PROPER, MIXED PATH).
Let S = (T , C) be an STN. Let T1, . . . , Tm and TW be sets of
time-points such that (T1, . . . , Tm; TW) is a relative z-partition of
T . Let r and s be arbitrary such that 1 ≤ r, s ≤ m and r 6= s.
Let ti ∈ Tr \ {z} and tj ∈ Ts \ {z} be arbitrary. A shortest path
P of the form (ti, w1, . . . , wk, tj) is called a tight, proper, mixed
path in S relative to TW if: k ≥ 0 and {w1, . . . , wk} ⊆ TW .

A sample TPM path is depicted in Figure 9. In general, TPM paths
may travel through points in TW , but do not begin or end in TW .
The following theorem shows that the ordinary TD algorithm can
be tricked into generating a relative temporal decoupling simply by
adding a set of redundant constraints to the network, one for each
TPM path.

THEOREM 16. Let S = (T , C) be a consistent STN whose
time-points are z-partitioned by T1, . . . , Tm relative to TW . If to
each TPM path P in S there corresponds an explicit constraint of
the form tj − ti ≤ |P | in C (where ti and tj are the first and last
points in the path P), then running the ordinary TD algorithm on
S will produce a relative temporal decoupling of S with respect to
the relative z-partition (T1, . . . , Tm; TW).

The reason this works is illustrated in Figure 10 (which should be
compared to Figure 9). First, the TPM path from t1 to t2 causes the
redundant edge from t1 to t2 (shown as a dashed arrow) to be added
to the network. Next, the ordinary TD algorithm adds constraints to
ensure that this edge is dominated by a path through zero by adding
new edges from t1 to z, and from z to t2 (recall Figure 7), thereby
ensuring that the TPM path from t1 to t2 is made redundant.

T2

z

T1 TWT3

t2

t1

Figure 10: Making a TPM path redundant

Given: A consistent STN S = (T , C) whose time-points are
z-partitioned by T1, . . . , Tm relative to TW .

(0) Let E = ∅.

(1) Let CWx = {(tj − ti ≤ δ) ∈ C : tj 6= z and ti ∈ TW }.

(2) Let DWx be the distance matrix for (T , CWx).

(3) FOR each Tr, Ts, tp ∈ Tr \ {z}, and tq ∈ Ts \ {z}:
If there is an edge E from tp to tq in C such that

D(tp, tq) = |E| and D(tp, z) + D(z, tq) > |E|,
Then add E to E ;

Otherwise, FOR each w ∈ TW :
If: (w − tp ≤ D(tp, w)) ∈ C
and: D(tp, w) + DWx(w, tq) = D(tp, tq)
and: [D(tp, z) + D(z, tq)] > D(tp, tq)
then: add (tq − tp ≤ D(tp, tq)) to E and

break out of the inner FOR loop.

Return: E .

Figure 11: Generating the initial set of (redundant) constraints
to trick the ordinary TD algorithm into generating a relative
temporal decoupling

Figure 11 presents an algorithm for generating the initial set of
constraints needed to trick the ordinary TD algorithm into “doing
the right thing”. The “Otherwise” clause in Step (3) of the al-
gorithm is illustrated in Figure 12, where squiggly arcs represent
paths. An edge from tp to tq is added to E if a shortest path from tp

to tq through some w ∈ TW is shorter than any shortest path from
tp to tq through z.

6.3 Lambda Bounds
In a relative temporal decoupling, the agents controlling the sub-

networks S1, . . . ,Sm are allowed to operate independently. As a
result, the agent controlling the rest of the time-points (i.e., those
in TW) must be certain not to do anything that would impose any
additional constrainedness on those subnetworks. For example, for
the STN shown in Figure 13, tightening the edge from wk to wl

must not introduce a new, strictly shorter path from xp to xq . In

TW

TsTr

w

tp tq

z

Figure 12: The “Otherwise” clause from Step (3) of the algo-
rithm in Figure 11.

xq

wlwk

T1 ∪ . . . ∪ Tm

TW

δ

xp

Figure 13: Adding an edge involving points in TW

other words, the following inequality must be maintained:

D(xp, xq) ≤ D(xp, wk) + δ + D(wl, xq)

Equivalently, δ must be greater than or equal to

D(xp, xq) −D(xp, wk) −D(wl, xq).

The Lambda Bound for the edge from wk to wl is the maximum
value of all such lower bounds on δ taken over all possible paths
from xp to xq via wk and wl, where xp and xq can be any time-
points within T1 ∪ . . . ∪ Tm. As will be seen below, the Lambda
Bounds may be computed without considering all such paths. In
addition, it turns out to be possible for the agent controlling the
time-points in TW to add edges linking TW to the other subnet-
works without imposing any additional intra- or inter-subnetwork
constrainedness among S1, . . . ,Sm. Thus, although the agent con-
trolling the time-points in TW is subject to the tighter Lambda
Bounds, its control extends slightly beyond TW .

DEFINITION 17 (LAMBDA BOUNDS). Let S = (T , C) be a
consistent STN. Let (T1, . . . , Tm; TW) be a relative z-partition of
T . Let T ′ = T1 ∪ . . . ∪ Tm. Let CxW and CWx be given by:

CxW = {(tj − ti ≤ δ) ∈ C : tj ∈ TW }
CWx = {(tj − ti ≤ δ) ∈ C : ti ∈ TW }

Let DxW and DWx be the respective distance matrices for the
STNs, SxW = (T , CxW) and SWx = (T , CWx).

Let λ be as follows, where wk, wl ∈ TW and xp, xq ∈ T ′ are
arbitrary:

λ(wk, wl) = max
xp, xq ∈ T ′

[D(xp, xq)−DxW (xp, wk)−DWx(wl, xq)]

λ(xp, wl) = max
xq ∈ T ′

[D(xp, xq) −DWx(wl, xq)]

λ(wk, xq) = max
xp ∈ T ′

[D(xp, xq) −DxW (xp, wk)]

Then a constraint E of the form tj − ti ≤ δ, where ti ∈ TW or
tj ∈ TW , is said to satisfy the appropriate Lambda Bound for S
relative to TW if and only if δ ≥ λ(ti, tj).

The following theorem shows that, in the context of a relative
temporal decoupling, if the agent controlling the time-points in TW

adds any constraint E satisfying both the NTC and the appropri-
ate Lambda Bound, then the relative temporal decoupling will be
preserved. Thus, the Lambda Bounds are necessary and sufficient
bounds for preserving a relative temporal decoupling and, hence,
the Relative Mergeable Solutions Property.

THEOREM 18. Given the same setup as in Definition 17, let E

be a constraint of the form, tj−ti ≤ δ, where ti ∈ TW or tj ∈ TW ,
and such that E satisfies the NTC for S . Let C+ = C ∪ {E} and
S+ = (T , C+) (i.e., S+ is the (consistent) STN that results from
adding E to S). Let S1, . . . ,Sm be a temporal decoupling of S
relative to TW . Then, E satisfies the appropriate Lambda Bound
for S relative to TW if and only if the subnetworks S1, . . . ,Sm also
form a temporal decoupling of S+ relative to TW .

Theorem 18 implies that if (1) the agents controlling the subnet-
works S1, . . . ,Sm in a relative temporal decoupling maintain the
consistency of their local subnetworks and (2) the agent control-
ling the time-points in TW observes the NTC and the appropriate
Lambda Bounds, then the consistency of the entire network is en-
sured. Thus, a relative temporal decoupling can serve as the basis
for distributing the control of a temporal network among a group of
agents.

6.4 Hierarchically Distributing Control
If the subnetworks S1, . . . ,Sm temporally decouple S relative to

TW , then the agents controlling S1, . . . ,Sm can operate indepen-
dently without fear of threatening the consistency of the global net-
work. In contrast, the agent controlling the time-points in TW can-
not act independently; instead, it must observe the Lambda Bounds
described above. Since nothing that happens within any of the in-
dependently controlled subnetworks can threaten the consistency
of the global network (as long as each subnetwork remains con-
sistent), each of the subnetworks S1, . . . ,Sm may be treated as a
stand-alone STN and may thus be recursively decoupled, creating
a hierarchical relative temporal decoupling of the global network,
where the agent controlling the left-over time-points (i.e., TW) in
any decoupling must observe the Lambda Bounds corresponding to
that local subnetwork.

7. CONCLUSIONS
This paper makes the following contributions to the theory of

Simple Temporal Networks. First, it introduces Augmented STNs
that include an explicit representation of the ever-changing present
moment and formally defines Add-Constraint and Execute-Time-
Point operators that modify Augmented STNs. Augmented STNs
provide a framework for understanding a wide range of control is-
sues that arise when agents seek to use temporal networks to co-
ordinate their activity in real time. Second, this paper presents a
general conception of distributing the control of a temporal net-
work among a group of agents. This conception captures existing
work on the use of STNs in real time, including scenarios in which
Nature controls some temporal durations. It also captures existing
work on the use of STNs among a group of agents seeking to coor-
dinate their temporally related activities. Third, this paper presents
a new way of distributing control of a temporal network among
a group of agents. The Relative Temporal Decoupling algorithm
is a generalization of the existing Temporal Decoupling algorithm.
Future research in this area will be directed toward combining the
results on (1) dynamic controllability of networks involving a sin-
gle agent sharing control with Nature and (2) multi-agent scenarios
in which subnetworks can be arbitrarily complex.

8. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction

to Algorithms. The MIT Press, Cambridge, MA, 1990.
[2] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint

networks. Artificial Intelligence, 49:61–95, 1991.
[3] L. Hunsberger. Algorithms for a temporal decoupling

problem in multi-agent planning. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence
(AAAI-2002), 2002.

[4] L. Hunsberger. Group Decision Making and Temporal
Reasoning. PhD thesis, Harvard University, 2002. (Available
as Harvard Technical Report TR-05-02).

[5] P. Morris and N. Muscettola. Execution of temporal plans
with uncertainty. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI-2000), pages
491–496, 2000.

[6] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of
plans with temporal uncertainty. In Proceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 494–499, 2001.

[7] I. Tsamardinos. Reformulating temporal plans for efficient
execution. Master’s thesis, University of Pittsburgh, 2000.

[8] I. Tsamardinos, N. Muscettola, and P. Morris. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), pages 254–261. The MIT
Press, Cambridge, MA, 1998.

[9] T. Vidal and H. Fargier. Contingent durations in temporal
CSPs: from consistency to controllabilities. In Proceedings
of Fourth Workshop on Temporal Representation and
Reasoning (TIME-97), 1997.

[10] T. Vidal and M. Ghallab. Temporal constraints in planning:
Free or not free? In Proceedings of the International
Workshop on Constraint-based Reasoning
(CONSTRAINT-95), 1995.

