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Abstract. A Simple Temporal Network with Uncertainty (STNU) is a structure
for representing time-points, temporal constraints, and temporal intervals with
uncertain—but bounded—durations. The most important property of an STNU
is whether it is dynamically controllable (DC)—that is, whether there exists a
strategy for executing its time-points such that all constraints will necessarily be
satisfied no matter how the uncertain durations turn out. Algorithms for check-
ing from scratch whether STNUs are dynamically controllable are called (full)
DC-checking algorithms. Algorithms for checking whether the insertion of one
new constraint into an STNU preserves its dynamic controllability are called in-
cremental DC-checking algorithms. This paper introduces novel techniques for
speeding up both full and incremental DC checking. The first technique, called
rotating Dijkstra, enables constraints generated by propagation to be immediately
incorporated into the network. The second uses novel heuristics that exploit the
nesting structure of certain paths in STNU graphs to determine good orders in
which to propagate constraints. The third technique, which only applies to incre-
mental DC checking, maintains information acquired from previous invocations
to reduce redundant computation. The most important contribution of the paper
is the incremental algorithm, called Inky, that results from using these techniques.
Like its fastest known competitors, Inky is an O(N3)-time algorithm. However, a
comparative empirical evaluation of the top incremental algorithms, all of which
have only very recently appeared in the literature, must be left to future work.

1 Introduction

An intelligent agent must be able to plan, schedule and manage the execution of its ac-
tivities. Invariably, those activities are subject to a variety of temporal constraints, such
as release times, deadlines and precedence constraints. In addition, in some domains,
the agent may control the starting times for actions, but not their durations [1, 8]. For a
simple example, I may control the starting time for my taxi ride to the airport, but not
its duration. Although I may know that the ride will last between 15 and 30 minutes,
I only discover the actual duration in real time, when I arrive at the airport. Therefore,
if I need to ensure that I arrive at the airport no later than 10:00, I must start my taxi
ride no later than 9:30 to guard against the possibility that the ride might last 30 min-
utes. In more complicated examples involving large numbers of actions with uncertain
durations, generating a succesful execution strategy becomes more challenging.
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A Simple Temporal Network with Uncertainty (STNU) is a data structure that an
agent can use to support the planning, scheduling and executing of its activities, some
of which may have uncertain durations [11]. The most important property of an STNU
is whether it is dynamically controllable (DC)—that is, whether there exists a dynamic
strategy for executing the constituent actions such that all temporal constraints are guar-
anteed to be satisfied no matter how the uncertain action durations happen to turn out
in real time. The strategy is dynamic in that its execution decisions may depend on
past execution events, but not on advance knowledge of future events. Algorithms for
determining from scratch whether an STNU is DC are called (full) DC-checking algo-
rithms. The fastest DC-checking algorithm reported so far is the O(N3)-time algorithm
presented by Morris in 2014 [10], where N is the number of time-points in the network.

In most applications, an STNU is not populated with constraints all at once, but in-
stead one constraint—or a few constraints—at a time. As each new constraint is added
to the network, it is important to know whether the dynamic controllability property has
been preserved. An incremental DC-checking algorithm is an algorithm for determin-
ing whether the insertion of a single new (or tighter) constraint into a DC STNU pre-
serves the DC property. Several related incremental DC-checking algorithms have been
reported in the literature [17, 16, 13–15]. The latest algorithm in this sequence [15],
which is quite similar to Morris’ full DC-checking algorithm, also runs in O(N3) time.

This paper introduces several new techniques for speeding up both full and incre-
mental DC checking. The first technique, called rotating Dijkstra, enables constraints
generated by propagation to be immediately incorporated into the network. The sec-
ond uses novel heuristics that exploit the nesting structure of certain paths in STNU
graphs to determine good orders in which to propagate constraints. The third, which
applies only to incremental DC checking, maintains information from prior invocations
to significantly reduce redundant computation.

The full DC-checking algorithm that results from using these techniques is called
Speedy. A preliminary version of this paper [7] showed that Speedy achieves a signifi-
cant improvement over the O(N4)-time DC-checking algorithm of Morris [9] which, at
the time, was the fastest known DC-checking algorithm. Morris subsequently presented
his O(N3)-time DC-checking algorithm [10]. It is not known whether Speedy will be
competitive with this new algorithm, which follows a completely different approach to
DC checking. Speedy is most likely to be competitive in scenarios involving relatively
small numbers of contingent links, which may make it a practical alternative.

The main contribution of this paper is the incremental algorithm, called Inky, that
results from the new techniques. The worst-case performance of Inky is O(N3), which
matches that of the fastest known alternatives [15, 10]. Furthermore, given its reduction
of redundant computations, it is expected not only to be competitive, but perhaps much
faster than these algorithms. Unfortunately, since the fastest known alternatives either
have not yet been published [15] or have only very recently been published [10], a full
comparative evaluation of the top competitors must be left to future work.
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Fig. 1. The graphs for the STNs discussed in the text

2 Background

This section presents relevant background about Simple Temporal Networks (STNs)
and Simple Temporal Networks with Uncertainty (STNUs). The presentation highlights
the strong analogies between STNs and STNUs, culminating in the analogous Funda-
mental Theorems that explicate the relationships between an STN/STNU, its associated
graph, and its associated shortest-paths matrix.

2.1 Simple Temporal Networks

A Simple Temporal Network is a pair, (T ,C ), where T is a set of real-valued variables
called time-points, and C is a set of binary constraints of the form, Y −X ≤ δ, where
X ,Y ∈ T and δ ∈ R [3]. An STN is called consistent if it has a solution (i.e., a set of
values for the time-points that jointly satisfy the constraints). Consider the STN where:

T = {A,C,X ,Y}; C = {(C−A≤ 10),(A−C≤−5),(C−Y ≤ 3),(X−C≤−2)}.

It is consistent. One of its solutions is: {(A = 0), (C = 6), (X = 3), (Y = 4)}.
Each STN, S = (T ,C ), has an associated graph, G = 〈T ,E〉, where the time-points

in T serve as the nodes for the graph, and the constraints in C correspond one-to-one
to its edges. In particular, each constraint, Y −X ≤ δ, in C corresponds to an edge,
X δ Y , in E . The graph for the STN above is shown on the lefthand side of Fig. 1.
For convenience, the constraints and edges associated with an STN are called ordinary
constraints and ordinary edges.

Each path in an STN graph, G , corresponds to a constraint that must be satisfied by
any solution for the associated STN, S . In particular, if P is a path from X to Y of length
|P | in G , then the constraint, Y −X ≤ |P |, must be satisfied by any solution to S . For
example, in the STN from Fig. 1, the path from Y to C to A of length −2 represents the
constraint, A−Y ≤−2 (i.e., Y ≥ A+2). The righthand graph in Fig. 1 includes a dashed
edge from Y to A that makes this constraint explicit. Note that this derived constraint is
satisfied by the solution given earlier. Similar remarks apply to the edge from A to X .

Due to these sorts of connections, the all-pairs, shortest-paths (APSP) matrix—
called the distance matrix, D—plays an important role in the theory of STNs. In fact,
the Fundamental Theorem of STNs states that the following are equivalent: (1) S is
consistent; (2) each loop in G has non-negative length; and (3) D has only non-negative
entries down its main diagonal [3, 5].
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2.2 Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty augments an STN to include a set, L ,
of contingent links, each of which represents a temporal interval whose duration is
bounded but uncontrollable [11]. Each contingent link has the form, (A,x,y,C), where
A,C∈T and 0 < x < y < ∞. A is called the activation time-point; C is called the contin-
gent time-point. Although the link’s duration, C−A, is uncontrollable, it is guaranteed
to lie within the interval, [x,y]. When an agent uses an STNU to manage its activities,
contingent links typically represent actions with uncertain durations. The agent may
control the action’s starting time (i.e., when A executes), but only observes, in real time,
the action’s ending time (i.e., when C executes).1 For example, consider the STNU:

T = {A,C,X ,Y}; C = {(C−Y ≤ 3), (X−C ≤−2)}; L = {(A,5,10,C)}.

It is similar to the STN seen earlier, except for one important difference. In the STN, the
duration, C−A, was constrained to lie within the interval [5,10], but the agent was free
to choose any values for A and C that satisfied that constraint. In contrast, in the STNU,
C− A is the duration of a contingent link. This duration is guaranteed to lie within
[5,10], but the agent does not get to choose this value. For example, if A is executed at
0, then the agent only gets to observe the execution of C when it happens, sometime
between 5 and 10. In this sense, the contingent duration is uncontrollable, but bounded.

Dynamic Controllability. For an STNU, (T ,C ,L), the most important property is
whether it is dynamically controllable (DC)—that is, whether there exists a strategy
for executing the controllable (i.e., non-contingent) time-points in T such that all con-
straints in C are guaranteed to be satisfied no matter how the durations of the contingent
links in L turn out in real time—within their specified bounds [11]. Such strategies, if
they exist, are called dynamic execution strategies—dynamic in that their execution de-
cisions may depend on the observation of past execution events, but not on advance
knowledge of future events. It is not hard to verify that the following strategy is an
example of a dynamic execution strategy for the sample STNU:

• Execute A at 0, and X at 3.
• If C executes before time 7, then execute Y at time C+1; otherwise, execute Y at 7.

Thus, the sample STNU is dynamically controllable. The given strategy is dynamic in
that the decision to execute Y depends on observations about C.

STNU graphs. Each STNU, (T ,C ,L), has an associated graph, 〈T ,E+〉, where the
time-points in T serve as the nodes in the graph; and the constraints in C and the con-
tingent links in L together give rise to the edges in E+ [12]. To capture the difference
between constraints and contingent links, the edges in E+ come in two varieties: or-
dinary and labeled. As with an STN, each constraint, Y −X ≤ δ, in C corresponds to
an ordinary edge, X δ Y , in E+. In addition, each contingent link, (A,x,y,C), in L
gives rise to two ordinary edges that together represent the constraint, C−A ∈ [x,y].
Finally, each contingent link, (A,x,y,C), also gives rise to the following labeled edges:

1 Agents are not part of the semantics of STNUs. They are used here for expository convenience.
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Fig. 2. The graph for the sample STNU before (left) and after (right) generating new edges

(No Case) A x C y D adds: A x+y D
(Lower Case) A x C c:y D adds: A x+y D
(Upper Case) A B:x C y D adds: A B:x+y D

(Cross Case) A B:x C c:y D adds: A B:x+y D

(Label Removal) B b:x A B:z C adds: A z C

Table 1. Morris and Muscettola’s edge-generation rules for STNUs

a lower-case edge, A c:x C, and an upper-case edge, A C:−y C. The lower-case
(LC) edge represents the uncontrollable possibility that the duration, C−A, might as-
sume its lower bound, x. The upper-case (UC) edge represents the uncontrollable pos-
sibility that C−A might assume its upper-bound, y. The graph for the sample STNU is
shown on the lefthand side of Fig. 2.

Edge generation for STNUs. Because the labeled edges in an STNU graph represent un-
controllable possibilities, edge generation (equiv., constraint propagation) for STNUs is
more complex than for STNs. In particular, a variety of rules are required to handle the
interactions between different kinds of edges. Table 1 lists the edge-generation rules
for STNUs given by Morris and Muscettola (2005).2 The No Case rule encodes or-
dinary STN constraint propagation. The Lower Case rule generates edges/constraints
that guard against the possibility of a contingent link taking on its minimum duration.
The Upper Case rule generates edges/constraints that guard against the possibility of
a contingent link taking on its maximum duration. The Cross Case rule addresses the
interaction of LC and UC edges from different contingent links.

The edge-generation rules are sound in the sense that the edges they generate cor-
respond to constraints that must be satisfied by any dynamic execution strategy. For
example, consider the righthand graph in Fig. 2. For ease of exposition, suppose that
A has been executed at 0. The edge, C −2 X , represents the constraint, X −C ≤ −2
(i.e., X ≤C− 2), which requires X to be executed before the contingent time-point C.

2 The rules are shown using Morris and Muscettola’s notation. Note that: the x’s and y’s here are
not necessarily bounds for contingent links; C is only required to be contingent in the Lower
Case and Cross Case rules, where its activation time-point is D and its lower bound is y; and
in the Upper Case and Cross Case rules, B is contingent, with activation time-point A. The
Lower Case rule only applies when x ≤ 0 and A 6= C; the Cross Case rule only applies when
x≤ 0 and B 6=C; and the Label Removal rule only applies when z≥−x.
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Fig. 3. (a) A generic path transformation; (b) reducing away a lower-case edge

To ensure that this constraint will be satisfied even if C eventually happens to take on
its minimum value of 5, X must be executed no later than 3 units after A, whence the
dashed edge from A to X . This dashed edge can be generated by applying the Lower
Case rule to the path from A to C to X .

Next, consider the edge, Y 3 C, which represents the constraint, C−Y ≤ 3 (i.e.,
Y ≥ C− 3). To ensure that this constraint is satisfied, the following conditional con-
straint must be satisfied: While C remains unexecuted, Y must occur 7 or more units
after A. This conditional constraint, represented by the upper-case edge, Y C:−7 A,
effectively guards against the possibility of C taking on its maximum value, 10. The UC
edge can be generated by applying the Upper Case rule to the path from Y to C to A.

It is not hard to verify that the constraints corresponding to these generated edges
are satisfied by the sample dynamic execution strategy given earlier.

Semi-reducible paths. Recall that, for an STN, each path in its graph corresponds to
a constraint that must be satisfied by any solution to that STN. In contrast, for an
STNU, it is the semi-reducible paths—defined below—that correspond to the (possi-
bly conditional) constraints that must be satisfied by any dynamic execution strategy
for that STNU. Whereas an STN is consistent if and only if its graph has no negative-
length loops, an STNU is dynamically controllable if and only if its graph has no semi-
reducible negative-length loops [9].

Before defining semi-reducible paths, it is useful to view the edge-generation rules
from Table 1 as path-transformation rules, as follows. Suppose e1 and e2 are consecu-
tive edges in a path P , and that one of the first four rules can be applied to e1 and e2 to
generate a new edge e, as illustrated in Fig. 3a, where P ′ is the path obtained from P
by replacing the edges, e1 and e2, with e. We say that P has been transformed into P ′.
Similar remarks apply to the Label Removal rule, which operates on a single edge.

A path in an STNU graph is called semi-reducible if it can be transformed into a
path that has only OU-edges [9]. Thus, for any semi-reducible path P , there must be
some transformation of P whereby each lower-case edge e in P is eventually “reduced
away” by either the Lower Case or Cross Case rule. In other words, as illustrated in
Fig. 3b, for each lower-case edge e in P , there must be some sub-path, P †, following
e in P , such that P † can be transformed into a single edge, e′, using the rules from
Table 1. Depending on whether e′ is ordinary or upper-case, either the Lower Case or
Cross Case rule can then be used to transform e and e′ into a single edge, e′′, effectively
reducing away the lower-case edge e.

The soundness of the edge-generation rules ensures that the constraints represented
by semi-reducible paths must be satisfied by any dynamic execution strategy. Since
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Fig. 4. The OU-graphs, Gou, for the corresponding graphs from Fig. 2
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Fig. 5. The AllMax graphs, Gx, for the corresponding graphs from Fig. 2

shorter paths correspond to stronger constraints, the all-pairs, shortest-semi-reducible-
paths (APSSRP) matrix, D∗, plays an important role in the theory of STNUs. The Fun-
damental Theorem of STNUs states that the following are equivalent for any STNU S :
(1) S is dynamically controllable; (2) every semi-reducible loop in its associated graph
has non-negative length; and (3) its APSSRP matrix, D∗, has only non-negative entries
along its main diagonal [9, 6].

2.3 Morris’ O(N4)-time DC-Checking Algorithm

In 2006, Morris presented an O(N4)-time DC-checking algorithm—hereinafter called
the Morris-N4 algorithm—that uses the rules from Table 1 to generate new edges. Each
newly generated edge is added not only to G , but also, in a stripped down form, to a re-
lated STN graph, called the AllMax graph. If the AllMax graph ever exhibits a negative-
length loop, the original STNU is declared to be non-DC. The algorithm achieves its
efficiency by focusing its edge-generation activity on reducing away lower-case edges.
Although Morris has since presented a faster, O(N3)-time algorithm [10], the Morris-N4

algorithm lays a foundation for the rest of this paper and, so, is summarized below.
Let S be an STNU and G its associated graph. The lengths of all shortest semi-

reducible paths in G can be determined as follows. First, for convenience, any ordinary
or upper-case edge may be called an OU-edge, and the graph consisting of all of the
OU-edges from G shall be called the OU-graph for G , denoted by Gou. Since the edges
in Gou are drawn from G , any path in Gou also appears in G . In addition, since each path
in Gou contains only OU-edges, it is trivially semi-reducible. Thus, the paths in Gou are
a subset of the semi-reducible paths in G . Furthermore, since the rules from Table 1
generate only OU-edges, inserting any such edges into both Gou and G necessarily
preserves the property that the paths in Gou are a subset of the semi-reducible paths
in G . For example, Fig. 4 shows the OU-graph for the sample STNU from Fig. 2 before
(left) and after (right) the insertion of two newly generated edges.

Next, with the goal of computing the lengths of the paths in Gou, let Gx be the
graph obtained by removing the alphabetic labels from all upper-case edges in Gou.
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Gx is called the AllMax graph because it can be obtained from the original STNU by
forcing each contingent link to take on its maximum value [12]. The AllMax graphs
corresponding to the graphs from Fig. 2 are shown in Fig. 5. In the figure, the ordinary
edge, C −5 A, is drawn in light gray because it represents a weaker constraint than

the edge, C −10 A, and thus can be ignored. Note that if the edge-generation rules
produce an upper-case edge (e.g., the UC edge from Y to A in Fig. 4), then that edge is
stripped of its alphabetic label before being added to the AllMax graph, Gx.

Since the AllMax graph contains only ordinary edges, it is an STN graph. Its associ-
ated distance matrix, Dx, is called the AllMax matrix. For any X and Y , Dx(X ,Y ) equals
the length of a shortest path from X to Y in Gx. Dx(X ,Y ) also equals the length of a
shortest semi-reducible path from X to Y in the OU-graph, Gou. Because Gou may con-
tain only a subset of the semi-reducible paths from G , Dx(X ,Y ) only provides an upper
bound on the length of the shortest semi-reducible path from X to Y in G . However, as
newly generated edges are inserted into the appropriate graphs, the upper bounds on the
lengths of shortest semi-reducible paths provided by Dx typically tighten.

The Morris-N4 algorithm focuses its attention on finding paths in the graph that
can be used to reduce away lower-case edges. However, it need not find all such paths;
instead, it suffices to follow shortest allowable paths (defined below), seeking to find
extension sub-paths (defined below). The following sequence of definitions is provided
for expository convenience. First, let e be any lower-case edge, A c:x C. A quasi-
allowable path for e is any path, Pe, such that:

• Pe is a loopless path emanating from C;
• Pe contains only OU-edges (i.e., edges in Gou); and
• Pe is breach-free (i.e., does not contain any upper-case edges labeled by C).3

Next, the path Pe is said to have the positive proper prefix (PPP) property if every
proper prefix of Pe has positive length. A quasi-allowable path that has the PPP property
is called an allowable path. If, further still, Pe itself has non-positive length, then Pe
is called an extension sub-path for e. It is not hard to show that any extension sub-
path for e can be transformed into a single edge, e′, which can then be used to reduce
away e, as described earlier (cf. Fig. 3b). The resulting edge, e′′, is then inserted into
Gou and—after removing any alphabetic label—Gx. Furthermore, it is not necessary to
search through paths that are quasi-allowable but not allowable, since any such path
must have a proper prefix that is an extension sub-path. Of course, reducing away a
lower-case edge e1 might generate a new edge E1 that could subsequently be used as
part of an extension sub-path that reduces away another lower-case edge e2, to generate
another new edge, E2. In such a case, the extension sub-path that generated E1 is said
to be nested inside the extension sub-path that generated E2. However, Morris proved
that, for an STNU with K contingent links, it suffices to consider at most K levels
of such nesting. As a result, the Morris-N4 algorithm performs at most K rounds of
searching through shortest allowable paths to determine whether the original graph,
G , contains any semi-reducible negative loops. Pseudo-code for the Morris-N4 DC-
checking algorithm is given in Table 2. Its most important features are:

3 A breach edge could prevent application of the Cross Case rule.
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Input: G, a graph for an STNU with K contingent links.
Output: True if the corresponding STNU is dynamically controllable; False otherwise.

-1. Gou := OU-graph for G.
0. Gx := AllMax graph for G.
1. for i = 1, K: (Outer Loop)
2. result := Bellman_Ford_SSSP(Gx).
3. if (result == inconsistent) return False.
4. else generate_potential_function(result).
5. newEdges := {}.
6. for j = 1, K: (Inner Loop)
7. Let C j be the jth contingent time-point.
8. Traverse shortest allowable paths in Gou emanating from C j, searching for

extension sub-paths that generate new edges. Add new edges to newEdges.
9. end for j = 1, K.

10. if newEdges empty, return True.
11. else insert newEdges into Gou and Gx.
12. end for i = 1, K.
13. result := Bellman_Ford_SSSP(Gx).
14. if (result == inconsistent) return False.
15. else return True.

Table 2. Pseudo-code for the Morris-N4 DC-checking algorithm

• The outer loop (Lines 1–12) runs at most K times.

• Each outer iteration begins (Line 2) by applying the Bellman-Ford single-source,
shortest-paths (SSSP) algorithm [2] to the AllMax graph Gx. This serves two pur-
poses. First, if Bellman-Ford determines that the AllMax graph is inconsistent, then
the algorithm immediately returns False. However if Gx is consistent, then the
shortest-path information generated by Bellman-Ford can be used to create a po-
tential function (Line 4) to transform the lengths of all edges in Gx—and hence all
edges in Gou—to non-negative values, as in Johnson’s algorithm [2].

• During each iteration of the outer loop, the inner loop (Lines 6–9) runs exactly K
times, once per contingent link.

• The jth iteration of the inner loop (Lines 7–8) focuses on C j, the contingent time-
point for the jth contingent link. The algorithm uses the potential function generated
in Line 4 to enable a Dijkstra-like traversal of shortest allowable paths emanating
from C j in the graph Gou.

• New edges generated by K iterations of the inner loop are accumulated in a set,
newEdges (Line 8). Afterward, if it is discovered that no new edges have been
generated, then the algorithm immediately returns True (Line 10). On the other
hand, if some new edges were generated by the inner loop, then they are inserted
into the graphs (Line 11) in preparation for the running of Bellman-Ford at the
beginning of the next iteration of the outer loop (Line 2).
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• If, after completing K iterations of the outer loop, the AllMax graph remains con-
sistent (Lines 14–15), then the network must be DC.4

The complexity of the algorithm is dominated by the O(N3)-time complexity of the
Bellman-Ford algorithm (Line 2), as well as the Dijkstra-like traversals of shortest al-
lowable paths (Line 8). Since Bellman-Ford is run a maximum of K times, and O(K) =
O(N), the overall complexity due to the use of Bellman-Ford is O(N4). Each Dijkstra-
like traversal of shortest allowable paths (Line 8) is O(N2) in the worst case. Since these
traversals are run at most K2 times, the overall contribution is again O(N4).

3 Speedy: Speeding Up Full DC Checking

As discussed above, the Morris-N4 algorithm uses the Bellman-Ford algorithm to com-
pute a potential function at the beginning of each iteration of the outer loop (Lines 2–4).
This same potential function is then used for all K iterations of the inner loop (Lines
6–9). For this reason, any new edges discovered during the K iterations of the inner loop
cannot be inserted into Gou or Gx until preparing for the next iteration of the outer loop
(Line 11). To see this, consider that the Dijkstra-like traversal of shortest allowable paths
(Line 8) depends on all edge-lengths having been converted into non-negative values by
the potential function. Incorporating new edges into this traversal without recomputing
the potential function could introduce negative-length edges, violating the conditions of
a Dijkstra-like traversal. A second important consequence of delaying the integration of
new edges until the next outer iteration, is that the order in which the contingent links
are processed by the inner loop cannot make any difference to the Morris-N4 algorithm.

Given these observations, Hunsberger [7] made two inter-related modifications to
the Morris-N4 algorithm to significantly improve its performance. For convenience,
the modified algorithm will hereinafter be called Speedy. The first modification used
by Speedy is called rotating Dijkstra. It enables the edges generated by one iteration
of the inner loop to be immediately inserted into the network for use during the very
next iteration of the inner loop, instead of waiting until the beginning of the next outer
iteration. Next, because each iteration of the inner loop can use the edges generated by
any prior iteration, Speedy uses a heuristic function to choose a “good” order in which
to process the lower-case edges during the K iterations of the inner loop. The heuristic
is inspired by the nesting structure of so-called magic loops analyzed in prior work [6].
In some networks, these two changes combine to produce an order-of-magnitude speed-
up in DC checking [7]. Although Morris has, in the interim, presented an O(N3)-time
DC-checking algorithm that might be faster than Speedy, the techniques used by Speedy
also have novel applications to incremental DC checking, to be discussed in Section 4;
therefore, these new techniques are briefly summarized below.

Recalling Johnson’s algorithm. Johnson’s algorithm [2] is an all-pairs, shortest-paths
algorithm that can be used on graphs whose edges have any numerical lengths: posi-
tive, negative or zero. It begins by using the Bellman-Ford single-source, shortest-paths

4 This conclusion is justified by Morris’ Theorem 3 that an STNU contains a semi-reducible
negative loop if and only if it contains a breach-free semi-reducible negative loop in which the
extension sub-paths are nested to a depth of at most K [9].
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algorithm to generate a potential function, h. In particular, for any node X , h(X) is de-
fined to be the length of the shortest path from some source node S to X . Johnson’s
algorithm then uses that potential function to convert edge lengths to non-negative val-
ues, as follows. For any edge, U δ V , the converted length is h(U)+δ−h(V ). This
is guaranteed to be non-negative since the path from S to V via U cannot be shorter than
the shortest path from S to V . Then, for each time-point X in the graph, Johnson’s algo-
rithm runs Dijkstra’s single-source, shortest-paths algorithm on the re-weighted edges
using X as the source. This works because shortest paths in the re-weighted graph cor-
respond to shortest paths in the original graph. In particular, for any X and Y , the length
of the shortest path from X to Y in the original graph is h(Y )+D(X ,Y )−h(X), where
D(X ,Y ) is the length of the shortest path from X to Y in the re-weighted graph.

Rotating Dijkstra. The rotating Dijkstra technique is based on several observations.
First, just as single-source, shortest-paths information can be used to generate a po-
tential function to support the conversion of edge-lengths to non-negative values, so
too can single-sink, shortest-paths information be used in this way [5]. Furthermore,
whether the re-weighting of edges is done using a source-based or sink-based potential
function, Dijkstra’s algorithm can be run on the re-weighted graph following edges for-
ward from a single source or following edges backward from a single sink. This paper
refers to the different combinations as sinkPot/srcDijk, sinkPot/sinkDijk, and so on.

Second, when a contingent link, (A,x,y,C), is being processed during one iteration
of the inner loop of the Morris-N4 algorithm, any new edge generated during that itera-
tion must have that link’s activation time-point, A, as its source.5 However, adding edges
whose source time-point is A cannot cause changes to the lengths of shortest paths ter-
minating in A [5]. Thus, adding new edges whose source is A cannot cause any changes
to entries of the form, Dx(T,A), for any time-point T . As a result, if the potential func-
tion used to re-weight the edges for this Dijkstra-like traversal is a sink-based potential
function with A as its sink, then adding new edges generated by that traversal cannot
cause any changes to that potential function. Thus, that same potential function can be
used along with Dijkstra’s single-sink, shortest-paths algorithm to re-compute the val-
ues, Dx(T,A′), for any time-point T , in preparation for the next iteration of the inner
loop, where A′ is the activation time-point for the next contingent link to be processed.

Given these observations, the rotating Dijkstra technique takes the following steps
to support the Dijkstra-like traversal of shortest allowable paths emanating from the
contingent time-point C associated with the contingent link (A,x,y,C).

(1) Given: All entries, Dx(T,A), for all time-points T . This collection of entries pro-
vides a sink-based potential function, hA, where A is the sink.

(2) Use hA to convert all edge-lengths in Gou to non-negative values in preparation for
a source-Dijkstra traversal of shortest allowable paths emanating from C, as in the
Morris-N4 algorithm (Line 8).

5 This follows immediately from how new edges are generated [9]. In particular, each new edge
is generated by reducing the path consisting of the lower-case edge, A

c:x
C, and some ex-

tension sub-path into a single new edge. Since such a reduction preserves the endpoints of the
path, the generated edge must have A as its source.
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Fig. 6. A path with nested extension sub-paths

(3) Since any edges generated by this traversal must have A as their source, the new
edges cannot cause any changes to the sink-based potential function, hA. Thus, hA
can subsequently be used to support a sinkDijkstra computation of all entries of the
form Dx(T,A′), for any T , where A′ is the activation time-point for the next contin-
gent link to be processed. This computation is abbreviated as sinkPot/sinkDijk(A,A′),
since A is the sink for the potential function, and A′ is the sink for the Dijkstra
traversal. It generates the potential function, hA′ , for the next iteration.

For the very first iteration of the inner loop, the entries, Dx(T,A), needed in Step 1 are
provided by an initial run of Johnson’s algorithm. For every subsequent iteration, the
information needed in Step 1 is obtained from Step 3 of the preceding iteration.

Choosing an order in which to process the contingent links. Because the rotating Dijk-
stra technique enables newly generated edges to be inserted into the network immedi-
ately, rather than waiting for the next iteration of the outer loop, edges generated by one
iteration of the inner loop can be used by the very next iteration. Thus, subsequent itera-
tions of the inner loop may generate new edges sooner than they would in the Morris-N4

algorithm, which can significantly improve performance.
Consider the path shown in Fig. 6. The innermost sub-path, from A1 to X1, reduces

to (i.e., can be transformed into) a new edge, E1, from A1 to X1. In turn, that enables
the next innermost sub-path, from A2 to X2, to be reduced to a new edge, E2, from A2
to X2. Finally, that then enables the outermost path, from A3 to X3, to be reduced to a
single new edge, E3, from A3 to X3. Thus, in this example, if the contingent links are
processed in the order, C1,C2,C3, then all three edges, E1,E2 and E3, will be generated
in one iteration of the outer loop—involving three iterations of the inner loop. However,
if the contingent links are processed in the opposite order, then three iterations of the
outer loop—involving nine iterations of the inner loop—will be required to generate
E1,E2 and E3. To see this, notice that if C3 is processed first, then the edges E1 and E2
will not have been generated yet. And, since allowable paths do not include lower-case
edges, the initial search through allowable paths emanating from C3 will not yield any
new edges. Similarly, the initial search through allowable paths emanating from C2 will
not yield any new edges. Only the processing of C1 will yield a new edge—namely,
E1—during the first iteration of the outer loop. During the second iteration of the outer
loop, the processing of C2 will yield the edge E2. Finally, during the third iteration of
the outer loop, the processing of C3 will yield the edge E3. Crucially, since the Morris-
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N4 algorithm does not insert new edges until the beginning of the next iteration of the
outer loop, that algorithm would exhibit the same behavior for this path. In general,
the Morris-N4 algorithm requires d iterations of the outer loop to generate new edges
arising from semi-reducible paths in which extension sub-paths are nested to a depth d.

Nesting order. Prior work [6] has defined a nesting order for semi-reducible paths as
follows. Suppose e1,e2, . . . ,en are the lower-case edges that appear in a semi-reducible
path P . Then that ordering of those edges constitutes a nesting order for P if i < j
implies that no extension sub-path for e j is nested within an extension sub-path for ei
in P . For example, the path shown in Fig. 6 has a nesting order e1,e2,e3. The relevance
of a nesting order to DC checking is that if a semi-reducible path P has extension
sub-paths nested to a depth d, with a nesting order, e1,e2, . . . ,ed , and the lower-case
edges (i.e., the contingent links) are processed in that order using the rotating Dijkstra
technique, then only one iteration of the outer loop will be necessary to generate all
edges derivable from P . For the purposes of this paper, it is not necessary to prove this
result—although it follows quite easily from the definitions involved—because it is not
claimed that for any STNU graph there is a single nesting order that applies to all semi-
reducible paths in that graph. However, it does suggest that it might be worthwhile to
spend some modest computational effort to find a “good” order in which to process the
contingent links in the inner loop of the algorithm.

Toward that end, suppose that e1 and e2 are lower-case edges corresponding to the
contingent links, (A1,x1,y1,C1) and (A2,x2,y2,C2). Suppose further that P is a shortest
allowable path emanating from e2; and that P contains e1. That is, e1 is nested inside e2
(e.g., as illustrated in Fig. 6). Although allowable paths for e2 cannot include any upper-
case edges labeled by C2, the OU-graph invariably includes at least one upper-case edge
labeled by C2. Thus, the AllMax matrix entry, Dx(C2,A1), is not a perfect substitute for
the length of the shortest allowable path from C2 to A1. Instead, Dx(C2,A1) is a lower
bound on that length. Nonetheless, Speedy’s heuristic uses it as an imperfect substitute.

The heuristic, H. Let G be the graph for an STNU with K contingent links, and Gx the
corresponding AllMax graph. Run Johnson’s algorithm on Gx to generate the AllMax
matrix Dx. For each i, let Q(i) be the number of entries of the form Dx(Ci,A j) that
are non-positive. Let H(G) be a permutation, σ1,σ2, . . . ,σK , such that r < s implies
Q(σr) ≤ Q(σs). In other words, H(G) is obtained by sorting the numbers 1,2, . . . ,K
according to the corresponding Q values.

The Speedy Algorithm. Pseudo-code for the Speedy DC-checking algorithm is given in
Table 3. The algorithm first constructs the OU-graph, Gou, and the AllMax graph, Gx
(Lines -1 and 0). It then uses Johnson’s algorithm to compute the AllMax matrix, Dx
(Line 1). As discussed above, Dx is used during the computation of the heuristic func-
tion, H (Line 2), which determines the processing order for the contingent links. These
Dx entries also provide the potential function in Line 9 during the very first iteration of
the inner loop. GlobalIters, initially 0 (Line 3), counts the total number of iterations
of the inner loop. If this counter ever reaches K2, the algorithm terminates, returning
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Input: G, a graph for an STNU with K contingent links.
Output: True if the corresponding STNU is dynamically controllable; False otherwise.

-1. Gou := OU-graph for G;
0. Gx := AllMax graph for G;
1. Dx := Johnson(Gx);
2. Order := Heuristic(Dx);
3. GlobalIters := 0;
4. LocalIters := 0;
5. for i = 1, K: (Outer Loop)
6. for j = 1, K: (Inner Loop)
7. newEdges := {};
8. Let (A j,x j,y j,C j) be the jth contingent link according to Order.
9. Use the values, Dx(T,A j), as a sink-based potential function, hA j , to transform

the edge-lengths in Gx and Gou to non-negative values.
10. Traverse shortest allowable paths in Gou emanating from C j, searching for ex-

tension sub-paths that generate new edges. Add such edges to newEdges.
11. for each edge A j

δ X in newEdges: if (δ <−Dx(X ,A j)) return False;

12. GlobalIters++;
13. if (GlobalIters ≥ K2) return True;
14. elseif newEdges empty:
15. LocalIters++;
16. if (LocalIters ≥ K) return True;
17. else LocalIters := 0;
18. run sinkPotSinkDijk(Aj,A’), where A′ is act’n. time-point for next contingent link.
19. end for j = 1, K.
20. end for i = 1, K.
21. return True.

Table 3. Pseudo-code for the Speedy DC-checking algorithm

True (Line 13).6 LocalIters, initially 0 (Line 4), counts the number of consecutive
iterations of the inner loop since the last time a new edge was generated. If this counter
ever reaches K, then the algorithm terminates, returning True (Line 16).7

In the Speedy algorithm, the inner loop (Lines 6–19) cycles through the contingent
links in the order given by the heuristic until a termination condition is reached. Since
potential functions are re-computed after each inner iteration (Line 18), the outer loop
is provided only for counting purposes. One iteration of the inner loop spans Lines 7–
18. (A j,x j,y j,C j) is the contingent link to be processed, as determined by Order. For
the very first iteration of the inner loop, the values, Dx(X ,A j), that constitute a sink-
based potential function (Line 9), are provided by Johnson’s algorithm (Line 1); for
every other iteration of the inner loop, these values are provided by the sinkPot/sinkDijk

6 This termination condition is analogous to the Morris-N4 algorithm terminating after K itera-
tions of the outer loop.

7 This termination condition is analogous to the Morris-N4 algorithm terminating whenever any
iteration of the outer loop fails to generate a new edge.
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computation from Line 18 of the previous iteration. This potential function is then used
in Line 10 to support a srcDijk traversal of shortest allowable paths emanating from
C j. Because the values, Dx(X ,A j), are available for all time-points X , any new edge
from A j to some X can be immediately checked for consistency (Line 11). If all new
edges are judged to be consistent, then the algorithm increments the global counter and
checks the two termination conditions (Lines 13 and 16). If no termination condition
is reached yet, then a sinkPot/sinkDijk computation is run (Line 18), to compute all
entries of the form, Dx(X ,A′), where A′ is the activation time-point for the contingent
link to be processed during the next iteration of the inner loop. These values will form
the potential function in Line 9 during the next iteration.

The Speedy algorithm was evaluated empirically against the Morris-N4 algorithm [7],
which was, at the time, the fastest DC-checking algorithm in the literature. In the spe-
cial case of so-called magic loops, which represent one kind of worst-case scenario
involving maximum nesting of lower-case edges [5], the Speedy algorithm exhibited
an order-of-magnitude improvement over the Morris-N4 algorithm, which suggests it
would be competitive with the more recent O(N3)-time algorithm. For other networks,
the degree of improvement appeared to be proportional to the degree of maximal nest-
ing, indicating that the heuristic was working effectively. Furthermore, using the reverse
of the order suggested by the heuristic lead to significantly worse performance, again
indicating that the heuristic was working effectively.

4 Inky: Speeding up Incremental DC Checking

This section presents a new incremental DC-checking algorithm, called Inky, that ap-
plies similar kinds of insights and techniques seen in the previous section to the problem
of incremental DC checking. Toward that end, let S be an STNU that is known to be
dynamically controllable; let G be its graph; and let X δ Y be a new edge. The incre-
mental DC-checking problem is to determine whether inserting the new edge into the
network will preserve its dynamic controllability.

To avoid redundant computations across multiple invocations, and to bound the
number of rounds of edge generation, the Inky algorithm maintains an auxiliary K-by-N
matrix, called D+, where for each contingent time-point C and each time-point T ,
D+(C,T ) equals the length of the shortest quasi-allowable path from C to T (cf. Sec-
tion 2.3). Given a new edge from X to Y , the Inky algorithm begins by sorting the
lower-case edges such that the values of D+(Ci,X) are non-increasing. The reason, as
shown by the following theorem, is that processing the lower-case edges in this order
will require only one pass of the outer loop of the DC-checking algorithm, thereby
ensuring that the algorithm runs in O(N3) time.

Theorem 1. Let S = (T ,C ,L) be a dynamically controllable STNU having K contin-
gent links; and let G be the graph for S . Let E be a new edge of length δ from X to
Y , where X ,Y ∈ T . Let G† be the graph obtained by inserting the new edge E into
G . As illustrated in Fig. 7, let P be any semi-reducible path in G† whose first edge is
a lower-case edge ei: Ai

ci:xi Ci; let U be the final time-point in P ; let Pi be the
extension sub-path for ei in P ; and, under the supposition that Pi contains at least one
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lower-case edge, let e j: A j
c j :x j C j be the first lower-case edge that occurs in Pi. If

D+(Ci,X) ≤ D+(C j,X), then the edge from Ai to U generated by using Pi to reduce
away ei is strictly weaker than an edge (or semi-reducible path) from Ai to U that can
be obtained by bypassing that occurrence of e2 in P .

Proof. First, by Morris’ Theorem 3, only breach-free extension sub-paths need be con-
sidered [9]. Thus, without loss of generality, Pi is assumed to be breach-free. That is,
Pi does not contain any occurrences of upper-case edges labeled by Ci. Next, since
D+(Ci,X) ≤ D+(C j,X), there must be a quasi-allowable path from Ci to X of some
length θ = D+(Ci,X)≤D+(C j,X)≤ β < α+ x j +β, where α and β are the (positive)
lengths shown in Fig. 7. Finally, let P ′i be the path obtained by replacing the portion
of Pi from Ci to X by the quasi-allowable path of length θ; and let P ′ be the concate-
nation of the edge ei and the path P ′i . By construction, P ′ is a shorter path than P and
it is breach-free. Thus, the semi-reducibility of P ensures the semi-reducibility of P ′.
(Morris used a similar argument in the proof of his Theorem 3.) There are two cases to
consider. First, if P ′i is the extension sub-path for ei in P ′, then using P ′i to reduce away
ei yields a shorter edge from Ai to U than the edge generated by using Pi. On the other
hand, if some proper prefix P ? of P ′i is the extension sub-path for ei in P ′, then the edge
generated by using P ? to reduce away ei, followed by the rest of P ′i is a semi-reducible
path from Ai to U that is shorter than the edge generated using Pi.8 ut

Given Theorem 1, it follows that the only semi-reducible paths in G ′ that need to be
considered by the incremental algorithm are those in which the order of nesting of LC
edges is such that the corresponding D+(Ci,X) values are decreasing—that is, such
that the innermost LC edges have smaller D+(Ci,X) values. Therefore, to ensure that
the innermost LC edges are processed first—in any relevant path—the DC-checking
algorithm need only process LC edges in the order of non-decreasing D+(Ci,X) values,
where X is the source time-point for the edge being inserted into the network.

The Inky algorithm assumes that all D+(Ci,T ) values are available for the DC net-
work prior to the insertion of the new edge from X to Y . Thus, the algorithm must ensure
that all such values are updated so that they will be available for the next invocation.

8 Any suffix of a breach-free extension sub-path is necessarily semi-reducible [6].
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Fig. 8. Alternative ways of reducing away a lower-case edge in an STNU graph

The APPP matrix. For each contingent time-point Ci and each time-point T , the Inky
algorithm also keeps track of whether all shortest quasi-allowable paths from Ci to
T have the positive proper prefix (PPP) property. The reason is that if there is some
shortest quasi-allowable path from Ci to T that does not have the PPP property, then
it is not necessary to generate new edges using allowable paths that contain T , even if
such exist. For example, Fig. 8 shows a scenario in which there are two shortest quasi-
allowable paths from Ci to T , one having the PPP property and one not. (The single
edge from Ci to T has the PPP property; the two-edge path from Ci to V to T does not.)
Although a new edge, Ai

−3 W, could be generated by using the shortest allowable
path from Ci to T to W to reduce away the lower-case edge, as illustrated on the lower
portion of the figure, it is not necessary to do so because the shortest allowable path
from Ci to V can be used to reduce away the lower-case edge, generating the new edge,
Ai
−1 V, as illustrated on the upper portion of the figure. This edge creates an OU-path

from Ai to V to T to W whose length is also −3.
In view of these considerations, the Inky algorithm also maintains a K-by-N matrix,

called APPP, whose values APPP(Ci,T ) are all initially True. However, if the algorithm
ever discovers a shortest quasi-allowable path from Ci to T that does not have the PPP
property, then it sets APPP(Ci,T ) to False.

Marking nodes. While searching through the shortest allowable paths emanating from
some contingent time-point, Ci, the Inky algorithm marks nodes that are the source
time-points for any new edges that have been generated during the current invocation.
Initially, the only marked node is X (i.e., the source time-point for the new edge being
added to the network). If, during the Dijkstra-like traversal of shortest allowable paths,
it happens that all nodes remaining in the priority queue are unmarked and have keys
(i.e., shortest quasi-allowable path-lengths) that have not changed, then it is certain that
no more shorter extension sub-paths can be found; hence, the processing of that lower-
case edge can stop. The algorithm uses simple counter variables to keep track of the
numbers of marked nodes in the queue and nodes whose keys have changed.

The most-basic form of the Inky algorithm. Pseudo-code for the most basic form of the
Inky algorithm is given in Table 4. Its works as follows. First, it sorts the lower-case
edges of G according to their D+(Ci,X) values (Line 1). Next, it creates a boolean
vector, called mark, that it uses to keep track of the source time-points of any newly
created edges (Line 2). Initially, the only new edge is E, the edge to be added to the net-
work. Thus, its source time-point, X , is the only time-point that starts out being marked.
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Note that once a time-point is marked, it remains marked for the rest of the invocation
of the algorithm. The globalNumMarks counter keeps track of how many time-points
have been marked. Next, since adding an edge with source time-point X cannot affect
a potential function whose sink is X , the initial potential function, f , is rotated so that
it now uses X as its sink (Line 4). Note that this is done using only the edges from G ,
ignoring the edge E. This is simply a re-packaging of the sinkPotSinkDijk function
seen earlier in Section 3.

The main loop of the algorithm, which has exactly K iterations, spans Lines 5
thru 44. The ith iteration processes the contingent link, (Ai,xi,yi,Ci), beginning on
Line 6. Any edges generated by reducing away the corresponding lower-case edge
will be added to the set, newEdges, which is initially empty (Line 7). The Dijkstra-
like traversal of shortest quasi-allowable paths emanating from Ci uses a priority queue,
Q, which is initially empty (Line 8). However, each time-point T is immediately in-
serted into the queue using the corresponding D+(Ci,T ) value (Line 9). Note that the
sink-based potential function, f , is used to convert the path length into the appropriate
non-negative value. The D+(Ci,T ) values, of course, do not reflect the presence of the
new edge E, but they make good initial values for the queue. The numMarksInQueue
and numChangedInQueue counters are initialized in Lines 10-11. The while loop on
Line 12 runs as long as it is possible for some shortest allowable path to be discovered
that might be used to generate a meaningful new edge by reducing away the ith lower-
case edge. Note that if both counters are ever both zero, it would imply that no path to
any time-point remaining in the queue could possibly generate a useful new edge.

At Line 13, the next node T is popped from the queue. Lines 14-15 ensure that the
two counters numMarksInQueue and numChangedInQueue are updated if necessary.
Note that the potential function, f , is used to convert the D+(Ci,T ) value to its corre-
sponding non-negative value, as seen earlier. Also, T.key denotes length of the shortest
quasi-allowable path from Ci to T that has just been discovered, which is the key asso-
ciated with the time-point T in the queue. Line 16 determines whether the path from Ci
to T is an extension sub-path (cf. the definition of extension sub-path in Section 2.3).
The length of the new edge from Ai to T that would be generated by using that exten-
sion sub-path to reduce away the lower-case edge is computed in Line 17, and stored in
the variable newVal. Note that because the potential function is based solely on shortest
paths in the OU-graph, the adjusted length of the lower-case edge (i.e., f (Ai,xi,Ci)) will
typically be negative. As a result, newVal itself could be negative, which would indicate
that a negative semi-reducible loop has been found (i.e., that inserting the edge E into
the graph G made the network not dynamically controllable); hence, Line 18 returns
False if newVal is negative. Line 19 then checks whether an edge of length newVal
would be shorter than any pre-existing edge from Ai to T in the graph. Note that the
function, currAdjEdgeLen, uses the potential function f to convert the length of any
pre-existing edge to its non-negative counterpart. If the new edge would be shorter, it is
then added to the set newEdges (Line 20).

Lines 21-29 then check each ordinary edge emanating from T to determine whether
any shortest-path values in the queue can be updated. For each successor edge, T r W,
the length of the quasi-allowable path from Ci to T to W (using non-negative values) is
computed (Line 22) to determine whether the key for W that is currently stored in the
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queue needs to be decreased (Lines 23, 25). Line 24 ensures that the numChangedInQueue
counter is properly updated if the key for W is being changed for the first time. Lines
26-27, still in the case where the key for W was decreased, determine whether the new
shortest path from Ci to W has the PPP property and, if so, set APPP(Ci,W ) to True. In
contrast, Lines 28-29, which do not necessarily fall within that case, determine whether
a quasi-allowable path from Ci to W has been found that does not have the PPP property,
in which case, the APPP value is set to False.

Lines 30-37 then check each upper-case successor edge emanating from T in a
similar fashion. Lines 32-33 check whether the resulting path can reduce to an ordinary
edge, courtesy of the Label Removal rule from Table 1. If so, the path is processed
by Lines 22-29, as discussed above. Otherwise, Lines 34-37 determine whether the
resulting path can be used to generate a new upper-case edge; if so, the edge is added to
newEdges. Note that UC_val being negative would imply that a negative semi-reducible
loop had been found (i.e., that inserting E into the network made it non-DC, Line 35).

At the end of the ith iteration, if newEdges is non-empty (Line 38), then several steps
are taken to incorporate the newly generated edges. First, in anticipation of adding new
edges, each of which has Ai as its source, the potential function is rotated so that it uses
Ai as its sink (Line 39). Next, the new edges are added to the graph (Line 40). Since each
new edge has Ai as its source, those edges cannot disturb the recently rotated potential
function. Finally, Lines 41-43 ensure that if this is the first time that new edges with
source time-point Ai are being added to the network, then Ai becomes marked and the
globalNumMarks counter is updated (Note that Ai might be the activation time-point
for multiple contingent links; so this might not be the first time that Ai is marked.)

Finally, if all K iterations of searching for extension sub-paths to generate new edges
fail to find a negative loop (cf. Lines 18, 35), then the algorithm returns True at Line 45.

Note that in the process of performing the K iterations, the Inky algorithm computes
all updates of the D+ matrix that will be needed by subsequent invocations of the algo-
rithm. It also computes updates to the APPP matrix. Furthermore, since the algorithm
runs at most K iterations, each of which runs in O(N2) time (due to the Dijkstra-like
traversals), the algorithm runs in O(N3) time overall.

Improving the Incremental Algorithm. The Inky algorithm can be substantially im-
proved as follows. Suppose that C1 is the first contingent time-point to be processed
by the main loop of the algorithm (Lines 5-44). Consider the Dijkstra-like traversal
of shortest quasi-allowable paths emanating from C1. Given that each time-point T is
initially inserted into the priority queue, Q, using the corresponding D+(C1,T ) value
from the previous invocation of the algorithm (Line 9), any time-point that is popped
off the queue before X need not have its successor edges processed (cf. Lines 22-29
and 31-37) because following those edges could not possibly change any path-lengths
currently stored in the queue. However, once X has been popped off the queue, normal
processing of successor edges must resume. For subsequent iterations of the main loop
(i.e., when processing other LC edges), a similar approach can be used. In particular,
if A = {Ai1 ,Ai2 , . . . ,Ais} is the set of source time-points for the edges that have been
generated so far—all of which must be activation time-points for already-processed LC
edges—then until X or some member of A has been popped off the queue, any other
time-point that is popped off the queue need not have its successor edges processed,
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because doing so could not possibly change any values stored in the queue. However,
once X or some member of A is popped, then normal processing must be resumed.
Given that the worst-case complexity of Dijkstra’s algorithm is O(m+N logN), where
m is the number of edges in the graph, reducing the number of successor edges that
must be followed during the Dijkstra-like traversals necessarily makes the algorithm
more efficient.

A similar technique can be used to make the rotatePotentialFunc (Line 4) more
efficient. In this case, the algorithm must keep track of the sink time-point Y of the
new edge E, and the sink time-points of any edges that have already been generated
by prior iterations of the main loop. As long as none of those time-points have been
popped off the queue during the sinkDijkstra traversal used by rotatePotentialFunc,
the predecessor edges of other time-points that are popped off the queue need not be
followed. However, once any of those sink time-points is popped, normal processing
must resume. Once again, reducing the number of edges that must be followed during
a Dijkstra traversal necessarily makes the Inky algorithm more efficient.

Finally, when considering whether to generate a new edge from a given allowable
path (Lines 19-20), instead of simply checking whether the new edge would be shorter
than any pre-existing edge involving the same time-points, the Inky algorithm could
use an extra, sourceDijkstra traversal in each iteration of the main loop to compute
all D∗(Ai,T ) values, where D∗ is the all-pairs-shortest-semi-reducible-path matrix dis-
cussed in Section 2. On the positive side, this could reduce the number of generated
edges, leading to additional savings; on the negative side, this technique requires ad-
ditional computations to maintain the D∗(Ai,T ) values across invocations. Thus, the
viability of this technique, unlike the previous two, must be tested empirically.

5 Conclusions

This paper introduced new techniques for speeding up both full and incremental DC
checking for STNUs. The Speedy algorithm is the full DC-checking algorithm the re-
sults from applying these techniques to the Morris-N4 algorithm. It has been shown to
out-perform the Morris-N4 algorithm, in some cases by an order of magnitude. It is not
yet known whether Speedy will be competitive with the more recent O(N3) algorithm
presented after the initial publication of the Speedy algorithm.

The main contribution of the paper is the Inky algorithm, which is the incremental
algorithm that results from applying similar techniques to the incremental DC-checking
problem. Like its fastest competitors [10, 15], the Inky algorithm is O(N3). However, the
techniques it employs to reduce redundant computations, and the fact that its main loop
has K iterations, together suggest that Inky may out-perform its incremental competi-
tors, each of which can involve up to N iterations. Thus, it is expected that in scenarios
where the number of contingent links is relatively small compared to the total number
of time-points, Inky may perform especially well.

Clearly, a thorough comparative, empirical evaluation of the top incremental DC-
checking algorithms is needed. However, given that the competitors have been so re-
cently introduced, such an evaluation must be left to future work.
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Inputs: G , a graph for a dynamically controllable STNU with K cont. links and N time-pts.
D+, the K-by-N matrix of shortest quasi-allowable path-lengths in G
APPP, the K-by-N matrix of boolean values, discussed in the text
f , a sink-based potential function for G that uses some time-point S as its sink
E: X δ Y, a new edge to be inserted into the graph G ;

Output: True if inserting E into G preserves its dynamic controllability; False otherwise.

1. order := lower-case edges of G , sorted into non-decreasing order of D+(Ci,X) values.
2. mark := boolean vector whose N entries are all initially False, except mark[X] := True.
3. globalNumMarks := 1;
4. f := rotatePotentialFunc(G , f ,X); // now X is sink for f
5. for i = 1 to K: (Main Loop)
6. Let (Ai,xi,yi,Ci) be the ith contingent link according to order.
7. newEdges := {}.
8. Q := empty priority queue of length N.
9. forEach node T in G : insert(Q, T, val), where val = f (Ci,D+(Ci,T ),T );

10. numMarksInQueue := globalNumMarks;
11. numChangedInQueue := 0;
12. while ((numMarksInQueue(Q) > 0) && (numChangedInQueue(Q) > 0)):
13. T := pop(Q); // T is next time-point to be processed
14. if (mark[T]) numMarksInQueue--;
15. if (T.key < f (Ci,D+(Ci,T ),T )) numChangedInQueue--;
16. if ((T 6≡Ci) && APPP(Ci,T ) && ( f−1(Ci,T.key,T )≤ 0)): // ext. sub-path!
17. newVal := f (Ai,xi,Ci) + T.key;
18. if (newVal < 0) return False;
19. if (newVal < currAdjEdgeLen( f ,G ,Ai,T)):
20. newEdges += makeEdge(Ai, f−1(Ai,newVal,T ),T); // generate new edge
21. forEach ordEdge(T,r,W) in successors(G ,T):
22. len := T.key + f (T,r,W );
23. if (stillInQueue(Q,W) && (len < W.key)):
24. if (W.key == f (Ci,D+(Ci,W ),W )) numChangedInQueue++;
25. decreaseKey(Q,W,len);
26. if (APPP(Ci,T ) && (( f−1(Ci,T.key,T ) > 0) || (T ≡Ci)))
27. APPP(Ci,W ) := True;
28. if ((len <= W.key) && (T 6≡Ci) && (!APPP(Ci,T )||( f (Ci,T.key,T )≤ 0)))
29. APPP(Ci,W ) := False;
30. forEach UC_Edge(T,C j,r,A j) in UCsuccessors(G ,T):
31. UC_len := T.key + f (Ci,r,A j);
32. if (UC_len >= f−1(−x j)) where x j = lower bound on cont. link for C j
33. Process as ordinary path of length UC_len, using Lines 22-29 above
34. else: UC_val := UC_len + f (Ai,xi,Ci);
35. if (UC_val < 0) return False;
36. elseif (UC_val < currAdjUCEdgeLen( f ,G ,Ai,C j)):
37. newEdges += makeUC_Edge(Ai, f−1(Ai,UC_val,A j),C j);
38. if (newEdges):
39. f := rotatePotentialFunction(G , f ,Ai); // now Ai is sink for f
40. forEach edge in newEdges: insertEdge(edge,G);
41. if (!mark[Ai]):
42. mark[Ai] := True;
43. globalNumMarks++;
44. end for i = 1 to K.
45. return True.

Table 4. Pseudo-code for the basic version of the Inky incremental DC-checking algorithm


