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Abstract. SharedPlans is a general theory of collaborative planning
that accommodates multi-level action decomposition hierarchies and ex-
plicates the process of expanding partial plans into full plans [5, 6]. This
paper presents a reformulation of SharedPlans that simplifies the Shared-
Plans definitions without sacrificing their expressiveness, and enables the
specification of conditions under which a set of important theorems about
agents and their SharedPlans may be proven to hold. A representative
set of such theorems is presented.

1 Introduction

“Collaboration must be designed into systems from the start; it cannot
be patched on.” [4]

“Simply fitting individual agents with precomputed coordination plans
will not do, for their inflexibility can cause severe failures in teamwork.” [12]

When a group of agents get together to work on some complex group action,
whether it be a group of helicopter agents embarking on a scouting mission [12]
or a group of people making dinner [5], collaboration does not just happen. It
requires the existence or formation of mutual beliefs about the capabilities and
commitments of the agents involved, the adoption by individual agents of vari-
ous intentions (not only intentions-to do various actions, but also intentions-that
certain propositions hold), and a variety of group decision-making and planning
processes. Grosz and Kraus’s SharedPlans [5, 6] is a general theory of collab-
orative planning that requires no notion of irreducible joint intentions, accom-
modates multi-level action decomposition hierarchies, models the collaborative
support provided by group members to those agents or subgroups responsible
for doing constituent actions, specifies what it means for a group of agents to
have a partial plan, and explicates the process of elaborating a partial plan into
a full plan. Recent implementations of SharedPlans include a collaborative in-
terface agent for an air travel application [10] and a collaborative multi-agent
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system for electronic commerce [7]. In addition, to test, evaluate and improve
the theory, the author is currently developing an agent architecture that follows
the SharedPlans specifications.

In SharedPlans, the plans of individual agents and groups of agents are mod-
elled by meta-predicates that is, abbreviations for complex logical expressions
involving predicates and the following modal operators.

| Operator | Instantiation | Interpretation |

Bel Bel(G, ¢) Agent G believes proposition ¢.

Int.To Int.To(G,A) | Agent GG intends to do action A.

Int.Th Int.Th(G,¢) | Agent G intends that proposition ¢ hold.
MB MB(GR, ¢) Group GR mutually believe proposition ¢.

predicate definitions use existential quantification to refer to various agents,
subgroups and actions involved in a plan, thereby making it difficult to reason
about such things as the conditions under which a group’s mutual belief that
they have a SharedPlan entails that they do in fact have such a plan.? This pa-
per presents a reformulation of SharedPlans, henceforth called V5, that simplifies
and reorganizes the meta-predicate definitions without sacrificing their expres-
siveness, and enables the specification of knowledge conditions under which a
set of important theorems about agents and their SharedPlans may be proven.?
This paper thus represents a step in the direction of making SharedPlans more
practical to implement and reason about, not only for the agents themselves,
but also for theorists studying the agents.

V7 is reviewed in Section 2; V5 is presented in Section 3; sample theorems
and their proofs are given in Section 4; related work is discussed in Section 5;
and concluding remarks are given in Section 6.

In the original formulation, henceforth called Vi (for Version 1), the meta-

2 The Original Formulation of SharedPlans: V;

2.1 Actions and Recipes in V;

In Vi, actions are either basic or complex. A basic action is a single-agent action
that is treated as atomic and, under certain conditions, is assumed to be exe-
cutable at will. A complex action may be a single-agent or multi-agent action and
is treated as decomposable. A recipe for a complex action, A, is a set of actions,
{4;,...,A,}, and constraints, {p1, ..., pm}, such that the doing of those actions
under those constraints constitutes the doing of A. A partial recipe is a set of ac-
tions and constraints that can be expanded into a complete recipe. Multi-agent

complex actions are assumed to be ultimately decomposable into single-agent

? A typical difficulty stems from the fact that Bel(G, (3z)P(x)) does not, in general,
entail (3z)Bel(G, P(x)).

3 To simplify the presentation, the case of “contracting out” actions to other agents is
ignored, as are parameters not central to the discussion, such as constraints, time,
and intentional context.



actions (basic or complex); single-agent complex actions are assumed to be ul-
timately decomposable into basic actions. Recursive decomposition gives rise to
an action decomposition hierarchy. An action decomposition hierarchy is called
complete if (1) the decomposition of each action in the hierarchy corresponds to
a complete recipe, and (2) all leaf actions are basic actions.

2.2 Intention-To and Individual Plans in V3

The modal operator Int.To models the intention of an agent G to do a single-
agent action A. If A is basic, then G intending to do A requires that G believe
it is able to execute A and that G be committed to doing so:

Basic(A) A Int.To(G, A) = Bel(G, Exec(G, A)) A Commit(G, A).
If A is complex, then G intending to do A requires either that G have a Full
Individual Plan (modelled by the FIP meta-predicate) for doing A or that G

have a Partial Individual Plan (PIP) for doing A accompanied by an associate
plan for elaborating its partial plan into a full plan:*

Complex(A) A Int.To(G,A) = FIP ® (PIP AN FIPF!")5

An agent G has a Full Individual Plan for doing A if: (1) G has a complete
recipe for doing A, (2) G intends to do each action in that recipe, and (3) G has
a subordinate F'IP to do each complex action in that recipe. The requirements
for a Partial Individual Plan are much weaker. G’s recipe for doing A may be
partial or even empty—as long as G has an associate plan for extending the
partial recipe into a complete recipe. In addition, G need not yet have formed
intentions to do the actions comprising its partial recipe; G need only believe
that it is able to do those actions. The ability of an agent to do a single-agent
action is modelled by the Can-Bring-About (CBA) meta-predicate which, like
Int.To, is defined in two parts to handle both basic and complex actions.

In the context of an individual plan, an action in the decomposition hierarchy
is called resolved if the agent intends to do that action. Furthermore, a complex
action resolved by a FIP is called fully resolved. Using this terminology, a full
plan is characterized by a complete action decomposition hierarchy, each action
of which has been resolved, the complex actions fully resolved. On the other hand,
a partial plan is characterized by a possibly incomplete action decomposition
hierarchy, some or all actions of which may be unresolved.

2.3 SharedPlans in V;

V1 provides analogous definitions for the plans of groups of two or more agents.
A group of agents GR have a SharedPlan (SP) to do some multi-agent action,
A, either by having a Full SharedPlan (F'SP) to do A or by having a Partial
SharedPlan (PSP) to do A accompanied by an associate plan to elaborate the
partial plan into a full plan: SP = FSP ® (PSP A FSPF!b),

4 Such associate plans are required to be FIPs to avoid problems of infinite recursion.
5 The arguments of FIP and PIP have been omitted to simplify the presentation.



Unlike Int.To, the SP meta-predicate is not a modal operator. A SharedPlan
is reducible to the individual plans, beliefs and intentions of the various group
members; it does not correspond to any sort of irreducible joint intention.

In the context of a SharedPlan, a single-agent action A; in the decomposition
hierarchy is called resolved if: (1) an agent G; has been selected to do A;, (2) G;
intends to do A;, and (3) the other members of the group have a set of supportive
mutual beliefs and intentions-that G; succeed.® Similarly, a multi-agent action
A; is called resolved if: (1) a subgroup GR; has been selected to do A;, (2)
GR; has a SharedPlan to do A;, and (3) the other members of the group have
a set of supportive mutual beliefs and intentions-that GR; succeed. As with
Individual Plans, a complex action resolved by a full plan (whether a FIP or
a F'SP) is called fully resolved. Thus, a Full SharedPlan is characterized by a
complete action decomposition hierarchy, each action of which has been fully
resolved, while a Partial SharedPlan is characterized by a possibly incomplete
action decomposition hierarchy, some or all actions of which may be unresolved.
(Incidentally, if a complex action in a partial plan is itself resolved by a mere
partial plan, the recipe associated with that action may be only partial or even
empty.) To elaborate a partial plan into a full plan, for each complex action
in the decomposition hierarchy, the agent or group selected to work on that
action must select (perhaps incrementally) a recipe for doing that action and,
for each action in that recipe, must select an agent or subgroup that is able
to do it. The ability of a group to do a multi-agent action is modelled by the
Can-Bring-About- Group (C BAG) meta-predicate.

The following chart illustrates the coverage of the V; meta-predicates and
the Int.To modal operator.

Basic Actions — R
\%1 Single-Agent Complex Actions Int.To FIP | PIP CBA

Multi-Agent Actions (> 2 agents) SP FSP | PSP | CBAG

3 The Reformulation of SharedPlans: V,

3.1 Actions and Plans in V5

In V5, for complex actions, the distinction between single-agent and multi-
agent actions is deemphasized. Instead, single-agent groups are allowed and
an Individual Plan is simply a SharedPlan of a single-agent group. In addi-
tion, the V5 definitions of SP, FSP, PSP and C BAG are made more concise
than their V; counterparts through the selective use of a new meta-predicate,
Basic-Can-Bring-About (B.CBA), and a new modal operator, Basic-Intention-
To (B.Int.To), defined by those portions of the V; definitions of CBA and Int.To
that deal with basic actions. The following chart illustrates the coverage of the
V5 meta-predicates and the B.Int.T'o modal operator.

Basic Actions B.IntTo | --- - B.CBA

Ve Complex Actions (> 1 agents) SP FSP| PSP | CBAG

5 The properties of intentions-that are discussed in detail by Grosz & Kraus [6].



3.2 Plan Trees in V;

In the process of constructing a SharedPlan, various agents and subgroups may
make numerous planning decisions (e.g., selecting recipes and assigning agents
to actions) in a distributed fashion and at every level of the evolving action
decomposition hierarchy. In V;, even decisions that have already been made,
such as those concerning the elements of a full plan, are modelled implicitly using
existential quantification. In V5, SharedPlan Trees (SPTs) are used to explicitly
represent the choices already made by a group working on some SharedPlan.
Each node of an SPT corresponds to an action in the incrementally-selected and
possibly incomplete action decomposition hierarchy and is explicitly classified
according to whether that action is basic or complex, and resolved or unresolved
(vis a vis the plan). Thus, there are four types of nodes, as summarized below:

Node Node Action

Type | Representation Characteristics
8 (I3, Gg, Ag) basic resolved
K (Ie,GR,, Ay) complex resolved
€ (I, Ae) basic unresolved
7] Iy, Ap) complex | unresolved

where Ig, I;, I and I, are unique identifiers; Ag, A, Ac and A, are actions; Gg
is an agent (nominally the agent selected to do the action, Ag); and GR,, is
a group of agents (nominally the subgroup selected to do the action, A,). All
identifiers, agent names and action names are assumed to be rigid designators.

In a SharedPlan Tree, only x nodes may have child nodes but these child
nodes may be of any of the four types. The set of 3 child nodes of a given node
are termed its Bset. Similarly, the sets of k, € and u child nodes of a given node
are termed its kset, its eset, and its uset, respectively.

Because all actions involved in a full plan are, by definition, resolved, a Full
Plan Tree (FPT) has only 8 and k nodes. Partial plans, however, may have
unresolved actions and hence a Partial Plan Tree (PPT) may have nodes of
any of the four types. In addition, partial plans typically have a variety of asso-
ciate plans corresponding to complex planning actions, such as selecting a recipe
(SelRec), elaborating a partial plan into a full plan (Elab), or selecting an agent
or subgroup to do some action (SelAgt or SelSgr). Thus, each node in a Par-
tial Plan Tree may have one or more additional plan trees associated with it as
summarized below.

Node Type of Functional Notation for Abbreviation
Type Associate Plan Corresponding Plan Tree for Plan Tree
Elaborate ElabPT((I.,GR., AL)) pTFlab
" Select Recipe SelRecPT((I.,GRx, Ay)) | PTSeRec
€ Select Agent SelAgtPT ((I., Ac)) PTSelAgt
7 Select Subgroup | SelSgrPT({(I.,A.)) PT; <597




Definition. Given some k node, N = (I,GR, A), the SharedPlan Tree (or
subtree) rooted at N is a 7-tuple:

(N, Bset, kset, eset, uset, ElabPT, Sel RecPT),

where (set, kset, eset and uset are sets of 3, k, € and p nodes, respectively, such
that for each (I, GR,, Ay) in kset, the object given by PlanTree({I;, GR,;, Ay)),
abbreviated as PTy, is itself a SharedPlan Tree. In a Full Plan Tree, ElabPT
and SelRecPT are NIL, eset and uset are empty, and each PTj is itself a Full
Plan Tree. In a Partial Plan Tree, ElabPT is a Full Plan Tree (and hence not
NIL) and SelRecPT is either NIL or a Full Plan Tree.

3.3 V., Definitions

V4 definitions of B.CBA, B.Int.To, CBAG, SP, FSP and PSP are given in
Figs. 1 and 2. The definitions of B.CBA and B.Int.T'o are simply those portions
of the Vi definitions of CBA and Int.To that deal with basic actions. The
V5, definitions of CBAG, SP, FSP and PSP are generalizations of their V;
counterparts in that they allow for single-agent groups. Thus, in V5 there is no
need for a separate set of meta-predicates to handle single-agent plans. The V,
definitions of CBAG, F'SP, PSP and SP also differ from their V; counterparts
in that each takes an explicit plan tree,

PT, = ((IQ,GRQ,AO() ,6seta7/<;seta7eseta,useta,PTaEl“b,PTerR“>

as its only argument. For brevity, the symbol PT, is used instead of the 7-
tuple; but it should be kept in mind that the 7-tuple is the actual argument. For
example, F'SP(PT,) represents that the group GR, has a Full SharedPlan to
do the action A, using the plan tree PT,."

The V5 definitions of FSP and PSP are given in terms of subsidiary meta-
predicates to distinguish the top-level and recursive portions of the definitions.
Making this distinction reflects a fundamental tenet of SharedPlans, namely, that
while the entire group needs to be directly involved in the topmost level of a plan,
only the agents selected to do a given subaction need to be directly involved in the
corresponding subplan. Making this distinction also enables precise specification
of the knowledge conditions and mutual beliefs needed for the theorems presented
in Section 4.

FSP.Top and PSP.Top model the top-level (or non-recursive portion) of a
SharedPlan. As such, their specifications are restricted to the top level of the plan
tree (i.e., the root node and its immediate children). For example, they specify
various intentions and mutual beliefs pertaining to the immediate children of the
root node; but they do not specify, directly or indirectly, anything pertaining to
nodes further down in the tree. F'SP.Rec and PSP.Rec, on the other hand,
encapsulate the recursive portions of the F'SP and PSP definitions. As such,

" In cases where it is desirable to explicitly indicate the group and possibly the action
involved, they are included as parameters of the plan tree symbol, as in the fragments,
FSP(PT.(GR,)) and (3PT)FSP(PT(GR,, A)), from the FSP definition.



(Basic) Can-Bring-About
B.CBA(G, A) =

Basic(A)

A

Ezec(G,A)

(Basic) Intention-To
B.Int.To(G, A) =

Bel(G, B.CBA(G, A))
A
Commit(G, A)

SharedPlan
SP(PT,) =

FSP(PT,) ® PSP(PT.)

Full SharedPlan

Can-Bring-About (Group)
CBAG(PT,) =

PTaElab — PTaSelRec — NIL
A
eseto = pset, = 0
A
Top(PTa) € Recipes(Aa)
A
(V(Is,Gp, Ap) € Bseta)
G € GR.,
A
B.CBA(Gg, Ag)
A
(V(I,GRy, Ay) € Ksety)
GR. C GR,
A
CBAG(PT.(GR)))

FSP(PT,) = FSP.Top(PT,) A FSP.Rec(PT.),

where

Full SharedPlan: Top-Level Portion

FSPTOp(PTa) EFl /\F2 /\F3/\F4/\F5/\F6/\F5/\FN

where
F, = (PTF'"® = NIL)
Fy = (PTS°Ree = NIL)
F5 = (eseta = 0)
Fy = (useta = 0)
F5 =
F6 =
Fg = (V(
F, = (V(
where

F3, = Gg € GR,

Fp, = B.Int.To(Gg, Ap)

7
MB,((VG € GRy)Int.Th(G, Do(GR,, Au)))
MB,(Top(PT,) € Recipes(Ada))

Ig,Gp, Ap) € Bseta)Fp, A Fp, A Fg, \ Fg,
I.,GRy, A.) € ksetq)Fey N Fiey N Fyy

Fs, = MB,(B.Int.To(Gg, Ag) A B.CBA(Ggs, Ag))
Fs, = MBo((VG € GRa,G # G3)Int. Th(G, B.CBA(Gg, Ag)))

and
F., =GR, C GR.

F., = MBo((3PT)FSP(PT(GRy, A:)) A CBAG(PT(GR., Ay)))
Fyy = MBo((VG € GRa,G ¢ GR,,)
Int.Th(G,(3PT)CBAG(PT(GR., A.))))

Full SharedPlan: Recursive Portion

FSP.Rec(PTy) = (V{I.,GRx, Ax) € kseto ) FSP(PT.(GR,))

Fig. 1. V5 definitions of B.CBA, B.Int.To,CBAG,SP and FSP



Partial SharedPlan
PSP(PT.) = PSP.Top(PT.,) A PSP.Rec(PT.),
where
Partial SharedPlan: Top-Level Portion
PSPTOp(PTa) = P1 /\P2 /\P3 /\P4 /\P5 /\PB /\}D,\z /\}D6 /\PH

where
P, = (PTF!%b £ NIL)
Py = FSP(GRa, Elab(GRa, Aa, Top(PT,,)), PTF1b)
Py = (PT;% R = NIL) = M B, (Top(PTa) € Recipes(Aa))
MB.((3PT)((Top(PT,) C Top(PT))
AN CBAG(PT(GRa, Av))))
Py = (PTS%Ree £ NIL) = { A
FSP(GR,, SelRec(GRy, Aa, Top(PT,)),
PTSelRec)
Ps = MB.((VG € GR,)Int. Th(G, Do(GR., Ay)))
Ps = (V <Iﬂv GﬂvAﬁ) € ﬂSEtﬂ)Fﬂo N Fg, N Pg,, N Pg,, N Fg,
P, = (V({I:,GRy, Ay) € kseta)Fuy A Py N Pey, A Fy
P. = (V(I., Ac) € eseto)Pe, NP,
Py = (V(Iu, Ay) € pseta)Puy A Py,
where
Fgs,,F3,, Fa,, F,, and F,, are as in the FSP definition
and

Pg,, = MBy(B.Int.To(Gg, Ag))

Ps,, = (VG € GR,)Int. Th(G, M B, (B.CBA(Gs, Ag)))

s1 = MBo((3PT)SP(PT(GR,, Ay)))

a s = (VG € GRa)Int. Th(G, M B, (3PT)CBAG(PT(GR., AL))))
. = MB.((3G € GR.)B.CBA(G, A.))

, = FSP(GR,,SelAgt(GR., A.), PTS49)

. = MB,((3GR C GR,, PT)CBAG(PT(GR, A,)))

P,, = FSP(GRa,SelSgr(GRa,A,), PT;¢'%")

Partial SharedPlan: Recursive Portion

PSP.Rec(PTy) = (Y (Ir, GRy, Ay) € kseta)SP(PT.(GR,))

el

R

Fig. 2. V, definition of PSP

their specifications refer to the plan subtrees rooted at the x children of the
root node. For example, F'SP.Rec requires that the subgroup selected to do the
action corresponding to a & child of the root node have a Full SharedPlan using
the plan subtree rooted at that node.

In the V5 definitions, clauses of the form M B(GR.,, ¢) appear so frequently
that they are abbreviated as M By (¢). In addition, the CBAG, FSP and PSP
definitions refer to T'op(PT,) which denotes the set of actions in the top-level
decomposition of PT,. For example, Top(PT,) € Recipes(Ay) represents that
the top-level decomposition of A, in the plan tree PT, is a (complete) recipe
for doing A,. Finally, the V; requirement that a PSP be accompanied by an
FElab F'SP has been folded into the V5, definition of PSP in clause Ps.



4 Theorems about Agents and Their SharedPlans

Under what knowledge conditions does an agent’s belief that it has, say, a
Full Individual Plan (FIP) entail that it does in fact have such a plan? In
other words, what conditions would ensure that Bel(G, FIP(G,a, R,)) entails
FIP(G,a,R,), for some agent G, some action «, and some recipe R,? The
existential quantification in the V; meta-predicate definitions makes questions
such as these difficult to answer. For example, in the above case, knowledge
conditions might be sought such that the following holds:

Bel(G,(3Rs)FIP(G, 5, Rs)) |= (3Rs)Bel(G, FIP(G, 8, Rs))

where § is an action in the recipe R,. But existential quantifiers may not, in
general, be extracted from the scope of modal belief operators.

In V4, the use of explicit plan trees as arguments in the various meta-predicate
definitions eliminates such problems and allows a number of important theorems
about agents and their SharedPlans to be formulated and proven. The theorems
specify sets of knowledge conditions and sets of mutual beliefs such that under
those knowledge conditions the agents have a SharedPlan if (or only if) they
hold the specified mutual beliefs. For each action, A, in the decomposition hi-
erarchy, the knowledge conditions stipulate that only those agents selected to
work on A need know the top-level contents of the plan subtree associated with
A. Similarly, only those agents selected to work on A need participate in the
mutual beliefs about whether or not they satisfy the top-level requirements of
a SharedPlan. For the theorems pertaining to full plans, the sets of knowledge
conditions and mutual beliefs are completely specified and detailed proofs are
given. For the theorems pertaining to partial plans and SharedPlans in general,
space limitations preclude such a full treatment. Thus, these theorems are simply
stated along with brief sketches of the issues involved in their proofs.

Before presenting the theorems, some background assumptions about the
belief and mutual belief modal operators are given that lead to preliminary
results used throughout the rest of this section. In addition, some assumptions
about actions, commitments and intentions-that are made. In all that follows,
all free variables are implicitly universally quantified and plan trees are assumed
to have finite depth.

4.1 Background Assumptions and Preliminary Results

Bel, the modal belief operator, is assumed to satisfy the standard K D45 and
necessitation axioms [3]. M B, the modal operator for mutual belief, is assumed to
cover arbitrary nestings of Bel. Consequently, the following preliminary results
are valid for arbitrary propositions ¢ and .

(P1) Bel(G,¢ A1) & Bel(G, ¢) N Bel(G, )
(P2) Bel(G,Bel(G,¢)) & Bel(G, ¢)

(P
(

3) MB(GR,$ A) & MB(GR,$) A MB(GR, )
P4) MB(GR, MB(GR, $)) & MB(GR, $)



Next, it is assumed that the universe of nodes is fixed. As a result, when the
variable of quantification ranges over nodes, both the Barcan formula (B2) and
its converse (B1), given below, are valid [3].

(B1) Bel(G, (VYz)P(z)) = (Yz)Bel(G, P(x))
(B2) (Vx)Bel(G, P(z)) = Bel(G, (Vx)P(x))

By providing appropriate knowledge conditions, these formulas may be extended
to cover the case of the relativized universal quantifier: (Vz € X).8 For example,
P5 below extends formula B1 using the knowledge condition K;. K; requires
that whenever x is in X, the agent G believes z is in X (i.e., G’s beliefs about
x being in X are complete). Similarly, P6 below extends formula B2 using the
knowledge condition K,. K5 requires that G believe z is in X only when z
actually is in X (i.e., G’s beliefs about z being in X are correct).

(P5) Bel(G, (Vz € X)P(z)) N K, = (Vz € X)Bel(G, P(x)),
where Ky = (Vo € X)Bel(G,z € X).

(P6) (Vz € X)Bel(G, P(x)) N Ky = Bel(G, (VYz € X)P(z)),
where Ky = (Vz)(Bel(G,z € X) = (z € X)).

Furthermore, these results have mutual belief analogues, as follows.

(P7) MB(GR,(Vz € X)P(z)) A K3 = (Vx € X)MB(GR, P(x)),
where K5 = (Vo € X)MB(GR,z € X).

(P8) (Vx € X)MB(GR,P(z)) NK, = MB(GR, (Vz € X)P(x)),
where Ky = (Vo) (MB(GR,z € X) = (v € X)).

Finally, agents are assumed to have correct and complete beliefs about whether
actions are basic or complex, and about their individual commitments to do ac-
tions and their individual intentions-that propositions hold.?

(A1) Bel(G, Basic(A)) & Basic(A)

(A2) Bel(G,Complex(A)) & Complex(A)
(A3) Bel(G,Commit(G, A)) & Commit(G, A)
(A4) Bel(G,Int. Th(G,¢)) & Int.Th(G,¢)

4.2 Theorems

Theorem 1 states that an agent G has an intention to do some basic action A
if and only if G believes it has such an intention. Note that an analogous result
does not hold for B.CBA, since an agent may be mistaken about its ability to
do some basic action.

Theorem 1. B.Int.To(G, A) & Bel(G, B.Int.To(G, A))

8 (Vz € X)i(z) is an abbreviation for (Vz)((z € X) = ¥(z)).
9 Assumptions Al and A2 are made by Grosz & Kraus, assumption A3 (=) follows
from Axiom 2 in Vi, and assumption A4 (=) is Axiom 3 in Vi [5].



Proof of Theorem 1. Theorem 1 follows directly from the definition of B.Int.To,
preliminary results P1 and P2, and assumption A3. If A3 is weakened to only a
single direction of implication, then Theorem 1 must be similarly weakened. O

The rest of the theorems in this section specify the knowledge conditions suf-
ficient to ensure that a group of agents hold a SharedPlan if (or only if) they
hold a specified set of mutual beliefs. For example, Theorem 2 states that under
the knowledge conditions given by GrKnowF PT, if a group of agents hold the
set of mutual beliefs given by RM B.FSP, then they necessarily have a Full
SharedPlan. GrKnowFPT and RM B.F'SP are defined in Fig. 3.

Theorem 2. RMB.FSP(PT,) A GrKnowFPT(PT,) = FSP(PT,)

GrKnowF PT(PT,) represents that the group of agents G R, know the struc-
ture and contents of the plan tree PT, with the caveat that for the action asso-
ciated with any given x node, only the group of agents GR,; selected to work on
that action are required to know anything about the structure and contents of
the plan subtree PT,; being used to do that action. Similarly, RM B.F'SP(PT,)
represents that the group GR, mutually believe that they have a Full Shared-
Plan using PT, with the caveat that for the action associated with any given

(Group) Know Full Plan Tree
GrKnowFPT(PT,) = GrKnowFPT.Top(PT,) A GrKnowF PT.Rec(PTy,),
where

(Group) Know-Full-Plan-Tree: Top-Level Portion
GrKnowFPT.Top(PT,) = KiNKo ANKs ANKysANKg AK,
where

K\ = M B, (PTF!%® = n1L) = PTF e = n1L

Ky = M B, (PT;' %% = NIL) = PT;°F* = NIL

K3 = M By (eset, = 0) = eseto, =0

K, = MB,(useto = 0) = pseto, =0

{ (V(Ig,Gp,Ag) € Bseta )M Ba({Is,Gp, Ag) € Bseta)

Kﬁ =

(I3,Gp,Ap) € Bseta)(MBa(Gs € GRy) = (Gg € GR.))
(I, GRy, Ay) € kseta)MBa ({1, GRy, Ax) € Kseta)

>’<E/<?>

K. =

{ (V{Ix,GRy, Ax) € kseta)(MBo(GR: C GRa) = (GR.x C GR.))
(Group) Know-Full-Plan-Tree: Recursive Portion
GrKnowF PT.Rec(PTy) = (V (I, GRy, A,) € kseto)GrKnowF PT(PT,(GR,))

Restricted Mutual Belief in a Full SharedPlan
M B, (FSP.Top(PT,))

RMB.FSP(PT,) = { A

(V{I.,GR:, Ax) € kseta )RMB.FSP(PT.(GR.))

Fig. 3. Definitions of Gr KnowF PT and RMB.FSP



node, only the agents selected to work on that action are required to participate
in the mutual beliefs pertaining to the subplan for that action. More formally,
the first part of the RM B.FSP definition requires that the parent group GR,
mutually believe that the top level of their plan satisfies the top-level require-
ments of an F'SP, while the second part recursively requires, for each x node
child of the root node, that the selected subgroup GR, holds the mutual beliefs
specified by RM B.F'SP with respect to the plan subtree PT.

If, instead of satisfying the comparatively weak requirements of Gr KnowF PT
and RM B.FSP, the agents in GR, had knowledge of the structure and con-
tents of the entire plan tree PT, and, furthermore, they mutually believed that
their plan satisfied the requirements of an F'SP at every level of the action
decomposition hierarchy (i.e., MB,(FSP(PT,))), then the following would be
entailed:1"

M B, (FSP.Top(PT,))
A
(V(I.,GR., A.) € kseto)M B, (FSP(PT.(GR.)))

The top-level portion of the above expression is identical to the top-level portion
of the RM B.F'SP definition; but the recursive portion of the above expression
is much stronger than its RM B.FSP counterpart. In particular, for each x node
child of the root node, it requires that the entire group GR, mutually believe
that the selected subgroup GR, has a Full SharedPlan using the specified plan
subtree PT, whereas the recursive portion of RM B.F'SP only requires that the
subgroup G R, participate in mutual beliefs pertaining to that subplan.

Proof of Theorem 2. Given the definitions of RM B.FSP, GrKnowF PT and
FSP, it suffices to show the following:

(2a) MB,(FSP.Top(PT,)) N GrKnowFPT.Top(PT,) |= FSP.Top(PT,)

(2b) (Y (I, GRy, Ay) € kseto)(RMB.FSP(PT,(GRy))
AGrKnowF PT(PT,(GR:))) = FSP.Rec(PT,)

First, consider (2a), which involves only the top level of the plan tree PT, . Since
FSP.Top(PT,) is the conjunction of several clauses, preliminary result P3 gives
that it is sufficient to find, for each conjunct C, the knowledge condition, K,
such that M B,(C) A K |= C. The conjunction of these knowledge conditions
defines Gr KnowF PT.Top(PT,) in Fig. 3.

For C of the form, M B, (¢), for some ¢, no knowledge condition is necessary,
since M B,(M B, (¢)) = M B,(¢) by preliminary result P4. For C' a statement
that PTElab op prSethec i NIL, or that eset, or uset, is empty, K is given by:
M B, (C) = C. (See clauses K; through K, in the GrKnowF PT.T op definition.)

For C of the form, (V& € X)P(z), as in the Fz and F,; clauses in the FF'SP
definition (where X, a set of nodes, is either 8set, or kset,), it is sufficient to
show that M B,((Vz € X)P(z)) = (Vo € X)M B, (P(x)) = (Vz € X)P(z).

10 From the definition of FSP and preliminary results P3 and P7.



The first entailment follows from preliminary result P7, given the knowledge
condition, K' = (Vz € X)M B, (xz € X). (See the first conjuncts in the Kz and
K, clauses in the GrKnowF PT.Top definition.) To get the second entailment,
note that P(x) is itself a conjunction: P(x) = P (z) A...A Py(z). Thus, by pre-
liminary result P3, it is sufficient to find, for each conjunct P;(z), the knowledge
condition K;(z) such that (Vo € X)(MB,(Pi(z)) A Ki(z)) E (Vz € X)Pi(x).
The knowledge condition for the second entailment is the conjunction of the
individual K;(z). For P;(z) being either (Gg € GR,) or (GR,, C GR,), K;(x)
is M B, (P;(x)) = Pi(z). (See the second conjuncts in the Kz and K, clauses of
GrKnowF PT.Top.) For P;(x) being B.Int.To(Gg, Ag) or M B,(...), no knowl-
edge conditions are required, given Theorem 1 and preliminary result P4, re-
spectively. This exhausts the cases for (2a). Hence, (2a) holds for any PT,.

Next, (2b) is proved by induction on the depth of PT,. In the base case,
PT, has depth 0 (i.e., the root node is the only node in the tree). In particular,
ksety is empty and (2b) is vacuously true. For the recursive case, assume that
(2b) holds for all plan trees with depth at most k& and suppose that PT, is some
plan tree with depth k& + 1. For each & child of the root node of PT,, the plan
subtree PT, rooted at that node is of depth at most k. Hence, (2b) holds for
each such PT,. But (2a) also holds for each such PT,. Hence, Theorem 2 holds
for each such PT}, which, given the definition of F'SP.Rec, is equivalent to (2b)
holding for PT,. O

Theorem 3. RM B.PSP(PT,) N GrKnowPPT(PT,) = PSP(PT,)

Theorem 4. RMB.SP(PT,) A GrKnowPT(PT,) = SP(PT,)

Theorems 3 and 4 are the PSP and SP analogues of Theorem 2. Their proofs
(omitted due to space limitations) are intertwined by the presence of the clause,
(V{Ix,GRy, Ay) € ksety)SP(PT,.(GRy)), in the definition of PSP.Top. (Recall
that SP = FSP® PSP.) Furthermore, the presence of associate plan trees com-
plicates the definitions of Gr KnowPPT and RM B.PSP (definitions omitted).
Nonetheless, the proof of Theorem 3 is similar to that of Theorem 2. (Since the
associate plans must be full plans, they are handled by appeals to Theorem 2.)
For Theorem 4, the group’s knowledge of whether the Elab plan tree associated
with the root node is NIL or not is used to distinguish the F'SP and PSP cases,
followed by appeals to Theorems 2 and 3.

Theorems 2, 3 and 4 specify knowledge conditions sufficient to ensure that if a
group of agents hold a specified set of mutual beliefs, then they necessarily have
a SharedPlan. By altering the knowledge conditions, it is fairly straightforward
to come up with theorems that are, in spirit, the converses of Theorems 2, 3 and
4. For example, given slightly different knowledge conditions, having an F.SP
entails restricted mutual belief in that FSP (i.e., RMB.FSP).

" The different knowledge conditions are due in part to the proofs of these quasi-
converses using preliminary result P8 where Theorems 2, 3 and 4 use P7.



The theorems presented so far involve the RM B meta-predicates that capture
the intuitively appealing idea that only the agents working on any given action
need participate in the mutual beliefs pertaining to how that action is being done.
Next, some theorems are presented that restrict attention to mutual beliefs held
by the entire group. The meta-predicates in these theorems are not recursive,
dealing only with the top level of the plan tree. The consequents of such theo-
rems are necessarily weaker, stipulating mutual belief in the mere ezistence of
a SharedPlan rather than mutual belief in a SharedPlan using a particular plan
tree. For example, Theorem 5 states that if the top level of a group’s plan meets
the requirements of F'SP.Top (see Fig. 1), then, given the knowledge conditions
modelled by GrKnowF PT.Topy, they necessarily mutually believe that they
have some Full SharedPlan, as modelled by the EzxistsFSP meta-predicate.!'?

Theorem 5. FSP.Top(PT.) AGrKnowF PT.Top,(PT,) = MB,(ExistsF'SP(PT,))

GrKnowF PT.Top, and ExistsF'SP are defined in Fig. 4. ExistsF'SP rep-
resents that the top-level of the group’s plan meets the requirements of F'SP.Top
and, in addition, for each « child of the root node, the selected subgroup has an
FSP to do the corresponding action using some (existentially quantified) plan

tree. Aside from the existentially quantified plan trees in the recursive clause,
the definition of EzistsF'SP is identical to that of F'SP (in Fig. 1).

(Group) Know-Full-Plan-Tree: Top-Level Portion (Version 2)
GrKnowFPT.Top:(PT,) = K1 AN Ky AN Ks AN K4 AN Kg A K, where

K1 = (PTF'""® = NIL) = M B, (PTF'"* = NIL)
Ky = (PT;<'"°° = NIL) = M B, (PT; "¢ = NIL)
K5 = (eseto = 0) = M B (eseto = 0)
K4 = (useto = 0) = M B, (uset, = 0)
{ (V{Is,Gs, Ap))(MBa ({15, Gs, Ap) € Bseta) = (I, Gp, Ap) € Bseta))

Kﬂ = A

(V(I5,Gs, Ag) € Bseta)(Gs € GRa) = MB,(Gs € GR.)

(V{Ii,GRs, Av))
K. = (MBa({Ix,GRx, Aw) € 6seta) = ({(Ix, GRy, Ax) € Kseta))

N
(V(I.,GRy, Ay) € kseto)(GRy C GRa) = MB,(GR, C GR.)

There Exists a Full SharedPlan
FSP.Top(PTy)

EzistsFSP(PT,) = { A

(V(I:,GR., Ay) € ksety)(APT)FSP(PT(GRx, Ay))

Fig. 4. Definitions of GrKnowF PT.Top> and ExistsF'SP

12 BExistsF'SP is used instead of (3PT)FSP(PT(GR.,, Aa)) because the latter involves
second-order problems of existential quantification over an object partially defined
using functions.



Proof of Theorem 5. As in the proof of Theorem 2, it is sufficient to deal with each
conjunct, C', of FSP.Top individually. For each such conjunct, the corresponding
knowledge condition, K, gives that C A K = M B, (C).

For C stating that PTF!a® or PTSelfec is NIL, or that eset, or uset, is
empty, K is of the form, C = MB,(C). (See clauses K; through K, in the
definition of GrKnowF PT.Top,.) For C of the form, M B,(¢) for some ¢, no
knowledge conditions are required, by preliminary result P4.

For C of the form, (Vz € X)P(z), as in the Fjg and F; clauses of the F.SP.Top
definition, it is sufficient to show that

(Vz € X)P(z) = (Vo € X)MBo(P(2)) |E MBa((Vz € X)P(z)).

For the first entailment, since P(z) is a conjunction of clauses, P;(z), it is suffi-
cient to give a conjunction of knowledge conditions, K;(x), such that for each i,
(Vz € X)(Pi(z) AN Ki(z)) E (V& € X)MBy(P;(x)). For P;(z) of the form,
MB,(...) or B.Int.To(Gg, Ag), no knowledge conditions are required, by pre-
liminary result P4 and Theorem 1, respectively. For P;j(z) = (G € GR,)
Ki(z) = (Gg € GR,) = MB,(Gs € GR,). For Pi(x) = (GR, C GR,)
K;(z) = (GR, CGR,) = MB,(GR, C GR,).

The second entailment follows from preliminary result P8, given the knowl-
edge condition, K' = (Vz)(M By(z € X) = z € X).

Thus, FSP.Top(PTo)AGrKnowF PT.Tops(PT,) = M By (FSP.Top(PT,)).
To conclude the proof, observe that F'SP.Top contains the clause,

C=N{Us GRy, Ay) € Kksetq )M Bo((3PT)FSP(PT(GR,, Ay))).
But using K' above, under appropriate substitutions, P8 gives the following;:

CANK' = MBo((Y (I, GRy:, A) € kseto)(IPT)FSP(PT(GRy, Ay))). D

Theorem 6. PSP.Top(PTo)AGrKnowPPT.Tops(PT,) = M B (ExistsPSP(PT,))

Theorem 7. SP.Top(PT.) AN GrKnowPT.Top2(PT.) = MB.(ExistsSP(PT,))

Theorems 6 and 7 are the PSP and SP analogues of Theorem 5. The meta-
predicate GrKnowPPT.Top, (definition omitted), is more complex than its
FSP counterpart. For example, it requires that the group know the “tops” of
the associate plan trees, PT !t and PTS¢!Eec Thus, the proof of Theorem 6,
while similar to that of Theorem 5, is more complicated, including appeals to
Theorem 5 to get that ExistsF'SP holds for the Elab and SelRec plan trees.
In addition, because the PSP clauses, Pg,, and Py,, , are not embedded in
mutual belief contexts, Theorem 6 requires an additional (strong) condition,
namely, that the group’s mutual beliefs about the intentions-that specified in
these clauses must be correct. For Theorem 7, Gr KnowPT.Top, (definition also
omitted) only requires that the group be able to distinguish the F.SP and PSP
cases. The proof then appeals to Theorems 5 and 6, as appropriate.



The Case of Single-Agent Groups. As noted in the previous section, an
Individual Plan in V5 is simply a SharedPlan of a single-agent group. However,
a single-agent group is special because that single agent must be the responsible
agent for each action in the hierarchy. Consequently, the theorems presented
above become simpler in the case of a single-agent group. For example, since

Bel(G, FSP(PT,({G)))) A GrKnowF PT(PT.({GY}))
= RMB.FSP(PT.({G}))

the single-agent version of Theorem 2 may be stated as
Bel(G,FSP(PT,({G}))) AN GrKnowF PT(PT,({G})) £ FSP(PT,({G})),

where M B({G}, ¢) = Bel(G, ¢) by preliminary result P2. Similarly, the single-
agent version of the quasi-converse of Theorem 2 may be stated as

FSP(PT,({G})) A GrEKnowF PTy(PT,({G})) = Bel(G, FSP(PT,({G}))),

where Gr KnowF PTy (definition omitted) represents slightly different knowledge
conditions than GrKnowF PT. This result obviates the need for a single-agent
version of Theorem 5, the whole point of which was that some agents in the
group were likely to be unaware of what others were doing. Similar remarks
apply to the single-agent versions of Theorems 3, 4, 6 and 7.

5 Related Work

Many researchers are actively investigating frameworks for reasoning about col-
laborative activity in multi-agent systems. Although they address similar issues,
their different frameworks and perspectives lead to consideration of different
technical problems.

Kinny et al. [8] present a framework in which a joint plan specifies (1) a recipe
for a group action, and (2) an abstract team structure onto which the group
doing the action must be mapped. While their joint plan representation implic-
itly allows abstract plans to be only partially specified, their definition of a joint
intention requires a fully specified plan and a hierarchy of subordinate intentions
analogous to a Full SharedPlan. Kinny et al. do not formally model the group’s
commitment to elaborate a partial plan into a full plan; but they do provide
algorithms for team formation and role assignment that enable agents to simul-
taneously adopt a fully instantiated plan. The representation allows agents to
reason in advance about whether or not a given unstructured group of agents
“has the skills to execute” some abstract joint plan, but the question of pre-
cisely which knowledge conditions and mutual beliefs are sufficient to ensure
that a team actually has a joint intention to do some action is not addressed.

More recently, some of the same authors (Rao et al. [9]) have presented an
axiomatization of team knowledge in which teams are treated as first class en-
tities to which team knowledge is directly ascribed. They claim that this team-
oriented approach, which employs a separate team knowledge modal operator
for each team, might enable the designer of a multi-agent system to focus on



knowledge relationships between teams without necessarily having to consider
in detail the knowledge of individual agents. They plan to “extend the team-
oriented model to include the mental attitudes of mutual belief, joint goals, and
joint intentions.”

Cavedon and Sonenberg [2] focus on roles to which the goals “required of a
socially committed agent” may be attached. Eschewing “the commitment to joint
intention, [they instead] see participation in a team-plan as socially committing
[an] agent to the role it adopts in that plan as well as to the other agents involved
in the plan.” They see roles as providing a way “to specify how the agent should
balance competing obligations.” In future work, they plan to tie these concepts
“more completely to team plans and the process of their selection and execution.”

[4

Tambe [13] presents STEAM, an implemented model of teamwork based pri-
marily on Cohen et al.’s theory of Joint Intentions, but informed by key concepts
from SharedPlans. Following Cohen et al., a team initially adopts “a joint in-
tention for a high-level team goal” that includes commitments to maintain the
goal until it is deemed already achieved, unachievable or irrelevant. The agents
then construct a hierarchy of individual and joint intentions “analogous to par-
tial SharedPlans.” Tambe notes that as the hierarchy evolves, “if a step involves
only a subteam then that subteam must form a joint intention to perform that
step”, and the remaining team members need only track the subteam’s joint in-
tention, requiring that they be able to infer whether or not the subteam intends
to, or is able to, execute that step. Thus, Tambe informally addresses some of
the central issues in this paper.

Stone and Veloso [11] use locker room agreements (i.e., pre-determined sets
of fixed protocols and flexible teamwork structures) to allow teams of agents
operating in dynamic domains (e.g., robotic soccer) to avoid much of the nego-
tiation and communication that might otherwise be required to establish and
maintain the network of intentions and mutual beliefs that are essential for the
collaboration. Rather than hierarchically decomposing the task space in terms
of actions, the teamwork structures hierarchically decompose the task space in
terms of formations, sub-formations and roles, where each role has an associated
set of behaviors. Locker room agreements may stipulate that certain events shall
trigger the adoption of new formations and may specify efficient protocols to
allow subsets of agents to flexibly switch roles within a formation. The primary
concern is to avoid periods of uncoordinated activity arising from inconsistent
beliefs about which formation the team is using and which agents are filling
which roles. The theorems in this paper apply directly to such concerns.

6 Conclusions

A reformulation of the theory of SharedPlans has been presented that makes the
theory more concise and that enables a set of important theorems about agents
and their SharedPlans to be formulated and proven. The theorems specify knowl-
edge conditions sufficient to ensure that a group of agents have a SharedPlan



if (or only if) they hold a specified set of mutual beliefs. Thus, the theorems
may be used to guide the designer of a multi-agent system by clearly specifying
the mutual beliefs agents need to establish and the knowledge conditions they
need to satisfy as they construct their SharedPlans. The theorems also indicate
the potential cost of weakening any of the underlying assumptions. SharedPlan
Trees were introduced to make the meta-predicate definitions from the original
formulation more concise and to enable precise specification of the knowledge
conditions and mutual beliefs appearing in the theorems.
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