
A Better Algorithm for Converting an STNU into1

Minimal Dispatchable Form2

Luke Hunsberger #Ñ�3

Vassar College, USA4

Roberto Posenato #Ñ�5

University of Verona, Italy6

Abstract7

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and8

reasoning about temporal constraints on activities, including those with uncertain durations. An9

STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing10

that all relevant constraints are satisfied. Typically, dispatchability requires inserting conditional11

wait constraints, thereby forming an Extended STNU (ESTNU). The number of edges in an ESTNU12

affects the computational work that must be done during real-time execution. The MinDispESTNU13

problem is that of finding an equivalent dispatchable ESTNU having a minimal number of edges.14

Recent work presented an O(kn3)-time algorithm for solving the MinDispESTNU problem, where n15

is the number of timepoints and k is the number of actions with uncertain durations. A subsequent16

paper presented a faster O(n3)-time algorithm, but it has been shown to be incomplete. This paper17

presents a new O(mn + n2k + n2 log n)-time algorithm for solving the MinDispESTNU problem,18

where m is the number of constraints in the network. The correctness of the algorithm is based19

on a novel theory of the canonical form of nested diamond structures. An empirical evaluation20

demonstrates the order-of-magnitude improvement in performance.21

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of22

computation → Dynamic graph algorithms23

Keywords and phrases Temporal constraint networks, dispatchable networks24

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.1225

1 Background26

Temporal constraint networks facilitate representing and reasoning about temporal constraints27

on activities. Simple Temporal Networks with Uncertainty (STNUs) allow the explicit28

representation of actions with uncertain durations [13]. An STNU is dispatchable if it can be29

executed by a flexible and efficient real-time execution algorithm while guaranteeing that all30

of its constraints will be satisfied. This paper modifies an existing algorithm for converting a31

dispatchable network into an equivalent dispatchable network having a minimal number of32

edges, making it an order of magnitude faster, as demonstrated by an empirical evaluation.33

Simple Temporal Networks. A Simple Temporal Network (STN) is a pair (T , C) where34

T is a set of real-valued variables called timepoints; and C is a set of ordinary constraints,35

each of the form (Y − X ≤ δ) for X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a36

solution as a constraint satisfaction problem (CSP). Each STN has a corresponding graph37

where the timepoints serve as nodes and the constraints correspond to labeled, directed edges.38

In particular, each constraint (Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such39

edges may be notated as (X, δ, Y) or, if context permits, simply XY . A path from X to Y40

may be notated by listing its timepoints (e.g., XUVWY) or, if the context permits, just XY .41

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs42

that maintains a time window for each timepoint X and, as each X is executed, propagates43

constraints only locally, to X’s neighbors in the graph [19, 15]. An STN is dispatchable if44

that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no matter how45

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Przemysław Andrzej Wałęga and Thierry Vidal; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

the flexibility afforded by the algorithm is exploited during execution. A consistent STN46

is dispatchable if and only if each pair of timepoints connected by a path in the graph are47

connected by a shortest vee-path (i.e., a shortest path comprising zero or more negative48

edges followed by zero or more non-negative edges) [12]. Efficient algorithms for generating49

equivalent dispatchable STNs having a minimal number of edges have been presented [19, 15].50

Having fewer edges is important since it lessens real-time computations done during execution.51

Simple Temporal Networks with Uncertainty. A Simple Temporal Network with52

Uncertainty (STNU) augments an STN to include contingent links that represent actions with53

uncertain, but bounded durations [13]. An STNU is a triple (T , C, L) where (T , C) is an STN,54

and L is a set of contingent links, each of the form (A, x, y, C), where A, C ∈ T and 0 < x <55

y < ∞. The semantics of STNU execution ensures that regardless of when the activation56

timepoint A is executed, the contingent timepoint C will occur such that C − A ∈ [x, y].57

Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is58

the graph for the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the59

contingent durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case60

(LC) edge A c:x C in Elc that represents the uncontrollable possibility that the duration might61

take on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents62

the possibility that it might take on its maximum value y. For convenience, edges such as63

A c:x C and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.64

An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution65

strategy that guarantees that all constraints in C will be satisfied no matter how the contingent66

durations turn out [13, 4]. A dynamic strategy is one whose execution decisions can react to67

observations of contingent executions, but without advance knowledge of future events. Many68

polynomial-time DC-checking algorithms have been presented [11, 1, 5], the fastest having a69

worst-case time-complexity of O(mn + k2n + kn log n), where n, m and k are the numbers70

of timepoints, ordinary constraints, and contingent links. Many DC-checking algorithms71

generate a kind of conditional constraint called a wait [14, 10, 5]. Although not necessary72

for DC-checking [1], wait constraints are needed for STNU dispatchability, as follows.73

An STNU augmented with a set of waits, Ew, is called an Extended STNU (ESTNU) [11].74

A real-time execution algorithm for ESTNUs, called RTE∗, has been defined that provides75

maximum flexibility while requiring minimal real-time computation [11, 7]. An ESTNU is76

dispatchable if every run of the RTE∗ algorithm is guaranteed to satisfy all of its constraints77

no matter how the contingent durations turn out. Equivalently, an ESTNU is dispatchable if78

and only if all of its STN projections are dispatchable (as STNs) [11]. (A projection of an79

ESTNU is the STN that results from fixing the durations of its contingent links.) The fastest80

algorithm for generating equivalent dispatchable ESTNUs is the O(mn + kn2 + n2 log n)-time81

FDSTNU algorithm [6], but it provides no guarantee about the number of edges in its output.82

The MinDispESTNU problem: For any given dispatchable ESTNU G, find an83

equivalent dispatchable ESTNU G′ having a minimal number of edges. The minDispESTNU84

algorithm [7] solves the MinDispESTNU problem in O(kn3) time. A faster O(n3)-time85

algorithm, called fastMinDispESTNU [8], was later found to be incomplete.86

This paper. Section 2 summarizes the minDispESTNU and fastMinDispESTNU algorithms.87

Section 3 then presents a new algorithm, betterMinDispESTNU, that solves the MinDispESTNU88

problem in O(mn + n2k + n2 log n) time. It employs a novel approach to generating so-called89

stand-in edges. The correctness of the algorithm is based on a new theory of the canoni-90

cal form of nested diamond structures, which is detailed in Hunsberger and Posenato [9].91

Section 4 presents an empirical evaluation that demonstrates that betterMinDispESTNU92

achieves an order-of-magnitude speedup over minDispESTNU in practice.93

L. Hunsberger and R. Posenato 12:3

A CV C:−6
c:1

C:−10

−1 10

−1

A CV C:−v

c:x
C:−y

−x y

−x

Figure 1 Stand-in edges entailed by labeled edges associated with contingent links

2 Overview of Existing Algorithms94

The minDispESTNU algorithm [7] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Ew) as its95

only input and generates as its output an equivalent dispatchable ESTNU having a minimal96

number of edges. It has four steps: (1) compute the set of so-called stand-in edges (i.e.,97

ordinary edges that are entailed by various combinations of ESTNU edges) and insert them98

into the graph; (2) apply an STN-dispatchability algorithm to the resulting set of ordinary99

edges, thereby generating a dispatchable STN subgraph; (3) remove any remaining stand-in100

edges; and (4) remove any wait edges that are not needed for dispatchability. The O(kn3)101

worst-case time complexity of the minDispESTNU algorithm is dominated by Step 1. Therefore,102

our new, faster algorithm modifies only that step, achieving an order-of-magnitude reduction103

in the overall worst-case time complexity. The following paragraphs summarize Step 1 of the104

minDispESTNU algorithm, as implemented by its genStandIns helper algorithm.105

Generating Stand-in Edges106

Following Morris [11], an ESTNU is dispatchable if all of its STN projections are dispatchable107

(as STNs). Equivalently, in each STN projection, each pair of timepoints V and W that are108

connected by a path must be connected by a shortest vee-path (SVP) (i.e., a shortest path109

comprising zero or more negative edges followed by zero or more non-negative edges) [12]. A110

key insight behind the minDispESTNU algorithm is that in different projections, the shortest111

vee-paths from V to W may take different routes, employ different labeled edges, and have112

different lengths. The longest SVP from V to W across all projections determines an ordinary113

constraint, represented by a stand-in edge, that must be satisfied by every valid execution114

strategy. The minDispESTNU algorithm generates stand-in edges in two phases: (1) those115

entailed by individual labeled edges; and (2) those entailed by VACW diamond structures.116

Stand-in edges entailed by individual labeled edges. Each LC, UC or wait edge117

entails a (weaker) ordinary edge. For example, consider the labeled edges associated with the118

contingent link (A, 1, 10, C) in Figure 1. The LC edge (A, c:1, 10) represents the possibility119

that the duration C − A might take on its minimum value 1. Its stand-in edge (A, 10, C)120

represents the (modeled) certainty that C − A will be at most 10. Similarly, the UC edge121

(C, C:−10, A) represents the possibility that C − A might take on its maximum value 10,122

while its stand-in edge (C, −1, A) represents the certainty that C − A will be at least 1.123

Finally, the wait edge (V, C:−6, A) represents the conditional constraint that, as long as C124

remains unexecuted, V must wait until 6 after A. Its stand-in edge (V, −1, A) represents125

that V must unconditionally wait at least 1 after A, since C cannot execute before then.126

More generally, for any contingent link (A, x, y, C), the LC edge (A, c:x, C) entails the127

stand-in edge (A, y, C); the UC edge (C, C:−y, A) entails the stand-in edge (C, −x, A); and128

any wait edge (V, C:−v, A) entails the stand-in edge (V, −x, A), as seen in Figure 1.129

Stand-in edges entailed by VACW diamond structures. The minDispESTNU algo-130

rithm uses its genStandIns helper algorithm to compute stand-in edges arising from diamond131

structures. Figure 2a shows a typical VACW diamond, which involves the LC and UC edges132

associated with a contingent link (A, 1, 10, C), a wait edge (V, C:−6, A), and some ordinary133

TIME 2025

12:4 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

V

C A

W

C
:−

6

c:1

C:−10
8

13

(a) ESTNU edges
V

C A

W

−
1

1

−1

8

13

0

(b) If C − A = 1
V

C A

W

−
6

10

−10

8
13

4

(c) If C − A = 10
V

C A

W

C
:−

6

c:1

C:−10

8

13

8

4

(d) Stand-in edges
V

C A

W

C
:−

v

c:x
C:−y

γ δ

θ
=

m
ax

{δ
−

v
,
γ

}

y
−

v

(e) General case

Figure 2 (Dashed) stand-in edges entailed by a VACW diamond structure

edges aimed at a timepoint W . Figure 2b shows that in the projection where C − A = 1, the134

shortest path from V to W has length 8, and the shortest path from V to C has length 0.135

Figure 2c shows that in the projection where C − A = 10, the shortest path from V to W136

has length 7, and the shortest path from V to C has length 4. Figure 2d introduces (dashed)137

stand-in edges to reflect that, across all projections, where C − A ∈ [1, 10], the shortest path138

from V to W has length at most 8, while the shortest path from V to C has length at most139

4. These stand-in edges represent ordinary constraints that must be satisfied by any valid140

dynamic execution strategy. Figure 2e shows the general case where the stand-in edge from141

V to W has length θ = max{δ − v, γ}, and the stand-in edge from V to C has length y − v,142

the latter being termed an application of the VAC rule [9].143

Stand-in edges entailed by nested diamonds. The main focus of genStandIns is on144

computing stand-in edges entailed by individual VACW diamond structures. But diamond145

structures can also be nested. In particular, in any VACW diamond, the subpath from A146

to W may contain a stand-in edge derived from a nested diamond. However, because the147

activation timepoints appearing in a nested diamond structure are subject to a strict order (as148

shown elsewhere [9]), diamonds can only be nested to a maximum depth of k. For this reason,149

the genStandIns algorithm does up to k iterations, each addressing one level of potential150

nesting. Each iteration of genStandIns involves two steps: (1) exploring O(kn2) individual151

VACW diamonds (k choices for the contingent link, and n choices for both V and W); and152

then (2) calling Johnson’s algorithm [2] to update the APSP distance matrix to accommodate153

stand-in edges generated by the first step. Figure 3 shows how genStandIns deals with154

a sample quadruply nested diamond structure. The innermost diamond, V0 A0 C0 W , is155

explored during the first iteration, yielding the blue, dashed stand-in edge (V0, 37, W), shown156

in Figure 3b, where θ0 = max{40 − 3, 35} = 37.1 Johnson’s algorithm then updates the157

APSP distance matrix, setting d(A1, W) = 35, indicated by the red, dotted line in Figure 3b.158

The next iteration considers V1 A1 C1 W , which uses the new subpath from A1 to W of159

length 35 to generate the blue, dashed stand-in edge (V1, 33, W), shown in Figure 3c, where160

θ1 = max{35 − 3, 33} = 33. Johnson’s algorithm then updates d(A2, W) to 31, indicated by161

the red, dotted line in Figure 3c. The third iteration generates the blue, dashed stand-in edge162

(V2, 28, W), since θ2 = max{31−3, 25} = 28; and the red, dotted line from A3 to W indicates163

the subsequent update d(A3, W) = 26. Finally, as shown in Figure 3d, the last iteration164

generates the blue, dashed stand-in edge (V3, 24, W), since θ3 = max{26 − 3, 24} = 24; while165

the red, dotted line from U to W indicates the update d(U, W) = 22.166

The complexity of minDispESTNU is driven by the O(kn3)-time complexity of genStandIns,167

1 As seen in Figure 1, each labeled edge itself entails a corresponding stand-in edge, not shown in Figure 3.
Those stand-in edges ensure that there are ordinary subpaths from each Ai to W , and from each Ci

to W , which implies that all of the VACW diamonds in Figure 3 would be processed during each
iteration of genStandIns. However, the stand-in edges shown in Figure 3 are the strongest ones.

L. Hunsberger and R. Posenato 12:5

W

A0C0

V0

40

35

C
0 :−

3

c0:1
C0:−10

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

(a) Initial

W

V0

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

37

35

(b) Iteration 1

W

V1

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2
C

3 :−
3

c3:1
C3:−10

33

31

(c) Iteration 2

W

V2

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

28

26

(d) Iteration 3

W

V3

U

24

22

−2

(e) Iteration 4

Figure 3 How genStandIns processes nested diamonds, where stand-in edges derived from
individual VACW structures are shown in blue, and those computed by Johnson’s algorithm in red

U Aj Aj−1 Aj−2 Ah+1 AhVj Vj−1 Vj−2 Vh

Cj Cj−1 Cj−2 Ch+1 Ch W

Figure 4 Canonical form of a nested diamond structure Suw (contingent links in brown, waits in
green, negative edges in red, non-negative edges in blue, and an ordinary vee-path in black)

which derives from its up to k calls of Johnson’s algorithm on up to O(n2) edges.168

2.1 Canonical Form of Nested Diamond Structures169

The authors presented a novel, rigorous theory of the canonical form of nested diamond170

structures [9] that provides a foundation for understanding the dispatchability of ESTNUs171

and formally proving the correctness of the minDispESTNU algorithm. It also highlights features172

of such structures that suggest new approaches to solving the MinDispESTNU problem.173

Central to any such algorithm is computing, for each pair of timepoints U and W , the174

strongest ordinary constraint entailed by ESTNU paths from U to W , notated as d∗(U, W).175

For the ESTNU in Figure 3, d∗(U, W) = 22 (cf. the red dotted line in Figure 3e). The176

theory confirms that each value d∗(U, W) that derives from nested diamonds must have an177

associated structure, notated as Suw, whose form is illustrated in Figure 4. In particular,178

Suw comprises a sequence of contingent links, shown in brown, connected by different kinds179

of paths. From each contingent timepoint Ci, there is a path of non-negative ordinary edges180

from Ci to W , shown in blue. Between consecutive pairs of activation timepoints Af and Ag181

there is a negOrdWait path (i.e., a path comprising zero or more negative ordinary edges,182

TIME 2025

12:6 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1 W2 W3

C
i
:−

8
C

i
:−

5 C
i :−

2

101 6 52 3

2

−1

3

−3

2

−3

|P1|ωci
= |UV1Ai|ωci

= −3 + max{−8, −ωci
}

|P2|ωci
= |UV2Ai|ωci

= −5 + max{−5, −ωci
}

|P3|ωci
= |UV3Ai|ωci

= −6 + max{−2, −ωci
}

min{|P1|ωci
, |P2|ωci

, |P3|ωci
}

0 1 2 3 4 5 6 7 8 9 10 11
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

ωci

Figure 5 Three negOrdWait paths from U to Ai (in purple, green and blue) that determine the
values of d∗(U, W1), d∗(U, W2) and d∗(U, W3), indicated by red dotted arrows. Stand-in edges are
dashed. Other stand-in edges (e.g., from V1 to W2) are not shown.

shown in red, followed by a single wait edge, shown in green). There is also a negOrdWait183

path from U to the leftmost activation timepoint Aj . Finally, the path from the rightmost184

activation timepoint Ah to W is an ordinary path, shown in black, that is a shortest vee-path185

(SVP). The path from U to W that passes through all of the activation timepoints is called186

the spine of the structure. For this paper, the following properties are particularly important:187

In the situation/projection where each contingent duration along the spine satisfies188

Ci − Ai = δi − γi = d∗(Ai, W) − d(Ci, W), the length of the spine is d∗(U, W).189

The negOrdWait paths between consecutive pairs of activation timepoints, across all190

canonical structures, puts the entire set of activation timepoints into a strict partial order.191

2.2 Error in the fastMinDispESTNU Algorithm192

Recent work [8] presented an algorithm, called fastMinDispESTNU, that aimed to take ad-193

vantage of certain features of nested diamonds. In particular, it exploited the fact that194

activation timepoints participating in nested diamonds fall into a strict partial order. That195

enabled processing them in a single iteration, instead of the k iterations in the minDispESTNU196

algorithm. Unfortunately, that work made an incorrect assumption. Although it is true that197

for any given canonical structure it suffices to include only one wait edge terminating at each198

activation timepoint along the spine, it is not the case that all of the canonical structures199

that include some activation timepoint Ai necessarily employ the same wait edge terminating200

at Ai. Instead, as illustrated in Figure 5, different wait edges terminating at Ai may be201

needed in different canonical structures. In the figure, there are three overlapping canonical202

structures that each use the contingent link (Ai, 1, 10, Ci): one from U to W1 (in purple),203

one from U to W2 (in green), and one from U to W3 (in blue). For d∗(U, W1), the projection204

where Ci − Ai = d∗(Ai, Wi) − d(Ci, W1) = 10 − 1 = 9 is determinative; and in that projection205

the shortest path from U to W1 is through V1 with length d∗(U, W1) = −1, indicated by the206

red dotted arrow. The dashed, purple stand-in edge (V1, 2, W1) has length 2, since the wait207

edge (V1, Ci:−8, Ai) has length −8 in that projection. For d∗(U, W2), the projection where208

Ci − Ai = 6 − 2 = 4 is determinative; and in that projection, the shortest path from U to W2209

is through V2 with length d∗(U, W2) = −3. The green, dashed stand-in edge (V2, 2, W2) has210

length 2, since the wait edge (V2, Ci:−5, Ai) has length -4 in that projection. For d∗(U, W3),211

the projection where Ci − Ai = 5 − 3 = 2 is determinative; and in that projection, the212

shortest path from U to W3 is through V3 with length d∗(U, W3) = −3. The blue, dashed213

stand-in edge (V3, 3, W3) has length 3, since the wait edge (V3, Ci:−2, Ai) has length −2 in214

that projection. The righthand side of Figure 5 plots the lengths of the three paths from U215

L. Hunsberger and R. Posenato 12:7

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

101

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

ωci = 9

101

−
8

−
5 −

2−1

2 5 8

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

62

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

ωci = 4

62

−
4

−
4 −

2

−3

2

2 4

Figure 6 Computing d∗(U, W1) (left) and d∗(U, W2) (right) by back-propagation in the OW-graph

to Ai as functions of the contingent duration ωci = Ci − Ai. It confirms that for different216

values of ωci
, different paths are shortest between U and Ai. As a result, each d∗(U, Wf)217

value is based on a different path from U to Ai.218

In general, for each terminus Wf , the value d∗(U, Wf) is determined by the projection219

where Ci − Ai = d∗(Ai, Wf) − d(Ci, Wf). Since these durations/projections may be different220

for different Wf , the wait edges terminating at Ai may provide different shortest vee-paths221

in different projections. Although this example shows that the fastMinDispESTNU algorithm222

does not necessarily solve the MinDispESTNU problem, it also suggests an alternative way223

to approach the computation of d∗(U, Wf) values that results in a more efficient (and correct)224

algorithm for solving the MinDispESTNU problem, which is the subject of the next section.225

3 A New Approach to Generating Stand-in Edges226

Figure 6 illustrates our new approach to efficiently generating stand-in edges derived from227

nested diamond structures. It uses the following feature of the canonical form of nested dia-228

monds: in the situation where the duration of each participating contingent link (Ai, xi, yi, Ci)229

is given by Ci − Ai = δi − γi = d∗(Ai, W) − d(Ci, W), the length of the path from U to W230

along the spine of the canonical structure equals d∗(U, W). Crucially, these durations are231

fixed for a given W . Therefore, the problem of activation timepoints, Aj and Ai, that are232

consecutive in multiple overlapping canonical structures employing different wait edges in233

different structures, can effectively be sidestepped by computing all of the d∗(U, W) values234

for a fixed W . To do so, our new algorithm backtracks from W along shortest paths in the235

OW-graph (i.e., the graph comprising the ordinary and wait edges from the ESTNU) where236

wait edges, as they are encountered, are projected using the above-mentioned durations.237

On the left of the figure, backtracking from W1 encounters the activation timepoint238

Ai, where d∗(Ai, W1) = 10 and d(Ci, W1) = 1, where the determinative duration is ωci
=239

10 − 1 = 9. In this situation, the wait edges terminating at Ai project onto the red edges240

shown in the middle-left of the figure. In this projection, the path UV1AiW1 is shortest, with241

a length of −3−8+10 = −1, indicated by the red, dotted arrow. The corresponding stand-in242

edge from V1 to W1 is shown as dashed and purple. The dashed stand-in edges emanating243

from V2 (green) and V3 (blue) are also generated, but do not contribute to d∗(U, W1).244

On the righthand side of the figure, backtracking from W2 encounters Ai and yields the245

duration ωci
= 6 − 2 = 4. In this situation, the wait edges project to the red edges shown on246

the far right. Although each wait edge generates a stand-in edge, the one from V2 to W2247

provides the shortest path (dotted, red) from U to W2, which determines d∗(U, W2) = −3.248

Pseudocode for our new algorithm for generating stand-in edges entailed by nested249

diamond structures is given as Algorithm 1. (Appendix A provides pseudocode for all250

TIME 2025

12:8 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

Algorithm 1 betterGenStandIns: Better Algorithm for Generating Stand-in Edges Entailed
by Nested Diamonds

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Ew), a dispatchable ESTNU graph
Output: (Esi , d), where Esi is a set of stand-in edges; and d is the updated distance matrix

1 Esi ··= getInitStandins(G) //Stand-in edges entailed by individual labeled edges and VAC rule
2 f ··= bellmanFord(Gow) //Potential function for OW-graph, Gow = (T , Eo ∪ Esi ∪ Ew)
3 d ··= johnson((T , Eo ∪ Esi)) //Compute the APSP distance matrix for (T , Eo ∪ Esi)
4 foreach W ∈ T do

//Init min priority queue, where priority(T) = current estimate of d∗(T, W) re-weighted by f

5 Q ··= new min priority queue
6 priority ··= (∞, . . . , ∞) //For tracking priority of timepoints in the queue
7 Q.insert(W, 0); priority[W] ··= 0
8 needStandIn2W ··= ∅ // T ∈ needStandIn2W means “need stand-in edge from T to W ”
9 while ¬Q.empty() do

10 (T, δ∗
tw) ··= Q.extractMin() //δ∗

tw = d∗(T, W) reweighted by potential function f

11 δtw ··= −f(T) + δ∗
tw + f(W) //δtw = d∗(T, W) (un-reweighted)

12 d(T, W) ··= δtw //Update distance matrix
13 foreach (R, δrt , T) ∈ (Eo ∪ Esi) do //Back-propagate along ordinary edges
14 δ∗

rw ··= (f(R) + δrt − f(T)) + δ∗
tw //Possible new estimate of d∗(R, W) (re-weighted)

15 if δ∗
rw < priority[R] then //New estimate of d∗(R, W) shorter

16 needStandIn2W ··= needStandIn2W \ {R} //No stand-in edge RW needed
17 Q.insertOrDecreaseKey(R, δ∗

rw); priority[R] ··= δ∗
rw

18 if T = A is an activation timepoint for a contingent link (A, x, y, C) then
19 ωc ··= d(A, W) − d(C, W) //ωc = contingent duration that determines d∗ values
20 if ωc ∈ (x, y] then //Condition for generating a non-redundant stand-in edge
21 foreach (V, C:−v, A) ∈ Ew do //Back-propagate along incoming wait edges
22 vωc

··= max{−ωc, −v} //Length of wait edge in projection ωc

23 v∗
ωc

··= f(V) + vωc − f(A) //Re-weighted length in projection ωc

24 δ∗
vw ··= v∗

ωc
+ priority[A] //δ∗

vw = possible new estimate of d∗(V, W)
25 if δ∗

vw ≤ priority[V] then
26 needStandIn2W ··= needStandIn2W ∪ {V } //Need stand-in edge V W

27 Q.insertOrDecreaseKey(V, δ∗
vw); priority[V] ··= δ∗

vw

28 foreach T ∈ needStandIn2W do
29 δtw ··= −f(T) + priority[T] + f(W) //Actual value of d∗(T, W)
30 Esi ··= Esi ∪ {(T, δtw, W)} //Accumulate stand-in edge

31 return (Esi , d)

minDispESTNU procedures updated to use Algorithm 1.) Algorithm 1 works as follows.251

Initialization (Lines 1-3). The getInitStandins algorithm (a helper for minDispESTNU)252

is called to generate stand-in edges entailed by individual labeled edges (cf. Figure 1) or253

from applications of the VAC rule (cf. Figure 2e). Next, the Bellman-Ford algorithm [2]254

is called to compute a solution to the STN, Gow, that comprises the ordinary and wait255

edges from G, ignoring any alphabetic labels. That solution, f , is then used as a potential256

function to re-weight the edges in Gow to have non-negative values, thereby enabling the257

use of Dijkstra’s algorithm [2] to guide the subsequent back-tracking from each W . Finally,258

Johnson’s algorithm [2] is used to compute the initial distance matrix for ordinary paths.259

Main foreach Loop (Lines 4-30). Each iteration of the main foreach loop processes a260

single timepoint W . It uses a modified version of Dijkstra’s algorithm to back-propagate261

L. Hunsberger and R. Posenato 12:9

from W through the edges in the Gow graph, aiming to update the distance function d so262

that by the end of the iteration, for each timepoint T , d(T, W) = d∗(T, W), and all needed263

stand-in edges terminating at W have been generated.264

Iteration initialization (Lines 5-8). First, a minimum priority queue, Q, is initialized.265

For each timepoint T in the queue, its priority is the current estimate of d∗(T, W),266

re-weighted by the potential function f . In particular, the priority of T is given by:267

f(T) + δtw − f(W). Initially, the queue contains only W , with a priority of 0. The268

n-vector, priority enables anytime access to the priorities of timepoints in the queue.269

Next, a set needStandIn2W is initialized. It is used to keep track of timepoints T for270

which a stand-in edge from T to W will need to be generated. If the current estimate of271

d∗(T, W) derives from a path (1) that forms the spine of a canonical diamond structure;272

and (2) whose first edge is a wait edge, then T is added to needStandIn2W , at Line 26.273

However, should subsequent propagation discover a shortest path from T to W for274

which no stand-in edge is needed, then T is removed from needStandIn2W , at Line 16.275

Since the status of a given timepoint T may change during the algorithm, stand-in276

edges are not actually accumulated until the end of the iteration, at Lines 28-30.277

Iteration Body (Lines 9–30). The body of each iteration is a while loop that carries278

out the back-propagation from W . At Line 10, a timepoint T is extracted from the279

queue, along with its priority δ∗
tw. At Line 11, the value of d∗(T, W) is extracted from280

δ∗
tw by undoing the re-weighting using the potential function f . (The next section281

proves the invariant that when a timepoint T is popped from the queue, its priority282

equals d∗(T, W), re-weighted by the potential function f .) That value is then used to283

update the distance function d, at Line 12.284

Next, Lines 13–17 back-propagate along each incoming ordinary edge (R, δrt , T). First,285

at Line 14, a possible new estimate of d∗(R, W) using a path from R to T to W ,286

re-weighted using the potential function f , is computed and stored in δ∗
rw. (Note that287

f(R) + δrt − f(T) is the re-weighted length of the incoming edge from R to T .) If that288

estimate is less than the current priority of R (cf. Line15), then R is removed from289

needStandIn2W to reflect that this newly found shortest path from R to W does not290

begin with a wait edge and, hence, does not require a stand-in edge (cf. Line 16). At291

Line 17, R is inserted into the queue and its priority is updated.292

Lines 18–27 carry out the back-propagation along any incoming wait edges, which293

can only happen if W = A is an activation timepoint for a contingent link (A, x, y, C).294

Line 19 computes the value of the contingent duration ωc = C − A = δ − γ =295

d∗(A, W) − d(C, W) that determines whether any stand-in edges terminating at W can296

use this contingent link (cf. Figures 2e and 6). Note that the algorithm relies on the297

fact that d(A, W) = d∗(A, W) at this point. Line 20 checks whether ωc ∈ (x, y], since298

otherwise, as shown in Claim 10 of Hunsberger and Posenato [9], it is not necessary299

to back-propagate along any wait edge coming in to A (i.e., ordinary edges suffice).300

Line 22 computes the projection of the wait edge in the situation where C − A = ωc.301

Line 23 re-weights the projected length using the potential function. Line 24 computes302

the length of the path from V to T to W in the re-weighted graph. If that length303

less than or equal to the current key of V in the queue (Line 25), then V is added to304

needStandIn2W (at Line 26) to reflect that a stand-in edge should be generated; and305

the key for V is updated in the priority queue (at Line 27).306

Finally, at the end of the iteration, stand-in edges for all of the flagged timepoints are307

generated at Lines 28-30.308

TIME 2025

12:10 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

Correctness of the betterMinDispESTNU Algorithm309

The correctness of betterMinDispESTNU relies on the following properties of the canonical310

form of nested diamond structures that we have rigorously presented elsewhere [9]. (The311

claims mentioned below are from that work.) First, for each pair of timepoints U and W , there312

is a canonical form Suw that determines the value d∗(U, W). Furthermore, d∗(U, W) equals the313

length of the spine of that structure in the situation where each Ci−Ai = d∗(Ai, W)−d(Ci, W).314

(See the proof of Claim 8.) Second, using the same techniques as in the proof of Claim 7,315

we get that for a fixed W , there is a single situation ω that is simultaneously maximal316

for all d∗(U, W) values (i.e., in the projection determined by ω, the length of the spine of317

each structure Suw equals d∗(U, W)). For each contingent link (A, x, y, C) appearing in any318

canonical structure Suw from any U to the fixed timepoint W , ω specifies the duration,319

ωc = C − A = d∗(A, W) − d(C, W). Therefore, the betterGenStandIns algorithm, as it320

backtracks from W , can be understood as incrementally computing the durations, ωc = C −A,321

for each activation timepoint A that it encounters, based on the accumulated values, d∗(A, W)322

and d(C, W). It then computes the length of each incoming wait edge (V, C:−v, A) in that323

projection (i.e., max{−v, −ωc}), which is its length in the spine of any structure that uses it.324

Worst-Case Time Complexity of the betterMinDispESTNU Algorithm325

First, let m = |Eo|, k = |Elc| = |Euc| and r = |Ew| ≤ nk be the numbers of ordinary, lower-case,326

upper-case, and wait edges, respectively, in the input ESTNU. Generating stand-in edges for327

individual labeled edges along with those derived from the VAC rule add 2k+2r more ordinary328

edges. Afterward, betterMinDispESTNU is applied to the OW-graph which has m + 2k + 3r329

edges. For each timepoint W , betterMinDispESTNU uses a Dijkstra-like back-propagation330

that runs in O((m + 2k + 3r + nk) + n log n) time. (At most nk additional stand-in edges331

can be added during the course of the algorithm.) Therefore, its n iterations can be done332

in O((m + 2k + 3r + nk)n + n2 log n) time, which reduces to O(mn + n2k + n2 log n). For333

dense graphs, where m = O(n2), this reduces to O(n3), but for sparse graphs, for example,334

where m = O(n log n) and k = O(log n), it reduces to O(n2 log n).335

4 Empirical Evaluations336

We implemented the betterMinDispESTNU algorithm containing the procedure Algorithm 1337

in Java—publicly available as part of the CSTNU Tool framework [18]—and evaluated its338

performance using the STNU benchmark published by Posenato [17]. This benchmark was339

created using the STNU random generator of the CSTNU Tool framework. The public340

benchmark comprises 1000 instances, all having the same topology, the worker-lanes topology,341

which simulates the worker lanes of business process modeling [16]. In this topology, the set342

of contingent links is divided into five lanes, with each lane representing a sequence of tasks343

that must be executed by an agent. The contingent links within each lane are interspersed344

with ordinary constraints that specify delays between the end of one task and the start of the345

next. Additionally, there are extra constraints between nodes in different lanes to represent346

temporal-coordination constraints among tasks executed by different agents.347

For each possible number of nodes n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark348

contains 200 DC instances and 200 non-DC instances, each having k = n/10 contingent links349

and, on average, 6.56n − 2.56k − 10 edges (i.e., O(n) edges). We considered the first 30350

instances for each value of n in the benchmark.351

All of the experiments were executed on an OpenJDK JVM 21 configured with 16 GB of352

L. Hunsberger and R. Posenato 12:11

500 1,000 1,500 2,000103

104

105

Number of nodes, n

N
um

be
r

of
ed

ge
s,

m
FDSTNU

minDispESTNU
betterMinDispESTNU

Input STNU

(a) Number of edges in the ESTNUs generated by
FDSTNU, minDispESTNU and betterMinDispESTNU

500 1,000 1,500 2,000
0.6s

8s
15s

50s
90s
3m

10m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(b) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size

500 1,000 1,500 2,000

0.6s

10s

30s

90s

5m

10m
15m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(c) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-4 nested diamond structure (cf. Figure 3a)

500 1,000 1,500 2,000
0.6s

10s

30s

90s

5m
10m
15m
30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(d) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-6 nested diamond structure

Figure 7 Results of the empirical evaluation of the betterMinDispESTNU algorithm

heap memory (parameters -Xmx16G and -Xms16G), on a Linux computer equipped with two353

AMD Opteron™ 4334 processors running at 3.1 GHz (6200 BogoMIPS) and 64 GB RAM.354

Each DC STNU G was first pre-processed by the FDSTNU dispatchability algorithm to355

generate an equivalent dispatchable ESTNU, Gfd. Then, the dispatchable ESTNU, Gfd, was356

fed as input to minDispESTNU and betterMinDispESTNU to generate equivalent dispatchable357

ESTNUs having minimal numbers of edges (called µESTNUs) to: (1) confirm that the output358

µESTNUs were identical; and (2) compare the average execution times.359

Surprisingly, during the execution of minDispESTNU, we observed that no instances from360

the considered benchmarks contain any nested diamond structures. Consequently, there were361

no opportunities for the betterMinDispESTNU algorithm to outperform minDispESTNU.362

Figure 7a shows the average numbers of edges in the input STNUs (black), the dispatchable363

ESTNUs generated FDSTNU (teal), and the minimal dispatchable ESTNUs produced by364

minDispESTNU (dotted red) and betterMinDispESTNU (dashed blue). (The dotted red and365

dashed blue lines in the figure are completely overlapping and, hence, difficult to distinguish.)366

The error bars denote 95% confidence intervals, which are scarcely visible due to the367

minimal standard deviations. The findings reveal that the average numbers of edges in the368

minimized networks are approximately one order of magnitude smaller than in the ESTNUs369

generated by FDSTNU. Since the numbers of edges in dispatchable networks directly impact the370

TIME 2025

12:12 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

performance of real-time execution algorithms, these results demonstrate that minDispESTNU371

and betterMinDispESTNU generate dispatchable networks that can be more efficiently executed.372

We also confirmed that they output the same minimal networks.373

Figure 7b plots the computational cost associated with generating µESTNUs. The lower374

teal line shows the average execution times for FDSTNU to generate equivalent dispatchable375

networks that are typically not µESTNUs. The upper two (red and blue) lines show the376

average execution times for generating equivalent dispatchable networks having minimal377

numbers of edges, obtained by applying minDispESTNU or betterMinDispESTNU to Gfd. As378

expected, if there are no nested diamond structures, then both algorithms will have essentially379

equivalent performance since they both end up doing two calls to Johnson’s algorithm (or a380

Johnson-like algorithm).381

To assess the impact of nested diamond structures on the performance of the two382

algorithms, we created two new benchmarks, one comprising random STNU instances that383

each contain one copy of the depth-4 nested diamond structure depicted in Figure 3a, the384

other similar to the first, but where the diamond structure has depth 6.385

The presence of the depth-4 nested diamond structure in each instance requires the386

genStandIns helper algorithm used by minDispESTNU to perform up to five iterations, each387

taking O(mn + n2 log n) time, to generate the appropriate stand-in edges. In contrast,388

betterMinDispESTNU replaces genStandIns with Algorithm 1 (betterGenStandIns) whose389

worst-case time complexity is only O(mn+n2k+n2 log n), regardless of how deeply nested the390

diamond structure may be. We therefore expected to see an especially pronounced difference391

in average execution times for instances having the depth-6 nested diamond structure.392

The results are presented in Figures 7c and 7d. The execution time of betterMinDispESTNU393

(FDSTNU) (in blue) is significantly less than that of minDispESTNU (FDSTNU) (in red) across all394

instances. In addition, for instances having 2000 nodes, the execution time of minDispESTNU395

(FDSTNU) exceeded the 30-minute timeout. Such results confirm that the betterMinDispESTNU396

algorithm is significantly more efficient than the minDispESTNU algorithm when the input397

instances contain nested diamond structures, even when the number of nested diamonds is398

small. Regarding the depth-6 nested diamond structure, we discovered that, on average, the399

presence of random constraints among nodes in different lanes and those in the diamond400

structure sometimes entailed stronger constraints than the stand-in edges associated with401

the diamond structure and, therefore, the genStandIns helper for minDispESTNU performs402

on average five internal iterations, the same as for instances having the quadruply-nested403

diamond structure.404

5 Conclusions405

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an406

important problem for applications involving actions with uncertain, but bounded durations.407

The number of edges in the dispatchable network is important because it directly impacts the408

real-time computations required during execution. Therefore, for time-sensitive applications409

it is important to generate an equivalent dispatchable ESTNU having a minimal number410

of edges, which we call a µESTNU. This paper modified the only existing algorithm for411

generating µESTNUs, making it an order-of-magnitude faster. It also showed that a second412

previously presented algorithm does not in fact solve the MinDispESTNU problem. The new413

algorithm, betterMinDispESTNU, reduced the worst-case time-complexity from O(kn3) to414

O(mn + n2k + n2 log n) which, for sparse networks, reduces to O(n2 log n).415

L. Hunsberger and R. Posenato 12:13

A Pseudocode416

Algorithm 2 betterMinDispESTNU: Solving the MinDispESTNU problem

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Eucg), dispatchable ESTNU
Output: A µESTNU for G

1 (Esi
o , d) ··= betterGenStandIns(T , Eo ∪ Elc ∪ Euc ∪ Eucg) //Compute the set of (ordinary)

stand-in edges
2 (T , E∗

o , Êl, Êu, Êucg) ··= dispSTN(T , Eo ∪ Esi
o , Elc, Euc, Eucg) //STN dispatchability on ordinary edges,

reorienting labeled edges
3 Ê∗

o ··= E∗
o \Esi

o //Remove any remaining stand-in edges from E∗
o

4 Êucg ··= Êucg\ markWaits(Tc, Êucg, d) //Remove dominated waits
5 return G = (T , Ê∗

o ∪ Êl ∪ Êu ∪ Êucg)

Algorithm 3 getInitStandins: Generate stand-in edges entailed by individual labeled edges

Input: G = (Tx ∪ Tc, Eo ∪ Elc ∪ Euc ∪ Eucg), a dispatchable ESTNU
Output: The set Esi

o of ordinary stand-in edges for the individual labeled edges in G
Side Effect : Modifies G by fixing any weak or misleading wait edges

1 Esi
o ··= ∅

2 foreach (A, x, y, C) ∈ L do //Collect stand-in edges for LC, UC and wait edges
3 Esi

o ··= Esi
o ∪ {(A, y, C), (C, −x, A)} //Collect stand-in edges for LC and UC edges

4 foreach (V, C:−v, A) ∈ Eucg do
5 if −v ≥ −x then //Replace weak wait edge by an ordinary edge
6 Eucg ··= Eucg\{(V, C:−v, A)}; Eo ··= Eo ∪ {(V, −v, A)}
7 else
8 if −v < −y then //Fix misleading wait by adjusting its wait time
9 Eucg ··= Eucg \ {(V, C:−v, A)} ∪ {V, C:−y, A)}

10 Esi
o ··= Esi

o ∪ {(V, −x, A), (V, max{y − v, 0}, C)} //Add stand-in edges for wait edge
and from the VAC rule

11 return Esi
o

Algorithm 4 markWaits: Mark wait edges for removal

Input: Tc, contingent TPs; Êucg, wait edges; d, distance fn.
Output: A set Em

w ⊆ Êucg of wait edges marked for removal
1 Em

w ··= ∅
2 foreach (V, C:−v, A) ∈ Êucg do //Collect waits dominated by ordinary paths, UC edges, or

other waits
3 if d(V, A) ≤ −v or d(V, C) < 0 then
4 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by an ordinary path or the UC edge

5 else
6 foreach U ∈ T | ∃(U, C:−u, A) ∈ Êucg do
7 if d(V, U) < 0 and d(V, U) − u ≤ −v then
8 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by another wait

9 return Em
w

TIME 2025

12:14 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

References417

1 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking418

for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal419

Representation and Reasoning (TIME-2018), volume 120, pages 8:1–8:16, 2018. doi:10.4230/420

LIPIcs.TIME.2018.8.421

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to422

Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/423

introduction-to-algorithms.424

3 Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,425

49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.426

4 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more427

practical characterization of dynamic execution strategies. In 16th International Symposium428

on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/429

TIME.2009.25.430

5 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-431

Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference432

on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785, 2022. doi:10.1609/aaai.433

v36i9.21213.434

6 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Tem-435

poral Networks with Uncertainty into Dispatchable Form. Information and Computation,436

293(105063):1–21, 2023. doi:10.1016/j.ic.2023.105063.437

7 Luke Hunsberger and Roberto Posenato. Converting Simple Temporal Networks with Un-438

certainty into Minimal Equivalent Dispatchable Form. In Proceedings of the Thirty-Fourth439

International Conference on Automated Planning and Scheduling (ICAPS 2024), volume 34,440

pages 290–300, 2024. doi:10.1609/icaps.v34i1.31487.441

8 Luke Hunsberger and Roberto Posenato. Faster Algorithm for Converting an STNU into442

Minimal Dispatchable Form. In 31st International Symposium on Temporal Representation443

and Reasoning (TIME 2024), volume 318 of Leibniz International Proceedings in Informatics444

(LIPIcs), pages 11:1–11:14, 2024. doi:10.4230/LIPIcs.TIME.2024.11.445

9 Luke Hunsberger and Roberto Posenato. Canonical Form of Nested Diamond Structures.446

Technical Report 111/2025, Dipartimento di Informatica - Università degli Studi di Verona,447

May 2025. URL: https://iris.univr.it/handle/11562/1163111.448

10 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles449

and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.450

doi:10.1007/11889205_28.451

11 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf. on452

the Integration of Constraint Programming, Artificial Intelligence, and Operations Research453

(CPAIOR-2014), volume 8451, pages 464–479. 2014. doi:10.1007/978-3-319-07046-9_33.454

12 Paul Morris. The Mathematics of Dispatchability Revisited. In 26th International Conference455

on Automated Planning and Scheduling (ICAPS-2016), pages 244–252, 2016. doi:10.1609/456

icaps.v26i1.13739.457

13 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal458

uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages459

494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.460

14 Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In 20th461

National Conference on Artificial Intelligence (AAAI-2005), pages 1193–1198, 2005. URL:462

https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf.463

15 Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating temporal plans464

for efficient execution. In Proceedings of the Sixth International Conference on Principles of465

Knowledge Representation and Reasoning, KR’98, page 444–452, 1998.466

16 Object Management Group (OMG). Business process definition metamodel (bpdm), Beta 1.467

http://www.omg.org, 2007.468

https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.4230/LIPIcs.TIME.2024.11
https://iris.univr.it/handle/11562/1163111
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1609/icaps.v26i1.13739
https://doi.org/10.1609/icaps.v26i1.13739
https://doi.org/10.1609/icaps.v26i1.13739
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf

L. Hunsberger and R. Posenato 12:15

17 Roberto Posenato. STNU Benchmark version 2020, 2020. https://profs.scienze.univr.469

it/~posenato/software/cstnu/benchmarkWrapper.470

18 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,471

17:100905, 2022. doi:10.1016/j.softx.2021.100905.472

19 Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of Temporal473

Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),474

pages 254–261, 1998. URL: https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf.475

TIME 2025

https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://doi.org/10.1016/j.softx.2021.100905
https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf

	1 Background
	2 Overview of Existing Algorithms
	2.1 Canonical Form of Nested Diamond Structures
	2.2 Error in the fastMinDispESTNU Algorithm

	3 A New Approach to Generating Stand-in Edges
	4 Empirical Evaluations
	5 Conclusions
	A Pseudocode

