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Abstract. A Conditional Simple Temporal Network (CSTN) is a structure for rep-
resenting and reasoning about temporal constraints in domains where constraints
may apply only in certain scenarios. Observations in real time incrementally reveal
the “real” scenario. A CSTN is dynamically consistent (DC) if there is a strat-
egy for executing its time-points that guarantees the satisfaction of all relevant
constraints. The fastest DC-checking algorithm for CSTNs is based on constraint
propagation. This paper introduces a new approach to DC checking for CSTNs,
inspired by controller-synthesis algorithms for Timed Game Automata. The new
algorithm views the DC-checking problem as a two-player game, searching an
abstract game tree to find a “winning” strategy, using Monte-Carlo Tree Search and
Limited Discrepancy Search to guide its search. An empirical evaluation shows
that the new algorithm is competitive with the propagation-based algorithm.

1 Introduction

Recently, there have been significant advances in the theory and practice of temporal net-
works and Timed Game Automata (TGAs). Of particular interest is the work by Cimatti
et al. [5, 4] which showed that dynamic consistency/controllability (a.k.a., DC-checking)
problems for a variety of temporal networks can be reduced to controller-synthesis
problems for TGAs. Although their work revealed strong theoretical connections be-
tween temporal networks and TGAs, it did not immediately produce practical algorithms
because the generic TGA solver (UPPAAL-TIGA [3, 2]) could not exploit the particu-
lar structure of the DC-checking problem. However, more recently, Cimatti et al. [6]
presented a practical DC-checking algorithm for one kind of network—a Disjunctive
Temporal Network with Uncertainty (DTNU)—by using the temporal-network-to-TGA
reduction from the earlier work, but customizing the controller-synthesis algorithm to
exploit the structure of the DC-checking problem for DTNUs.

Inspired by their approach, this paper presents a new DC-checking algorithm for a
different kind of network: a Conditional Simple Temporal Network (CSTN). Although
the spirit of the approach is similar, especially in the traversal of the abstract simu-
lation graph, the substantial differences between the execution semantics for CSTNs
and DTNUs required the development of numerous novel representations and algo-
rithmic techniques. Furthermore, the new algorithm does not reduce CSTNs to TGAs;
instead, it maps TGA-based techniques into the realm of temporal networks, using
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Fig. 1: A hierarchy of temporal networks from least to most expressive

basic consistency-checking algorithms from the literature on Simple Temporal Networks
(STNs) [8], whereas Cimatti et al. use techniques from Satisfiability Modulo Theory
(SMT) [1]. In addition, the new algorithm uses Monte-Carlo Tree Search (MCTS) [9]
and Limited Discrepancy Search (LDS) [10] to guide its search. An empirical evaluation
of the new algorithm demonstrates that it is competitive with the propagation-based
algorithm due to Hunsberger et al. [13] that is currently the fastest known DC-checking
algorithm for CSTNs. Although the propagation-based algorithm tends to be faster for
weakly constrained networks and over-constrained (or inconsistent) networks, the per-
formance of the two algorithms is quite similar for moderately constrained networks. In
addition, the new algorithm is able to efficiently process particular worst-case structures
that dramatically slow down the propgation-based algorithm.

2 Background

A Simple Temporal Network (STN) is a structure for representing and reasoning about
time [8]. An STN includes real-valued variables called time-points (frequently notated as
X,Y, Z, . . .), and binary difference constraints on those time-points (e.g., Y −X ≤ 5).
The graph for an STN is a pair (T , E), where each constraint, Y − X ≤ δ in C,
corresponds to an edge in E from X to Y with length δ. An STN is consistent if there
exists an assignment of values to its time-points that together satisfy all of its constraints.
The consistency-checking problem for STNs can be solved in cubic time by computing
the distance matrix D for the STN graph (i.e., its all-pairs shortest-paths matrix: for
each X,Y ∈ T , D(X,Y ) equals the length of the shortest path from X to Y ).

Theorem 1 (Decomposability of STNs [8, 11]). Let S = (T , C) be any STN, and D
its distance matrix. For any X ⊆ T , let C|X = {(Y −X ≤ D(X,Y )) | X,Y ∈ X} be
the all-pairs, shortest-paths constraints from C that involve time-points in X . Then any
solution for the STN S|X = (X , C|X ) can be extended to form a solution for S; and the
distance matrix D|X for S|X satisfies: for all X,Y ∈ X , D|X (X,Y ) = D(X,Y ).

Henceforth, D|X will be called the restriction of D to time-points in X .
More Expressive Temporal Networks. The expressiveness of an STN can be ex-

tended in several independent dimensions, such as: (C) allowing conditional constraints;
(D) allowing disjunctive constraints; and (U) allowing temporal intervals with uncertain
durations. Providing different combinations of these features results in temporal net-
works with names such as Conditional Simple Temporal Networks (CSTNs), Disjunctive
Temporal Networks with Uncertainty (DTNUs), and so on. (For networks that allow
disjunctive constraints, the “simple” modifier is dropped.) Arranging these networks
according to their expressiveness leads to the hierarchy in Fig. 1.
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Dynamic Consistency/Controllability. Although the presence of disjunctive con-
straints makes the consistency-checking problem for Disjunctive Temporal Networks
(DTNs) NP-hard [8], the execution semantics for DTNs is the same as that for STNs.
In contrast, the presence of conditional constraints (C) or intervals with uncertain du-
rations (U) dramatically changes the execution semantics and, therefore, requires new
notions of consistency (or controllability). For example, a CSTN has conditional con-
straints that may apply only in certain scenarios; and the particular scenario that obtains
is only incrementally revealed through the execution of observation time-points. A CSTN
is dynamically consistent if there exists a dynamic strategy for executing its time-points
such that all relevant constraints will be satisfied no matter which scenario is incremen-
tally revealed [18]. On the other hand, a Simple Temporal Network with Uncertainty
(STNU) includes intervals with uncertain durations, represented by contingent links. The
ending time-points of contingent links are uncontrollable, but guaranteed to fall within
certain bounds. An STNU is dynamically controllable if there exists a dynamic strategy
for executing its controllable time-points such that all constraints will be satisfied no
matter how the uncertain durations turn out [17]. Finally, the dynamic controllability of
CSTNUs and CDTNUs, which allow conditional constraints and contingent links, has
also been defined [12, 4]. (When including both conditional constraints and contingent
links, the term “controllability” is preferred.) Crucially, the decisions made by dynamic
execution strategies must only depend on past information, whether gleaned from the
execution of observation time-points or the observed durations of contingent links.

DC-checking algorithms. An algorithm for checking the dynamic consistency or con-
trollability of a temporal network is called a DC-checking algorithm. Morris [16] recently
presented a cubic-time DC-checking algorithm for STNUs. However, the consistency-
checking problem for DTNs and the DC-checking problem for all of the other network
classes in Fig. 1 are known to be NP-hard.3

Cimatti et al. [4] showed that the DC-checking problem for CDTNUs, the most
expressive network in Fig. 1, can be reduced to a controller-synthesis problem for TGAs,
but the resulting algorithm was not practical because the generic controller-synthesis
algorithm for TGAs could not exploit the DC-checking problem structure. More recently,
Cimatti et al. [6] presented a practical DC-checking algorithm for DTNUs, using the
same temporal-network-to-TGA reduction, but implementing a customized controller-
synthesis algorithm that exploits the structure of the DC-checking problem for DTNUs.

Inspired by their approach, this paper presents a new DC-checking algorithm for
CSTNs. Although similar in spirit, the new algorithm differs substantially from the
DTNU algorithm. For example: (1) instead of translating the input CSTN into a TGA, the
new algorithm performs all computations on related STNs; (2) although it too traverses
a simulation graph involving subsets of already-scheduled time-points, the transitions in
that graph are completely different owing to the completely different execution semantics
for CSTNs; (3) it uses unions of STNs instead of logic-based formulas to represent the
so-called winning regions; and (4) it uses Monte-Carlo Tree Search (MCTS) [9] and
Limited Discrepancy Search (LDS) [10] to guide its search.

3 Dechter et al. [8] for DTNs; Comin and Rizzi [7] for CSTNs; the rest follow from these results.
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3 Conditional Simple Temporal Networks

This section reviews the dynamic consistency of CSTNs [18], using definitions drawn
from Hunsberger et al. [13]. To begin, let P be a set of propositional letters. A label is
any consistent conjunction of (positive or negative) literals from P; the set of all such
labels is denoted by P∗; and the empty label is denoted by � ∈ P∗.

A CSTN may include time-points and temporal constraints that apply only in certain
scenarios. The “real” scenario is incrementally revealed through the execution of observa-
tion time-points (ObsTPs). (For convenience, non-observation time-points may be called
ordinary time-points (OrdTPs).) Each observation time-point P? has a corresponding
propositional letter p; executing P? generates a truth value for p. During execution, the
information that is incrementally gleaned from such observations is recorded in a label
called the current partial scenario (CPS). For example, if p and s have been observed to
be true , and q has been observed to be false , then the CPS would be the label p¬qs.

Time-points and constraints in a CSTN may have propositional labels. For example,
the labeled constraint (Y −X ≤ 5, p¬q) specifies that Y −X ≤ 5 must hold in any
(partial or complete) scenario that is consistent with p¬q.

Definition 1 (CSTN) A Conditional Simple Temporal Network (CSTN) is a tuple,
〈T , C, L,OT ,O,P〉, where:

• P is a finite set of propositional letters;
• T is a finite set of real-valued variables (time-points);
• C is a finite set of labeled constraints, each having the form, (Y − X ≤ δ, `),

where X,Y ∈ T , δ ∈ R, and ` ∈ P∗;
• L : T → P∗ is a function assigning labels to time-points;
• OT ⊆ T is a set of observation time-points; and
• O : P → OT is a bijection between ObsTPs and propositional letters.

A CSTN typically includes a special time-point Z whose value is fixed at 0; all other
time-points are constrained to occur at or after Z. (If no such Z exists, one may be
added without adverse effects.) Binary constraints involving Z are equivalent to unary
constraints. For example, Z −X ≤ −5 is equivalent to X ≥ 5.

Each CSTN S = 〈T , C, L, . . .〉, has an associated graph, 〈T , E〉, where the edges
in E correspond to the labeled constraints in C. In particular, each (Y −X ≤ δ, `) ∈ C
corresponds to an edge from X to Y annotated by the labeled value 〈δ, `〉. A sample
CSTN graph is shown in Fig. 2. This graph includes structures, called negative q-loops,
that can dramatically slow down the DC-checking algorithm of Hunsberger et al. [13].

The execution semantics for a CSTN can be expressed in terms of a two-player
game between the agent responsible for executing its time-points and the environment
responsible for selecting truth values for propositional letters [4]. An execution run
begins with Z = 0 and an empty current partial scenario. At any time, the agent may
choose to execute any time-point whose label is entailed by the CPS. Whenever an
observation time-point P? is executed, the environment must instantaneously select a
truth value for the corresponding letter p. If p = true, then p is conjoined to the CPS;
otherwise, ¬p is conjoined to the CPS. The execution run is completed whenever it
happens that all time-points whose labels are entailed by the CPS have been executed. If
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Fig. 2: A CSTN with negative q-loops

all constraints whose labels are consistent with the final CPS are satisfied, then the agent
wins; otherwise, the environment wins. A sample winning run for the CSTN from Fig. 2
is given below, where the choices made by the environment are parenthesized.

Z = 0;W? = 100 (¬w);X = 101;Y = 106;P? = 107 (¬p);Q? = 125 (q).

Since the final CPS is ¬pq¬w, constraints labeled by pw, qw and ¬q¬w do not apply.

Definition 2 (Scenario) A scenario over a set P of propositional letters is a function,
s : P → {true, false}. For each label ` ∈ P∗, the truth value for ` determined by s is
denoted by s(`). The set of all scenarios over P is denoted by I. A partial scenario is
any function, s : P ′ → {true, false}, where P ′ ⊆ P .

Definition 3 (Schedule) A schedule for a set of time-points T is a (complete) mapping,
ψ : T → R. The set of all schedules over all subsets of T is denoted by Ψ .

Definition 4 (Projection) Let S = 〈T , C, L, . . .〉 be any CSTN, and s any scenario
over P . The projection of S onto s—notated S(s)—is the STN, (T +

s , C+s ), where:

• T +
s = {T ∈ T | s(L(T )) = true}; and

• C+s = {(Y −X ≤ δ) | for some `, (Y −X ≤ δ, `) ∈ C and s(`) = true}

Definition 5 (Execution Strategy) An execution strategy for a CSTN S is a mapping
σ : I → Ψ , such that for each scenario s ∈ I , the domain of σ(s) is T +

s . If, in addition,
for each scenario s, the schedule σ(s) is a solution to the projection S(s), then σ is
called viable. The execution time for any X in σ(s) is denoted by [σ(s)]X .

Definition 6 (History) Let S = 〈T , C, L, . . .〉 be any CSTN, s any scenario, σ any
execution strategy for S, and t any real number. The history of t in the scenario s, for
the strategy σ—notated Hist(t, s, σ)—is the set of observations made before time t
according to σ(s): Hist(t, s, σ) = {(p, s(p)) | P? ∈ T +

s and [σ(s)]P? < t}.

Definition 7 (Dynamic Execution Strategy) An execution strategy σ for a CSTN is
called dynamic if for any scenarios s1 and s2, and any time-point X:

let: t = [σ(s1)]X ; if: Hist(t, s1, σ) = Hist(t, s2, σ); then: [σ(s2)]X = t.

Definition 8 (Dynamic Consistency) A CSTN S is dynamically consistent (DC) if there
exists an execution strategy for S that is both dynamic and viable.

Several DC-checking algorithms for CSTNs have been presented in the literature [18,
4, 13, 7]. However, only the propagation-based algorithm due to Hunsberger et al. [13] has
been empirically demonstrated to be practical. It uses six rules for propagating labeled
constraints in the CSTN graph. Although its worst-case complexity is conjectured to be
exponential, it stands as the fastest DC-checking algorithm for CSTNs so far.
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4 Overview of Our Approach

Following Cimatti et al. [4], our approach views the execution of time-points in a CSTN
as a two-player game between the agent who executes time-points and the environment
that assigns truth values to propositions. Each run of the game consists of a sequence of
turns. Since the environment is idle until an observation time-point is executed, it is useful
to model a turn for the agent as involving the (typically not simultaneous) execution of
zero or more ordinary time-points, followed by the execution of a single observation
time-point P?. A turn for the environment involves instantaneously assigning a truth
value to p, the propositional letter associated with P?, resulting in either p or ¬p being
appended to the current partial scenario. The run ends when all time-points whose labels
are entailed by the CPS have been executed. The agent wins if all constraints entailed
by the final CPS are satisfied. The agent seeks a winning strategy (i.e., a strategy that
guarantees that all relevant constraints will be satisfied no matter which truth values the
environment chooses along the way). The agent’s strategy can be dynamic in that it can
react to observations in real time, but only after some positive delay.

Since there are n! possible orders in which to execute n time-points, and each
time-point may be assigned any number of values, searching for a winning strategy
by exploring the associated game tree is not practical. To make the search space finite,
we use a more abstract representation for the agent’s moves, one that does not specify
execution times for the time-points being “played”. Each (abstract) move is represented
by a pair (χ, P?), where χ is a possibly empty set of ordinary time-points, and P? is an
observation time-point. To retain maximal flexibility, the time-points in χ ∪ P? are only
partially ordered. In particular, for each X ∈ χ, and each as-yet-unplayed Y 6∈ χ ∪ P?,
the ordering constraints, X ≤ P? ≤ Y, are accumulated. Thus, a typical sequence of
alternating moves has the following form:

(χ1, P1?), (p1 = b1), (χ2, P2?), (p2 = b2), . . . , (χk, Pk?), (pk = bk), χk+1

where the χi are disjoint sets of ordinary time-points, the Pi? are distinct observation
time-points, the pi are the corresponding propositional letters, and the bi are truth values.
The associated ordering constraints can be concisely expressed as follows:

Z = 0 ≤ χ1 ≤ P1? ≤ χ2 ≤ P2? ≤ . . . ≤ χk ≤ Pk? ≤ χk+1

where expressions of the form χi ≤ Pi? ≤ χi+1 stand for the sets of constraints,
(∀X ∈ χi)(X ≤ Pi?) and (∀X ∈ χi+1)(Pi? ≤ X). No ordering constraints are im-
posed among any pair of time-points, X and Y , that belong to the same set χi.

Consider the CSTN graph shown in Fig. 3. One possible sequence of (abstract)
moves is: ({X}, P?), (p = true), {Y }. The corresponding ordering constraints are:
Z ≤ X ≤ P? ≤ Y . Another possible sequence is: (∅, P?), (p = false), {X,W}. The
corresponding ordering constraints are: Z ≤ P? ≤ {X,W}.

The (abstract) game tree—also called the simulation graph [3]—is a branching tree
with finitely many nodes. It includes: (1) agent nodes (Agt-nodes) that represent abstract
states where it is the agent’s turn to “play” time-points; and (2) environment nodes
(Env-nodes) that represent abstract states where it is the environment’s turn to select
truth values for propositional letters. Each move for the agent is represented by an edge
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Fig. 4: The abstract game tree (i.e., simulation graph) for the CSTN from Fig. 3

from an Agt-node to an Env-node. Each binary choice available to the environment is
represented by a hyper-edge [15] whose source is an Env-node, and whose target set is a
pair of Agt-nodes: one for true, one for false. The game tree for the CSTN from Fig. 3 is
illustrated in Fig. 4, where the shaded triangles represent hyper-edges.

When it is the agent’s turn, the number of available moves depends on the number
of as-yet-unplayed time-points whose labels are entailed by the current partial scenario.
When it is the environment’s turn, there are always exactly two available moves: true or
false. For each move (χ, P?) by the agent, our algorithm effectively asks the question:
“Is there an assignment for the time-points in χ ∪ P? that can force a win from this point
onward?” That question is not answered immediately. But notice that a win-forcing
assignment for time-points in χ∪P? must be able to force a win whether the environment
subsequently chooses true or false for p. Thus, when it is the agent’s turn, the agent
need only find one win-forcing move out of all of its available moves, but that move
must be win-forcing for both branches arising from the environment’s two choices. And,
of course, this property continues recursively as the game tree is descended.

Although the question, “Is there a win-forcing assignment?”, is not answered imme-
diately, the constraints from the CSTN that apply to the time-points in χ∪{P?} (and any
other already-played time-points) together with the ordering constraints discussed above,
do restrict the space within which such win-forcing assignments must reside—should
they exist. This restricted space of possible win-forcing assignments can be represented
by an STN, hereinafter called the current STN. A consistency check on the current STN
can be used to prune moves that cannot be part of a winning strategy.

Our algorithm has two interleaved phases: a forward phase that uses a modified
depth-first search to find a sequence of moves terminating in a leaf node whose current
STN is consistent; and a backward phase to be described later. Recall that the game
ends when all observation time-points whose labels are entailed by the CPS have been
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Fig. 5: Distance matrices related to the running example

executed. At that point, the player’s last move is to schedule all remaining ordinary
time-points whose labels are entailed by the CPS. Let χ be the set of such time-points.
Note that for a terminal node whose current STN is consistent, the question “Is there
an assignment for the time-points in χ that can force a win from this point onward?”
is trivially “Yes”. In particular, any solution to that node’s current STN will work. In
other words, for a terminal node in the game tree, the solution set for the current STN
represents not only the restricted domain within which any win-forcing assignment must
reside, but in fact the actual set of win-forcing assignments for that node.

The root node of the game tree from Fig. 4 has the following information:

• Z is the only time-point that has been “played”;
• π0 = � is the current partial scenario;
• T0 = {Z,X,P?} are the time-points whose labels are entailed by π0 = �; and
• C0 = C|{Z,X,P?} = {X ∈ [5, 20], P? ∈ [7, 40]}, the CSTN constraints whose

labels are entailed by π0 = �. (The constraints in C0 have had their labels removed.)

From the root node, there are only two legal moves: (∅, P?) or ({X}, P?). Let’s explore
the latter move. After this move, the current STN is S1 = ({Z,X,P?}, C0 ∪ θ), where:

• θ = {Z ≤ X ≤ P?}, the ordering constraints associated with the move ({X}, P?).

The distance matrix D1 for S1 is shown in Fig. 5a. Any win-forcing assignment to time-
points in {Z,X,P?} must satisfy the constraints represented by this matrix; however, at
this point, it is not known whether such an assignment exists.

Next, suppose that the environment chooses to set p = true . In that case, we get:

• {Z,X,P?} are the time-points that have been played;
• πp

1 = p is the current partial scenario; and
• T p

1 = {Y } is the set of unplayed time-points whose labels are entailed by πp
1 = p.

Since there are no observation time-points in T p
1 , the agent has only one option: to play

all of the time-points in T p
1 . The resulting current STN is Sp1 = (T p

1 , C
p
1 ∪ θp), where:

• Cp1 = C|{Z,X,P?,Y } = C0 ∪ {Y ≤ 25, X − Y ≤ −10, P?− Y ≤ −4}; and
• θp = θ ∪ {P? ≤ Y }, the relevant ordering constraints.

The distance matrix, Dp, for this STN is shown in Fig. 5b. Because this distance matrix
is consistent, it represents the space of win-forcing assignments for that terminal node.
However, recall that win-forcing means forcing a win from this point onward. We have
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to back-propagate to see whether preceding nodes can get to this point. By Theorem 1,
any solution to the restriction of Dp to the time-points in {Z,X,P?} can be extended
to a solution to Dp over the time-points in {Z,X,P?, Y }. Thus, any solution to the
upper-lefthand 3× 3 sub-matrix of Dp is a win-forcing assignment for {Z,X,P?}. That
is, if Z,X and P? are assigned values that satisfy that sub-matrix, and the environment
chooses p = true , then we can choose a value for Y that will yield a winning state.

However, that is not enough. We must also ensure that a winning state is arrived
at should the environment choose p = false. The relevant matrix for that case is D¬p,
shown in Fig. 5c. Its upper-lefthand 3 × 3 matrix must be satisfied by Z,X and P?
to ensure a win should the environment choose p = false. Since we want to ensure a
win regardless of which choice the environment makes, a win-forcing assignment for
Z,X and P? must satisfy both matrices. Thus, the relevant matrix is the element-wise
minimum of the corresponding upper-lefthand 3× 3 sub-matrices of Dp and D¬p. That
matrix, D∗1 , is shown in Fig. 5d. The matrix D∗1 is the back-propagation of Dp and D¬p.

Now, in general, at any given node, the agent typically has many available moves.
Some of these moves might yield sets of win-forcing assignments; and each such set can
be represented by an STN, as described above. However, the union of such win-forcing
sets cannot usually be represented by a single STN; instead, a union of STNs—or their
corresponding distance matrices—is needed. Thus, the back propagation described above
must be able to accommodate unions of distance matrices at each node. Fortunately, in
practice, back-propagation is done incrementally; so, only the most recently generated
winning distance matrix needs to be processed. For example, suppose that the p branch
of a hyper-edge emanating from some Env-node yields a new winning matrix, Dp, while
the ¬p branch already has a union of winning matrices, D¬p1 ∪ . . . ∪ D

¬p
k . Then the

new win-set for that Env-node is given by the union, (Dp ∧ D¬p1 ) ∪ . . . ∪ (Dp ∧ D¬pk ),
where ∧ denotes the “element-wise minimum” operator.

Overall, the algorithm propagates forward through the game tree searching for a
terminal node whose current STN is consistent. The solution space for that STN is the
set of win-forcing assignments for that node. The algorithm then back-propagates that
win-set through the game tree to determine whether it may yield non-empty win-sets
for any predecessor nodes. If the algorithm ever finds a non-empty win-set for the root
node, it reports that the network is dynamically consistent. Since the algorithm only
seeks the existence of a non-empty win-set for the root node, not the maximum win-set,
it frequently creates and explores only a small fraction of the tree.

For any given node, the win-sets must be subsets of the solution space for the
current STN. That is, the current STN represents necessary, but typically not sufficient
constraints on win-forcing assignments. The following properties of win-sets provide
the rationale for the algorithm’s handling of winning distance matrices.

(P1) Let v be an Agt-node; and v1, . . . , vk its child Env-nodes. If W1, . . . ,Wk are
win-sets for those child nodes, and Tv is the set of time-points whose labels are
entailed by the CPS at node v, then (W1|Tv ) ∪ . . . ∪ (Wk|Tv ) is a win-set for v.

(P2) Let v be an Env-node; and vp and v¬p its child Agt-nodes. If Wp and W¬p are
win-sets for vp and v¬p, respectively, and Tv is the set of time-points whose labels
are entailed by the CPS at node v, then (Wp|Tv ) ∩ (W¬p|Tv ) is a win-set for v.
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Fig. 6: A sequence of edges representing a transition from an Agt-node to an Env-node

(P1) follows from Theorem 1. (P2) follows from the independence of the environment’s
choices: a win-forcing assignment for v must be win-forcing for both vp and v¬p.

Incrementally constructing agent moves. From any given Agt-node, there may be
a large number of agent moves, each of the form (χ, P?), where χ is a possibly empty
subset of OrdTPs and P? is an ObsTP. For example, if there are k OrdTPs andm ObsTPs
whose labels are entailed by the current partial scenario, then there are m2k possible
moves of the form (χ, P?). Thus, it is impractical to compute all of these potential moves,
let alone explore them. For this reason, the new DC-checking algorithm incrementally
constructs such moves in a sequence of steps. In each step, a time-point is selected for
incorporation into the nascent move. Each OrdTP that is selected is added to χ. When
an ObsTP is (eventually) selected, the construction of the move (χ, P?) is completed.

Thus, a move (χ, P?) from an Agt-node to an Env-node is represented by a sequence
of step-edges, as illustrated in Fig. 6. If an OrdTP is being played, the step-edge is a
forward OrdTP edge and the destination is an intermediate node. If an ObsTP is being
played, the step-edge is a forward ObsTP edge and the destination is an Env-node. In
this way, each agent move is represented by a sequence of zero or more forward OrdTP
edges, followed by a single ObsTP edge that terminates at an Env-node.

Combining Monte-Carlo Tree Search and Limited Discrepancy Search. For each
Agt-node, the algorithm maintains a queue of as-yet-unexplored step-edges. At each step,
the algorithm uses Monte-Carlo Tree Search [9] to determine the “best” time-point to
incorporate into the move (χ, P?) being incrementally constructed. When MCTS selects
an ObsTP, the move is completed and the resulting Env-node is created and explored.

To avoid getting trapped in an unpromising portion of the search space, instead
of doing ordinary depth-first search, the algorithm uses Limited Discrepancy Search
(LDS) [10], as follows. First, each call to MCTS generates an ordered list of step-
moves. If the best step-move is explored, there is no penalty (or discrepancy). But if
the algorithm backtracks and tries the next best move, a penalty of +1 is accumulated.
Further backtracking leading to exploring even worse moves leads to higher penalties.
Thus, the sequence of moves that is currently being explored, going all the way back to
the root node, has an associated total path discrepancy. LDS with a limit of L ignores
any move that would lead to a total path discrepancy greater than L. Since a winning
strategy might not be obtained from LDS using a given limit L, the algorithm employs
an iterative deepening version of discrepancy search where the limit L starts out at 0
(i.e., only best step-moves are explored at each step). If that search fails to find a winning
strategy, the limit L is incremented and the algorithm tries again. This process continues
until a winning strategy is found or the search space is exhausted.

Pseudo-code for the new DC-checking algorithm. The new DC-checking algorithm
for CSTNs is called SG-DC-CHECK (for “simulation-graph DC-checking”). Pseudo-
code for the SG-DC-CHECK algorithm is given in Tables 1 and 2. The SG-DC-CHECK
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SG-DC-CHECK:
v0 := root Agt-node;
v0.queue := MCTS(v0), a sorted list of step-moves, each of the form, stepMove(v0,TP);
L := 0 (initial discrepancy limit);
while(true)

result := SEARCH(v0, 0, L).
if (result == non-empty win-set for v0), then return DC;
elseif (result == search space exhausted), then return non-DC;
else L := L+ 1.

SEARCH(v, d, L): (v = Agt-node, d = accumulated discrepancy)
new winners := NIL

while((new winners == NIL) && (v .queue 6= ∅))
stepMove(vc ,TP) := pop(v .queue); (vc is an Agt or intermed. node, TP is a time-point)
when(d+ discr(stepMove(vc,TP)) ≤ L)

new winners := PROCESS-EDGE(v, stepMove(vc,TP), d).
return new winners .

Table 1: Pseudo-code for the SG-DC-CHECK algorithm for CSTNs (Part One)

algorithm calls the SEARCH method on the root Agt-node v0, whose sorted list of initial
step-moves has been generated by Monte-Carlo Tree Search and pushed onto v0’s queue.
The SEARCH method processes (forward or backward) edges on the queue of as-yet-
unprocessed moves. The behavior of the PROCESS-EDGE method depends on the type
of edge (forward or backward; OrdTP, ObsTP or Env) to be processed. Processing a
forward OrdTP edge creates a new intermediate node; and uses Monte-Carlo Tree Search
to generate a sorted list of legal step-moves to be pushed onto the parent Agt-node’s
queue. Processing a forward ObsTP edge creates a new Env-node and pushes an (Env)
hyper-edge onto the parent Agt-node’s queue. The first time an (Env) hyper-edge is
processed, two Agt-node children are created. If both child nodes happen to be leaf nodes
(i.e., terminal nodes), then their restricted win-sets are intersected and a bkwdObsEdge
(i.e., backward observation edge) is pushed onto the parent Agt-node’s queue to initiate
back-propagation of that new restricted win-set; otherwise, the (Env) hyper-edge that is
currently being processed is pushed back onto the queue to ensure that it is immediately
re-visited. Whenever an (Env) hyper-edge is re-visited, it calls the SEARCH method
on one of the child Agt-nodes to see whether a new win-set can be generated. If so,
then a bkwdEnvEdge (i.e., backward environment edge) is pushed onto the queue to
back-propagate that new win-set. If the back-propagation peters out (i.e., fails to reach
the root node of the entire simulation graph), then the (Env) hyper-edge will be re-visited
to see whether additional win-sets for the child Agt-nodes might be computed.

As already indicated, back-propagation is implemented by processing bkwdEnvEdges
and bkwdObsEdges. Processing a bkwdEnvEdge for a given Env-node vE takes a new
win-set for one of the child Agt-nodes v̂ and intersects it with the existing win-sets for the
other child Agt-node ṽ. If any new win-sets are generated that are not subsumed by any
of the existing win-sets for vE , then those win-sets are packaged into a bkwdObsEdge
that is pushed onto the queue to ensure that back-propagation continues. Processing a
bkwdObsEdge takes new win-sets for an Env-node vE and restricts the corresponding
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distance matrices to the time-points relevant to the parent Agt-node. If new win-sets
for the parent Agt-node are generated, then a bkwdEnvEdge is pushed onto the queue
of the Env-node parent of that Agt-node, and back-propagation continues. If the back-
propagation ever reaches the root Agt-node with a non-empty win-set, then the network
is declared to be DC. If the search fails to find a win-set for the root node, then the
discrepancy limit L is increased. That process continues until a win-set for the root node
is found, or the search space is exhausted.

5 Empirical Evaluation

The fastest DC-checking algorithm for CSTNs from the literature is the propagation-
based algorithm of Hunsberger et al. [13] which, for convenience, shall be called the
DC-CHECK algorithm. This section compares the performance of the new SG-DC-
CHECK algorithm and the existing DC-CHECK algorithm.

First, it must be acknowledged that the DC-CHECK algorithm performs very well
on networks that are either (1) very loosely constrained or (2) inconsistent. In the first
case, there is not much constraint propagation to perform, so the algorithm runs quickly.
In the second case, negative loops signalling non-DC can often be found very quickly. In
contrast, the SG-DC-CHECK algorithm typically explores an exponential number of
nodes in the simulation graph even for loosely constrained networks, because it must
ensure the existence of a win-forcing strategy; and for non-DC networks, it must exhaust
the search space to prove that no winning strategy can exist. Therefore, this section
focuses primarily on moderately constrained networks.

The generation of CSTN instances was based on random workflow schema generated
by the ATAPIS toolset [14]. It is hoped that instances generated in this way may be closer
to examples that might be encountered in the real world. Thirty consistent CSTNs were
randomly generated. Each CSTN had between 107 and 155 time-points, between 8 and
16 observation time-points, and between 428 and 970 constraints. Both algorithms, DC-
CHECK and SG-DC-CHECK, were implemented in Lisp and run on Intel Core i7-4790
machines with 3.6 GHz processors (4 cores/8 threads), running Ubuntu 14.04.04 LTS
(kernel version 3.16.0-67-generic) and Allegro Common Lisp (ACL) Enterprise Edition,
version 8.1. For increased efficiency (i.e., to dramatically reduce the number of redundant
labeled edges stored during constraint propagation), the DC-CHECK algorithm stored
labeled edges in subsumption hierarchies, one hierarchy for each pair of time-points.
Because the DC-CHECK algorithm is deterministic, running it repeatedly on the same
network yields essentially identical timing results. Therefore, it was run only once on
each network. In contrast, the SG-DC-CHECK algorithm employs randomness, both
from the use of Monte-Carlo Tree Search to determine “best” moves, and in deciding
which of the two child nodes to explore when processing an (Env) hyper-edge. Therefore,
its timing results can vary when run repeatedly on the same network. Thus, SG-DC-
CHECK was run five times on each network.

The average run-time of the SG-DC-CHECK algorithm was (statistically signifi-
cantly) better than that of the DC-CHECK algorithm for 11 of the 30 instances, while
the DC-CHECK algorithm was faster on 18 of the 30 instances. For one instance, both
algorithms timed out (over 10 minutes). Of the 18 instances where the DC-CHECK
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algorithm was faster, the SG-DC-CHECK algorithm timed out on 6 instances. Over the
23 instances where neither algorithm timed out, the mean run times were 40.0 seconds
for DC-CHECK and 53.8 seconds for SG-DC-CHECK, with standard deviations of
80.8 and 89.6, respectively. Furthermore, over the 29 instances where the DC-CHECK
algorithm did not time out, the mean run time of DC-CHECK was 38.4 seconds, with a
standard deviation of 80.7, but over the same 29 instances, the minimum run time of the
two algorithms (actual for DC-CHECK, average for SG-DC-CHECK over 5 trials) had
a mean of 22.1 seconds with a standard deviation of 24.0. This suggests that running
the two algorithms in parallel, and taking the answer obtained by whichever algorithm
finishes sooner, has the potential to dramatically improve the timing performance.

Finally, to demonstrate a shortcoming of the DC-CHECK algorithm, recall the small
CSTN from Fig. 2. The loops between X and P?, and Y and Q?, are examples of what
are called negative q-loops. They do not necessarily cause a network to be non-DC.
In fact, the CSTN in Fig. 2 is DC. However, they can lead to an incredible amount of
constraint propagation. Each loop reinforces the other, gradually increasing the lower
bounds on P? and Q? until they eventually approach the value of the lower bound on
W?, which is 100. (To understand why, see the constraint-propagation rules presented by
Hunsberger et al. [13].) If the lower bound on W? is increased to 1000, the DC-CHECK
algorithm takes almost three minutes to determine that the network is DC. In contrast, the
SG-DC-CHECK algorithm solves this network in 80 milliseconds, regardless of the size
of the lower bound on W?. This example highlights the fact that the two algorithms have
very different strengths and weaknesses. It suggests that further study of both algorithms
is warranted. Both algorithms may achieve superior results in the future by improving
their implementations. For example, improving the consistency checking and tuning
the parameters governing the Monte-Carlo Tree Search may dramatically improve the
performance of the SG-DC-CHECK algorithm.

6 Related Work

The SG-DC-CHECK algorithm continues a line of research that dates back to the
literature on finding fixed-points for dependency graphs [15], synthesizing controllers
for TGAs [3], and checking the dynamic controllability of DTNUs [6]. Like the DC-
checking algorithm for DTNUs, the SG-DC-CHECK algorithm: (1) searches through
an abstract simulation graph; (2) manages its traversal through that graph by keeping
track of edges waiting to be processed, computing winning sets for nodes, and keeping
track of dependencies among nodes; (3) keeps track of ordering constraints and performs
consistency checks to prune nodes during search; and (4) in successful instances, can
be used to generate a suitable controller (i.e., a dynamic execution strategy). However,
adapting the high-level approach to CSTNs required the development of significant novel
representations and techniques. Some differences include: (1) TGAs are not used at all;
(2) winning sets are represented by STNs, not TGA clock zones; (3) consistency checking
is done using STN algorithms, not Satisfiability Modulo Theory; (4) the simulation graph
includes hyper-edges that represent the true and false branches for observations; (5) STN
conjunction and restriction are used to back-propagate winning sets; (6) Monte-Carlo
Tree Search and Limited Discrepancy Search are used to guide the search.
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PROCESS-EDGE(v, (OrdTP)stepMove(vc, X), d): (X is an OrdTP)
Create intermediate node with X played; and accumulate (partial) ordering constraints;
when( constraints consistent )
push(MCTS(vc), v.queue) (i.e., push sorted list of legal step-moves onto v’s queue).

PROCESS-EDGE(v (ObsTP)stepMove(vc, P?), d):
Create Env-node vE , and compute distance matrix DE for its current STN;
when(DE is consistent ),
push((Env) hyper-edge(vE , P?), v.queue).

PROCESS-EDGE(v, (Env) hyper-edge(vE , P?), d):
if( first time visiting this hyper-edge ):

Create child Agt-nodes, vp and v¬p, and corresponding distance matrices, Dp and D¬p;
when( element-wise min. D′E of restricted matrices D′p and D′¬p is consistent ):
for each v̂ ∈ {vp, v¬p},
if(v̂ is a leaf node), v̂.finished := true , and v̂.winners := D′E ;
else, v̂.queue := MCTS(v̂);

if (vp.finished == v¬p.finished == true), push(bkwdObsEdge(vE ,D′E), v.queue);
else push((Env) hyper-edge(vE , P?), v.queue);

else (i.e., re-visiting this edge):
if(vp.finished == v¬p.finished == true), then return NIL;
else select v̂ ∈ {vp, v¬p} such that v̂.finished = NIL;
when winner := SEARCH(v̂) 6= ∅,
push(bkwdEnvEdge(vE , v̂,winner), v.parent .queue).

PROCESS-EDGE(v,bkwdEnvEdge(vE , v̂,newWinner), d): (d ignored during back-prop)
ṽ := the other Agt-node child of vE (i.e., ṽ and v̂ are the children of vE);
winAcc := ∅; (winAcc will accumulate winners for vE)
for each oldWinner ∈ ṽ.winners ,

possWinner := newWinner ∩ oldWinner ;
if possWinner 6⊆

⋃
W∈vE .winners W, push(possWinner , accWinners);

push ((Env) hyper-edge(vE , P?), v); (if back-prop sputters, must revisit hyper-edge)
if(winAcc 6= ∅), push(bkwdObsEdge(vE ,winAcc), v.queue); (continue back-prop)

PROCESS-EDGE(v,bkwdObsEdge(vE ,newWinners), d): (d ignored during back-prop)
winAcc := ∅; (winAcc will accumulate winners for v)
for eachnewWinner ∈ newWinners ,

restrictedWinner := newWinner |v.T (i.e., restrict winner to time-points in v)
if restrictedWinner 6⊆

⋃
W∈v.winners W, push(restrictedWinner ,winAcc);

if((winAcc 6= ∅) && (rootNode?(v))) return DC; (Non-empty win-set for root node!)
else if(winAcc 6= ∅) push(bkwdEnvEdge(vE ,winAcc), v.queue). (continue back-prop)

Table 2: Pseudo-code for the SG-DC-CHECK algorithm for CSTNs (Part Two)


