
A Sound-and-Complete Propagation-based
Algorithm for Checking the Dynamic Consistency

of Conditional Simple Temporal Networks
Luke Hunsberger

Vassar College
Poughkeepsie, NY USA

Roberto Posenato Carlo Combi
Computer Science Department

University of Verona, Verona, Italy

Abstract—A Conditional Simple Temporal Network (CSTN)
is a data structure for representing and reasoning about time-
points and temporal constraints, some of which may apply only
in certain scenarios. The scenarios in a CSTN are represented
by conjunctions of propositional literals whose truth values are
not known in advance, but instead are observed in real time,
during execution. The most important property of a CSTN
is whether it is dynamically consistent (DC); that is, whether
there exists a strategy for executing its time-points such that
all relevant constraints are guaranteed to be satisfied no matter
which scenario is incrementally revealed during execution. Prior
approaches to determining the dynamic consistency of CSTNs
(a.k.a., solving the Conditional Simple Temporal Problem) are pri-
marily of theoretical interest; they have not been realized in prac-
tical algorithms. This paper presents a sound-and-complete DC-
checking algorithm for CSTNs that is based on the propagation
of constraints labeled by propositions. The paper also presents
an empirical evaluation of the new algorithm that demonstrates
that it may be practical for a variety of applications. This is
the first empirical evaluation of any DC-checking algorithm for
CSTNs ever reported in the literature.

Index Terms—Constraint-based Temporal Reasoning; Tempo-
ral Networks; Constraint Satisfaction; Scheduling.

I. OVERVIEW

A Conditional Simple Temporal Network (CSTN) is a
data structure for representing and reasoning about temporal
constraints in domains where some constraints may apply
only in certain scenarios. For example, a patient who tests
positive for a certain disease may need to receive care more
urgently than a patient who tests negative. Each condition
in a CSTN is represented by a propositional letter whose
truth value is not controlled, but instead is observed in real
time. Just as the performance of a blood-test action by a
doctor might generate a positive or negative result that is only
learned in real time, the execution of an observation time-
point in a CSTN generates, in real time, a truth value for
its corresponding propositional letter. An execution strategy
for a CSTN specifies the times at which various time-points
will be executed. Such a strategy can be dynamic in that its
execution decisions can react to the information obtained from
such observations. The Conditional Simple Temporal Problem
(CSTP) is that of determining whether a given CSTN admits a
dynamic execution strategy that can guarantee the satisfaction
of all constraints no matter which combination of propositional

outcomes happens to be observed over time. If such a strategy
exists, the CSTN is said to be dynamically consistent (DC).
Thus, the CSTP is the DC-checking problem for CSTNs.

Tsamardinos et al. [1] introduced the CSTP. They solved it
by encoding it as a meta-level Disjunctive Temporal Network
(DTN), then feeding it to an off-the-shelf DTN solver. Although
of theoretical interest, this approach is not practical because the
CSTP-to-DTN encoding has exponential size and, on top of that,
the DTN solver runs in exponential time. To our knowledge, this
approach has never been implemented or empirically evaluated.

More recently, Cimatti et al. [2] presented a novel approach
to solving a variety of temporal problems in which a temporal
network is first translated into an equivalent Timed Game
Automaton (TGA) before being solved by an off-the-shelf TGA
solver. This approach illuminates the fascinating relationships
between TGAs and a variety of temporal networks—including
CSTNs. However, it remains to be seen whether this approach
can yield practical DC-checking algorithms.

This paper presents a new approach to solving the DC-
checking problem for CSTNs: one based on constraint prop-
agation. The approach draws inspiration from two different
lines of research from the literature. First, like Conrad and
Williams [3], our approach labels constraints with propositions.
However, whereas Conrad and Williams use propositional labels
to represent alternative scenarios from among which an agent
can choose, our approach uses propositional labels to represent
the scenarios in a CSTN that are incrementally revealed and,
thus, not controlled by the planning agent. Second, the CSTN
semantics and some of the constraint-propagation rules in this
paper draw from prior work on Conditional Simple Temporal
Networks with Uncertainty (CSTNUs) [4]–[6]. That work
presents a variety of sound constraint-propagation rules in the
more general CSTNU setting; however, it has not yet provided
a complete set of rules and, therefore, has not yet resulted
in a sound-and-complete dynamic-controllability algorithm
for CSTNUs.1 Our approach applies some of their constraint-
propagation rules in the more restrictive CSTN setting, but
augments them to include additional rules that guarantee

1The DC-checking problem for CSTNs is quite different from the DC-
checking problem for STNUs [7] or CSTNUs [4]. For STNUs and CSTNUs,
which contain uncertain durations called contingent links, the “C” in DC-
checking stands for “controllability”.
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Fig. 1: A simple CSTN in a health-care setting.

completeness. As a result, our approach provides the first sound-
and-complete DC-checking algorithm for CSTNs that is based
on constraint propagation. The paper empirically evaluates the
new algorithm, demonstrating its practicality across a variety of
networks. Future work will explore the possibility of extending
the novel techniques from this paper to the more general
problem of checking the dynamic controllability of CSTNUs,
for which no practical sound-and-complete algorithm yet exists.

II. BACKGROUND

Dechter et al. [8] introduced Simple Temporal Networks
(STNs) to facilitate representing and reasoning about temporal
constraints. An STN comprises real-valued variables, called
time-points, and binary difference constraints on those variables.
The Simple Temporal Problem (STP) is the problem of
determining whether an STN is consistent (i.e., has a solution).

Tsamardinos et al. [1] augmented STNs to include time-
points and temporal constraints that apply only in certain
scenarios, where each scenario is represented by a conjunction
of propositional literals.2 For convenience, in this paper,
conjunctions such as p∧¬q∧ r are frequently notated as p¬qr.
Fig. 1 provides a simple example of a CSTN in a health-care
setting. In the figure, the CSTN is shown in its graphical form,
where the nodes X,P?, Q?, E and Y represent time-points,
and the directed edges represent binary difference constraints.
For example, the time-point P? represents the time at which a
particular blood test is performed. This test generates a truth
value for the propositional letter p, where p = true indicates
that the patient tested positive for a particular reagent. In this
example, if the test generates a positive result, then the test is
repeated at time-point Q?, which generates a truth value for
the propositional letter q. Since the time-point Q? applies only
in scenarios where p = true , it is labeled by p. Similarly, the
edge from P? to Q? is labeled by p. It represents the constraint,
Q?− P? ∈ [15, 20] (i.e., the repeated test must be performed
between 15 and 20 minutes after the first test). Finally, note

2Tsamardinos et al. only attached labels to time-points. They left it implicit
that constraints among labeled time-points may apply only in certain scenarios.

that the constraints from Q? to E, and from E to Y are labeled
by pq, indicating that they apply only in scenarios where both
p and q are true .

The following definitions are equivalent to those from
Tsamardinos et al. [1], except that they explicitly attach labels
to constraints as well as time-points, as in Hunsberger et al. [4].

Definition 1 (Labels). Given a set P of propositional letters:
• a label is a (possibly empty) conjunction of (positive or

negative) literals from P . The empty label is notated �.
• for any label `, and any p ∈ P , if ` |= p or ` |= ¬p, then

we say that p appears in `.
• for any labels, `1 and `2, if `1 |= `2 (i.e., if `1 contains

all of the literals in `2) then `1 is said to entail `2.3 If
`1 ∧ `2 is satisfiable, then `1 and `2 are called consistent.

• the label universe of P , denoted by P∗, is the set of all
consistent labels whose literals are drawn from P .

Definition 2 (CSTN). A Conditional Simple Temporal Network
(CSTN) is a tuple, 〈T , C, L,OT ,O,P〉, where:
• P is a finite set of propositional letters (or propositions);
• T is a finite set of real-valued time-points (i.e., variables);
• C is a set of labeled constraints, each having the form,

(Y −X ≤ δ, `), where X,Y ∈ T , δ ∈ R, and ` ∈ P∗;
• L : T → P∗ is a function assigning labels to time-points;
• OT ⊆ T is a (finite) set of observation time-points; and
• O : P → OT is a bijection that associates a unique

observation time-point to each propositional letter.

In a CSTN graph, O(p) (i.e., the observation time-point
associated with p) may be denoted by P?; and each labeled
constraint, (Y −X ≤ δ, `), is represented by an arrow from X
to Y annotated by the labeled value, 〈δ, `〉.4 Any time-points,
X and Y , may participate in multiple constraints of the form,
(Y −X ≤ δi, `i); thus, the edge from X to Y in the CSTN
graph may have multiple labeled values of the form, 〈δi, `i〉.

In addition to the requirements listed in Defn. 2, Tsamardinos
et al. [1] asserted that well-defined CSTNs should exhibit
certain additional properties. For example, if a time-point X
applies only in scenarios where p is true (i.e., if the label on
the time-point X includes p), then X should not be executed
before the truth value of p has been observed (i.e., X should
be constrained to occur after the corresponding observation
time-point P?). Later work [4] collected such well-definedness
properties, calling them WD1, WD2 and WD3. Below, the
terms label honesty and label coherence are introduced to
facilitate the presentation of the WD properties.

Honest Labels
Suppose that the label for an observation time-point Q? contains
the literal p, indicating that Q? applies only in scenarios where

3In Tsamardinos et al., `1 was said to subsume `2. However, that use of
the term, subsumption, conflicts with the standard usage of that term, whereby
a subsumer is more general than its subsumee [9].

4The graph in Fig. 1 follows an alternative convention, whereby the
constraint, (Y − X ∈ [a, b], `), is represented by an arrow from X
to Y annotated by [a, b], `. This is equivalent to the pair of constraints,
(Y −X ≤ b, `) and (X − Y ≤ −a, `).



W
[�]

X
[pq]

Y
[�]

P?
[�]

R?
[�]

Q?
[p]

S?
[r]

〈3, p〉

honest, incoherent

〈8, pq〉

honest, coherent

〈5, pqs〉

dishonest, coherent

〈−4, q〉

dishonest, incoherent

Fig. 2: Examples of label honesty and coherence

p is true; and that the label for another time-point E contains
the literal q, indicating that E applies only in scenarios where
q is true . But then E applies only in scenarios where Q? has
been executed—and, hence, where p is true . Thus, if the label
on E is honest, it should include both p and q, as shown in
Fig. 1. More generally, the label on E should include all of
the literals contained in the label on Q? (i.e., the label on E
should entail the label on Q?). And these remarks also apply
to labels on constraints, as follows.

Definition 3 (Honest Label). A label ` in a CSTN, whether
on a time-point or constraint, is called honest if for each q that
appears in `, ` entails L(Q?) (i.e., ` contains all literals from
the label of the observation time-point for q).

An honest label is equivalent to a minimum execution
scenario for a CSTP [1].

Coherent Labels

Suppose that a time-point X applies only in scenarios where
p is true , and another time-point Y applies only in scenarios
where q is false . Then any constraint involving both X and Y
applies only in scenarios where p is true and q is false. Thus,
to be coherent, the label on such a constraint should include
both p and ¬q.

Definition 4 (WD1: Label coherence). A CSTN holds property
WD1 (i.e., has coherent labels) if for each labeled con-
straint, (Y −X ≤ δ, `), the label ` is satisfiable and entails
L(X) ∧ L(Y ) (i.e., contains all literals from L(X) and L(Y )).

It is easy to confirm that all of the labels in Fig. 1 are honest,
and all of the labels on constraints are coherent. In contrast,
the graph in Figure 2 contains labels that exhibit different
combinations of label honesty and coherence. In the figure, the
labels on time-points are enclosed in square brackets.

Definition 5 (WD2:). A CSTN holds property WD2 if for
each time-point T ∈ T , its label L(T ) is honest, and for each
p ∈ P that appears in L(T ), (O(p)− T ≤ −ε, L(T )) ∈ C, for
some ε > 0.

Definition 6 (WD3: Constraint Label Honesty). A CSTN holds
property WD3 if the label on each of its constraints is honest.

In brief, WD1 ensures that labels on constraints entail the
labels on the corresponding endpoints; WD2 ensures that time-
point labels are honest, and that each time-point is constrained
to occur after the observation time-points corresponding to
propositions appearing in its label; and WD3 ensures that edge
labels are honest.

Definition 7 (Well-Defined CSTN). A CSTN is said to be
well defined if properties WD1, WD2 and WD3 hold for it.

Note. The sample CSTN from Fig. 1 is well defined. The
rest of the paper restricts attention to well-defined CSTNs.

A. The Dynamic Consistency of CSTNs
The truth values of propositions in a CSTN are not known in

advance; instead, they are incrementally revealed over time as
the observation time-points execute. A strategy for executing
the time-points in a CSTN is defined in a way that allows it
to react to observations in real time. For example, suppose
that the observation time-point P? in the CSTN from Fig. 1 is
executed at time 2, revealing the truth value of p. Subsequent
execution decisions may react to that observation. For example,
if p = true , then Q? might be executed next, say, at time 18;
whereas if p = false, then Y might be executed next, say, at
time 4. In any case, execution decisions must not be allowed
to depend on advance knowledge of future events.

A viable and dynamic execution strategy for a CSTN is a
strategy that guarantees that all relevant constraints will be
satisfied no matter which scenario is incrementally revealed
over time. A CSTN with such a strategy is called dynamically
consistent. The semantics of dynamic consistency is given by
the following definitions, drawn from Hunsberger et al. [4].

Definition 8 (Scenario/Interpretation Function). A scenario
(or interpretation function) over a set P of propositional letters
is a function, s : P → {true, false}, that assigns a truth value
to each letter in P . Any such function also provides the truth
value for any label ` ∈ P∗, which is denoted by s(`). The set
of all scenarios over P is denoted by IP (or simply I).

Definition 9 (Schedule). A schedule for a set of time-points
T is a mapping, ψ : T → R, that assigns a real number to
each time-point in T . The set of all schedules for any subset
of T is denoted by ΨT (or simply Ψ, if context allows).

The projection of a CSTN, S , onto a scenario, s, is the STN
obtained by collecting all time-points and constraints from S
whose labels are true under s (i.e., the time-points that must
be executed and the constraints that must be satisfied under s).

Definition 10 (Projection). Let S = 〈T , C, L,OT ,O,P〉 be
any CSTN, and s any scenario over P . The projection of S
onto s—notated scPrj (S, s)—is the STN, (T +

s , C+
s ), where:

• T +
s = {T ∈ T | s(L(T )) = true}; and

• C+
s = {(Y −X ≤ δ) | for some `, (Y −X ≤ δ, `) ∈ C

and s(`) = true}

Definition 11 (Execution Strategy). An execution strategy for
a CSTN S = 〈T , C, L,OT ,O,P〉 is a mapping, σ : I → ΨT ,
such that for each scenario s ∈ I, the domain of σ(s) is T +

s

(cf. Defn. 10). If, in addition, for each scenario s, the schedule
σ(s) is a solution to the projection scPrj (S, s), then σ is called
viable. In any case, the execution time for the time-point X
in the schedule σ(s) is denoted by [σ(s)]X .

Up to this point, there is nothing in the definition of an
execution strategy that prevents it from making decisions based



on advance knowledge of future observations. The following
definitions ensure that a dynamic execution strategy makes
decisions that depend only on past observations. For any time t,
the observations before time t are recorded in the history.

Definition 12 (History). Let S = 〈T , C, L,OT ,O,P〉 be any
CSTN, s any scenario, σ any execution strategy for S, and t
any real number. The history of t in the scenario s, for the
strategy σ—notated Hist(t, s, σ)—is the set of observations
made before time t according to the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | O(p) ∈ T +
s and [σ(s)]O(p) < t}

Definition 13 (Dynamic Execution Strategy). An execution
strategy σ for a CSTN is called dynamic if for any scenarios
s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t.

In other words, if a dynamic execution strategy σ executes X
at time t in scenario s1, and the schedules σ(s1) and σ(s2)
have the same history of observations up to time t, then σ
must execute X at that same time t in scenario s2. In this way,
the decisions of σ can only depend on past observations.

Definition 14 (Dynamic Consistency). A CSTN S is dynami-
cally consistent (DC) if there exists an execution strategy for
it that is both dynamic and viable.

The dynamic property ensures that the execution decisions
made by the strategy depend only on past observations; viability
ensures that all relevant constraints will be satisfied no matter
which scenario is incrementally revealed over time.

III. DC-CHECKING FOR CSTNS BASED ON THE
PROPAGATION OF LABELED CONSTRAINTS

Algorithms for checking the dynamic consistency of arbi-
trary CSTNs are called DC-checking algorithms. As already
mentioned, sound and complete DC-checking algorithms for
CSTNs have already been presented [1], [2]. However, they
are primarily of theoretical interest; the algorithms either have
not been implemented or only work on small networks.

The algorithm presented in this paper follows a different
approach, one that is based on the propagation of labeled
constraints. Although this kind of approach has been ap-
plied to the more general problem of checking the dynamic
controllability of CSTNUs [4], it has only met with limited
success in that context; to date, it has not yielded a sound-
and-complete algorithm. This paper presents a new set of
constraint-propagation rules that draws from the prior work
on CSTNUs, but includes new rules that take into account
important features in CSTN graphs (e.g., negative q-loops and
negative q-stars) that have never been identified before. The
result is a DC-checking algorithm for CSTNs that is both sound
and complete. In addition, the empirical evaluation of our initial
implementation suggests that, unlike its predecessors, the new
algorithm may be practical for a wide variety of applications.
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Fig. 3: A dynamically consistent CSTN.

A. Motivation

Figure 3 shows a CSTN with three observation time-points—
P?, Q? and R?—and two other time-points, Y and Z. As
in many STNs, Z is a special starting point whose value is
fixed at zero. In the figure, the shaded labeled values, some of
which include novel annotations, are generated by constraint
propagation, to be discussed later. The labeled values on edges
terminating at Z are used by the earliest-first execution strategy,
discussed below.

1) Lower bounds and the current partial scenario: To ensure
that each time-point X cannot be executed before Z in any
scenario, it suffices to include a labeled constraint of the form,
(Z−X ≤ 0,�), which, since Z = 0, may be more conveniently
notated as (X ≥ 0,�). In the CSTN graph, such a constraint
is represented by an edge from X to Z labeled by 〈0,�〉.
More generally, for each X , any labeled constraint of the form,
(Z − X ≤ −δ, `), represents a lower-bound constraint that
applies in all scenarios that are consistent with the label `.
Such a constraint, which may be more conveniently notated
as (X ≥ δ, `), is represented by an edge in the CSTN graph
from X to Z labeled by 〈−δ, `〉.

During execution, as observation time-points are executed,
truth values for the corresponding propositional letters are
generated. Each observation has the potential to make a large
number of labeled constraints irrelevant. For example, if p is
observed to be true , then any constraint whose label includes
¬p need not be satisfied and, thus, can thenceforth be ignored.
As a result, such observations can change the effective lower
bounds for any as-yet-unexecuted time-points. The computation
of such bounds depends on the observations that have occurred
so far, which can be concisely represented by a label, called
the current partial scenario (CPS). For example, before any
observations have been made, the CPS is represented by the
empty label, �. Later on, if P? generated the result p = true ,
then the CPS would be updated to p. Still later, if Q? generated
q = false , then the CPS would be updated to p¬q. And so on.

Let ` be a current partial scenario, and X an as-yet-un-
executed time-point whose label L(X) is consistent with `. If
` 6|= L(X), then for some p ∈ L(X), the observation time-point
P? has not yet been executed and, since X must occur after
P?, it follows that X cannot be executed next by any viable
strategy. However, if ` |= L(X), then X could be executed
next; and the effective lower bound (ELB) for X can be defined
as the maximum among the lower bounds for X whose labels
are consistent with `.



2) The earliest-first strategy: Once a CSTN is known to
be DC, a wide variety of dynamic execution strategies may
be available for successfully executing the time-points in
the network. However, the proof of completeness for the
DC-checking algorithm presented in this paper need only
demonstrate the existence of one such strategy. For this purpose,
an iterative earliest-first execution strategy is defined. At the
beginning of each iteration, the earliest-first strategy computes
the effective lower bound for each unexecuted time-point whose
label is entailed by the current partial scenario. It then identifies
the time-point X∗ whose effective lower bound is minimal,
and executes X∗ at that minimal lower bound (i.e., as early
as possible). If X∗ is an observation time-point, the strategy
updates the current partial scenario accordingly, in preparation
for the next iteration. The process continues until all time-points
have been executed. As will be seen, correctly computing the
relevant lower bounds requires greater care than has been so
far indicated.

3) Instantaneous reaction: Recall that the definitions of
histories and dynamic execution strategies (Defns. 12 and 13)
require execution decisions to depend only on past observations,
not on present or future observations. However, to simplify
the earliest-first strategy used in this paper, we allow it to
make decisions based on past or present observations. In other
words, it will be allowed to react instantaneously to the truth
values that are generated by the execution of observation time-
points. As has been noted in similar contexts [10], this kind of
simplification does not affect the basic results, but it enables
avoiding situations where there is no “earliest” time (e.g., in
the open interval immediately following an observation). In this
context, it suffices to replace the original definition of dynamic
execution strategy (cf. Defn. 13) with that of an IR-dynamic
execution strategy, given below. (“IR” stands for “Instantaneous
Reaction”.) Note that the only difference between Defns. 13
and 15 is the “unless” clause in Defn. 15.

Definition 15 (IR-Dynamic Execution Strategy). An execution
strategy σ for a CSTN is called IR-dynamic if for any scenarios
s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t
unless: [σ(s1)]P? = [σ(s2)]P? = t and s1(p) 6= s2(p)

for some p ∈ P ∗, where X 6≡ P?.

Thus, if the two schedules, σ(s1) and σ(s2), both execute
the observation time-point P? at time t, but generate different
truth values for p, then X need not be executed at time t in
the schedule σ(s2). That is, σ may instantaneously react to
the observed value of p in scenario s2 by choosing to execute
X at some later time.

For convenience, in the rest of this paper, the term dynamic
execution strategy is used to refer to IR-dynamic execution
strategies.

It is not hard to verify that the CSTN in Figure 3 is
DC. Indeed, Algorithm 1 provides an execution strategy that
dynamically generates schedules that are guaranteed to satisfy

Algorithm 1: Execution strategy for the CSTN from Fig. 3

Execute Z at 0, and P? at 7;
if (p == true) then

Execute both R? and Y at 7;
if (r == false) then Execute Q? at 7;
else Execute Q? at 8 ;

else
Execute Q? at 7;
if (q == true) then Execute Y at 7, and R? at 8;
else Execute R? at 7, and Y at 8 ;

all of the constraints in the network no matter how the
observations of p, q and r turn out. This strategy employs
instantaneous reaction. For example, if executing P? at 7
generates p = true , then R? is immediately executed, also at
time 7. Later sections show how this strategy can be generated.

Since a CSTN is a restricted form of CSTNU, the constraint-
propagation rules for CSTNUs [5], [6] can also be applied to
CSTNs. However, those rules—hereinafter called the CSTNU
rules—are not sufficient for solving the DC-checking problem
for arbitrary CSTNs, let alone the analogous problem for
CSTNUs. The main reason is that the CSTNU rules only
propagate constraints when consecutive edges have mutually
consistent labels which turns out to be too restrictive, as
discussed below.

4) Negative q-loops: Consider the loop from Q? to Y to R?
to Q? in Figure 3 whose edges have labels that are pairwise
inconsistent (e.g., pr is inconsistent with ¬p¬q, which is
inconsistent with ¬pq). Now, as long as the values of p, q
and r are all unknown, it is not safe to violate any of those
constraints; however, since the loop has negative length, no
schedule can jointly satisfy them all. Because such loops are
only problematic when one or more propositional letters have
unknown truth values, we call such loops negative q-loops,
where the “q” stands for “question mark”. For the sample
network, the conundrum presented by the negative q-loop can
be resolved by first executing P?, observing the result, and
then reacting appropriately. For example, if executing P? yields
p = false, then the constraint from Q? to Y can be ignored,
effectively resolving the negative q-loop. The DC-checking
algorithm for CSTNs presented in the next section properly
addresses the challenges raised by negative q-loops.

5) Negative q-stars: Another problem arises when com-
puting the effective lower bounds for unexecuted time-points,
needed during execution. Recall that the ELB for each time-
point X derives from the strongest labeled value on the edge
from X to Z that is consistent with the current partial scenario.
But restricting constraint propagation to mutually consistent
labels turns out to be insufficient to generate all such labeled
values. For example, consider the labeled values, 〈−1,¬p¬q〉
and 〈−2,¬pq〉, that appear on the consecutive edges from
Y to R? to Z in Fig. 3. Prior to any observations, both of
the corresponding constraints must be satisfied, despite their
mutually inconsistent labels. The question is: what should be



the label on the generated lower-bound edge from Y to Z?
Since the lower-bound edges from unexecuted time-points

all point toward Z, and typically have negative lengths, we call
any collection of such edges a negative q-star. For example,
consider the negative q-star formed by the lower-bound edges
for P?, Q?, R? and Y in Figure 3. Before any propagation,
the respective lower bounds for these time-points are 7, 0, 2
and 0. Propagating constraints across consistent labels yields
only one update: the path from Q? to Y to Z generates a new
edge (not shown in the figure) from Q? to Z whose labeled
value is 〈−1, pr〉, representing a lower bound of 1 for Q?
in scenarios where p and r are true. However, as will be
seen in the next section, appropriate propagation of constraints
across inconsistent labels in this negative q-star generates much
stronger lower bounds for these time-points: 7 for each one, as
indicated by the shaded labeled values, 〈−7,�〉, in the figure.

The insufficiency of the CSTNU rules to properly address
constraint propagation becomes even more dramatic if the
labeled value on the edge from Z to Q is changed from 〈8, pr〉
to 〈7, pr〉. In that case, the network is no longer DC, but the
existing CSTNU rules are unable to detect it. Since they ignore
mutually inconsistent labels, they are unable to determine that
Q? must be at least 8 after Z in the case of pr and, therefore,
miss the (unresolvable) negative cycle between Z and Q?.

B. New Constraint-Propagation Rules for CSTNs

As already mentioned, prior work has provided a variety
of sound-but-not-complete constraint-propagation rules for the
more general case of CSTNUs [5], [6]. Our approach begins
with a small subset of those rules, restricting them to CSTNs
and modifying them slightly to correct some oversights. It then
introduces novel variants of the rules to handle problems raised
by negative q-loops and negative q-stars. The resulting set of
CSTN rules is then shown to be both sound and complete for
the purposes of DC-checking for CSTNs.

To facilitate the presentation of the constraint-propagation
rules for CSTNs, child nodes are introduced. To illustrate
the concept, recall the CSTN from Fig. 1 in which Q? is an
observation time-point whose label contains the literal p. Thus
Q? only applies in scenarios where p is true . In such cases, Q?
is called a child of P?. (We may also say that q is a child of p.)
Note that if ` is an honest label that contains q, it must also
contain p. Conversely, an honest label that does not contain p
cannot contain q or any other child of p.

Definition 16. If Q? is an observation time-point whose label
contains an occurrence of p (resp., ¬p), then Q? is called a
child of P?. We may also say that q is a child of p (resp., ¬p).

Using child nodes enables the constraint-propagation rules to
be specified in a way that ensures that they preserve label
honesty, an issue that was not addressed in prior work.

Note. In a well-defined CSTN, if p appears in the label
L(X), then X is constrained to occur after P?. Similarly, if
Q? is a child of P?, then Q? is constrained to occur after P?.
Hence, the current partial scenario resulting from any viable
execution strategy must be represented by an honest label.

LP: X W Y
〈u, α〉 〈v, β〉

〈u + v, αβ〉

R0: P? X
〈w,αρ〉
〈w,α′〉

if w < 0, ρ ∈ {p,¬p}

R∗3: P? X Y
〈w,αβ〉 〈v, βγρ〉

〈max{v, w}, αβγ′〉
if w ≤ 0, ρ ∈ {p,¬p}

Pre-existing constraints (unshaded) are presumed to have honest, coherent,
and satisfiable labels. New constraints (shaded) are only generated if their
labels are satisfiable. For R0, the literal ρ (either p or ¬p) does not appear
in α or L(X), and α′ is obtained by removing any occurrence of ρ, as
well as any children of ρ from α. (If ρ appeared in L(X), then the WD2

requirement that the network include a constraint, (P?−X ≤ −ε, L(X)),
would, through an application of the LP rule, generate the unsatisfiable
constraint, (X −X ≤ −ε + w,α) (i.e., (0 < 0, α)), which would imply
that the network was not DC, obviating the need for any further constraint
generation.) For R∗3 , α, β and γ must not share any letters, ρ must not appear
in α, β, γ, L(X) or L(Y ), and γ′ is obtained by removing children of ρ
from γ.

TABLE I: A subset of the CSTNU rules, restricted to CSTNs

LP: X W Y
〈3, pqr〉 〈4, rs¬t〉

〈7, pqrs¬t〉

R0: P? X ,
〈−8, abcdp〉
〈−8, bcd〉 where L(A?) = pr

R∗3: P? X Y ,
〈−5, ab〉 〈−3, bcdp〉

〈−3, abc〉 where L(D?) = p

R∗3: P? X Y ,
〈−5, ab〉 〈−8, bcdp〉

〈−5, abc〉 where L(D?) = p

Unless stated otherwise, the label on each time-point is �.

TABLE II: Instances of the CSTN rules from Table I

Table I lists a set of three constraint-propagation rules for
CSTNs that are restricted versions (with some modifications
to ensure that they preserve label honesty) of constraint-
propagation rules for CSTNUs from prior work [5], [6];
corresponding sample instances of these rules are given in
Table II. For each rule, the labeled value generated by the
rule is shaded. For example, the Label Propagation (LP) rule
generates a labeled edge from X to Y when given pre-existing
edges from X to W to Y . This rule is obtained by restricting the
Labeled No Case rule for CSTNUs to CSTNs.5 It is analogous
to the propagation of unlabeled edges in an STN, except that the
labels on the pre-existing edges are conjoined in the generated
edge. (Recall that an expression such as αβ represents the
conjunction of the labels α and β.)

Next, the R0 rule for CSTNs is a restriction of the R0 rule
for CSTNUs, modified slightly to ensure that the generated
label is honest. R0 is a label modification rule: the numerical
weight of the edge does not change; but the label is made more
general. The intuition behind this rule is that if the time-point
X must be executed before the truth value of p can be known
(i.e., if X must be executed before P?), then that constraint
cannot be restricted to scenarios that depend on p and, thus,
p—and any of p’s children—can be removed from the label.

5The Labeled No Case rule for CSTNUs is a generalization of the No Case
rule for STNUs introduced by Morris and Muscettola [11]. Since the descriptor
“No Case” only provides intuitive guidance in the context of networks (e.g.,
STNUs and CSTNUs) that have contingent links, this paper chooses a more
helpful descriptor for the CSTN rule: Labeled Propagation.



Finally, the R∗3 rule for CSTNs is a restriction of the R3 rule
for CSTNUs, but generalized to cover the case v < w. (Hence
the asterisk.) It applies in cases where the execution of X and
any violation of the generated constraint would both have to
occur before the value of p is known. For example, in the first
sample instance of R∗3 in Table II, if X = 0, then in scenarios
consistent with abc, p cannot be observed before time 5 and
any violation of the generated constraint, (X − Y ≤ −3, abc)
(i.e., (Y ≥ 3, abc)), would require executing Y before time
3, and hence before p could be observed. But that might
lead to a subsequent violation of the pre-existing constraint,
(X − Y ≤ −3, bcdp), should p and d both eventually happen
to be true . Thus, the generated constraint must not be violated.

C. Soundness and Completeness

The notions of soundness and completeness are central to
this paper. Therefore, they are defined carefully below, starting
with the definition of what it means for an execution strategy
to satisfy a labeled constraint, something that is only implicit
in the definition of a viable execution strategy (cf. Defn. 11).

Definition 17. An execution strategy σ satisfies a labeled
constraint (Y −X ≤ δ, `) if for every scenario s ∈ P ∗:

(1) s is inconsistent with `; or
(2) [σ(s)]Y − [σ(s)]X ≤ δ.

Fact 1. Let S be any CSTN, and σ any execution strategy
for S. Then σ is viable for S if and only if σ satisfies every
labeled constraint in S .

Proof: Suppose σ is viable. Let s be any scenario. Since
σ is viable, the schedule σ(s) is a solution to the projection
scPrj (S, s). Thus, [σ(s)]Y − [σ(s)]X ≤ δ holds for every
constraint (Y −X ≤ δ) in that projection. Since the constraints
in that projection correspond to the labeled constraints in S
whose labels are consistent with s, and since the choice of s
was arbitrary, it follows that σ satisfies every labeled constraint
in S. Furthermore, each of these steps is reversible.

Corollary 1. A CSTN is dynamically consistent if and only
if it has a dynamic execution strategy that satisfies all of its
labeled constraints.

As already mentioned, the DC-checking algorithm presented
in this paper is based on the propagation of labeled constraints
according to a particular set of constraint-propagation rules.
The algorithm applies the rules in all possible combinations
until either all possible propagations have been done or a
particular kind of negative cycle has been found. (The algorithm
is presented in detail in Section III-F.) If such a negative cycle
is found, then no dynamic execution strategy can execute
all of the time-points in the cycle while satisfying all of the
constraints that determine the cycle; hence, the network is
not dynamically consistent [1], [8]. A necessary condition for
ensuring that the DC-checking algorithm properly distinguishes
DC and non-DC networks is that the constraint-propagation
rules must be sound, as follows.

Definition 18 (Sound Constraint-Propagation Rule). A con-
straint-propagation rule for CSTNs is sound if whenever a
viable and dynamic execution strategy σ satisfies the pre-
existing constraints in any instance of that rule, then σ
necessarily satisfies the corresponding constraint generated
by that instance of the rule.

Theorem 1. The constraint-propagation rules in Table I are
sound.

Proof: For the LP rule, suppose that σ is any execution
strategy that satisfies the labeled constraints, (W −X ≤ u, α)
and (Y −W ≤ v, β). Let s be any scenario that is consistent
with αβ. Then s is consistent with both α and β; therefore,
[σ(s)]W − [σ(s)]X ≤ u and [σ(s)]Y − [σ(s)]W ≤ v, which
together imply that [σ(s)]Y − [σ(s)]X ≤ u+ v.

For the R0 rule, suppose that σ is any viable and dy-
namic execution strategy that satisfies the labeled constraint,
(X − P? ≤ w,αp), where w < 0, and p does not appear
in α (either positively or negatively), as in Table I. (The
case ρ = ¬p is handled similarly.) First, note that X and P?
must be distinct time-points since 0 = X − X ≤ w < 0 is
unsatisfiable. Next, let s be any scenario that is consistent
with α. Then, let s1 and s2 be the same as s, except that
s1(p) = true and s2(p) = false . Now, by construction, s1

is consistent with αp; thus, [σ(s1)]X − [σ(s1)]P? ≤ w < 0,
whence [σ(s1)]X < [σ(s1)]P?. Next, consider the schedules,
σ(s1) and σ(s2), each augmented with annotations indicating
the truth values of observation time-points as they execute. Let
t∗ ∈ R be the first time at which these annotated schedules
differ. By construction, Hist(t∗, s1, σ) = Hist(t∗, s2, σ),
whence the only way that the annotated schedules could
differ at t∗ is if some observation time-point is executed
at t∗ yielding different truth values in the two scenarios
(cf. Defn. 15). Since s1 and s2 differ only with respect to
p, it follows that P? must be executed at time t∗ in both
scenarios (i.e., [σ(s1)]P? = t∗ = [σ(s2)]P?). Given that
[σ(s1)]X < [σ(s1)]P? = t∗, and the fact that the two schedules
are identical before t∗, it follows that [σ(s2)]X = [σ(s1)]X and
therefore that [σ(s2)]X − [σ(s2)]P? ≤ w. Since the scenario s
equals one of s1 and s2, it follows that [σ(s)]X−[σ(s)]P? ≤ w.
Since s was any scenario consistent with α, it follows that σ
satisfies the labeled constraint, (X − P? ≤ w,α).

The above argument showed that p (or ¬p) could be removed
from the label on a negative edge emanating from P?. A similar
argument can be used to show that any child of p (or ¬p)
can be removed from α, yielding a labeled constraint that σ
continues to satisfy. The key point is that any child Q? of P?
is constrained to occur after P?; therefore, by the time Q? is
executed, both X and P? will have already been executed in
a way that satisfies the inequality, X −P? ≤ w. Proceeding in
this way, removing one child literal at a time from α, ensures
that σ must satisfy the labeled constraint, (X − P? ≤ w,α′),
where α′ is obtained by removing any children of p (or ¬p)
from α.

For rule R∗3, suppose that σ is a viable and dynamic execution
strategy that satisfies the labeled constraints, (X−P? ≤ w,αβ)



and (X−Y ≤ v, βγp), where w ≤ 0. (The case where ρ = ¬p
is handled similarly.) We first aim to show that σ must also
satisfy the labeled constraint, (X − Y ≤ m,αβγ), where
m = max{v, w}. Let s be any scenario that is consistent with
αβγ. As in the preceding proof, let s1 and s2 be the same as
s except that s1(p) = true and s2(p) = false. Now, since p
does not appear in αβ (cf. Table I) and s |= αβγ, it follows
that s1 |= αβ. Therefore, since σ satisfies (X − P? ≤ w,αβ),
it follows that [σ(s1)]X − [σ(s1)]P? ≤ w and, hence, that
[σ(s1)]X ≤ [σ(s1)]P? + w ≤ [σ(s1)]P?. Similarly, it follows
that [σ(s2)]X − [σ(s2)]P? ≤ w and [σ(s2)]X ≤ [σ(s2)]P?.

Next, by construction, s1 |= βγp. In addition, σ satisfies
(X − Y ≤ v, βγp). Therefore, [σ(s1)]X − [σ(s1)]Y ≤ v ≤ m.

Next, as in the proof for rule R0, let t∗ be the first time at
which the annotated schedules for σ(s1) and σ(s2) differ. As
before, since s1 and s2 differ only with respect to p, it follows
that [σ(s1)]P? = t∗ = [σ(s2)]P?. And since both schedules
execute X at or before P?, it follows that [σ(s1)]X = [σ(s2)]X .
(If one schedule executes X at some time tx < t∗, then both
must execute X at tx. The only other option is that both execute
X at t∗.)

Finally, note that if Y is executed at some time ty < t∗ in
either schedule, then σ(s1) and σ(s2) both must execute Y at
ty , whence [σ(s2)]X − [σ(s2)]Y = [σ(s1)]X − [σ(s1)]Y ≤ m.
However, if σ(s2) executes Y at or after t∗, then
[σ(s2)]Y ≥ t∗ = [σ(s2)]P? ≥ [σ(s2)]X − w ≥ [σ(s2)]X −m.

Since one of s1 and s2 is identical to s, it follows that
[σ(s)]X − [σ(s)]Y ≤ m. Since s was chosen arbitrarily such
that s |= αβγ, it follows that σ satisfies (X − Y ≤ m,αβγ).
All that remains is to show that any children of p can be
removed from γ (yielding γ′ in Table I), which can be done
one at a time, as in the proof for rule R0.

Note. It is straightforward to show that the LP, R0 and R∗3
rules preserve label honesty and coherence.

In the field of temporal constraint networks it is common
practice to classify a consistency checking algorithm as sound
if its negative answer is always correct [7], [11], [12]. Similarly,
completeness is typically defined in terms of its answers for
non-DC networks. Therefore, this paper adopts the following
definition of soundness and completeness for DC-checking
algorithms for CSTNs.

Definition 19 (Soundness and Completeness for DC-checking
algorithms). A DC-checking algorithm for CSTNs is sound
if its negative answer is always correct (i.e., whenever it says
that a given CSTN is not DC, then the network is necessarily
not DC). A DC-checking algorithm for CSTNs is complete if
for any non-DC instance given as input, the algorithm always
returns a negative answer. A DC-checking algorithm is correct
if it is both sound and complete.

It is worth noting that if a DC-checking algorithm always
halts with an answer, then the definition of completeness can
be expressed using the contrapositive of the above definition: a
DC-checking algorithm for CSTNs is complete if whenever it
says that a given CSTN is DC, then that network is necessarily
DC. That is the approach taken in Theorem 3 below.

For any DC-checking algorithm that always halts with an an-
swer, the following table provides equivalent characterizations
of the notions of soundness and completeness:

Sound: Alg. says “No” =⇒ CSTN is not DC
CSTN is DC =⇒ Alg. says “Yes”

Complete: Alg. says “Yes” =⇒ CSTN is DC
CSTN is not DC =⇒ Alg. says “No”

The DC-checking algorithm presented in this paper uses
a sound set of constraint-propagation rules that generate
constraints that any viable and dynamic execution strategy
for any given CSTN must satisfy. Therefore, the algorithm is
sound. Furthermore, the algorithm always terminates and, as
will be seen, if it says that a given CSTN is DC, then the
network is necessarily DC. Therefore, the algorithm is both
sound and complete.

D. Extending literals and labels

To properly deal with the challenges raised by negative
q-loops and negative q-stars, the labels on constraints must
be more expressive: they must be able to represent that a
constraint applies only in scenarios where the truth value of
a given propositional letter is not yet known. Toward that
end, q-literals and q-labels are defined below. For example,
a q-labeled constraint such as (X ≥ 5, (?p)q) only applies in
scenarios where p is unknown and q is true . For the purposes
of this paper, it suffices to restrict the use of q-labels to lower-
bound edges terminating at Z (i.e., the edges that play such
an important role in the earliest-first execution strategy).

First, an alternative characterization of what it means for a
strategy to satisfy a labeled constraint on a lower-bound edge
is given. The following result essentially says that a viable and
dynamic execution strategy σ satisfies the labeled constraint
(X ≥ δ, `) if and only if when X is executed in any scenario
s, then either ` is already known to be false or the constraint
holds: [σ(s)]X ≥ δ.

Lemma 1. Let σ be any viable and dynamic execution strategy
for some CSTN S; and let (X ≥ δ, `) be any lower-bound
constraint, where ` ∈ P∗. Let:

P+
` = {pi ∈ P | ` |= pi and X 6≡ Pi?}; and

P−` = {qj ∈ P | ` |= ¬qj and X 6≡ Qj?}.

Then σ satisfies (X ≥ δ, `) if and only if for each scenario s,
at least one of the following hold:

(1) [σ(s)]X ≥ δ;
(2)

∨
pi∈P+

`
([σ(s)]Pi? ≤ [σ(s)]X) ∧ (s(pi) = false); or

(3)
∨
qj∈P−`

([σ(s)]Qj? ≤ [σ(s)]X) ∧ (s(qj) = true).

Note that condition (2) holds when some propositional letter
pi that appears positively in ` is already known to be false
when X is executed. Similarly, condition (3) holds when some
propositional letter qj that appears negatively in ` is already
known to be true when X is executed.

Proof: Suppose that σ is a viable and dynamic execution
strategy that satisfies (X ≥ δ, `) for some ` ∈ P∗, but that for



Z R? Y
〈−1,¬q〉〈−8, q〉

Fig. 4: Constraints that must be satisfied as long as q unknown

some scenario s, conditions (1), (2) and (3) are all false. In
other words, all of the following hold:

(i) [σ(s)]X < δ;
(ii)

∧
pi∈P+

`
([σ(s)]Pi? > [σ(s)]X) ∨ (s(pi) = true); and

(iii)
∧
qj∈P−`

([σ(s)]Qj? > [σ(s)]X) ∨ (s(qj) = false).
Since σ satisfies the given constraint, but [σ(s)]X < δ,
it follows that s 6|= `. Thus, there must be at least one
propositional letter p that appears in both ` and s, but with
opposite polarity. Let Ps be the set of propositional letters
that appear in both ` and s, but with opposite polarity. Let
s′ be the same as s, except that for each p ∈ Ps, s′(p) is
the opposite of s(p). By its construction, s′ |= `. Therefore,
[σ(s′)]X ≥ δ. As in previous proofs, let t∗ ∈ R be the
first time at which the annotated schedules σ(s) and σ(s′)
differ. Since Hist(t∗, s, σ) = Hist(t∗, s′, σ), it follows that
some observation time-point P? must be executed at time
t∗ in both schedules, but such that s(p) 6= s′(p). Now, if
p ∈ Ps ∩P+

` , then s(p) = false , which, by (ii) above, implies
that t∗ = [σ(s)]P? > [σ(s)]X , which implies that X must
be executed at the same time in both schedules: [σ(s)]X =
[σ(s′)]X . Similarly, if p ∈ Ps ∩ P−` , then s(p) = true , which,
by (iii) above, implies that t∗ = [σ(s)]P? > [σ(s)]X and
hence that [σ(s)]X = [σ(s′)]X . The only other possibility is
that X happens to be the observation time-point for p ∈ Ps,
and [σ(s)]X = t∗ = [σ(s′)]X . Thus, each case implies that
X is executed at the same time by both schedules. But then
[σ(s′)]X ≥ δ implies that [σ(s)]X ≥ δ, which is a contradiction.

The preceding lemma provides a convenient characterization
of what it means for a viable and dynamic execution strategy
σ to satisfy a labeled lower-bound constraint (X ≥ δ, `). In
essence, as long as the current partial scenario is consistent
with the label ` (i.e., as long as ` is not yet known to be false),
then X must be executed no earlier than δ. Now, if ` ∈ P∗,
then ` can only be known to be false if some p ∈ P+

` is
already known to be false, or some q ∈ P−` is already known
to be true. However, it turns out that it is also important to
accommodate a more general kind of lower-bound constraint:
for example, one that applies as long as the truth value of one
or more propositional letters remains unknown (i.e., as long as
the corresponding observation time-points have not yet been
executed).

For example, consider the labeled constraints shown in
Figure 4. As long as the truth value of q is not yet known (i.e., as
long as Q? has not yet been executed), both of these constraints
must be satisfied. As a result, as long as q is unknown, Y
must be at least 9 after Z. However, such a constraint is not
representable using the labeled constraints seen so far.

Below, literals are extended to include expressions of the
form ?p, called q-literals. (The q stands for “question mark”.)
Intuitively, a constraint labeled by ?p must hold as long as the
value of p is unknown. A q-label is a label that may contain

one or more q-literals. For the purposes of this paper, q-labels
are only needed for lower-bound edges terminating at Z.

Definition 20 (q-literals and q-labels).
• A q-literal is a literal of the form ?p, where p ∈ P .
• A q-label is a conjunction of literals each of the form,
p,¬p or ?p, for some p ∈ P .

• Q∗ denotes the set of all q-labels.

For example, p(?q)¬r and (?p)(?q)(?r)stu are both q-labels.
The semantics for satisfying a q-labeled lower-bound

constraint is given in a form that mirrors the alternative
characterization of the semantics for satisfying a labeled lower-
bound constraint that was given in Lemma 1.

Definition 21 (Satisfying a Q-labeled Constraint). Let σ be
any viable and dynamic execution strategy for a CSTN S; and
let (X ≥ δ, `) be a lower-bound constraint, where ` ∈ Q∗. Let:

P+
` = {pi ∈ P | pi ∈ ` and X 6≡ Pi?};
P−` = {qj ∈ P | ¬qj ∈ ` and X 6≡ Qj?}; and
P?
` = {rk ∈ P | ?rk ∈ ` and X 6≡ Rk?}.

Then σ satisfies (X ≥ δ, `) if and only if for each scenario s,
at least one of the following hold:

(1) [σ(s)]X ≥ δ;
(2)

∨
pi∈P+

`
([σ(s)]Pi? ≤ [σ(s)]X) ∧ (s(pi) = false);

(3)
∨
qj∈P−`

([σ(s)]Qj? ≤ [σ(s)]X) ∧ (s(qj) = true); or
(4)

∨
rk∈P?

`
[σ(s)]Rk? ≤ [σ(s)]X .

In other words, σ satisfies the q-labeled lower-bound
constraint if [σ(s)]X ≥ δ; some positive literal in ` is already
known to be false; some negative literal in ` is already known
to be true; or some q-literal in ` has already been observed
(whether true or false).

To facilitate the presentation of the rules for propagating
q-labeled constraints, the ? operator is defined below. The
intuition behind the ? operator is illustrated by the following
simple example. Suppose that C1 is a constraint labeled by
p, and C2 is a constraint labeled by ¬p. Then C1 must hold
as long as p is either unknown or known to be true; C2 must
hold as long as p is either unknown or known to be false; and
both C1 and C2 must hold as long as p is unknown—which
is represented by the q-label, p ? (¬p) = ?p.

Definition 22 (The ? operator). The commutative binary
operator, ? : Q∗ × Q∗ → Q∗, is defined in two steps. First,
when given any combination of literals, λ1, λ2 ∈ {p,¬p, ?p},
that together involve only one propositional letter, λ1 ? λ2 is
defined by the following chart:

? p ¬p ?p

p p ?p ?p
¬p ?p ¬p ?p
?p ?p ?p ?p

Next, for any q-labels, `1, `2 ∈ Q∗, the expression `1?`2 ∈ Q∗
denotes the conjunction of literals obtained by applying the
? operator in pairwise fashion to corresponding literals from
`1 and `2, as follows.



qLP : X W Z
〈u, α〉 〈v, β〉

〈u + v, (α ? β)′〉

if u < 0, v < 0

qR0: P? Z
〈w, βp̃θ〉
〈w, β′〉

if w < 0

qR∗3: P? Z Y
〈w, γ〉 〈v, βp̃θ〉

〈max{v, w}, (γ ? β)′〉
if w ≤ 0

In the above rules, α ∈ P∗; β, γ, θ ∈ Q∗; p̃ ∈ {p,¬p, ?p}; and
expressions such as `′ represent the q-label obtained from ` by removing the
children of any q-literals that appear in `. In qR0 and qR∗3 , β contains no
children of p̃, and θ only contains children of p̃. In qR∗3 , γ does not contain
p̃ or any of its children.

TABLE III: New constraint-propagation rules that accommodate
q-labels on lower-bound edges involving Z

qLP : Y R? Z
〈−1,¬p¬q〉 〈−8,¬pq〉

〈−9,¬p(?q)〉

qR0: R? Z
〈−9, (?p)qr〉
〈−9, (?p)q〉

qR∗3: P? Z Y
〈−7,¬q¬r〉 〈−9,¬p(?q)〉

〈−7, (?q)¬r〉

TABLE IV: Sample instances of the rules from Table III

• If λ1, λ2 ∈ {p,¬p, ?p} are literals in `1 and `2, respec-
tively, that involve the same propositional letter p, then
λ1 ? λ2 is contained in the conjunction, `1 ? `2.

• If p appears as λ1 in `1, but p does not appear in `2, then
λ1 is contained in the conjunction, `1 ? `2.

• If p appears as λ2 in `2, but p does not appear in `2, then
λ2 is contained in the conjunction, `1 ? `2.

For example:

p¬q(?r)stu ? pqr¬sv(?w)

= (p ? p)(¬q ? q)(?r ? r)(s ? ¬s)tuv(?w)

= p(?q)(?r)(?s)tuv(?w)

Table III provides a new set of constraint-propagation rules
that accommodate q-labels on lower-bound constraints (i.e., on
edges terminating at Z). The rules parallel those seen earlier in
Table I. To highlight the parallels, the names of the new rules
are the same as the old ones, except that they are prepended
with the letter “q”. Table IV illustrates the use of the new rules
with examples drawn from the CSTN graph from Fig. 3.

For example, consider the instance of the qLP rule in
Table IV. In any situation where p is false and q is not
yet known, both pre-existing constraints must be satisfied
and, hence, the generated constraint must also be satisfied.
In particular, if Y must be at least 1 after R?, and R? must be
at least 8 after Z, then Y must be at least 9 after Z. Note that
this rule would not apply if the numerical value on the edge
from Y to R? was +1 because, in that case, for example, Y
and Q? could both be executed at, say, time 4, after which the
observed value of q, whether true or false, would make one
of the pre-existing constraints/edges irrelevant. In particular, if
q was observed to be true , then R? could be executed safely
at 8, but if q was false , then R? could be executed instead at 5.
Such reactive strategies are not available when both pre-existing

edges have negative values.
The instance of qR0 in Table IV occurs midway through

the propagation of constraints for the graph in Fig. 3. The
“pre-existing” edge from R? to Z is obtained from a prior
application of the qLP rule to the edges from R? to Q? to Z.
The qR0 rule merely removes r from the labeled edge from R?
to Z since the value of r cannot be known before R? executes.

Finally, the instance of qR∗3 in Table IV uses the previously
generated edge from Y to Z, and the pre-existing edge from
P? to Z. This instance models that in any situation where q is
unknown and r is false, P? cannot occur before time 7 (i.e.,
p cannot be known before 7), thus Y cannot occur before 7.

Before proving that the constraint-propagation rules in
Table III are sound, it is helpful to prove the following lemma.

Lemma 2. If σ is a viable and dynamic execution strategy
that satisfies the labeled q-constraint, (X ≥ δ, `), then σ must
also satisfy (X ≥ δ, `′), where `′ is obtained by removing the
children of any q-literals from `

Proof: Suppose that ` = α(?p)q̃, where q ∈ {q,¬q, ?q},
and Q? is a child of P?. Let s be any scenario. Suppose that
conditions (2)-(4) from Defn. 21 are false for (X ≥ δ, α(?p)).
Then the analogous conditions for (X ≥ δ, α(?p)q̃) must also
be false unless one of the following holds:

(q.2) (q̃ ≡ q) ∧ ([σ(s)]Q? ≤ [σ(s)]X) ∧ (s(q) = false)
(q.3) (q̃ ≡ ¬q) ∧ ([σ(s)]Q? ≤ [σ(s)]X) ∧ (s(q) = true)
(q.4) (q̃ ≡?q) ∧ ([σ(s)]Q? ≤ [σ(s)]X)

Note that, if any of these hold, [σ(s)]Q? ≤ [σ(s)]X . On the
other hand, condition (4) being false for (X ≥ δ, α(?p))
also implies that [σ(s)]P? > [σ(s)]X . But that implies that
[σ(s)]Q? < [σ(s)]P?, which contradicts that σ, being viable,
must execute P? before any of its children. Thus, none of (q.2),
(q.3) or (q.4) can hold. But then conditions (2)-(4) must be false
for (X ≥ δ, α(?p)q̃), which implies that condition (1) must
hold (i.e., [σ(s)]X ≥ δ), whence σ satisfies (X ≥ δ, α(?p)).
In the same way, any other children of any q-literals in ` can
be removed, yielding a constraint that σ must satisfy.

Theorem 2. The propagation rules for q-labeled constraints
in Table III are sound.

Proof: For the qLP rule, suppose σ is a viable and dynamic
execution strategy that satisfies the constraints (W −X ≤ u, α)
and (W ≥ −v, β), where u < 0 and v < 0. First, consider
a new constraint, (X ≥ −u − v, `), where ` = α ? β. (Note
that −u and −v are both positive.) Let s be any scenario.
Suppose that conditions (2)-(4) in Defn. 21 are all false for
(X ≥ −u− v, `). In other words:

(ii)
∧
pi∈P+

`
([σ(s)]Pi? > [σ(s)]X) ∨ (s(pi) = true)

(iii)
∧
qj∈P−`

([σ(s)]Qj? > [σ(s)]X) ∨ (s(qj) = false)

(iv)
∧
rk∈P?

`
([σ(s)]Rk? > [σ(s)]X)

Let s′ be the same as s except that for each p that appears
positively in α, s′(p) = true, and for each p that appears
negatively in α, s′(p) = false . Thus, s′ |= α. Since σ satisfies
(W −X ≤ u, α), it follows that [σ(s′)]W − [σ(s′)]X ≤ u < 0,
whence [σ(s′)]W < [σ(s′)]X . In addition, since the only



differences between s and s′ occur after [σ(s′)]X , it follows
that [σ(s)]X = [σ(s′)]X and [σ(s)]W = [σ(s)]W . As a result,
[σ(s)]W − [σ(s)]X ≤ u.

Next, suppose that p is any letter that appears positively
in β. Then p appears as either p or ?p in α ? β. In the first
case, ([σ(s)]P? > [σ(s)]X > [σ(s)]W )∨ (s(p) = true), by (ii)
above. In the second case, [σ(s)]P? > [σ(s)]X > [σ(s)]W , by
(iv) above. Therefore, ([σ(s)]P? > [σ(s)]W ) ∨ (s(p) = true)
holds in either case. Similarly, for any p that appears negatively
in β, ([σ(s)]P? > [σ(s)]W ) ∨ (s(p) = false) holds. Finally, if
p is any letter that appears as ?p in β, then ?p is also in α ? β,
whence [σ(s)]P? > [σ(s)]W holds. Since these conditions
all hold, and since σ satisfies (W ≥ −v, β), it follows that
[σ(s)]W ≥ −v. But then

[σ(s)]X = ([σ(s)]X − [σ(s)]W ) + [σ(s)]W ≥ −u− v.

Thus, since s was arbitary, σ satisfies (X ≥ −u − v, α ? β).
And, by Lemma 2, σ must satisfy the same constraint where
the children of any q-literals in α ? β have been removed.

For the qR0 rule, suppose that σ satisfies the constraint,
(P? ≥ −w, βp̃θ), where −w > 0, p̃ ∈ {p,¬p, ?p}, β
contains no children of p̃, and θ only contains children of
p̃. Consider the constraint, (P? ≥ −w, β). Let s be any
scenario. In Defn. 21, where P? ≡ X , note that p does not
belong to any of the sets P+

` ,P
−
` or P?

` . Furthermore, if
Q? is any child of P?, then the viability of σ ensures that
[σ(s)]Q? > [σ(s)]P?. As a consequence, conditions (1)-(4)
for satisfying (P? ≥ −w, βp̃θ) are equivalent to conditions
(1)-(4) for satisfying (P? ≥ −w, β). Thus, σ satisfies the
latter constraint. Given Lemma 2, it follows that σ satisfies
(P? ≥ −w, β′), where β′ is obtained by removing the children
of any q-literals from β.

For the qR∗3 rule, suppose that σ satisfies the constraints,
(P? ≥ −w, γ) and (Y ≥ −v, βp̃θ), where −w and −v are
both positive, p̃ ∈ {p,¬p, ?p}, γ and β do not contain any
children of p̃, and θ only contains children of p̃. Consider the
new constraint, (Y ≥ −m, γ ?β), where m = max{w, v} (i.e.,
−m = min{−w,−v}). Let s be any scenario.

Suppose that conditions (2)-(4) of Defn. 21 for the constraint,
(Y ≥ −m, γ?β), are all false, where ` = γ ?β. In other words:

(i)
∧
pi∈P+

`
([σ(s)]Pi? > [σ(s)]Y ) ∨ (s(pi) = true);

(ii)
∧
qj∈P−`

([σ(s)]Qj? > [σ(s)]Y ) ∨ (s(qj) = false); and
(iii)

∧
rk∈P?

`
[σ(s)]Rk? > [σ(s)]Y .

Next, consider the letters appearing in γ. First, any pi that
appears positively in γ, must appear in α ? β as either pi or
?pi (i.e., pi ∈ P+

` or pi ∈ P?
` ). Thus, by conditions (i) and (iii)

above, it follows that ([σ(s)]Pi? > [σ(s)]P?)∨ (s(pi) = true).
Similarly, any qj that appears negatively in γ, must appear in
α ? β as either ¬qj or ?q. Thus, by conditions (ii) and (iii)
above, it follows that ([σ(s)]Qj? > [σ(s)]P?)∨(s(qj) = false).
And, any rk that appears as ?rk in γ, can only appear as
?rk in γ ? β. Thus, by condition (iii) above, it follows that
[σ(s)]Rk? > [σ(s)]P?. As a result, since σ satisfies (P? ≥ −w),
it follows that [σ(s)]P? ≥ −w.

Next, recall that σ satisfies the constraint (Y ≥ −v, βp̃θ). As
above, suppose that conditions (2)-(4) from Defn. 21 are false

for this constraint. Then, as argued earlier: for any pi appearing
positively in β, ([σ(s)]Pi? > [σ(s)]Y ) ∨ (s(pi) = true)
holds; for any qj appearing negatively in β,
([σ(s)]Qj? > [σ(s)]Y ) ∨ (s(qj) = false) holds; and for
any rk appearing as ?rk in β, [σ(s)]Rk? > [σ(s)]Y holds.
Now, suppose that [σ(s)]P? > [σ(s)]Y . Since σ is viable, it
follows that [σ(s)]Q? > [σ(s)]Y for any Q? that is a child
of P?. But in that case, conditions (2)-(4) from Defn. 21
for the constraint (Y ≥ −v, βp̃θ) are all false. Since σ
satisfies this constraint, it follows that condition (1) must be
true, whence [σ(s)]Y ≥ −v ≥ −m. On the other hand, if
[σ(s)]P? ≤ [σ(s)]Y , then [σ(s)]Y ≥ [σ(s)]P? ≥ −w ≥ −m.
Thus, in either case, [σ(s)]Y ≥ −m. Since s was arbitrary,
it follows that σ satisfies (Y ≥ −m, γ ? β). And, given
Lemma 2, σ must also satisfy (Y ≥ −m, (γ ? β)′), whose
label is obtained from γ ? β by removing the children of any
q-literals in γ ? β.

E. Negative Q-Stars and The Spreading Lemma

Prior to any constraint propagation, each time-point in Fig. 3
has one or more lower bounds that depend on the possible
scenarios that may play out over time. For example, R? has
a lower bound of 2 in scenarios where p is false and q is
true , and a lower bound of 0 in all other scenarios. However,
during constraint propagation, the qLP rule typically generates
stronger lower bounds. For example, the qLP rule generates a
lower bound of 9 for Y in scenarios where p is false and q is
unknown, as seen previously in Table IV.

At any given point during execution, the current partial
scenario (CPS) is a label representing the observations that
have occurred so far.

Definition 23 (Current Partial Scenario). Let s be any scenario
and To ⊆ OT any subset of observation time-points. Then
the current partial scenario (CPS) for that set of observation
time-points in that scenario is notated as:

CPS(To, s) =


∧
{p | P? ∈ To and s(p) = true}
∧∧
{¬p | P? ∈ To and s(p) = false}

Although a CPS bears some resemblance to a history
(cf. Defn. 12), it is different in the following respects. First, the
CPS is a function of a set of observation time-points, whereas
the history is a function of an execution strategy and a time.
Second, given the assumption about instantaneous reactivity
made by this paper, several observation time-points might be
executed at the same time, leading to instantaneous updates
of the CPS. For example, executing P? at time 7 might yield
p = true , in which case an agent might wish to instantaneously
react by executing Q? at time 7 which might yield q = false .
Thus, the CPS might first be �, then p, then p¬q—all at time 7.

Since a dynamic strategy is able to react to observations,
and certain observations can make a variety of constraints
inapplicable, it is important to specify whether a q-labeled
constraint is applicable, given the current partial scenario. For
example, consider the constraint, (X ≥ 5, qr(?s)t). If the CPS



is, say, pq, then s is currently unknown, q is known to be
true, and r and t might end up being true. Therefore, that
constraint must not be violated (i.e., X must not be executed
before 5). However, if the CPS is qstu, then that constraint is
forever afterward inapplicable because the value of s is known.
More generally, an expression of the form appl(`′, `) is used
to represent that a constraint labeled by `′ ∈ Q∗ applies in
the current partial scenario ` ∈ P∗ (i.e., has not been made
irrelevant by the information contained in the CPS).

Definition 24 (Applicable Constraint). Let (X ≥ δ, `′ ∈ Q∗)
be any q-labeled lower-bound constraint. That constraint is said
to be applicable (or relevant) with respect to the current partial
schedule `—notated appl(`′, `)—if for each propositional letter
p that appears in both `′ and `, p appears identically in both
(i.e., as p in both, or as ¬p in both).

Lemma 3. Suppose that σ is a viable and dynamic execution
strategy. Then σ satisfies the q-labeled constraint (X ≥ δ, `′)
if and only if for each scenario s, [σ(s)]X < δ implies that
appl(`′, `) is false, where ` is the current partial scenario at
the point where X is executed.

Proof: If σ satisfies the constraint, then [σ(s)]X ≥ δ or
one of the disjuncts in (2), (3) or (4) from Defn. 21 must hold.
A disjunct from clause (2) implies that some p that appears
positively in `′ is known to be false at or before the time X
is executed. But that implies that ¬p is in the CPS, while p is
in `′, whence appl(`′, `) does not hold. Similar remarks apply
to clause (3) and some p appearing negatively in `′. Finally,
a disjunct from clause (4) implies that some ?p appears in `′,
but its observation time-point P? has already been executed
at or before X , implying that p or ¬p is in the CPS, while ?p
is in `′, again implying that appl(`′, `) does not hold.

Note. It suffices to restrict attention to current partial
scenarios represented by honest labels, since any viable and
dynamic execution strategy cannot execute a child of P? before
it executes P?.

For any CPS `, and time-point X , the effective lower bound
for X relative to ` is the maximum of its lower bounds among
those having labels applicable to ` (i.e., having a label `′

such that appl(`′, `) holds). For example, for the network in
Fig. 3, the ELB for P? in the initial partial scenario is 7.
Since that is the smallest ELB among all of the time-points
other than Z, the earliest-first strategy will execute P? first, at
time 7, as shown in Algorithm 1. Since the execution of P?
generates a truth value for p, the CPS would then be updated to
reflect that observation. Now, any constraint whose label `′ is
inapplicable with the updated CPS can henceforth be ignored.
As a result, the ELB values for the remaining unexecuted
time-points may decrease in response to a smaller number of
applicable constraints.

Rules qR0 and qR∗3 work together to “spread” the weakest
ELB for any given partial scenario to every unexecuted time-
point, attaching the most general label possible: that of the CPS.
For example, in Fig. 3, the weakest ELB for the initial partial
scenario is 7. Rules qR0 and qR∗3 spread that value to every

other non-Z time-point, with the result that every edge that
terminates at Z is annotated with the labeled value, 〈−7,�〉.
More generally, the spreading lemma, presented below, ensures
that this kind of spreading of effective lower bounds occurs
relative to every possible current partial scenario. This property
is invaluable in proving that the new DC-checking algorithm
is complete.

Lemma 4 (Spreading Lemma). Let S = 〈T , C, L,OT ,O,P〉
be a well-defined CSTN whose constraint set C is closed under
rules qR0 and qR∗3.6 Let ` be an honest label representing the
current partial scenario. Let To = {P? | p appears in `} be the
corresponding set of already-executed observation time-points.
Let T` = {X ∈ T | ` |= L(X)} be the set of time-points
whose labels are entailed by `. (The honesty of ` ensures
that To ⊆ T`.) Let Tx be any set of time-points such that
To ⊆ Tx ⊂ T`. (Tx is the set of already-executed time-points.)
And let Tu = T` − Tx be the set of unexecuted time-points
whose labels are entailed by `. Then for each X ∈ Tu, let:

ELB(X, `) = max{δ | ∃`′ ∈ Q∗ : (X ≥ δ, `′) ∈ C
and appl(`′, `)};

and let Λ(`) = min{ELB(X, `) | X ∈ Tu}.
Then for each X ∈ Tu, the constraint, (X ≥ Λ(`), `), is
entailed by constraint(s) in C.

Proof: By construction, if an observation time-point is
in Tu, then it has not yet been executed, but its label is
entailed by `; thus, it could be selected for execution next.
Let Pu = {p | P? ∈ Tu} be the set of propositional letters
whose corresponding observation time-points are in Tu. By
construction, for each p ∈ Pu, ` |= L(P?), but p does not
appear in `; and there must be a constraint, (P? ≥ λp, `p) in
C, for some λp ≥ Λ(`), and `p ∈ Q∗ such that appl(`p, `).
Now, if p appears in `p, then by Rule qR0, it can be removed
from `p and, since C is closed under qR0 and qR∗3, the resulting
constraint must be entailed by constraints in C. Thus, assume
that p does not appear in `p. Next, let r be any other letter
in Pu. Again, there must be a constraint, (R? ≥ λr, `r), for
some λr ≥ Λ(`), and `r ∈ Q∗ such that appl(`r, `). Now,
if p appears in `r, then it can be removed (along with any
of its children) using Rule qR∗3, resulting in the constraint,
(R? ≥ λpr, `pr), where λpr = min{λp, λr} ≥ Λ(`), and
`pr is obtained by removing p, any children of p, and any
children of any q-literals from `p ? `r. And since appl(`p, `)
and appl(`r, `) both hold, so does appl(`pr, `). As before,
since C is closed under rules qR0 and qR∗3, this constraint
must be entailed by constraints in C. Thus, without loss of
generality, assume that p does not appear in `r. Continuing in
this way, every observation time-point T? ∈ Tu must have
a corresponding lower-bound constraint with lower bound
λt ≥ Λ(`), whose propositional label `t does not include
p. Once p has been removed from all such labels, it follows
that r can similarly be removed from all such labels, and so on,

6In other words, the application of qR0 and qR∗3 to constraints in C can
only yield a constraint, χ, that is entailed by constraints already in C—in
the sense that any viable and dynamic execution strategy that satisfies the
constraints in C necessarily satisfies the constraint χ.



Algorithm 2: CSTN DC Check(S)
Input: S = 〈T , C, L,OT ,O, P 〉, a well-defined CSTN.
h = horizon value; // e.g., sum of all absolute edge weights
foreach (X ∈ T ) do

Insert (Z−X ≤ 0,�) and (X − Z ≤ h,�);

do
foreach (X ∈ T ) do

if (X ∈ OT ) then
Apply qR0(X,Z);

foreach (Y ∈ T ) do
Apply qLP(X,Y,Z);
if (X ∈ OT ) then

Apply qR∗3(X,Z, Y );
Apply R0(X,Y );

foreach (W ∈ T ) do
Apply LP(X,Y,W );
if (X ∈ OT ) then

Apply R∗3(X,Y,W );

if (a negative one-edge loop with consistent label in
P ∗ has been generated) then

return S is not DC
while (any constraint has been added/updated);
return S is DC;

until each observation time-point T? ∈ Tu is seen to have a
lower-bound constraint, (T? ≥ λt, `t), where λt ≥ Λ(`) and `t
contains no propositional letters from Pu. Furthermore, since
the rules preserve honesty, all such labels cannot have any
children of any letters in Pu. As a result, each label `t can
only have letters from ` and, since appl(`t, `) holds, it follows
that ` |= `t.7 Finally, qR∗3 can then be used to similarly process
the labels from lower-bound constraints on all time-points in
Tu, effectively removing from those labels any occurrences of
letters in Pu. Thus, for any X ∈ Tu, (X ≥ Λ(`), `) must be
entailed by constraint(s) in C.

F. A Complete DC-Checking Algorithm

Algorithm 2 gives pseudo-code for our propagation-based
DC-checking algorithm for CSTNs. Its core involves the
application of the rules LP, R0, R∗3, qLP , qR0 and qR∗3 (cf.
Tables I and III). The triply nested for loops apply the rules
to each pair or triple of time-points, as appropriate. (The
pseudo-code is complicated by the fact that different rules
apply to different numbers and types of input. As a result, the
time-point names in expressions such as “Apply qLP(X,Y, Z)”
correspond with, but are not necessarily the same as those
that appear in Tables I and III.) A constraint’s labeled value is
updated only if the new value is stronger than the current value

7If `t contained a letter p1 that was not in ` or Pu, and was not a child
of any such letter, then p1 would have to be the child of a letter p2 that was
not in ` or Pu, or a child of any such letter, and so on, leading to a circle of
child nodes, which cannot happen in a well-defined CSTN since the label on
each child must properly entail the label on its parent.

with the same label. The algorithm ends when no stronger
constraints can be generated or a negative one-edge loop with
a consistent label in P∗ has been generated. In the first case,
the network is DC, in the other it is not.

Termination: The DC-checking algorithm employs two
mechanisms to ensure termination. First, when using the qLP
rule from Table III to update lower-bound edges terminating at
Z, it keeps track of all of the time-points encountered so far in
generating that update. Because this rule only propagates along
negative edges, any time-point being visited more than once
immediately signals the presence of a negative q-loop having
all-negative edges. The algorithm avoids endlessly cycling
through such a loop by immediately generating a labeled value
of the form, 〈−∞, `′〉, where `′ includes the conjunction of
all labels along that loop. If `′ is a consistent label in P∗,
then the negative q-loop is unresolvable, and the network is
instantly recognized to be non-DC; otherwise, this labeled
value is propagated like any other. Such propagations will
generate lower-bound labeled values of 〈−∞, `′〉 for each
time-point in the negative q-loop. For example, in Fig. 3, the
negative q-loop from Y to R? to Q? leads to labeled values
of 〈−∞, (?p)(?q)r〉 on the lower-bound edges for Y,Q? and
R?. However, rules qR0 and qR∗3 subsequently remove the
literals, ?q and r, producing the occurrences of the labeled
value, 〈−∞, ?p〉, in the figure.

Second, because negative q-loops having one or more non-
negative edges may lead to a large, but not necessarily infinite
number of cycles, it would be unsound to immediately generate
labeled values of the form, 〈−∞, `′〉, for such loops. To
accommodate the potentially bounded cycling of such loops,
while terminating cases of infinite cycling, the algorithm inserts
a universal upper bound h, called a horizon. For complete
generality, h should be treated as a constant whose value is
unknown, but arbitrarily large. In practice, this is not necessary
since the networks in most applications already include finite
horizons. Any time-point whose lower bound is updated to a
value greater than h will lead to a negative edge from Z to Z
which, being unsatisfiable, signals that the network is non-DC.

Theorem 3. The DC-checking algorithm for CSTNs given in
Algorithm 2 is complete (i.e., if the algorithm says that a given
CSTN is DC, then the network is DC).

Proof: Let S be a CSTN that the DC-checking algorithm
says is DC. Let σ be the earliest-first execution strategy. The
goal is to demonstrate that σ is a viable, dynamic execution
strategy. Now, σ is a dynamic strategy since each of its
execution decisions depends only on the history of past-or-
present observations represented by the current partial scenario.
Let s be any scenario, and S(s) the corresponding projection of
S onto s. It remains to show that the schedule σ(s) is a solution
to the STN S(s). It is important to stress that each edge in
S(s) has a label that is consistent with s, and was originally
present in the CSTN S before any constraint propagation.

Now, suppose that S(s) is an inconsistent STN. Then it must
contain a negative loop. But the corresponding negative loop
in S would, by repeated use of the LP rule during constraint



X Z
〈−x, `〉

〈|Π|, `′′〉

(a)

Z Y
〈y, `′〉

〈|Π|, `′′〉

(b)

X Z

Y

〈−x, `x〉
〈y, `y〉

〈|Π|, `′′〉

(c)

Fig. 5: Paths discussed in the proof of Theorem 3

propagation, yield a single-edge negative loop that would cause
the DC-checking algorithm to say that the CSTN S was not
DC. Thus, S(s) must be a consistent STN.

Next, suppose that the schedule σ(s) is not a solution for
S(s). For each time-point X , let x = [σ(s)]X be the value
assigned to X by σ(s). The corresponding execution constraints
are Z−X ≤ −x and X − Z ≤ x (i.e., X = x). Since σ(s) is
not a solution for S(s), inserting these execution constraints
into S(s) must yield a negative loop [8]. And, without loss
of generality, there must be a negative loop having only one
occurrence of Z. Let L be any such loop.

Case 1. In this case, as illustrated in Fig. 5a, L consists
of a lower-bound edge from X to Z, followed by a path
Π from Z back to X , where: (1) the label ` on the lower-
bound edge represents the current partial scenario when X
was executed; (2) the lower bound on that edge satisfies: x =
Λ(`) = ELB(X, `); (3) the edges in Π are original edges from
S(s) having labels consistent with s; (4) `′′ is the conjunction of
those labels; and (5) |Π| < x. The spreading lemma ensures that
the constraint, (Z−X ≤ −x, `), is entailed by constraints in
the (propagated) CSTN. But, then, since ` and `′′ are consistent
with s, constraint propagation would have yielded a negative
loop consisting of the edge, (Z− Z ≤ |Π| − x, ` ∧ `′′), whose
label is consistent with s. But then the algorithm would have
reported that S was not DC, contradicting the main premise.

Case 2. In this case, as illustrated in Fig. 5b, L consists of
an upper-bound edge from Z to Y , followed by a path Π from
Y back to Z, where: (1) the label `′ on the upper-bound edge
represents the current partial scenario when Y was executed;
(2) the upper bound on that edge is y = Λ(`′) = ELB(Y, `′);
(3) the edges in Π are original edges from S(s) whose labels
are consistent with s; (4) `′′ is the conjunction of those labels;
and (5) |Π| < −y. In this case, repeated application of the LP
rule would have yielded the edge, (Z− Y ≤ |Π|, `′′), where
`′′ is consistent with s and, hence, also with `′. But then,
−|Π| ≤ ELB(Y, `′) = y < −|Π|, a contradiction.

Case 3. This case, illustrated in Fig. 5c, considers the
possibility of a negative loop formed by a lower-bound
constraint from the execution of some X together with an
upper-bound constraint from the execution of some other Y .
Here, |Π| − x + y < 0 and `x ∧ `y ∧ `′′ is consistent with s.
First, suppose that x ≤ y (i.e., X executed no later than Y ). By
Case 1, the lower-bound constraint for X is already entailed by
constraints in C. Thus, repeated application of the LP rule to
the path consisting of Π followed by the lower-bound edge for
X would have yielded the edge, (Z− Y ≤ |Π| − x, `x ∧ `′′).
By construction, its label is consistent with `y, implying
that −|Π| + x is a relevant lower bound for X . Hence,
y = ELB(Y, `y) ≥ −|Π|+ x > y, a contradiction.

Next, suppose that Y executes before X . Then by Case 2,
the upper-bound edge for Y cannot introduce a negative loop.
Furthermore, since that edge emanates from Z, its insertion
cannot affect the lengths of any edges terminating at Z, and thus
cannot affect the value of ELB(X, `x). Therefore, the Case 1
conclusion that the lower-bound edge for X is already entailed
by constraints in C stands. Thus, its subsequent insertion cannot
cause a negative loop, contradicting the premise.

Computational complexity: The worst-case computational
complexity of the new algorithm is conjectured to be expo-
nential with respect to the number of observation time-points
and pseudo-polynomial with respect to h. A more precise
characterization is under investigation. In the meantime, the
following section presents an experimental evaluation of the
algorithm across a variety of CSTNs that include worst-case
structures to provide some insight into its practical behavior.

IV. EMPIRICAL EVALUATION

This section presents a preliminary empirical evaluation of
our DC-checking algorithm for CSTNs (Algorithm 2). The
algorithm and procedures necessary for its evaluation were
implemented in Java and executed on a Java Virtual Machine 7
in a PowerBook PC with a 2.2 GHz Intel Core i7 CPU and
4 GB of RAM. The source code is freely available [13].

The main goal was to compute the average computational
time for the algorithm across a suite of 60 CSTNs, each having
the same number of nodes, but differing with respect to various
relevant characteristics. Since randomly generating CSTN
instances is the subject of ongoing work, we manually generated
60 networks: 30 consistent and 30 inconsistent. The CSTNs
all had the same size (25 nodes), and each included a negative
q-star, but they had different numbers of observation nodes
(3-6) and negative q-loops (4-6). Note that these structures
represent worst-case instances for our algorithm, especially
negative q-loops with one or more non-negative edges.

For the 30 consistent instances, the average computational
time was 931 milliseconds (ms) with a standard deviation
of 1283 ms. For the 30 inconsistent instances, the average
time was 2140± 2166 ms. These results confirm that the new
DC-checking algorithm for CSTNs can be practical even for
networks exhibiting complex, worst-case structures.

We also considered a set of 60 CSTNs having the same
characteristics as in the above set but whose negative q-loops
consisted solely of negative edges. Because our algorithm
detects and processes these kinds of negative q-loops much
more quickly than those having one or more non-negative
edges, we expected it to run faster on these instances. Indeed,
for the 30 consistent instances, the average computational time
was 774± 838 ms; and for the 30 inconsistent instances, the
average time was 1494± 1658 ms.

Next, to illustrate the potential scalability of our algorithm,
we ran it on some consistent CSTNs, each having 100 nodes,
4 negative q-stars, 18 negative q-loops, and 3 observation
nodes. For these instances, the average computational time was
1467 ± 175 ms. Figure 6 shows a partial screen-shot of the
simulator during the analysis of one such network.



Fig. 6: A screen-shot of a portion of the simulator during the
analysis of a CSTN having 100 nodes
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Fig. 7: A CSTN that challenges the TGA-based algorithm

For further perspective on these results, note that the only
other existing implementation of a DC-checking algorithm
for CSTNs is the TGA-based algorithm [2] which requires
about 25 minutes (1, 500, 000 ms) to solve the network in
Figure 7, whereas our algorithm requires only 386± 154 ms
on a Linux/Ubuntu machine with an AMD Opteron 4334
processor running at 3 GHz, kernel 3.13.0-37, 62 GB RAM.8

V. CONCLUSIONS AND FUTURE WORK

The most significant contribution of this paper is the new
propagation-based DC-checking algorithm for CSTNs that
is both sound and complete. Unlike existing algorithms, an
initial evaluation of the performance of this algorithm suggests

that it may be practical for a variety of applications. The

8Our software is written in Java 7 and, thus, can be executed on any suitably
equipped machine. The TGA-based algorithm exploits a UPPAAL-TIGA
procedure (version 1.8) that runs only under Linux or Windows.

new algorithm properly addresses the challenges raised by
negative q-loops and negative q-stars, which have never been
identified before. Future work will analyze the worst-case
complexity; conduct a more intensive empirical evaluation; and
aim to extend the same algorithmic techniques to develop a
corresponding sound-and-complete algorithm for CSTNUs.
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