
An Algorithm for Checking the Dynamic Controllability
of a Conditional Simple Temporal Network with Uncertainty

Carlo Combi1, Luke Hunsberger2∗, Roberto Posenato1

1Department of Computer Science, University of Verona, strada le grazie, Verona, Italy
2Computer Science Department, Vassar College, Poughkeepsie, NY, USA
{carlo.combi, roberto.posenato}@univr.it, hunsberg@cs.vassar.edu

Keywords: Temporal Network : Temporal Controllability : Temporal Uncertainty : Temporal Workflow.

Abstract: A Simple Temporal Network with Uncertainty (STNU) is a framework for representing and reasoning about
temporal problems involving actions whose durations are bounded but uncontrollable. A dynamically control-
lable STNU is one for which there exists a strategy for executing its time-points that guarantees that all of the
temporal constraints in the network will be satisfied no matter how the uncontrollable durations turn out. A
Conditional Simple Temporal Network with Uncertainty (CSTNU) augments an STNU to include observation
nodes, where the execution of each observation node provides, in real time, the truth value of an associated
proposition. Recent work has generalized the notion of dynamic controllability to cover CSTNUs. This paper
presents an algorithm—called a DC-checking algorithm—for determining whether arbitrary CSTNUs are
dynamically controllable. The algorithm, which is proven to be sound, is the first such algorithm to be presented
in the literature. The algorithm extends edge-generation/constraint-propagation rules from an existing STNU
algorithm to accommodate propositional labels, while adding new rules required to deal with the observation
nodes. The paper also discusses implementation issues associated with the management of propositional labels.

1 Introduction

Workflow systems have been used to model busi-
ness, manufacturing and medical-treatment processes.
To meet the needs of such domains, Combi et al. (2010)
presented a new workflow model that accommodates
tasks with uncertain/uncontrollable durations; tem-
poral constraints among tasks; and branching paths,
where the branch taken is not known in advance. Sub-
sequently, Hunsberger et al. (2012) introduced a Con-
ditional Simple Temporal Network with Uncertainty
(CSTNU) to represent the key features of that workflow
model. The important property of dynamic control-
lability for CSTNUs was also defined. A CSTNU is
dynamically controllable if there exists a strategy for
executing the tasks in the associated workflow in a
way that ensures that all temporal constraints will be
satisfied no matter how the uncontrollable durations or
branching events turn out.

This paper presents a DC-checking algorithm for
CSTNUs (i.e., an algorithm for checking whether ar-
bitrary CSTNUs are dynamically controllable). It is
the first such algorithm in the literature. The algo-

∗Funded in part by the Phoebe H. Beadle Science Fund.

rithm, which is proven to be sound, extends the DC-
checking algorithm for a simpler class of networks,
called STNUs, developed by Morris and Muscet-
tola (2005). It propagates labeled values on graph
edges in a way that draws from prior work by Conrad
and Williams (2011).

2 Motivating Example

In the following, we will consider, as a motivating
example, a process taken from the healthcare domain.
More precisely, consider the excerpt from a workflow
schema depicted in Fig. 1, which follows the model
proposed by Combi and Posenato (2009).

The workflow schema is a directed graph where
nodes correspond to activities and edges represent con-
trol flows that define dependencies on the order of
execution. There are two types of activity: tasks and
connectors. Tasks represent elementary work units
that will be executed by external agents. Each task is
represented graphically by a rounded box and has a
mandatory duration attribute that specifies the allowed
temporal spans for its execution. Typically, the dura-
tion of a task is not controlled by the system responsi-

Patient
Evaluation

[1,1]

Treat.
Decision

[1,1]

Elder
Emerg. Int.

[10,20]

Std. Treatm.
[4,5]

Emerg. Int.
[8,10]

[1,1]

[1,10]

Age> 70 ∧ Emerg.

[5,5]

¬ Emerg.

[1,10]

¬Age> 70 ∧ Emerg.

[2,4]

[1,1]

[1,1]

[1,1]

E[16,30]E E[20,22]E

Figure 1: An excerpt of a healthcare workflow schema.

ble for managing the overall execution of the workflow
(i.e., the Workflow Management System, WfMS). Un-
like a task, a connector represents an internal activity
whose execution is controlled by the WfMS. In par-
ticular, the WfMS uses connectors to coordinate the
execution of the tasks. Connectors are represented
graphically by diamonds. Like tasks, each connector
has a mandatory duration attribute that specifies allow-
able temporal spans for its execution. However, unlike
tasks, the WfMS can choose the value of each connec-
tor duration dynamically, in real time, to facilitate the
coordination of the tasks in the workflow.

There are two kinds of connectors: split and join.
Split connectors are nodes with one incoming edge
and two or more outgoing edges. After the execution
of the predecessor, possibly several successors have to
be considered for execution. The set of nodes that can
start their execution is determined by the kind of split
connector. A split connector can be: Total, Alternative
or Conditional. Join connectors are nodes with two or
more incoming edges and only one outgoing edge. A
join connector can be either And or Or.

Control flow is governed by oriented edges. Each
oriented edge connects two activities, where the exe-
cution of the first activity (the predecessor) must be

finished before starting the execution of the second
one. Every edge has a delay attribute that specifies
the allowed times that can be spent by the WfMS for
possibly delaying the execution of the second activity.

Besides the temporal constraints associated with
the duration and delay attributes of tasks, connectors
and edges, a workflow schema can also include rela-
tive constraints. A relative constraint constrains the
temporal interval between (the starting or ending time-
points of) two non-consecutive workflow activities.
Graphically, a relative constraint is represented by a
directed edge from one activity to another, labeled by
an expression of the form, t1[MinD,MaxD]t2, where
t1 ∈ {S,E} specifies whether the constraint applies to
the starting or ending time-point of the first activity;
t2 ∈ {S,E} specfies whether the constraint applies to
the starting or ending time-point of the second activity;
and [MinD,MaxD] specifies the allowed range for the
temporal interval between the specified time-points.

The graph instance in Fig. 1 is a small excerpt from
a process in a clinical domain. After the initial task,
Patient Evaluation, whereby a physician determines
whether the patient is in need of immediate medical
attention (emergency state), there is an alternative con-
nector, labeled Treatment Decision, from which three
different treatment paths are possible, depending upon
the age and emergency status of the patient. The three
different treatments involve the following tasks: (1) El-
der Emergency Intervention, (2) Standard Treatment,
and (3) Emergency Intervention. The times at which
the Elder Emergency Intervention and Emergency In-
tervention tasks must be completed, relative to the
initial Patient Evaluation task, are restricted by the
relative temporal constraints emanating from the Pa-
tient Evaluation node. These constraints are labeled
E[16,30]E and E[20,22]E, respectively, in the figure.

Given a particular workflow schema, it is impor-
tant to determine in advance whether the WfMS is
able to successfully execute the tasks in the schema,
while observing all relevant temporal constraints, no
matter how the durations of the tasks turn out. (Task
durations are typically not controllable by the WfMS.)
It is interesting to observe that the overall workflow
schema in Fig. 1 may not be successfully executed
by the WfMS for some possible task durations, even
though each possible workflow subschema (or work-
flow path) is controllable when age and emergency
status are known before execution begins.

A CSTNU is a more general formalism that allows
the representation of all kinds of temporal constraints
for workflow execution. In the following, after some
background on related kinds of temporal networks,
we will discuss CSTNUs and a new algorithm for
determining the dynamic controllability of CSTNUs.

3 Background

Dechter et al. (1991) introduced Simple Tempo-
ral Networks (STNs). An STN is a set of time-point
variables (or time-points) together with a set of simple
temporal constraints, where each constraint has the
form Y −X ≤ δ, where X and Y are time-points and δ

is a real number. The all-pairs, shortest-paths matrix
for the associated graph is called the distance matrix
for the STN. For any STN, the following statements
are equivalent:

• The STN has a solution (i.e., a set of values for the
time-points that satisfy all of the constraints);

• The associated graph has no negative loops; and

• The distance matrix has zeros on its main diagonal.

Morris et al. (2001) presented Simple Tempo-
ral Networks with Uncertainty (STNUs) that aug-
ment STNs to include contingent links that represent
uncontrollable-but-bounded temporal intervals. They
gave a formal semantics for the important property
of dynamic controllability, which holds if there exists
a strategy for executing the time-points in the net-
work that guarantees that all of the constraints will
be satisfied no matter how the contingent durations
turn out.2 Crucially, the durations of contingent links
are observed in real-time, as they complete; execution
decisions can only depend on past observations.

Morris et al. (2001) also presented a pseudo-
polynomial-time algorithm—called a DC-checking
algorithm—for determining whether any given STNU
is dynamically controllable (DC). Later, Morris and
Muscettola (2005) presented the first polynomial DC-
checking algorithm, which operates in O(N5) time.
Because this algorithm plays an important role in this
paper, it will henceforth be called the MM5 algorithm.
Morris (2006) subsequently presented an O(N4)-time
DC-checking algorithm for STNUs, but it will not be
discussed further in this paper.

Tsamardinos et al. (2003) introduced the Condi-
tional Temporal Problem (CTP) which augments STNs
to include observation nodes. When an observation
node is executed, the truth value of its associated
proposition becomes known. They presented a for-
mal semantics for the important property of dynamic
consistency which holds if there exists a strategy for ex-
ecuting the time-points in the network that guarantees
that all of the constraints will be satisfied no matter
how the observations turn out. Crucially, the truth val-
ues of propositions associated with observation nodes
only become known in real time, as the observation
nodes are executed. Tsamardinos et al. (2003) showed

2Hunsberger (2009) subsequently corrected a minor flaw
in the semantics of dynamic controllability.

how to convert the semantic constraints inherent in the
definition of dynamic consistency into a Disjunctive
Temporal Problem (DTP). They then used an off-the-
shelf DTP solver to determine the dynamic consistency
of the original network in exponential time.

Hunsberger et al. (2012) combined the features of
STNUs and CTPs to produce a Conditional Simple
Temporal Network with Uncertainty (CSTNU). They
proved that their definition of a CSTNU generalizes
both STNUs and CTPs. In addition, they introduced
a definition of dynamic controllability for CSTNUs
that they proved generalizes the corresponding notions
for STNUs and CTPs. They noted that because the
existing DC-checking algorithms for STNUs and CTPs
work so differently, they could not be easily combined
to yield a DC-checking algorithm for CSTNUs. They
also suggest that a new kind of algorithm has to be
defined that incorporates new edge generation rules
that take into account the propositional truth values
generated by the observation nodes. In preparation
for this kind of algorithm, they presented a Label-
Modification rule for edges in a CSTNU that loosely
resembles the Label-Removal rule for STNUs used by
Morris and Muscettola.

This paper presents a DC-checking algorithm for
CSTNUs that follows the proposal mentioned above.
It extends the edge-generation/constraint-propagation
MM5 algorithm for STNUs to accommodate obser-
vation nodes whose execution makes known the truth
values of their associated propositions in real time. The
algorithm, called the CSTNU DC-checking algorithm,
generates edges that are labeled by propositions asso-
ciated with observation nodes. Because there can be
multiple such labeled edges between any pair of time-
points, the algorithm carefully manages the potentially-
exponential explosion of labels using techniques in-
spired by the work of Conrad and Williams (2011).

3.1 DC-Checking for STNUs

Following Morris et al. (2001), an STNU is a set
of time-points and temporal constraints, like those
in an STN, together with a set of contingent links.
Each contingent link has the form, (A,x,y,C), where
A and C are time-point variables (or time-points) and
0 < x < y < ∞. A is called the activation time-point;
C is the contingent time-point. Once A is executed,
C is guaranteed to execute such that C− A ∈ [x,y].
However, the particular time at which C executes is un-
controllable. Instead, it is only observed as it happens.

Let S = (T ,C ,L) be an STNU, where T is a set
of time-points, C is a set of constraints, and L is a set
of contingent links. The graph associated with S has
the form, (T ,E ,E`,Eu), where each time-point in T

No Case:

S

TQ

vu

u+ v

Upper Case:

S

TQ

u R :v

R :u+ v

Lower Case:

S

TQ
s :u v

u+ v

Applicable if: v < 0 or (v = 0 and S 6≡ T)

Cross Case:

S

TQ

R :v

R :u+ v

s :u

Applicable if: R 6≡ S and (v < 0 or (v = 0 and S 6≡ T))

Label Removal: S T
v

R :v

Applicable if: v≥−x, where x is the lower
bound for the contingent link from T to R

Table 1: Edge-generation rules for the MM5 algorithm. For
each rule, the edge generated by the rule is dashed.

serves as a node in the graph; E is a set of ordinary
edges; E` is a set of lower-case edges; and Eu is a set
of upper-case edges (Morris and Muscettola, 2005).

• Each ordinary edge has the form, X v Y , repre-
senting the constraint, Y −X ≤ v.

• Each lower-case edge has the form, A c : x C, rep-
resenting the possibility that the contingent dura-
tion, C−A, might take on its minimum value, x.

• Each upper-case edge, C
C :−y

A, represents the
possibility that the contingent duration, C − A,
might take on its maximum value, y.

The MM5 algorithm works by recursively gener-
ating new edges in the STNU graph using the rules
shown in Table 1. For each rule, pre-existing edges are
denoted by solid arrows and newly generated edges
are denoted by dashed arrows. Note that each of the
first four rules takes two pre-existing edges as input
and generates a single edge as its output. In contrast,
the Label-Removal rule takes only one edge as input.
Finally, applicability conditions of the form, R 6≡ S,
should be construed as stipulating that R and S must
be distinct time-point variables, not as constraints on
the values of those variables.

Procedure MM5-DC-Check(G)

Input: G: STNU graph instance to analyze.
Output: the controllability of G.
for 1 to Cutoff Bound do

if (AllMax matrix inconsistent) then
return false;

generate new edges using rules from Table 1;
if (no edges generated) then return true;

end
return false

Note that the edge-generation rules only generate
new ordinary or upper-case edges. Unlike the upper-
case edges in the original graph, the upper-case edges
generated by these rules represent conditional con-
straints, called waits (Morris et al., 2001). In par-

ticular, an upper-case edge, Y C :−w A, represents a
constraint that as long as the contingent time-point, C,
remains unexecuted, then the time-point, Y , must wait
at least w units after the execution of A, the activation
time-point for C.

Procedure 1 gives pseudocode for the MM5 DC-
checking algorithm. The algorithm performs at most
N2+NK+K = O(N2) iterations, which is the number
of distinct kinds of edges in a graph having N time-
points and K contingent links. In each iteration, the
algorithm first computes the AllMax matrix—which
is the distance matrix for the STN formed by all of
the original and generated, ordinary and upper-case
edges (without their alphabetic labels)—and checks
that there is no negative cycles in it and then applies
the rules from Table 1 to all relevant combinations of
edges of the STNU from the previous iteration. If no
new edges are generated in any given iteration and
there is no negative cycle at all, the algorithm reports
that the network is dynamically controllable. If the al-
gorithm continues generating new, stronger edges after
the cutoff bound N2 +NK +K, then the network can-
not be DC. Since each iteration can be done in O(N3)
time, the overall complexity of the MM5 algorithm is
O(N5).

3.2 CSTNUs

A Conditional Simple Temporal Network with Un-
certainty (CSTNU) is a network that combines the
observation nodes and branching from a CTP with the
contingent links of an STNU (Hunsberger et al., 2012).
There is a one-to-one correspondence between obser-
vation nodes and propositional letters: the execution
of an observation node generates a truth value for the
corresponding proposition. However, nodes and edges
in a CSTNU graph may be labeled by conjunctions of
propositional literals. The time-point corresponding to

a node with label, `, need only be executed in scenarios
where ` is true. Similarly, the constraint corresponding
to an edge with label, `, is only applicable in scenarios
where ` is true. The label universe, defined below, is
the set of all possible labels.

Definition 1 (Label, Label Universe). Given a set P
of propositional letters, a label is any (possibly empty)
conjunction of (positive or negative) literals from P.
For convenience, the empty label is denoted by �. The
label universe of P, denoted by P∗, is the set of all
labels whose literals are drawn from P.

In the following, when not specified, lower-case
Latin letters will denote propositions of P, while Greek
lower-case letters will denote labels of P∗.

Definition 2 (Consistent labels, label subsumption).
• Labels, `1 and `2, are called consistent, denoted by

Con(`1, `2), if and only if `1∧ `2 is satisfiable.
• A label `1 subsumes a label `2, denoted by

Sub(`1, `2), if and only if |= (`1⇒ `2).

The following definition of a CSTNU is extracted
from Hunsberger et al. (2012). The most important
ingredients of a CSTNU are: T , a set of time-points;
C , a set of labeled constraints; OT , a set of observation
time-points; and L a set of contingent links.

Definition 3 (CSTNU). A Conditional STN with Un-
certainty (CSTNU) is a tuple, 〈T ,C ,L,OT ,O,P,L〉,
where:

• T is a finite set of real-valued time-points;
• P is a finite set of propositional letters;
• L : T → P∗ is a function that assigns a label to

each time-point in T ;
• OT ⊆ T is a set of observation time-points;
• O : P→ OT is a bijection that associates a unique

observation time-point to each propositional letter;
• L is a set of contingent links;
• C is a set of labeled simple temporal constraints,

each having the form, (Y − X ≤ δ, `), where
X ,Y ∈ T , δ is a real number, and ` ∈ P∗;

• for any (Y−X ≤ δ, `)∈ C , the label ` is satisfiable
and subsumes both L(X) and L(Y);

• for any p ∈ P and T ∈ T , ifp or ¬p appears in T ’s
label, then
– Sub(L(T),L(O(p)), and
– (O(p)−T ≤−ε, L(T)) ∈ C , for some ε > 0;

• for each (Y −X ≤ δ, `) ∈ C and each p ∈ P, if p
or ¬p appears in `, then Sub(`,L(O(p))); and

• (T ,bCc,L) is an STNU, where bCc is the follow-
ing set of unlabeled constraints:
{(Y −X ≤ δ) | (Y −X ≤ δ, `) ∈ C for some `}.

The graph for a CSTNU is similar to that for an
STNU except that some of the nodes may be obser-
vation nodes; and there may be propositional labels
on nodes and edges. If p is a proposition, then the
observation node whose execution generates a truth
value for p shall be denoted by P? The propositional
label of a node is usually represented near the node
name, enclosed in square brackets. For example, a
node labeled by [cd] is only applicable to scenarios
where propositions c and d are both true. Since edges
in a CSTNU graph can have both propositional labels
(associated with observation nodes) and alphabetic la-
bels (associated with lower-case and upper-case edges
in an STNU), these different kinds of labels are clearly
distinguished in the labeled values for an edge, as
follows.

Definition 4 (Labeled values). A labeled value is a
triple, 〈PLabel, ALabel, Num〉, where:

• PLabel ∈ P∗ is a propositional label,
• ALabel, an alphabetic label, is one of the following:

(1) an upper-case letter, C, as on an upper-case
edge in an STNU; (2) a lower-case letter, c, as on a
lower-case edge in an STNU; or (3) �, representing
no alphabetic label, as for an ordinary STN edge.

• Num is a real number.

For example, 〈p¬q, c, 3〉 is a labeled lower-case
edge; 〈pq¬r, C, −8〉 is a labeled upper-case edge;
and 〈¬p, �, 2〉 is a labeled ordinary edge.

Fig. 2 shows a sample CSTNU that represents a
possible mapping of the main part of the workflow
schema of Fig. 1. Initially, each ordinary edge in
the network has only one labeled value, while each
edge associated with a contingent link has two labeled
values: one representing an ordinary STN constraint
and the other representing an upper-case or lower-case
STNU constraint. However, the new edge-generation
rules given below will typically result in situations
where a single edge may have numerous labeled val-
ues associated with it. The graph in the figure in-
cludes two observation nodes and three contingent
links. Observation node A? generates a truth value for
the proposition, a, which represents that the patient in
question is over age 70. Observation node B? generates
a truth value for the proposition, b, which represents
that the patient is in need of immediate medical atten-
tion. The contingent link, (C,10,20,D), represents an
Elder Emergency Intervention task that takes between
10 and 20 minutes; the contingent link, (H,4,5, I), rep-
resents a Standard Treatment task that takes between
4 and 5 minutes; and the contingent link, (E,8,10,F),
represents an Emergency Intervention task that takes
between 8 and 10 minutes. To simplify the graph, only
the lower-case and upper-case edges for each contin-

B?[�]

A?[�]

H [¬b]C[ab] E [¬ab]D[ab]

I[¬b]

F [¬ab]

〈�,�,11〉〈�,�,−2〉〈ab,�,30〉 〈ab,�,−16〉
〈¬ab,�,22〉

〈¬ab,�,−20〉

〈ab,�,5〉

〈ab,�,−5〉

〈¬ab,�,4〉

〈¬ab,�,−2〉
〈¬b,�,10〉〈¬b,�,−1〉

〈ab,d,10〉

〈ab,D,−20〉

〈¬b, i,4〉〈¬b, I,−5〉

〈¬ab, f ,8〉

〈¬ab,F,−10〉

Figure 2: A possible CSTNU graph mapping the main part of the workflow schema of Fig. 1.

gent link are explicitly represented.3 All other edges in
the sample CSTNU represent ordinary temporal con-
straints. For example, the edges between B? and A?
represent that the observation of proposition a must
occur between 2 and 11 minutes after the observation
of proposition b.

As defined in Hunsberger et al. (2012), a scenario
s is a label that specifies a truth value for every propo-
sitional letter. The STNU formed by the nodes and
edges (i.e., time-points and constraints) whose labels
are true in a given scenario is called a projection of the
CSTNU onto that scenario. A situation ω for an STNU
specifies fixed durations for all of the contingent links.
A drama (s,ω) is a scenario/situation pair that speci-
fies fixed truth values for all of the propositional letters
and fixed durations for all of the contingent links.

An execution strategy is a mapping from dramas
to schedules. A schedule assigns an execution time
to all of the time-points. Thus, if σ is an execution
strategy and (s,ω) is drama, then σ(s,ω) is a schedule.
For any time-point X , [σ(s,ω)]X denotes the execution
time assigned to X by the strategy σ in the drama
(s,ω). A dynamic execution strategy is one in which
the execution times assigned to non-contingent time-
points only depends on past observations. A CSTNU is
dynamically controllable if it has a dynamic execution
strategy that guarantees the satisfaction of all temporal
constraints no matter which drama unfolds in real time.

Note that a constraint whose propositional label is
` need only be satisfied in scenarios where ` is true.
Similarly, a constraint whose alphabetic label is C need
only be satisfied while C remains unexecuted.

Each of the STNUs obtained by projecting the sam-
ple CSTNU of Fig. 2 onto the scenarios, ab,¬ab and
¬b, is dynamically controllable—as an STNU. How-
ever, as will be shown below, the sample CSTNU

3As proven elsewhere (Hunsberger, 2013), the ordinary
edges associated with contingent links are not needed for the
purposes of DC checking.

is not dynamically controllable—as a CSTNU. This
conforms to the observation by Combi and Posenato
(2010) that the independent controllability of each path
through a workflow is a necessary, but insufficient con-
dition for the controllability of the entire workflow.
For the workflow in Fig. 1, it turns out that there is no
execution time for the observation node, A?, that will
enable the rest of the network to be safely executed no
matter how subsequent observations turn out.

4 DC-Checking for CSTNUs

This section presents a DC-checking algorithm for
CSTNUs. The basic approach is to extend the MM5
algorithm for STNUs to accommodate propositional
labels. The presence of observation nodes also requires
some new label-modification rules. In addition, since
the propagation of labeled values involves conjoining
labels, which can lead to an exponential number of la-
beled values, the paper also addresses the management
of sets of labeled values.

In general, a label is said to be enabled in scenar-
ios where the propositions composing the label are not
false. For example, if we consider two scenarios S1,
where propositions A,¬B are true, C is false and D is
unknown, and S2, where only ¬C is true and all others
are unknown, it results that label ACD is enabled only
in S1 while label ¬B is enabled in both S1 and S2.
During the execution of a CSTNU instance, to en-
act a time-point (node), it is necessary to consider all
enabled labeled constraints involving the considered
node and to verify that such labeled constraints are
satisfied. In other words, it is possible that more than
one labeled constraint between two nodes are enabled
because associated to scenarios compatible with the
current partial scenario and, therefore, all of them have
to be satisfied. Hence, it is necessary to generate all
possible constraints (edges) for all possible (partial)

P? Y X
〈αβp,�,u〉

〈βγ¬p,�,−v〉

(a) pre-existing edges, where 0≤ u < v, and α,β and
γ are labels that do not share any literals; and p,¬p
are literals that do not appear in α,β or γ.

P? Y X
〈αβγ,�,0〉

〈αβp,�,u〉

〈βγ¬p,�,−v〉

(b) The generated edge (dashed)

Figure 3: The Observation Case Rule (cf. Lemma 4.1)

scenarios in order to evaluate if a CSTNU is DC con-
trollable.

Hereinafter, we indifferently denote such set of
constraints as a set of different labeled constraints or
as different labeled values of the same constraint.

4.1 Edge Generation for CSTNUs

The edge generation rules for CSTNUs may be di-
vided in two main groups: the first one extends and
completes the edge generation rules of MM5 algorithm
to the case of labeled (possibly alternative) constraints;
the second one modifies the labels of some constraints
in order to allow the execution of different future sce-
narios.

4.1.1 Labeled Constraint Generation

We begin by modifying the edge-generation rules for
STNUs to accommodate labels on edges, as shown in
Table 2. Note that each of the first four rules gener-
ates an edge whose PLabel is the conjunction of the
PLabels of its parent edges. If the resulting PLabel
is unsatisfiable (e.g., p¬p), then the new edge is not
generated (or kept). The fifth rule allows us to remove
the upper case label in order to make the constraint an
ordinary one.

As for the last rule, when there is a constraint from
X to Y with label ` and one from Y to X with a label
not consistent with `, it may be that we have to add a
new constraint in order to guarantee the controllability,
as shown in the following lemma.

Lemma 4.1 (Observation Case Rule). Let σ be a dy-
namic execution strategy that satisfies the labeled con-
straint in Fig. 3-(a) in all scenarios where their labels
are true, then σ must also satisfy the labeled constraint
(P?−Y ≤ 0,αβγ) in all scenarios where αβγ is true as
shown in Fig. 3-(b).

Proof. Let σ be as in the statement of the lemma.
However, suppose that there is some drama, (s,ω),

Labeled No Case:

S

TQ
〈α, �,

u〉 〈β, �, v〉

〈αβ, �, u+ v〉

Labeled Upper Case:

S

TQ
〈α, �,

u〉 〈β, R, v〉

〈αβ, R, u+ v〉

Labeled Lower Case:

S

TQ
〈α, s, u〉 〈β, �, v〉

〈αβ, �, u+ v〉
Applicable if: v < 0 or (v = 0 and S 6≡ T)

Labeled Cross Case:

S

TQ
〈α, s, u〉 〈β, R, v〉

〈αβ, R, u+ v〉
Applicable if: R 6≡ S and (v < 0 or (v = 0 and S 6≡ T))

Labeled Label Removal: S T
〈α, R, v〉
〈α, �, v〉

Applicable if: v≥−x, where x is the lower
bound for the contingent link from T to R

Observation Case: P? Y X
〈αβγ,�,0〉

〈αβp,�,u〉

〈βγ¬p,�,−v〉

Applicable if: 0≤ u < v, and α,β and γ are labels
that do not share any literals; and p,¬p are literals

that do not appear in α, β or γ.

Note: Only new edges with satisfiable labels are kept.

Table 2: New edge-generation rules for CSTNUs.

such that: (1) the label αβγ is true in scenario s; but
(2) the schedule σ(s,ω), does not satisfy the constraint,
(P?−Y ≤ 0,αβγ). In that case, P?−Y > 0, which im-
plies that P? > Y . Since X precedes Y (X −Y ≤−v),
both X and Y precede P?.

Next, let s̃ be the same scenario as s except that
the truth value of p is flipped. Let t be the first time
at which the schedules, σ(s,ω) and σ(s̃,ω), differ.
Thus, there must be some time-point T that is exe-
cuted in one of the schedules at time t, and in the
other at some time later than t. But in that case,
the corresponding histories at time t must be differ-
ent. But the only possible difference must involve
the value of the proposition P?, since all other propo-
sitions and contingent durations are identical in the
dramas, (s,ω) and (s̃,ω). Thus, P? must be executed
before time t. Now, in the schedule σ(s,ω), we have

seen that both Y and X are executed before P?, and
hence before t. Thus, [σ(s,ω)]X = [σ(s̃,ω)]X and
[σ(s,ω)]Y = [σ(s̃,ω)]Y . But this cannot be possible
because in one scenario Y −X ≤ u and in the other one
Y −X ≥ v and both constraints cannot be satisfied at
the same time since u < v.

4.1.2 Label Modification

This section introduces a variety of label-modification
rules that share some resemblance to the Label-
Removal rule in Table 2. Thus, we begin with a short
description of the Label-Removal rule.

Suppose a CSTNU contains a contingent link,
(A,5,12,C). In other words, the contingent duration,
C−A, is uncontrollable, but guaranteed to be within
the interval, [5,12]. Suppose further that the network

also contains the upper-case edge, Y C :−2 A, which
represents the following wait constraint: ”As long as
the contingent time-point C remains unexecuted, then
Y must wait at least 2 units after the execution of its
activation time-point, A. Given that the minimum dura-
tion of this contingent link is 5, it follows that the con-
tingent time-point C must remain unexecuted until af-
ter the wait time of 2 has expired. As a result, the deci-
sion to execute Y must, in every scenario, wait at least
2 units after A. For this reason, the Label-Removal

rule generates the ordinary edge, Y −2 A, which rep-
resents the unconditional constraint, A−Y ≤−2 (i.e.,
Y ≥ A+2). This example illustrates that in certain sce-
narios, a constraint conditioned on an uncontrollable
event—in this case, the execution of the contingent
time-point C—might have the force of an uncondi-
tional constraint because the uncertainty associated
with the uncontrollable event will definitely not be re-
solved at the time a particular execution decision—in
this case, the decision to execute Y —must be made.

The label-modification rules presented below have
the same general flavor, except that they deal with the
uncertainty associated with observation nodes, rather
than contingent links. For example, consider the edge,

P?
〈αp, �, −w〉

X , where neither p nor ¬p appears
in α, and w ≥ 0. This edge represents the condi-
tional constraint that “in scenarios where αp is true,
X −P? ≤ −w (i.e., X +w ≤ P?) must hold”. Given
that w ≥ 0, it follows that in scenarios where αp is
true, X must be executed before the observation node
P?. But it implies that the truth value of p cannot be
known at the time X is executed. And, of course, the
truth value of p cannot be known when the decision
to execute P? is made either. As a result, decisions
about when to execute X and P? cannot depend on
the truth value of p. Thus, the PLabel on the edge

R0 Case: P? X
〈αp,~,−w〉

〈α,~,−w〉

Applicable if:0 ≤ w, p is a literal not in α. ~ can be
either � or an upper-case letter.

R1 Case:
P? X Y

〈αβ,�,−w〉 〈βγp,~,v〉

〈αβγ,~,v〉
〈¬αβγp,~,v〉

Applicable if: 0 ≤ w,v ≤ w, and α,β and γ are labels
that do not share any literals; and p is a literal that
does not appear in α,β or γ. ~ can be either � or an
upper-case letter.

R2 Case:

P? X
〈αβ,�,−w〉

〈βγp,~,v〉

〈αβγ,~,v〉
〈¬αβγp,~,v〉

Applicable if: 0 ≤ w,v ≥ w, and α,β and γ are labels
that do not share any literals; and p is a literal that
does not appear in α,β or γ. ~ can be either � or an
upper-case letter.

R3 Case:
P? X Y

〈αβ,�,−w〉 〈βγp,~,−v〉

〈αβγ,~,−v〉
〈¬αβγp,~,−v〉

Applicable if: 0 ≤ w,v ≤ w, and α,β and γ are labels
that do not share any literals; and p is a literal that
does not appear in α,β or γ. ~ can be either � or an
upper-case letter.

Table 3: Label-modification rules for CSTNUs. Each dashed-
boxed PLabel is substituted by one(s) in the shadow box.

from P? to X should be modified to remove the occur-

rence of p, yielding the new edge, P?
〈α, �, −w〉

X ,
which represents the constraint that in scenarios where
α holds, X −P? ≤ −w (i.e., X +w ≤ P?) must hold.
This is the idea behind the label-modification rule, R0,
shown in Table 3. For each rule, pre-existing labels
are represented as usual, labels to be substituted are
represented in a dashed box, while newly generated
labels are depicted in a shaded box. The following
lemma shows that this rule is sound.
Lemma 4.2 (Label-Modification Rule, R0). Suppose
that w ≥ 0 and α is a label that does not contain the
literal p. If σ is a dynamic execution strategy that
satisfies the labeled constraint, (X − P? ≤ −w,αp)
an shown in Fig. 4-(a), in all scenarios where αp is
true, then σ must also satisfy the labeled constraint,
(X−P?≤−w,α), in all scenarios where α is true, as
depicted in Fig. 4-(b).

Proof. Let (s,ω) be a drama such that: (1) the label

P? X
〈αp,~,−w〉

(a) Pre-existing edge, where 0 ≤ w, p is a literal that
does not appear in α, and ~ can be either � or an
upper-case letter.

P? X
〈α,~,−w〉

(b) Generated (dashed) edge.

Figure 4: The Label-Modification rule, R0 (cf. Lemma 4.2).

α¬p is true in scenario s; but (2) the schedule σ(s,ω)
does not satisfy the constraint, (X−P?≤−w). In that
case, X +w > P?. Next, let s′ be the same scenario
as s except that p is true in s′. Then αp is true in
s′, which implies that (X −P? ≤ −w) in (s′,ω), and
hence X +w≤ P?.

Next, let t be the first time at which the schedules,
σ(s,ω) and σ(s′,ω), differ. Thus, there must be some
time-point T that is executed in one of the schedules
at time t, and in the other at some time after t. But in
that case, the corresponding histories at time t must
be different. Since the dramas, (s,ω) and (s′,ω), are
identical except for the truth value of p, it follows
that the observation node, P?, must be executed be-
fore time t. Now, in the drama (s′,ω), the constraint,
X +w ≤ P?, is satisfied; thus, both X and P? must
be executed before time t in that drama. Since the
schedules, σ(s,ω) and σ(s′,ω), are identical prior to
time t, it follows that the same constraint is satisfied
by σ(s′,ω), contradicting the choice of (s′,ω).

The rest of the label-modification rules have the
same general flavor and they are summarized in Ta-
ble 3. Rule R1 originally appeared in Hunsberger et
al. (2012). The corresponding lemma, given below,
shows that this rule is sound. Its proof is not repeated
here.

Lemma 4.3 (Label-Modification Rule, R1 (Huns-
berger et al., 2012)). Let σ be a dynamic execution
strategy that satisfies the labeled constraint in Fig. 5-(a)
in all scenarios where their labels are true, then σ must
also satisfy the labeled constraint (Y −X ≤ v,αβγ) in
all scenarios where αβγ is true. The original constraint
(Y −X ≤ v,βγp) is replaced by the pair of labeled con-
straints, (Y −X ≤ v,αβγ) and (Y −X ≤ v,¬αβγp) as
depicted in Fig. 5-(b);

Regarding the proof, here we only remark that
when v>w, the rule cannot be applied because it could
be possible to verify the constraint between X and Y
after the execution of P? and, therefore, to consider
the original constraint at the due time.

The lemma does not analyze the case when P? and

P? X Y
〈αβ,�,−w〉 〈βγp,~,v〉

(a) Pre-existing edges, where 0≤ w,v≤ w; α,β and γ

are labels that do not share any literals; p is a literal
that does not appear in α,β or γ; and ~ is either �
or an upper-case letter.

P? X Y
〈αβ,�,−w〉

〈αβγ,~,v〉
〈¬αβγp,~,v〉

(b) New labels on the edge from X to Y .

Figure 5: The Label-Modification rule, R1 (cf. Lemma 4.3).

P? X
〈αβ,�,−w〉

〈βγp,~,v〉

(a) Pre-existing edges, where 0≤ w,v≥ w; α,β and γ

are labels that do not share any literals; p is a literal
that does not appear in α,β or γ; and ~ is either �
or an upper-case letter.

P? X
〈αβ,�,−w〉

〈αβγ,~,v〉
〈¬αβγp,~,v〉

(b) New labels on the edge from Y to X .

Figure 6: The Label-Modification rule, R2 (cf. Lemma 4.4).

Y are the same node: in such case the R1 cannot be
applied: if v < w, we would have a negative cycle.
However, we need to consider the case P? and Y are
the same node and v≥ w: label βγp has to be always
considered before the execution of P? and, therefore,
it is necessary to propagate it without p. We call this
rule R2.

Lemma 4.4 (Label-Removal Rule (R2)). Let σ be a
dynamic execution strategy that satisfies the labeled
constraint in Fig. 6-(a) in all scenarios where their
labels are true, then σ must also satisfy the labeled
constraint (Y −X ≤ v,αβγ) in all scenarios where αβγ

is true. The original constraint (Y −X ≤ v,βγp) is
replaced by the pair of labeled constraints, (Y −X ≤
v,αβγ) and (Y −X ≤ v,¬αβγp) as depicted in Fig. 6-
(b);

Proof. It is straightforward to prove the correctness
of this label-modification rule, as it deals with the
standard constraint between two ordered time-points.

When there is a negative value on a constraint from
Y to X , we have another case of label modification as
shown in the following lemma.

P? X Y
〈αβ,�,−w〉 〈βγp,~,−v〉

(a) Pre-existing edges, where 0≤ w,v≤ w; α,β and γ

are labels that do not share any literals; p is a literal
that does not appear in α,β or γ; and ~ is either �
or an upper-case letter.

P? X Y
〈αβ,�,−w〉

〈αβγ,~,−v〉
〈¬αβγp,~,−v〉

(b) New labels on the edge from Y to X .

Figure 7: The Label-Modification rule, R3 (cf. Lemma 4.5).

Lemma 4.5 (Label-Modification Rule, R3). Let σ be
a dynamic execution strategy that satisfies the labeled
constraint in Fig. 7-(a) in all scenarios where their
labels are true, then σ must also satisfy the labeled
constraint (X −Y ≤ −v,αβγ) in all scenarios where
αβγ is true. The original constraint (X−Y ≤−v,βγp)
is replaced by the pair of labeled constraints (X −
Y ≤ −v,αβγ) and (X −Y ≤ −v,¬αβγp) as depicted
in Fig. 7-(b).

Proof. Let σ be as in the statement of the lemma.
However, suppose that there is some drama, (s,ω),
such that: (1) the label αβγ is true in scenario s; but
(2) the schedule σ(s,ω), does not satisfy the constraint,
(X−Y ≤−v). In that case, X−Y >−v, which implies
that Y < X + v≤ X +w≤ P?, since v≤ w, given that
αβ is true and the constraint from P? to X is satisfied
(i.e., X−P?≤−w). Note also that X ≤ P?.

Next, let s̃ be the same scenario as s except that
the truth value of p is flipped. Let t be the first time
at which the schedules, σ(s,ω) and σ(s̃,ω), differ.
Thus, there must be some time-point T that is exe-
cuted in one of the schedules at time t, and in the
other at some time later than t. But in that case,
the corresponding histories at time t must be differ-
ent. But the only possible difference must involve
the value of the proposition P?, since all other propo-
sitions and contingent durations are identical in the
dramas, (s,ω) and (s̃,ω). Thus, P? must be executed
before time t. Now, in the schedule σ(s,ω), we have
seen that both Y and X are executed before P?, and
hence before t. Thus, [σ(s,ω)]X = [σ(s̃,ω)]X and
[σ(s,ω)]Y = [σ(s̃,ω)]Y . But then the value of Y −X
must be the same in both schedules. Thus, the con-
straint X−Y ≤−v must be violated in both schedules.
But this contradicts that the constraint X−Y ≤−v is
satisfied in scenarios where βγp is true.

Regarding the constraint (X −Y ≤ −v,¬αβγp),
similarly to (Hunsberger et al., 2012), it is simple to
show that it is necessary to introduce it for maintain-
ing the overall equivalence with respect to the original

constraint: indeed, when α is not true, it is not known
the relation between P? and X .

The application of rules R0, R1, R2 and R3 has to
be considered for all pairs of time-points with respect
to all suitable observation points.

All other combinations of constraints among P?, X
and Y do not yield further constraints.

4.2 The CSTNU DC-Checking
Algorithm

The CSTNU DC-checking algorithm checks whether
a CSTNU instance is dynamically controllable (DC)
trying to apply all possible labeled constraint genera-
tion rules of Table 2 and all possible label modification
rules of Table 3 until either no more rules are possi-
ble or the associated AllMax matrix is inconsistent or
the maximum number of cycles of rules application is
reached. The pseudocode of the algorithm is shown in
Procedure 2.

Procedure CSTNU-DC-Check(G)

Input: G = 〈T ,C ,L,OT ,O,P,L〉: a CSTNU
instance.

Output: the dynamic controllability of G.
G′ = G;
for 1 to |P|(|T |2 + |T ||L |+ |L |) do

if (AllMax matrix of G is inconsistent) then
return false;

// Label Modification Rules
G =LabelModificationRuleR0(G);
G =LabelModificationRuleR1(G);
G =LabelModificationRuleR2(G);
G =LabelModificationRuleR3(G);

// Labeled Constraints Generation
G′ = G′∪ needed LabeledNoCaseRule(G);
G′ = G′∪ needed LabeledUpperCaseRule(G);
G′ = G′∪ any LabeledCrossCaseRule(G);
G′ = G′∪ any LabeledLowerCaseRule(G);
G′ = G′∪ any LabeledLabelRemovalRule(G);
G′ = G′∪ any ObservationCaseRule(G);
if (no rules were applied) then return true;
G = G′;

end
return false

The algorithm performs p(n2 + nk + k) rounds,
where n is the number of time-points, k is the number
of contingent ones and p is the number of proposi-
tional letters that appear in the network. In each round,
the application of the labeled constraints generation
rules is carried out considering as input edges those
generated by the previous round. Input edges for the
label modification rules are drawn from the graph ob-
tained by the previous rule application of the same
round. The reason of such difference in the considered

input is given by the different structure of the rules.
The application of labeled constraint generation rules
requires to add edges and/or labeled values to already
present edges and, therefore, it is safe to consider the
same starting graph, while the application of label
modification rules requires to modify labels to some
current labeled values: thus, it is not possible to make
it starting from the graph of the previous round.

After those rounds have completed, if it is still
possible to generate stronger constraints having the
same labels, then the CSTNU is not DC. Proof of
this is an easy extension of Morris and Muscettola’s
argument about the number of rounds in the MM5
algorithm.

According to the previous lemmas, it is straight-
forward to show that the algorithm is sound: indeed,
given a DC CSTNU instance, the algorithm always
says that it is DC (since each rule by itself is sound,
we know for sure that the entire algorithm is sound).

As for completeness, the algorithm should always
say that a non DC CSTNU instance is not DC: even
though we argue that our algorithm is complete, we are
currently working on its formal proof, being it more
complex and intricate than the soundness one.

4.2.1 On the Management of PropLabels

The actual performance of the algorithm can also be
affected by the management strategy of the labeled
value sets of constraints. To better introduce the issue,
let us consider the application of the No-Case rule to
a pair of constraints containing different labeled val-
ues, as in the example of Fig. 8. Even though the new
labeled values determined by the rule are stored guar-
anteeing only that, for each possible label, only the
minimal value is stored, it is still possible to have an
exponential explosion in the number of labeled values,
as shown in Fig. 8-(a). Such exponential number is
not always necessary because it is possible that some
of them can be represented by only one: for example,
〈¬A,�,10〉 and 〈A,�,10〉 represent the fact that any
possible labeled value has to have value at most 10.
Therefore, it is possible to substitute the labeled val-
ues 〈�,�,12〉, 〈¬A,�,10〉, 〈A,�,10〉 by 〈�,�,10〉 as
shown in Fig. 8-(b). In the following we propose some
labeled value management rules in order to minimize
the number of labeled values stored in each constraint
set.

When there are two or more labeled values with la-
bels that subsume the same “seed” label and they have
all the same value, it is not necessary to represent all of
them in a explicit way: it is sufficient to represent only
the “seed” one. For example, the two labeled values
of Fig. 8 〈A¬B,�,8〉 and 〈¬B,�,8〉 can be represented
by 〈¬B,�,8〉 only.

Q

S

T

〈�,�,6〉, 〈¬A,�,4〉
〈¬B,�,4〉

〈�,�,6〉, 〈A,�,4〉
〈¬B,�,4〉

〈�,�,12〉, 〈A,�,10〉,
〈¬A,�,10〉, 〈¬A¬B,�,8〉
〈A¬B,�,8〉, 〈¬B,�,8〉

(a): no labeled value storing management.

Q

S

T

〈�,�,6〉, 〈¬A,�,4〉
〈¬B,�,4〉

〈�,�,6〉, 〈A,�,4〉
〈¬B,�,4〉

〈�,�,10〉, 〈¬B,�,8〉

(b): Optimal labeled value storing management.

Figure 8: Two different managements of labeled values in a
no-case reduction rule application.

Rule 1 (Redundant Label Elimination 1 (RLE 1)). If
a set of labeled values contains two labels (`1, i) and
(`2, i) where `1 subsumes `2, then the labeled value
(`1, i) is redundant and it can be removed.

The previous rule can be simply extended to the
case when two labels differ for only one proposition:

Rule 2 (Redundant Label Elimination 2 (RLE 2)). If
a set of labeled values contains two labeled values
(`1, i) and (`2, j), where `1 = αp, `2 = α¬p and α

does not contain p neither ¬p, there are two cases:
(i) if i = j, then both labeled values can be represented
by (α, i). (ii) if i 6= j, then remove, if any, α labeled
value because it would be greater than both i and j
(and thus not useful).

For example, in Fig. 8 〈A¬B,�,8〉 and
〈¬A¬B,�,8〉 can be substituted by 〈¬B,�,8〉.

Regarding empty label (�), as already said, it rep-
resents all the possible labels. If there is an empty-
labeled value, such value has to be considered as the
default value. If there are other labeled values, these
last ones have to be smaller than the default value (oth-
erwise, RLE 1 applies). It is possible to represent all
possible combinations of labels not only with an empty
label but even with a suitable set of labels. For exam-
ple, in the set {〈A,�,8〉,〈¬A,�,8〉,〈�,�,10〉}, the pair
of labels 〈A,�,8〉 and 〈¬A,�,8〉 represents all possible
labels of the Universe and their values are smaller than
the empty-labeled one: the empty labeled value can be
removed. In general, it holds:

Rule 3 (Empty Label Elimination (RLE 3)). If a set
of labeled values contains a subset of labels that are all
possible combinations of a fixed set of propositions,
then such subset represents the base of all possible
labels. Therefore the possible empty-labeled value

has to be removed since, for construction, its value is
greater than the values associated to the labels of the
base.

The previous rules explain how to maintain a set
of labeled values of a constraint in order to rightly
represent all the possible values, while maintaining the
minimal number of such values represented explicitly.

In general, if we have to add the labeled values
of a set S1 to the labeled values of a set S2, it is
necessary to add each value of the first set to each
each value of the second one having a label that it
is consistent with the label of the first value. The la-
bel of the sum of two values is the conjunction of
the two considered labels. Such new labeled value
has to be put in a new set that will represent the re-
sult of the operation. For example, given the two sets
of Fig. 8, S1 = {〈�,�,6〉,〈¬A,�,4〉,〈¬B,�,4〉} and
S2 = {〈�,�,6〉,〈A,�,4〉,〈¬B,�,4〉}, the sum of them
is

S1 +S2 = {〈�,�,6〉+ 〈�,�,6〉= 〈�,�,12〉, (1)
〈�,�,6〉+ 〈A,�,4〉= 〈A,�,10〉, (2)
〈�,�,6〉+ 〈¬B,�,4〉= 〈¬B,�,10〉, (3)
〈¬A,�,4〉+ 〈�,�,6〉= 〈¬A,�,10〉, (4)
〈¬A,�,4〉+ 〈A,�,4〉= not possible, (5)
〈¬A,�,4〉+ 〈¬B,�,4〉= 〈¬A¬B,�,8〉, (6)
〈¬B,�,4〉+ 〈�,�,6〉= 〈¬B,�,10〉, (7)
〈¬B,�,4〉+ 〈A,�,4〉= 〈A¬B,�,8〉, (8)
〈¬B,�,4〉+ 〈¬B,�,4〉= 〈¬B,�,8〉} (9)

The labeled value (5) is not possible because the
conjunction of its labels is always false. Hence, it is
necessary to apply possible label elimination rules. In
particular, 〈¬B,�,8〉 makes 〈¬B,�,10〉 useless. Now,
applying the RLE2 rule, it is possible to substitute
〈A¬B,�,8〉 and 〈¬A¬B,�,8〉 by 〈¬B,�,8〉, already
present. At last, applying the RLE1 rule, it is possi-
ble to substitute 〈¬A,�,10〉 and 〈A,�,10〉 by 〈�,�,10〉
that updates the already present 〈�,�,12〉 Hence, the
set becomes:

S1 +S2 = {〈�,�,10〉,〈¬B,�,8〉}

5 Discussion and Conclusion

To verify and test the practical usability of the
proposed algorithm, we have built a Java program,
called CSTNUEDITOR, that allows one to graphically
design a CSTNU instance and to check its dynamic
controllability. Fig. ?? depicts a screen shot of the
program running on a simple CSTNU instance.

The program implements different kinds of PropLa-
bel management in order to better monitor the label

propagation and its impact on the convergence of the
algorithm.
First experiments show that the algorithm finds the
solution in an average number of cycles one order of
magnitude smaller than the theoretical estimated upper
bound. Moreover, different policies in the PropLa-
bel management have different consequences on the
convergence of the algorithm: the number of cycles
required to find a solution decreases when the PropLa-
bel management minimizes (in any way) the number
of stored labels but the running time of each cycle of
the algorithm increases. It is under evaluation which is
the best trade off between the (even partial) PropLabel
management and the execution time.

In this article, we presented a DC-checking algo-
rithm for CSTNUs: such algorithm is based on labeled
constraint generation rules that extend the rules pro-
posed in (Morris and Muscettola, 2005) and on new
label modification rules, introduced to manage differ-
ent possible alternative executions. It is the first such
algorithm in the literature. The algorithm is proven to
be sound and conjectured to be complete.

As for future work, we are going to formally ana-
lyze the completeness of the algorithm. Moreover, we
will extensively test CSTNUEDITOR with synthetic
and real world complex CSTNU networks, in order
to evaluate its applicability in the area of temporal
workflow systems.

REFERENCES

Combi, C. and Posenato, R. (2010). Towards temporal con-
trollabilities for workflow schemata. In (Markey and
Wijsen, 2010), pages 129–136.

Conrad, P. R. and Williams, B. C. (2011). Drake: An efficient
executive for temporal plans with choice. Journal of
Artificial Intelligence Research (JAIR), 42:607–659.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal con-
straint networks. Artificial Intelligence, 49(1-3):61–95.

Hunsberger, L. (2009). Fixing the semantics for dynamic
controllability and providing a more practical charac-
terization of dynamic execution strategies. In Lutz, C.
and Raskin, J.-F., editors, The 16th International Sym-
posium on Temporal Representation and Reasoning
(TIME-2009), pages 155–162. IEEE.

Hunsberger, L. (2010). A fast incremental algorithm for
managing the execution of dynamically controllable
temporal networks. In (Markey and Wijsen, 2010),
pages 121–128.

Hunsberger, L. (2013). Magic loops in simple temporal
networks with uncertainty. In Fifth International Con-
ference on Agents and Artificial Intelligence (ICAART-
2013). SciTePress.

Hunsberger, L., Posenato, R., and Combi, C. (2012). The
Dynamic Controllability of Conditional STNs with Un-

certainty. In Workshop on Planning and Plan Execu-
tion for Real-World Systems: Principles and Practices
(PlanEx) @ ICAPS-2012, pages 1–8, Atibaia.

Markey, N. and Wijsen, J., editors (2010). The Seventeenth
International Symposium on Temporal Representation
and Reasoning (TIME-2010). IEEE.

Morris, P. (2006). A structural characterization of tempo-
ral dynamic controllability. In Benhamou, F., editor,
Principles and Practice of Constraint Programming,
volume 4204 of LNCS, pages 375–389. Springer.

Morris, P. H. and Muscettola, N. (2005). Temporal dynamic
controllability revisited. In Veloso, M. M. and Kamb-
hampati, S., editors, The Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05), pages 1193–
1198. AAAI Press.

Morris, P. H., Muscettola, N., and Vidal, T. (2001). Dynamic
control of plans with temporal uncertainty. In Nebel, B.,
editor, The Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01), pages 494–502.
Morgan Kaufmann.

