A Practical Temporal Constraint Management System
for Real-Time Applications

LukeHunsberger 12

Abstract. A temporal constraint management system (TCMS)isa Changing an STN over Time. An STN typically acquires new

temporal network together with algorithms for managing tbe-
straints in that network over time. This paper presents atipra
cal TCMS, calledwysysTEM, that efficiently handles the propaga-
tion of the kinds of temporal constraints commonly found éalf
time applications, while providing constant-time acces&tl-pairs,
shortest-path” information that is extremely useful in mapplica-
tions. The temporal network imysYSTEM includes special time-
points for dealing with the passage of time and eliminathegrieed
for certain common forms of constraint propagation. Thest@nt
propagation algorithm inmMyYSYSTEM maintains a restricted set of
entries in the associated all-pairs, shortest-path mbyrisacremen-
tally propagating changes to the network either from addingew
constraint or strengthening, weakening or deleting antiegison-
straint. The paper presents empirical evidence to suppertlaim

time-points and constraints over time. Algorithms thatémeentally
propagate changes to the STN in response to adding a newaiahst
or strengthening an existing constraint are calledementalalgo-
rithms. Algorithms that propagate changes to the STN inaesp to
weakening or deleting a constraint already in the netwoekcatled
decrementaklgorithms. Algorithms that are both incremental and
decremental are callddlly dynamic.Decremental algorithms have
higher time complexity than their incremental counterp§ts, 12].
Executing Time-Points. In most applications, the starting and
ending times of tasks are represented by time-points in @dem
ral network. When the task is begun—say, at tiiie—its starting
time-point, ¢, is fixed to the values, by inserting the constraints,
K<ts;<K(.e,Z—t; <—Kandt; —Z < K). We say that,
has beeexecutet timeK . Similarly, when the task is completed—

that MYSYSTEM is scalable to real-time planning, scheduling and say, at timel.—its ending pointz., is fixed to the valud..

acting applications.

1 Introduction

A Simple Temporal NetworfSTN) is a pair,(7,C), where7 is a
set of time-point variables (or time-points) afids a set of temporal
constraints, each having the form:— ¢; < ¢, for somet;,t; € T
and some real numbet [3]. In this paper, we let, = |7| and

Cesta and Oddi’s Algorithm. Cesta and Oddi [2] presented a
fully dynamic algorithm for propagating changes to an SThe al-
gorithm does not maintain the entire distance matrix; exté main-
tains only enough entries to verify the consistency of thevaek. In
particular, for each time-poirite 7, it only maintains entries of the
form, D(Z,t) andD(t, Z). Thus, the space requirements &rén).
The incremental portion of the algorithm, which is a vadatbf the
Bellman-Ford algorithm, has time complexi€y(nm). The decre-

m = |C|. A solutionto an STN is a set of real-valued assignments mental portion of the algorithm first determines which exgtnmight

to the variables ir¥” that satisfy all of the constraints & An STN
is calledconsistentf it has at least one solution.

Each STN(7,(C), has a corresponding gragh~= (7, £), where
the nodes of the graph are the time-point§inand the edges of the
graph correspond one-to-one with the constrainis.im particular,
for each constraint,; — ¢; < 4, in C, there is an edge from to ¢;
with weighto in £. In this paper, we lek be the maximum number
of edges incident to any node in the graph. An STN is condisten
and only if its corresponding graph hasmegative cycle§.e., loops
with negative path-length) [3].

Most STNs include a special time-point—called thero time-
point (or Z)—whose value is fixed &t Temporal constraints involv-
ing Z are equivalent to unary constraints. For example,t; < d; is
equivalent to the lower-bound constrainty; < t;; andt; — Z <
is equivalent to the upper-bound constraint< dz.

Thedistance matriXor an STN is am-by-n matrix, D, such that
D(ts, t;) equals the length of the shortest path frorto ¢; in the cor-
responding graphy. Thus,D is theall-pairs, shortest-patlfAPSP)
matrix for G. If there is no path from; to ¢;, thenD(¢;, t;) = oo.

1 Appeared in Proceedings of the European Conference oncatifntelli-
gence (2008).
2 Vassar College, Poughkeepsie, NY, US®insberg@cs.vassar.edu

be affected by the change to the network and then runs thenmesr-
tal portion on that part of the network. Since their algoritoes
not maintain the full distance matrix, it can only discovegative
cycles during the process of constraint propagation. Euntbre, an-
swering distance matrix queries for entries other thanetislving

Z requiresO(kn) time, instead of the constant look-up time that
afforded by having the full distance matrix.

Maintaining the Full Distance Matrix. Maintaining an up-to-
date distance matrix requiré€¥(n?) space and additional constraint
propagation; however, it has the following important adages.
First, it provides constant-time lookup for distance-rixaentries,
which facilitates the use of multi-agent coordination aitjons (e.qg.,
temporal decoupling algorithms [9]). Second, before agldimew
constraint (or strengthening an existing constraint) theststency of
the resulting network can be determined by constant-tirakup—
in advance of any constraint propagati¢il].

Researchers have developed fully dynamic algorithms fdnma
taining distance matrices [7, 5, 16, 4, 12]. Although thdgerithms
have attractive time complexities, they restrict the kirndscon-
straints that can populate a network and, thus, are inagptegdor
many applications. Others have presented algorithms mgdkiner
restrictions, but exhibiting poorer performance [13, 6].

is

direction of
propagation

direction of propagation

Figure2. ThePropBkwdphase of the incremental algorithm

TheINCR2004 Algorithm. The author recently presented a prac-
tical incremental algorithm for maintaining the full distee ma-
trix [8]. For ease of exposition, we shall refer to that altfon as the
INCR2004 algorithm. That algorithm reduces the size of the netwo
by collapsing alkigid componentslown to a single time-poirtThe
INCR2004 algorithm also reduces constraint propagation byasrop
gating only alongundominatecedges’ The undominated edges are
stored in hash tables. In particular, for each time-paiftrecst) is
a hash table containing the undominated edges coming tinaod
Succs$t) contains the undominated edges going out froithe high-
level structure of the algorithm, which is based on work byesal
others [12, 13, 6], has two phases, calR@pFwdand PropBkwd
The algorithm has time complexit9(kA), whereA is the number
of entries ofD that actually need to be changed [12].

The PropFwdPhase. Suppose a new (or stronger) constraint,
t; —t; <4, is added to the network. Fig. 1 illustrates wpFwd
phase, in which changes to distance matrix entries of the,for
D(t;,t), are propagated by following the successors;ofn the fig-
ure, decreasing the weight of the edge;, from 5 to 2 requires de-
creasingD(t;, t) from 9 to 6, and decreasin®(¢;, t,,) from 17 to

‘0/ fa

4—/0— iy
- 5 t,

—d

/7 *+—mMmM

Figure3. The now time-point in an ASTN

Before: Z/N\ t

AyN 2

During: 7 ———————""""1
-2
After: %N 9

- ==
ZA/t
-2

Figure4. The execution of the time-pointat time2

sents the current time (i.e., “now”) [11]. Representingbevtime-
point enables the network txplicitly handle the passage of time
and the execution of time-points. The passage of time islberay
including a single edge from to Z, with weight —d, representing
the lower-bound constraint, < N. This edge, as illustrated in Fig. 3,
is the only outgoing edge from the now time-point. As timesess
the value ofd increases (i.e., the constraint involvidgndN grows
stronger). Since the time-complexity of strengthening ast@int
is lower than that of weakening or deleting constraintss tisay of
dealing with the passage of time is computationally ativact

Inan ASTN, each unexecuted time-poihtis constrained to occur
at or afternow—represented by an edge franto N with weight0.
Fig. 3 illustrates these kinds of edges, which are the ordgrining
edges to the now time-point. Wheis executed, the edge frofito N
is deleted, and two edges betweéeamndz are inserted to fix's value.
Fig. 4 provides “before”, “during” and “after” snapshotsaofhetwork
in whicht is executed at time. In the “before” snapshot, the current
time is 1, andt is constrained to occur at or after that time. In the
middle snapshot; has been executed at tiragi.e., the edge from
t to N has been deleted, and a pair of edges betwesmd Z have

14. SinceD(t;, ,,) does not need to be changed, forward propagatiorP€en inserted, fixing the value bfo 2). In the bottom snapshot, the

stops at that poirt.During thePropFwd phase, each time-point,
for which D(t;, t) changed is collected in a hash-tabAdfectedTPs.
ThePropBkwdPhase.Fig. 2 illustrates th&@ropBkwdphase of the
INCR2004 algorithm. For each,, in AffectedTP<ollected during
the PropFwdphase, the predecessorstphre followed, potentially
leading to changes in entries of the form(t, ¢,). For example, in
the figure, the entr{(¢;, ¢,) had been reduced froih¥ to 14 during
the first phase. Its new value, requires redudngy,, t,») from 18 to

current time has advanced 3pbut that has no effect on

For an ASTN, the distance matrix entrf2(Z,N), can be inter-
preted as a kind of deadline [11]. In particular, if some tipmént is
not executed at or before this deadline, then the networlkrigio
to become inconsistent—because the passage of time [fieein+t
creased value af on the edge frori to Z) will eventually generate a
negative cycle. The potential inconsistency can be avéstexkecut-
ing one or more time-points, thereby deleting constramislvingN

15. However, sinc®(t,, t.) does not need to be changed, backwardand increasing the value &¥(z, V).

propagation stops at that point.
Augmented STNs. An Augmented STRASTN) is an STN that
has been augmented to include a special time-pwjmshich repre-

3 A rigid component is a set of time-points in which the tempaliatance
between each pair of time-points is constrained to be sonee fimlue.
Other researchers have described collapsing rigid conm®fE7, 7].

4 A constraint is calledindominatedf removing it from the network would
necessarily require updating the distance matrix. In estitremoving a
dominatecconstraint from the network would leave the distance maitnix
changed. The algorithm takes advantage of the fact thatrdded con-
straints are easy to detect in networks with no rigid comptnELO].

5 For expositional simplicity, Fig. 1 shows only one branchtiw sub-tree
rooted att;. The PropFwdphase normally explores multiple branches of
that sub-tree. Similar remarks apply to tmpBkwdphase.

2 Desiderata

The main goal for the work described in this paper is to prewad
temporal constraint management system that can serve dsathe
sis for a temporal reasoning module in real-time plannicgedul-
ing and acting applications, including multi-agent systénvolving
the coordination of temporally dependent, inter-agenvisiets. This
high-level goal consists of the following subsidiary goals

e To maintain constant-time access to all distance-matiisiezn
e Toreduce space requirements for the distance matrix (oot@y
auxiliary data structures)

tq ty t, ty
5
8 5 8 -3
-2 -3 -3
Z Zoul T d 777777777777 Zin

Figure5. Replacing the zero time-point by a pair of time-points

e To reduce the need for constraint propagation
e To include a fully dynamic constraint propagation algaritthat
is scalable to real-time applications

Constant-time access to distance-matrix entries faigbtanulti-
agent coordination algorithms (e.g., temporal decoup|#iy Re-
ducing space requirements for the distance matrix implasen-
plicitly representing every distance-matrix entry, whitintaining
constant-time access. Reducing the need for constraipagetion
makes the fully dynamic algorithm computationally paléatiScal-
able” means that the resulting TCMS is practical for appidres in-
volving hundreds, or even thousands of time-points.

3 Approach

This paper presents a TCMS calletvsysTEM that meets the
desiderata listed above. imySYSTEM:

e Thenow time-pointN, is explicitly represented (as in ASTNS).
e Thezero time-pointz, is replaced by a pair of time-point,, and
Zout, thereby eliminating propagation throughand reducing the
number of distance matrix entries needing to be computed.
Since the portion of the distance-matrix that is actuallypated
is typically quite small, the values are stored in a hashetab}
stead of a two-dimensional array.

agation througlz; thus, it dramatically reduces the amount of com-
putation required to maintain the distance matrix. At thmsdime,
MYSYSTEM retains the property of having constant-time access to all
distance-matrix entries. To see this, suppdsis a standard ASTN
and A’ is the same asl, except that the zero time-point has been
replaced by, andZ,.., as described above. Because the edge from
Zin 10 Z,y is left out of A’, the distance matrice®) andD’, are typ-
ically quite different. However, the relationship betwekair corre-
sponding entries is simple. In particular, for anyt; € 7\{z}:’

° 'D(ti, Z) = 'Dl(ti, Zm)

o D(Z,t;) = D' (Zow, tj)

° 'D(ti, tj) = min{D'(ti, Zm) + 'D/(Zaut, tj), 'Dl(ti, tj)}

The last equality can be glossed as: “The shortest path frotm
t; either involves the zero time-point or it doesn’t.” In thigyy al-
thoughD’ typically contains far fewer finite entries thap it can be
used to fetch the value of any entry(t;, ;) in constant time.

The Distance-Matrix Hash Table. Due to the use of;, and
Zout, the constraint propagation algorithmsniysySTEM typically
need to compute only a small fraction of thEn?) entries in the
distance matrixD’. Thus, to save space, a hash table is used to store
only those entries that are actually computed. Any er@t;, t;),
that has not been stored in the hash table is taken to be ynfieftre-
senting that there is no path frafto ¢ ;. Hash-table keys are integers
of the form, Ni + j, whereN is an upper bound on the number of
time-points in the networlé For example, ifN = 2' = 16384,
then 28-bit values can be used for hash-table keys—whichbean
quickly computed using left-shift and addition operations

A Note about Rigid Components and Undominated Edges.

In a purely incremental context, constraints are never eead or
deleted. Thus, rigid components, once created, can newemntse
non-rigid. Thus, itis safe to collapse each rigid comporknin to a

The incremental algorithm is essentially the same as thesingle point as soon as it is created. Insodoing, the netvesriains

INCR2004 algorithm, except that rigid components and domi-free from rigidities, which simplifies the detection of derated con-

nated constraints are handled differently.
A new decremental algorithm is provided that manipulates th
same data structures as the incremental algorithm. Theitligo

straints. In contrast, a fully dynamic algorithm must harttile weak-
ening or deleting of constraints and, thus, cannot affordoltapse
all rigid components—because undoing such transformatan be

which draws on ideas from other researchers [4, 13], is ot th 100 computationally costly. Thus, the fully dynamic algom in

fastest possible, but requires only minor auxiliary datacstires.
Executed time-points are effectively removed from the oekw

Replacing the Zero Time-Point by a Pair of Time-Points. In
real-world applications, the starting and ending timesasks are
typically subject to a variety of unary constraints—thatsnstraints
involving the zero time-pointz. As a result, while the maximum
number of edges incident on any other time-point might bg,tea,
the number of edges incident @can beO(n). Thus, a great deal
of the constraint propagation needed to fully populate tistadce
matrix is due to constraints involvirg

To eliminate constraint propagation throughthe temporal net-
work in MYSYSTEM replacesz by a pair of time-points,z;, and
Z.ut.% In particular, as illustrated in Fig. %, is the destination for
all edges that would normally point &) andz,. is the source of all
edges that would normally emanate fram

Now, adding an edge fror;, to Z,.; with weight0 (shown as a
dashed arrow in the figure) would make the two networks in Fig.
equivalent; however, such an edge is purposely left out efrit-
work in MYSYSTEM. This seemingly minor change eliminates prop-

6 This treatment of the zero time-point is somewhat similaCtsta and
Oddi's treatment of the zero time-point as both a source asidkg[2].

MYSYSTEM does not typically collapse rigid components. Thus, the
network inMYsSYSTEM may contain rigidities, thereby complicating
the detection of dominated edges. For this reason, the taetenf
dominated edges imYSYSTEM s restricted to cases wheretaictly
shorteralternative pathway is fourtlin addition, the decremental
algorithm can sometimes insert dominated edges inté’tbesand
Succshash tables—because avoiding doing so would be too com-
putationally costly. However, when the incremental altjon de-
tects these dominated edges, they are immediately remowextiie
Precsand Succshash tables. Thus, in this sense, the fully dynamic
algorithm inMYSYSTEM can be said to propagate along “mostly”
undominated edges.

The Decremental Algorithm in MYSYSTEM. The decremental
algorithm is used when an existing constraipt— ¢; < ¢, is either
weakened or deleted. The algorithm has the following threses:

(1) In a hash-table calle@hangelings collect all pairs,(ts, ty),
such thatD’ (¢, t,,) mightneed updating.

7 T\{z} denotes the set of time-points.i other tharz.

8 Demetrescu and ltaliano [4] encode pairs in this way.

9 In contrast, thencrR2004 algorithm also detects edges that are dominated
by a path whose length is tameas that of the edge being dominated.

(2) For eacht,,t,) in Changelingscheck for shorter alternative
pathways fromt,, to ¢,; collect the shortest alternatives in a
hash-table calledltPaths.

Incrementally propagate the constraint\itPaths.

(©)

Phase 1.Consider the path from, to ¢, shown below, where the
wavy arrows represent shortest paths ars theoriginal weight of
the edge being weakened/deleted.

t, =N 5%15]- A1,
The pair,(t., ty), is collected during Phase 1 if and only if:
D' (ty,ty) = D' (te, ti) + 6 + D (ti, ty)

All such pairs are collected using a two-pass algorithm Iizest the
same structure as thieropFwdand PropBkwdphases of the incre-
mental algorithm. Thus, Phase 1 takes tigg:A), whereA is the
number of pairs irChangelings.

After the Changelingshash-table has been populated, the corre-

sponding distance-matrix entries are assigned new vahse$l-
lows. If the edget;t;, has been deleted, then eaft(t,,t,) is
set tooo, because the deletion oft; might mean there no longer
is any path fromt, to t,. On the other hand, if;t; was simply
weakened—say by an amoumt—then eachD’(t,, t,) is set to the
value D’ (t,,t,) + « + 1. Using this value, which is necessarily
greater than the eventual updated value, fo®&g.,t,) to be up-
dated during Phase 2 or 3.

Since MYSYSTEM does not maintain any pointers to first or
last steps of shortest paths (e.g., as done by Rohnert [&8]),

path. For this reason, the edges considered during Phasedgaavn
from the seC—which containsll of the edges in the network—not
just those in thé’recsandSuccshash tables.

Phase 3.During Phase 3, the alternative paths found in Phase 2 are
incrementally propagated. There are several options forgdihis.
Each alternative path could, in turn, be completely protedyasing
the incremental algorithm. However, this sortdeipth-firstapproach
might result in a large amount of redundant propagation. tieo
option, analogous t&* search, would be to sort the alternative paths
according to how close their path-lengths were to the ocaigialue
of D’ (t., t,) and apply the incremental algorithm to those alternative
paths in their sorted order.

The decremental algorithm imYSYSTEM takes an iterative,
breadth-firstapproach. In the first iteration, each pathAittPathsis
propagateanly one stelong the predecessorsigfand the succes-
sors oft,. Each one-step propagation generates a new update which
is stored in a hash-table callee@wAltPathsDuring the second iter-
ation, each update inewAltPathss propagateanly one stepgen-
erating new updates for the third iteration. This iterapivecess ter-
minates when no more updates are generated. Empiricalreade
suggests that this form of incremental propagation is quridetical.

Removing Executed Time-Points. As discussed earlier, the fully
dynamic algorithm does not typically collapse rigid coments, be-
cause undoing such transformations in response to camstedax-
ations can be too computationally costly. However, whenngeti
point, ¢, is executed, it forms a rigid component with, andZ,.:
that is guaranteed to persist. Thus, it is safe to collapisekihd of
rigid component. Doing so effectively remove$rom the network
by reorienting constraints involvingtowardz;,, andz ;.

Changelingshash table may end up containing some pairs whose

distance-matrix entries do not need to be updated. Insteathin-
taining complex auxiliary data structures to avoid thig, decremen-
tal algorithm discovers alternative paths during Phased23ao en-
sure that the corresponding distance-matrix entries atenel.
Phase 2.For each(t., t,) in Changelingsalternative pathways of
the forms given below are collected in a hash-table call¢aths®

& = ty
edge

ty —— =t — N\

t
shortest path Y

ty — NN et ——» ¢,
shortest path edge

For some(t,, t,) in Changelingsit may be that no alternative paths
exist. For other pairs, more than one such path may existeherny
only the shortest such paths are keptitPaths.The hash-key for
the AltPathshash table is the paift., t,); the value is the length of
the alternative path. (Interior time-points on the pathreseneeded.)
Notice that the alternative pathways collected during Blzasay
well have been dominated prior to the weakening (or deltifithe
edget;t;, as illustrated below in the case of an alternative edge.

I

Prior to weakening;t,; from5to 10, the edget. t,, was not a shortest
path; however, afterward, it becomes a shorter (and pgsshlortest)

16

2

t,’ OH t_,‘ 4

10 Demetrescu and Italiano [4] refer to such pathwaymeally shortest.

4 Empirical Evaluation

The MYsSYsTEM TCMS was tested on a set of thirty 25-agent
scheduling problems drawn from the Phase 2 Evaluation fer th
DARPA Coordinators Project [15]. These kinds of problenmesrap-
resented in the cTAEMS language, the details of which areribes
elsewhere [1]. The important characteristics of the tesblems are
shown in the top plot in Fig. 6. Each problem involved betw&s7
and 3273 time-points (plotted on the horizontal axis) antvben
803 and 1686 activitiesACTS.!* For each problem, a centralized
scheduler [14] was used to generate a set of agent scheéeldsag

to optimize the cTAEMSjuality metric. In the process, the scheduler
invoked the incremental algorithm efysYSTEM between 3461 and
7353 times INCRS), and the decremental algorithm between 254
and 1185 timesECR$. The resulting schedules included a total of
between 139 and 243 activitieSCHED$ and resulted in networks
with between 3326 and 6797 edg&DGES$.

The middle plot of Fig. 6 shows the CPU time usedvbysYSTEM
to do all of the temporal computations for each schedulirdplem.
The CPU time ranged from 2 seconds to 2 minutes for each proble
In the worst case, the 2 minutes of computation, spread @0 8
invocations of the incremental or decremental algorithaveraged
to about 15 msec per invocation.

The bottom plot of Fig. 6 shows the memory usagemM»sys-
TEM. The number of finite distance-matrix cells (i.e., thosé there
actually stored in a hash table) ranged from about 77,000 ¢ota
850,000 per problem. In contrast, the full distance matioxia have
required between 2.2 and 10.7 million cells. Given thatdgipéntries
are four bytes, such a matrix could have required over 40 hyga

11 Some activities share time-points; hence the number of-ficiets is
somewhat less than double the number of activities.

NCRS

DGES

7] ACTS

1000+ E . ~* DECRS
= $a g 0% 545 oo ¥°° SCHEDS

T T T T
2000 2400 2800 3000

NUMBER OF TIME POINTS

T
1600

tries that typically need to be computed. The fully dynamigoa
rithm extends an earlier incremental algorithm. It limitsjpagation
to “mostly” undominated edges. The paper provided empirea
sults on temporal networks derived from a centralized saleedp-
plied to a variety of 25-agent scheduling problems invajvihou-
sands of time-points.

Acknowledgments

The research presented in this paper was supported in paulby
contract 55-000723 between Vassar College and SRI Interzét
as part of the DARPA Coordinators Project (Contract FA8056c-
0033). Any opinions, findings and conclusions or recommgodsa
expressed in this paper are those of the author and do natsaee

ily reflect the views of DARPA. The author thanks Stephen 8mit

[%2]
8 . L
Z 10 1 * ¥, ¥
5107 * xS *
D * Ok % [1]
& K K ¥
2 [2]
a * % *
SIS *
10 1 %
1 *
1 *
1 o* 3]
0 T T T T T T T T T T
10 1600 2000 2400 2800 3000 [4]
NUMBER OF TIME POINTS (5]
1OD§ Total Memory Used (Bytesfp & | *¢ LR [6]
] E NPT M
* * 0‘ - [7]
IR . o o® © Q00
10 i 00 <© o © R
> ¢ Potential Size of Distance Matrix 18]
10°] * %
B * *
] * * *
1 e *
N ™ * % ¥ [9]
* FF
54 X
10 3§ Number of Finité Distance Natrix Entries
] [10]
PR — —r— —r —r—
10 1600 2000 2400 2800 3000 [11]
NUMBER OF TIME POINTS
Figure6. Results of experiments on 25-agent scheduling problems [12]
of memory. In contrast, thetal memory used byysysTEmduring [13]

the course of each scheduling problem, most of which wasrditna
cally allocated and freed, ranged from about 8 to 92 megabyte

All experiments were run on an IBM Thinkpad laptop with a
2.4GHz Intel processor using Allegro Common Lisp, versidh 8 (14]

5 Conclusion [12]
This paper presented a new temporal constraint manageryent s
tem, calledmysysTEM, that combines novel STN representations [16]
with a fully dynamic propagation algorithm that is practifax real-
world, real-time applications. The temporal networkvimsSySTEM
includes special time-points to eliminate a common form af-c
straint propagation and reduce the number of distancebmetr

[17]

_ Zachary Rubinstein, Terry Zimmerman, Laura Barbulescu Aamd
10 4 thony Gallagher from Carnegie Mellon University for prawvig ac-
1 cess to their scheduler.

REFERENCES

M. Boddy, B. Horling, J. Phelps, R. Goldman, R. Vincent,l@ng, and
B. Kohout, ‘Ctaems language specification, version 1.06 (0)’.
Amedeo Cesta and Angelo Oddi, ‘Gaining efficiency andifiigity in
the simple temporal problem’, iRfroceedings of the Third International
Workshop on Temporal Representation and Reasoning (TI8)E8.
45-50. |[EEE, (1996).

Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal stcaint net-
works’, Artificial Intelligence 49, 61-95, (1991).

C. Demetrescu and G. Italiano, ‘A new approach to dynaaflipairs
shortest paths’, iProceedings of the 35th STO@p. 159-166, (2003).
Camil Demetrescu and Giuseppe F. Italiano, ‘Improvedrus and
new trade-offs for dynamic all pairs shortest paths’, TézdinrReport
ALCOMFT-TR-02-1, ALCOM, (2002).

Shimon Even and Hillel Gazit, ‘Updating distances in dymic graphs’,
Methods of Operations Researd9, 371-387, (1985).

Alfonso Gerevini, Anna Perini, and Francesco Riccicliamental al-
gorithms for managing temporal constraints’, Technicah&eIRST-
9605-07, IRST.

Luke Hunsberger, ‘Quantitative temporal reasoning lemping prob-
lems’. AAAI-2004 Tutorial MP-2, slides available at:
http://www.cs.vassar.edu/"hunsberg .

Luke Hunsberger, ‘Algorithms for a temporal decouplipgoblem in
multi-agent planning’, irfProceedings of the Eighteenth National Con-
ference on Artificial Intelligence (AAAI-200Zp002).

Luke HunsbergerGroup Decision Making and Temporal Reasoning
Ph.D. dissertation, Harvard University, 2002. Availabke Harvard
Technical Report TR-05-02.

Luke Hunsberger, ‘Distributing the control of a temabmetwork
among multiple agents’, iRroc. of the 2nd Int’l. Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMASIE)3).

G. Ramalingam and Thomas Reps, ‘On the computationalpéexity
of dynamic graph problemsTheoretical Computer Scienc#s8, 233—
277, (1996).

Hans Rohnert, ‘A dynamization of the all pairs leasttquath problem’,
in 2nd Symposium of Theoretical Aspects of Computer Scielig€S
85), ed., Kurt Mehlhorn, volume 182 dfecture Notes in Computer
Science279-286, Springer, (1985).

S. Smith, A.T. Gallagher, T.L. Zimmerman, L. Barbulesand Z. Ru-
binstein, ‘Distributed management of flexible times schesiyin Intl.
Conf. on Autonomous Agents and Multiagent Systé2097).

Valerie Guralnik Thomas Wagner, John Phelps and RyamRifzer,
‘COORDINATORS: Coordination managers for first responters
Proc. of the 3rd Intl. Joint Conference on Autonomous AgantsMul-
tiagent Systems (AAMAS-200lBEE Computer Society, (2004).
Mikkel Thorup, ‘Worst-case update times for fully-dymic all-pairs
shortest paths’, i\nnual ACM Symposium on Theory of Compuyting
pp. 112-119, (2005).

loannis Tsamardinof®eformulating Temporal Plans for Efficient Exe-
cution, Master’s thesis, University of Pittsburgh, 2000.

