
A Practical Temporal Constraint Management System
for Real-Time Applications

Luke Hunsberger 1 2

Abstract. A temporal constraint management system (TCMS) is a
temporal network together with algorithms for managing thecon-
straints in that network over time. This paper presents a practi-
cal TCMS, calledMYSYSTEM, that efficiently handles the propaga-
tion of the kinds of temporal constraints commonly found in real-
time applications, while providing constant-time access to “all-pairs,
shortest-path” information that is extremely useful in many applica-
tions. The temporal network inMYSYSTEM includes special time-
points for dealing with the passage of time and eliminating the need
for certain common forms of constraint propagation. The constraint
propagation algorithm inMYSYSTEM maintains a restricted set of
entries in the associated all-pairs, shortest-path matrixby incremen-
tally propagating changes to the network either from addinga new
constraint or strengthening, weakening or deleting an existing con-
straint. The paper presents empirical evidence to support the claim
that MYSYSTEM is scalable to real-time planning, scheduling and
acting applications.

1 Introduction

A Simple Temporal Network(STN) is a pair,(T , C), whereT is a
set of time-point variables (or time-points) andC is a set of temporal
constraints, each having the form:tj − ti ≤ δ, for someti, tj ∈ T
and some real numberδ [3]. In this paper, we letn = |T | and
m = |C|. A solution to an STN is a set of real-valued assignments
to the variables inT that satisfy all of the constraints inC. An STN
is calledconsistentif it has at least one solution.

Each STN,(T , C), has a corresponding graph,G = (T , E), where
the nodes of the graph are the time-points inT , and the edges of the
graph correspond one-to-one with the constraints inC. In particular,
for each constraint,tj − ti ≤ δ, in C, there is an edge fromti to tj

with weightδ in E . In this paper, we letk be the maximum number
of edges incident to any node in the graph. An STN is consistent if
and only if its corresponding graph has nonegative cycles(i.e., loops
with negative path-length) [3].

Most STNs include a special time-point—called thezero time-
point (or Z)—whose value is fixed at0. Temporal constraints involv-
ingZ are equivalent to unary constraints. For example,Z− ti ≤ δ1 is
equivalent to the lower-bound constraint,−δ1 ≤ ti; andtj − Z ≤ δ2

is equivalent to the upper-bound constraint,tj ≤ δ2.
Thedistance matrixfor an STN is ann-by-n matrix,D, such that

D(ti, tj) equals the length of the shortest path fromti to tj in the cor-
responding graph,G. Thus,D is theall-pairs, shortest-path(APSP)
matrix forG. If there is no path fromti to tj , thenD(ti, tj) = ∞.

1 Appeared in Proceedings of the European Conference on Artificial Intelli-
gence (2008).

2 Vassar College, Poughkeepsie, NY, USA,hunsberg@cs.vassar.edu

Changing an STN over Time. An STN typically acquires new
time-points and constraints over time. Algorithms that incrementally
propagate changes to the STN in response to adding a new constraint
or strengthening an existing constraint are calledincrementalalgo-
rithms. Algorithms that propagate changes to the STN in response to
weakening or deleting a constraint already in the network are called
decrementalalgorithms. Algorithms that are both incremental and
decremental are calledfully dynamic.Decremental algorithms have
higher time complexity than their incremental counterparts [16, 12].

Executing Time-Points. In most applications, the starting and
ending times of tasks are represented by time-points in a tempo-
ral network. When the task is begun—say, at timeK—its starting
time-point,ts, is fixed to the valueK, by inserting the constraints,
K ≤ ts ≤ K (i.e., Z− ts ≤ −K andts − Z ≤ K). We say thatts

has beenexecutedat timeK. Similarly, when the task is completed—
say, at timeL—its ending point,te, is fixed to the valueL.

Cesta and Oddi’s Algorithm. Cesta and Oddi [2] presented a
fully dynamic algorithm for propagating changes to an STN. The al-
gorithm does not maintain the entire distance matrix; instead, it main-
tains only enough entries to verify the consistency of the network. In
particular, for each time-pointt ∈ T , it only maintains entries of the
form, D(Z, t) andD(t, Z). Thus, the space requirements areO(n).
The incremental portion of the algorithm, which is a variation of the
Bellman-Ford algorithm, has time complexityO(nm). The decre-
mental portion of the algorithm first determines which entries might
be affected by the change to the network and then runs the incremen-
tal portion on that part of the network. Since their algorithm does
not maintain the full distance matrix, it can only discover negative
cycles during the process of constraint propagation. Furthermore, an-
swering distance matrix queries for entries other than those involving
Z requiresO(kn) time, instead of the constant look-up time that is
afforded by having the full distance matrix.

Maintaining the Full Distance Matrix. Maintaining an up-to-
date distance matrix requiresO(n2) space and additional constraint
propagation; however, it has the following important advantages.
First, it provides constant-time lookup for distance-matrix entries,
which facilitates the use of multi-agent coordination algorithms (e.g.,
temporal decoupling algorithms [9]). Second, before adding a new
constraint (or strengthening an existing constraint) the consistency of
the resulting network can be determined by constant-time lookup—
in advance of any constraint propagation[11].

Researchers have developed fully dynamic algorithms for main-
taining distance matrices [7, 5, 16, 4, 12]. Although these algorithms
have attractive time complexities, they restrict the kindsof con-
straints that can populate a network and, thus, are inappropriate for
many applications. Others have presented algorithms making fewer
restrictions, but exhibiting poorer performance [13, 6].

ti

tktj 4
tm

tp

tq4
6

8

18
22

17
9

5 direction of
propagation

Figure 1. ThePropFwdphase of the incremental algorithm

122 tjti
th

tg

1
6 tm

14

20
18

direction of propagation

Figure 2. ThePropBkwdphase of the incremental algorithm

The INCR2004 Algorithm. The author recently presented a prac-
tical incremental algorithm for maintaining the full distance ma-
trix [8]. For ease of exposition, we shall refer to that algorithm as the
INCR2004 algorithm. That algorithm reduces the size of the network
by collapsing allrigid componentsdown to a single time-point.3 The
INCR2004 algorithm also reduces constraint propagation by propa-
gating only alongundominatededges.4 The undominated edges are
stored in hash tables. In particular, for each time-pointt, Precs(t) is
a hash table containing the undominated edges coming in tot; and
Succs(t) contains the undominated edges going out fromt. The high-
level structure of the algorithm, which is based on work by several
others [12, 13, 6], has two phases, calledPropFwdandPropBkwd.
The algorithm has time complexityO(k∆), where∆ is the number
of entries ofD that actually need to be changed [12].

The PropFwdPhase. Suppose a new (or stronger) constraint,
tj − ti ≤ δ, is added to the network. Fig. 1 illustrates thePropFwd
phase, in which changes to distance matrix entries of the form,
D(ti, t), are propagated by following the successors oftj . In the fig-
ure, decreasing the weight of the edge,titj , from 5 to 2 requires de-
creasingD(ti, tk) from 9 to 6, and decreasingD(ti, tm) from 17 to
14. SinceD(ti, tp) does not need to be changed, forward propagation
stops at that point.5 During thePropFwdphase, each time-point,t,
for whichD(ti, t) changed is collected in a hash-table,AffectedTPs.

ThePropBkwdPhase.Fig. 2 illustrates thePropBkwdphase of the
INCR2004 algorithm. For eachtm in AffectedTPscollected during
thePropFwdphase, the predecessors ofti are followed, potentially
leading to changes in entries of the form,D(t, tm). For example, in
the figure, the entryD(ti, tm) had been reduced from17 to14 during
the first phase. Its new value, requires reducingD(th, tm) from 18 to
15. However, sinceD(tg, tm) does not need to be changed, backward
propagation stops at that point.

Augmented STNs. An Augmented STN(ASTN) is an STN that
has been augmented to include a special time-point,N, which repre-

3 A rigid component is a set of time-points in which the temporal distance
between each pair of time-points is constrained to be some fixed value.
Other researchers have described collapsing rigid components [17, 7].

4 A constraint is calledundominatedif removing it from the network would
necessarily require updating the distance matrix. In contrast, removing a
dominatedconstraint from the network would leave the distance matrixun-
changed. The algorithm takes advantage of the fact that dominated con-
straints are easy to detect in networks with no rigid components [10].

5 For expositional simplicity, Fig. 1 shows only one branch ofthe sub-tree
rooted attj . ThePropFwdphase normally explores multiple branches of
that sub-tree. Similar remarks apply to thePropBkwdphase.

NZ
−d

0
tc

0 ta
0 tb

Figure 3. The now time-point in an ASTN

N

t
Z

2

−2

tBefore: Z

N 0−1

N

t
Z

2

−2

−3

−2

During:

After:

Figure 4. The execution of the time-pointt at time2

sents the current time (i.e., “now”) [11]. Representing thenow time-
point enables the network toexplicitly handle the passage of time
and the execution of time-points. The passage of time is handled by
including a single edge fromN to Z, with weight−d, representing
the lower-bound constraint,d ≤ N. This edge, as illustrated in Fig. 3,
is the only outgoing edge from the now time-point. As time passes,
the value ofd increases (i.e., the constraint involvingZ andN grows
stronger). Since the time-complexity of strengthening a constraint
is lower than that of weakening or deleting constraints, this way of
dealing with the passage of time is computationally attractive.

In an ASTN, each unexecuted time-point,t, is constrained to occur
at or afternow—represented by an edge fromt to N with weight0.
Fig. 3 illustrates these kinds of edges, which are the only incoming
edges to the now time-point. Whent is executed, the edge fromt toN
is deleted, and two edges betweent andZ are inserted to fixt’s value.
Fig. 4 provides “before”, “during” and “after” snapshots ofa network
in which t is executed at time2. In the “before” snapshot, the current
time is 1, andt is constrained to occur at or after that time. In the
middle snapshot,t has been executed at time2 (i.e., the edge from
t to N has been deleted, and a pair of edges betweent andZ have
been inserted, fixing the value oft to 2). In the bottom snapshot, the
current time has advanced to3, but that has no effect ont.

For an ASTN, the distance matrix entry,D(Z, N), can be inter-
preted as a kind of deadline [11]. In particular, if some time-point is
not executed at or before this deadline, then the network is certain
to become inconsistent—because the passage of time (i.e., the in-
creased value ofd on the edge fromN to Z) will eventually generate a
negative cycle. The potential inconsistency can be avertedby execut-
ing one or more time-points, thereby deleting constraints involvingN
and increasing the value ofD(Z, N).

2 Desiderata

The main goal for the work described in this paper is to provide a
temporal constraint management system that can serve as theba-
sis for a temporal reasoning module in real-time planning, schedul-
ing and acting applications, including multi-agent systems involving
the coordination of temporally dependent, inter-agent activities. This
high-level goal consists of the following subsidiary goals:

• To maintain constant-time access to all distance-matrix entries
• To reduce space requirements for the distance matrix (or anyother

auxiliary data structures)

tb

Zin

−3

tb ta

8

5

−2

0
Zout

ta

Z

−2

8
5

−3

Figure 5. Replacing the zero time-point by a pair of time-points

• To reduce the need for constraint propagation
• To include a fully dynamic constraint propagation algorithm that

is scalable to real-time applications

Constant-time access to distance-matrix entries facilitates multi-
agent coordination algorithms (e.g., temporal decoupling[9]). Re-
ducing space requirements for the distance matrix implies not ex-
plicitly representing every distance-matrix entry, whilemaintaining
constant-time access. Reducing the need for constraint propagation
makes the fully dynamic algorithm computationally palatable. “Scal-
able” means that the resulting TCMS is practical for applications in-
volving hundreds, or even thousands of time-points.

3 Approach

This paper presents a TCMS calledMYSYSTEM that meets the
desiderata listed above. InMYSYSTEM:

• Thenow time-point, N, is explicitly represented (as in ASTNs).
• Thezero time-point,Z, is replaced by a pair of time-points,Zin and

Zout , thereby eliminating propagation throughZ, and reducing the
number of distance matrix entries needing to be computed.

• Since the portion of the distance-matrix that is actually computed
is typically quite small, the values are stored in a hash table, in-
stead of a two-dimensional array.

• The incremental algorithm is essentially the same as the
INCR2004 algorithm, except that rigid components and domi-
nated constraints are handled differently.

• A new decremental algorithm is provided that manipulates the
same data structures as the incremental algorithm. The algorithm,
which draws on ideas from other researchers [4, 13], is not the
fastest possible, but requires only minor auxiliary data structures.

• Executed time-points are effectively removed from the network.

Replacing the Zero Time-Point by a Pair of Time-Points. In
real-world applications, the starting and ending times of tasks are
typically subject to a variety of unary constraints—that is, constraints
involving the zero time-point,Z. As a result, while the maximum
number of edges incident on any other time-point might be, say, ten,
the number of edges incident onZ can beO(n). Thus, a great deal
of the constraint propagation needed to fully populate the distance
matrix is due to constraints involvingZ.

To eliminate constraint propagation throughZ, the temporal net-
work in MYSYSTEM replacesZ by a pair of time-points,Zin and
Zout .6 In particular, as illustrated in Fig. 5,Zin is the destination for
all edges that would normally point toZ, andZout is the source of all
edges that would normally emanate fromZ.

Now, adding an edge fromZin to Zout with weight0 (shown as a
dashed arrow in the figure) would make the two networks in Fig.5
equivalent; however, such an edge is purposely left out of the net-
work in MYSYSTEM. This seemingly minor change eliminates prop-

6 This treatment of the zero time-point is somewhat similar toCesta and
Oddi’s treatment of the zero time-point as both a source and asink [2].

agation throughZ; thus, it dramatically reduces the amount of com-
putation required to maintain the distance matrix. At the same time,
MYSYSTEM retains the property of having constant-time access to all
distance-matrix entries. To see this, supposeA is a standard ASTN
andA′ is the same asA, except that the zero time-point has been
replaced byZin andZout , as described above. Because the edge from
Zin to Zout is left out ofA′, the distance matrices,D andD′, are typ-
ically quite different. However, the relationship betweentheir corre-
sponding entries is simple. In particular, for anyti, tj ∈ T \{Z}:7

• D(ti, Z) = D′(ti, Zin)
• D(Z, tj) = D′(Zout , tj)
• D(ti, tj) = min{D′(ti, Zin) + D′(Zout , tj), D′(ti, tj)}

The last equality can be glossed as: “The shortest path fromti to
tj either involves the zero time-point or it doesn’t.” In this way, al-
thoughD′ typically contains far fewer finite entries thanD, it can be
used to fetch the value of any entry inD(ti, tj) in constant time.

The Distance-Matrix Hash Table. Due to the use ofZin and
Zout , the constraint propagation algorithms inMYSYSTEM typically
need to compute only a small fraction of theO(n2) entries in the
distance matrix,D′. Thus, to save space, a hash table is used to store
only those entries that are actually computed. Any entry,D′(ti, tj),
that has not been stored in the hash table is taken to be infinity, repre-
senting that there is no path fromti to tj . Hash-table keys are integers
of the form,Ni + j, whereN is an upper bound on the number of
time-points in the network.8 For example, ifN = 214 = 16384,
then 28-bit values can be used for hash-table keys—which canbe
quickly computed using left-shift and addition operations.

A Note about Rigid Components and Undominated Edges.
In a purely incremental context, constraints are never weakened or
deleted. Thus, rigid components, once created, can never become
non-rigid. Thus, it is safe to collapse each rigid componentdown to a
single point as soon as it is created. Insodoing, the networkremains
free from rigidities, which simplifies the detection of dominated con-
straints. In contrast, a fully dynamic algorithm must handle the weak-
ening or deleting of constraints and, thus, cannot afford tocollapse
all rigid components—because undoing such transformations can be
too computationally costly. Thus, the fully dynamic algorithm in
MYSYSTEM does not typically collapse rigid components. Thus, the
network inMYSYSTEM may contain rigidities, thereby complicating
the detection of dominated edges. For this reason, the detection of
dominated edges inMYSYSTEM is restricted to cases where astrictly
shorteralternative pathway is found.9 In addition, the decremental
algorithm can sometimes insert dominated edges into thePrecsand
Succshash tables—because avoiding doing so would be too com-
putationally costly. However, when the incremental algorithm de-
tects these dominated edges, they are immediately removed from the
PrecsandSuccshash tables. Thus, in this sense, the fully dynamic
algorithm in MYSYSTEM can be said to propagate along “mostly”
undominated edges.

The Decremental Algorithm in MYSYSTEM. The decremental
algorithm is used when an existing constraint,tj − ti ≤ δ, is either
weakened or deleted. The algorithm has the following three phases:

(1) In a hash-table calledChangelings, collect all pairs,(tx, ty),
such thatD′(tx, ty) mightneed updating.

7 T \{Z} denotes the set of time-points inA other thanZ.
8 Demetrescu and Italiano [4] encode pairs in this way.
9 In contrast, theINCR2004 algorithm also detects edges that are dominated

by a path whose length is thesameas that of the edge being dominated.

(2) For each(tx, ty) in Changelings,check for shorter alternative
pathways fromtx to ty; collect the shortest alternatives in a
hash-table calledAltPaths.

(3) Incrementally propagate the constraints inAltPaths.

Phase 1.Consider the path fromtx to ty shown below, where the
wavy arrows represent shortest paths andδ is theoriginal weight of
the edge being weakened/deleted.

tj tytx ti
δ

The pair,(tx, ty), is collected during Phase 1 if and only if:

D′(tx, ty) = D′(tx, ti) + δ + D′(ti, ty)

All such pairs are collected using a two-pass algorithm thathas the
same structure as thePropFwdandPropBkwdphases of the incre-
mental algorithm. Thus, Phase 1 takes timeO(k∆), where∆ is the
number of pairs inChangelings.

After the Changelingshash-table has been populated, the corre-
sponding distance-matrix entries are assigned new values,as fol-
lows. If the edge,titj , has been deleted, then eachD′(tx, ty) is
set to∞, because the deletion oftitj might mean there no longer
is any path fromtx to ty. On the other hand, iftitj was simply
weakened—say by an amountα—then eachD′(tx, ty) is set to the
valueD′(tx, ty) + α + 1. Using this value, which is necessarily
greater than the eventual updated value, forcesD′(tx, ty) to be up-
dated during Phase 2 or 3.

Since MYSYSTEM does not maintain any pointers to first or
last steps of shortest paths (e.g., as done by Rohnert [13]),the
Changelingshash table may end up containing some pairs whose
distance-matrix entries do not need to be updated. Instead of main-
taining complex auxiliary data structures to avoid this, the decremen-
tal algorithm discovers alternative paths during Phase 2 and 3 to en-
sure that the corresponding distance-matrix entries are restored.

Phase 2.For each(tx, ty) in Changelings,alternative pathways of
the forms given below are collected in a hash-table calledAltPaths.10

tx ty
edge

shortest path
tx tytk

edge

tytx tv
edgeshortest path

For some(tx, ty) in Changelings,it may be that no alternative paths
exist. For other pairs, more than one such path may exist; however,
only the shortest such paths are kept inAltPaths.The hash-key for
theAltPathshash table is the pair,(tx, ty); the value is the length of
the alternative path. (Interior time-points on the path arenot needed.)

Notice that the alternative pathways collected during Phase 2 may
well have been dominated prior to the weakening (or deleting) of the
edgetitj , as illustrated below in the case of an alternative edge.

3 ti tj

16
tx

4
5

ty

Prior to weakeningtitj from5 to10, the edge,txty was not a shortest
path; however, afterward, it becomes a shorter (and possibly shortest)

10 Demetrescu and Italiano [4] refer to such pathways aslocally shortest.

path. For this reason, the edges considered during Phase 2 are drawn
from the setC—which containsall of the edges in the network—not
just those in thePrecsandSuccshash tables.

Phase 3.During Phase 3, the alternative paths found in Phase 2 are
incrementally propagated. There are several options for doing this.
Each alternative path could, in turn, be completely propagated using
the incremental algorithm. However, this sort ofdepth-firstapproach
might result in a large amount of redundant propagation. Another
option, analogous toA∗ search, would be to sort the alternative paths
according to how close their path-lengths were to the original value
of D′(tx, ty) and apply the incremental algorithm to those alternative
paths in their sorted order.

The decremental algorithm inMYSYSTEM takes an iterative,
breadth-firstapproach. In the first iteration, each path inAltPathsis
propagatedonly one stepalong the predecessors oftx and the succes-
sors ofty. Each one-step propagation generates a new update which
is stored in a hash-table callednewAltPaths.During the second iter-
ation, each update innewAltPathsis propagatedonly one step, gen-
erating new updates for the third iteration. This iterativeprocess ter-
minates when no more updates are generated. Empirical evidence
suggests that this form of incremental propagation is quitepractical.

Removing Executed Time-Points. As discussed earlier, the fully
dynamic algorithm does not typically collapse rigid components, be-
cause undoing such transformations in response to constraint relax-
ations can be too computationally costly. However, when a time-
point, t, is executed, it forms a rigid component withZin andZout

that is guaranteed to persist. Thus, it is safe to collapse this kind of
rigid component. Doing so effectively removest from the network
by reorienting constraints involvingt towardZin andZout .

4 Empirical Evaluation

The MYSYSTEM TCMS was tested on a set of thirty 25-agent
scheduling problems drawn from the Phase 2 Evaluation for the
DARPA Coordinators Project [15]. These kinds of problems are rep-
resented in the cTAEMS language, the details of which are described
elsewhere [1]. The important characteristics of the test problems are
shown in the top plot in Fig. 6. Each problem involved between1507
and 3273 time-points (plotted on the horizontal axis) and between
803 and 1686 activities (ACTS).11 For each problem, a centralized
scheduler [14] was used to generate a set of agent schedules seeking
to optimize the cTAEMSqualitymetric. In the process, the scheduler
invoked the incremental algorithm ofMYSYSTEM between 3461 and
7353 times (INCRS), and the decremental algorithm between 254
and 1185 times (DECRS). The resulting schedules included a total of
between 139 and 243 activities (SCHEDS), and resulted in networks
with between 3326 and 6797 edges (EDGES).

The middle plot of Fig. 6 shows the CPU time used byMYSYSTEM

to do all of the temporal computations for each scheduling problem.
The CPU time ranged from 2 seconds to 2 minutes for each problem.
In the worst case, the 2 minutes of computation, spread over 8000
invocations of the incremental or decremental algorithms,averaged
to about 15 msec per invocation.

The bottom plot of Fig. 6 shows the memory usage byMYSYS-
TEM. The number of finite distance-matrix cells (i.e., those that were
actually stored in a hash table) ranged from about 77,000 to about
850,000 per problem. In contrast, the full distance matrix would have
required between 2.2 and 10.7 million cells. Given that typical entries
are four bytes, such a matrix could have required over 40 megabytes

11 Some activities share time-points; hence the number of time-points is
somewhat less than double the number of activities.

INCRS

EDGES

ACTS

DECRS
SCHEDS

1600 2000 2400 2800 3000

1000

3000

5000

7000

NUMBER OF TIME POINTS

1600 2000 2400 2800 3000
0

10

1
10

2
10

3
10

NUMBER OF TIME POINTS

C
P

U

S
E

C
O

N
D

S

Number of Finite Distance Matrix Entries

Total Memory Used (Bytes)

Potential Size of Distance Matrix

1600 2000 2400 2800 3000
4

10

5
10

6
10

7
10

8
10

NUMBER OF TIME POINTS

Figure 6. Results of experiments on 25-agent scheduling problems

of memory. In contrast, thetotal memory used byMYSYSTEM during
the course of each scheduling problem, most of which was dynami-
cally allocated and freed, ranged from about 8 to 92 megabytes.

All experiments were run on an IBM Thinkpad laptop with a
2.4GHz Intel processor using Allegro Common Lisp, version 8.1.

5 Conclusion

This paper presented a new temporal constraint management sys-
tem, calledMYSYSTEM, that combines novel STN representations
with a fully dynamic propagation algorithm that is practical for real-
world, real-time applications. The temporal network inMYSYSTEM

includes special time-points to eliminate a common form of con-
straint propagation and reduce the number of distance-matrix en-

tries that typically need to be computed. The fully dynamic algo-
rithm extends an earlier incremental algorithm. It limits propagation
to “mostly” undominated edges. The paper provided empirical re-
sults on temporal networks derived from a centralized scheduler ap-
plied to a variety of 25-agent scheduling problems involving thou-
sands of time-points.

Acknowledgments

The research presented in this paper was supported in part bysub-
contract 55-000723 between Vassar College and SRI International
as part of the DARPA Coordinators Project (Contract FA8750-05-C-
0033). Any opinions, findings and conclusions or recommendations
expressed in this paper are those of the author and do not necessar-
ily reflect the views of DARPA. The author thanks Stephen Smith,
Zachary Rubinstein, Terry Zimmerman, Laura Barbulescu andAn-
thony Gallagher from Carnegie Mellon University for providing ac-
cess to their scheduler.

REFERENCES
[1] M. Boddy, B. Horling, J. Phelps, R. Goldman, R. Vincent, C. Long, and

B. Kohout, ‘C taems language specification, version 1.06 (0)’.
[2] Amedeo Cesta and Angelo Oddi, ‘Gaining efficiency and flexibility in

the simple temporal problem’, inProceedings of the Third International
Workshop on Temporal Representation and Reasoning (TIME-96), pp.
45–50. IEEE, (1996).

[3] Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal constraint net-
works’, Artificial Intelligence, 49, 61–95, (1991).

[4] C. Demetrescu and G. Italiano, ‘A new approach to dynamicall pairs
shortest paths’, inProceedings of the 35th STOC, pp. 159–166, (2003).

[5] Camil Demetrescu and Giuseppe F. Italiano, ‘Improved bounds and
new trade-offs for dynamic all pairs shortest paths’, Technical Report
ALCOMFT-TR-02-1, ALCOM, (2002).

[6] Shimon Even and Hillel Gazit, ‘Updating distances in dynamic graphs’,
Methods of Operations Research, 49, 371–387, (1985).

[7] Alfonso Gerevini, Anna Perini, and Francesco Ricci, ‘Incremental al-
gorithms for managing temporal constraints’, Technical Report IRST-
9605-07, IRST.

[8] Luke Hunsberger, ‘Quantitative temporal reasoning in planning prob-
lems’. AAAI-2004 Tutorial MP-2, slides available at:
http://www.cs.vassar.edu/˜hunsberg .

[9] Luke Hunsberger, ‘Algorithms for a temporal decouplingproblem in
multi-agent planning’, inProceedings of the Eighteenth National Con-
ference on Artificial Intelligence (AAAI-2002), (2002).

[10] Luke Hunsberger,Group Decision Making and Temporal Reasoning,
Ph.D. dissertation, Harvard University, 2002. Available as Harvard
Technical Report TR-05-02.

[11] Luke Hunsberger, ‘Distributing the control of a temporal network
among multiple agents’, inProc. of the 2nd Int’l. Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS-03), (2003).

[12] G. Ramalingam and Thomas Reps, ‘On the computational complexity
of dynamic graph problems’,Theoretical Computer Science, 158, 233–
277, (1996).

[13] Hans Rohnert, ‘A dynamization of the all pairs least cost path problem’,
in 2nd Symposium of Theoretical Aspects of Computer Science (STACS
85), ed., Kurt Mehlhorn, volume 182 ofLecture Notes in Computer
Science, 279–286, Springer, (1985).

[14] S. Smith, A.T. Gallagher, T.L. Zimmerman, L. Barbulescu, and Z. Ru-
binstein, ‘Distributed management of flexible times schedules’, in Intl.
Conf. on Autonomous Agents and Multiagent Systems, (2007).

[15] Valerie Guralnik Thomas Wagner, John Phelps and Ryan VanRiper,
‘COORDINATORS: Coordination managers for first responders’, in
Proc. of the 3rd Intl. Joint Conference on Autonomous Agentsand Mul-
tiagent Systems (AAMAS-2004). IEEE Computer Society, (2004).

[16] Mikkel Thorup, ‘Worst-case update times for fully-dynamic all-pairs
shortest paths’, inAnnual ACM Symposium on Theory of Computing,
pp. 112–119, (2005).

[17] Ioannis Tsamardinos,Reformulating Temporal Plans for Efficient Exe-
cution, Master’s thesis, University of Pittsburgh, 2000.

