
Whatever You Say

Luke Hunsberger

Vassar College
Poughkeepsie, NY 12604-0444, USA

hunsberg@cs.vassar.edu

Abstract. This paper addresses an important problem in multi-agent
coordination: the formal representation of parameters in the content of
agent intentions that are only partially specified (e.g., when the intended
action has not yet been executed and values for the parameters have not
yet been chosen or the authority for choosing such values has been dele-
gated to others). For example, Abe might intend to rent “whatever car
Zoe tells him to”, in which case the problem is how to formally represent
the quoted clause (i.e., the “whatever” content). The paper presents a
two-pronged approach. First, it uses the event calculus to model declar-
ative speech-acts which agents use to establish facts about parameters in
a social context. Second, it partitions the content of agent intentions into
(1) a condition that the agent should refrain from determining and (2) a
goal that the agent should strive to achieve. The satisfaction conditions
of such intentions treat these types of content differently; however they
can share variables and, thus, are linked in a restricted sense.

1 Introduction

Since people have limited computational resources, they cannot, at each mo-
ment, instantaneously compute their optimal action for that moment; instead,
they must plan ahead [3]. Thus, they adopt plans and intentions concerning their
future activity which are only partially specified and which they subsequently
elaborate over time [4, 10]. One common way for plans to be only partially spec-
ified is that their parameters may not be fully determined. For example, while
having no particular car in mind, Abe might intend to rent a car. Later on,
Abe might select a car—say, Car39—to rent. However, before he makes such a
selection, there is no car about which we can say Abe intends to rent that car.

In addition to frequently being only partially specified, the plans and activi-
ties of different people are frequently interdependent, thus motivating people to
coordinate their future-directed planning activity [9]. As a result, they must fre-
quently negotiate about objects, such as the car mentioned above, that may be
only partially specified. For example, suppose that Abe decides to let the rental
agent Zoe select the car that he is going to rent. Abe must update his intention
to reflect this delegation of parameter-binding authority; he now intends to rent
whatever car Zoe selects for him. In this paper, intentions concerning this kind
of partially specified content are called intentions with “whatever” content. For

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 229–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 L. Hunsberger

computer agents to participate effectively in these kinds of commonplace, multi-
agent planning and coordination scenarios, they must be able to represent and
reason about intentions with “whatever” content.

An intention is satisfied [17] if it successfully motivates the intending agent to
eventually do the action or achieve the state of affairs stipulated in its content.
Whereas Abe’s original intention “to rent a car” might be satisfied by his renting
any of perhaps a hundred different cars, his updated intention “to rent whatever
car Zoe selects” can only be satisfied by his renting whatever car Zoe happens
to eventually select for him. Thus, the satisfaction of Abe’s updated intention
depends on how its “whatever” content is eventually determined—by Zoe.

This paper presents an approach to modeling intentions with “whatever” con-
tent that is based on public names (or identifiers) that agents mutually agree
to use. For example, Abe and Zoe might agree to use the name C1 to refer to
the context of their rental-car interaction.1 Similarly, they might agree to use
the name Car to represent whatever car Zoe eventually selects for him. In this
paper, C1 is called a social context and CAR is called a parameter within a social
context (or, a social parameter). Linking parameters to social contexts helps to
disambiguate scenarios in which different contexts might have identically named
parameters. For example, Zoe might be selecting rental cars for several people
in different contexts.

The first part of this paper formally models the processes whereby agents as-
sign names to social contexts and parameters associated with those contexts. The
assignment of names is established by group declarations—that is, declarations
attributable to groups. Agents also use group declarations to bind parameters to
values and to delegate to other agents the authority for binding parameters. In
this paper, a group declaration is modeled as an abstract event that “happens”
when a group of agents make a decision, as a group, to make such a declaration.
The formal definitions are given in terms of the existing GDMM framework for
formally specifying group decision-making mechanisms [11, 12] that is recast, in
this paper, in terms of the event calculus [14]. The event calculus facilitates the
expression of axioms governing propositions (e.g., those established by declara-
tions) that hold only over certain temporal intervals.

The second part of the paper addresses the syntax and satisfaction conditions
for intentions with “whatever” content. It is formulated in terms of the stit
theory of Belnap et al. [1]. The content of intentions is augmented to include
not just a goal that the intending agent is committed to achieving, but also a
proposition that the agent refrains from determining (e.g., Abe might intend to
rent whatever car Zoe selects, while refraining from determining which car she
selects).

The rest of this paper is organized as follows. Section 2 recasts the pre-existing
GDMM framework in terms of the event calculus. Section 3 models group dec-
larations that agents can use to manage social contexts and social parameters.
Section 4 presents the syntax and satisfaction conditions for intentions with
“whatever” content. Section 5 discusses related work and presents conclusions.

1 Grosz [8] highlights the importance of context in collaborative, multi-agent scenarios.

Whatever You Say 231

2 The GDMM Framework in the Event Calculus

The GDMM framework [11, 12] is a framework for formally specifying group
decision-making mechanisms (GDMMs). In that framework, a GDMM (or inter-
action protocol) is defined in terms of declarative speech-acts and the incremental
accumulation of authority. In a typical GDMM, each agent might be authorized
(by the group) to initiate a GDMM instance (i.e., a run of a protocol) by mak-
ing an appropriate declaration. Such a declaration authorizes other agents to
make further declarations, thereby establishing facts that in certain combina-
tions authorize other agents to make still more declarations, and so on, until, in
successful instances, some agent is eventually authorized to declare, on behalf
of the group, that they have made a decision. That final, authorized declara-
tion establishes the group decision as a mutually believed fact among the group
members—an example of what Searle calls institutional facts [18].

The GDMM framework was originally presented using a dynamic, deontic,
temporal logic that enabled various properties to be formally proven. However,
that logic can be somewhat cumbersome when dealing with propositions—like
those established or terminated by declarative speech-acts—that hold only over
certain temporal intervals. Thus, this section recasts the original GDMM frame-
work in terms of the event calculus [14]. In the recast framework, declarative
speech-acts are represented by events; authorization conditions by fluents (i.e.,
reified propositions); and an authorized speech-act establishing the truth of its
propositional content is represented by a speech-act event initiating an appro-
priate fluent. In addition, protocol-specific axioms specify a protocol’s method
of incrementally accumulating authority. For example, an axiom might stipulate
that certain combinations of fluents authorize certain speech-acts; or that cer-
tain speech-acts initiate or terminate certain fluents. The recast GDMM frame-
work is demonstrated on a sample propose-accept-reject (PAR) protocol [11, 12];
the formal definitions were tested using Shanahan’s abductive event-calculus
planner [19].

2.1 A Quick Summary of the Event Calculus

The event calculus [14] is based on events, fluents and time-points. Events include
actions such as buying a book or making a declarative speech-act. Fluents are
reified propositional terms that are initiated or terminated by events. Time-points
mark the occurrence of events and the initiation or termination of fluents. The
most important event-calculus predicates are listed in Fig. 1. In the figure, E
represents an arbitrary event, F an arbitrary fluent, and T, T1 and T2 arbitrary
time-points. The predicates are governed by axioms such as SC1 and SC2 listed
below. SC1 states that if F holds at time 0 and is not subsequently clipped, then
it continues to hold. SC2 states that if F is initiated by E at time T1, and is not
clipped between T1 and some later time T2, then F continues to hold at T2.

(SC1) [initially(F) ∧ ¬clip(0,F,T)] ⇒ holds(F,T)

(SC2) [happens(E,T1) ∧ inits(E,F,T1) ∧ (T1<T2) ∧ ¬clip(T1,F,T2)]
⇒ holds(F,T2)

232 L. Hunsberger

happens(E,T) – event E happens at time T.
holds(F,T) – fluent F holds at time T.
initially(F) – fluent F holds from time 0 onward (until clipped).
inits(E,F,T) – if E happens at time T, then F is initiated at time T.
terms(E,F,T) – if E happens at time T, then F is terminated at time T.
clip(T1,F,T2) – F is terminated sometime between times T1 and T2.
declip(T1,F,T2) – F is initiated sometime between times T1 and T2.

Fig. 1. Predicates used in the event calculus

2.2 Declarative Speech-Acts and Authorization Conditions

A declarative speech-act is represented by an event term of the form

decl(G,Hs,Content), abbreviated as δ

where G is an agent (the speaker), Hs is a group of agents (the hearers), and
Content is a fluent representing the propositional content of the declaration.
Authorization for such a speech-act is represented by a fluent of the form

auth(Gr, decl(G,Hs,Content)), abbreviated as auth(Gr,δ)

That is, agent G is authorized by the group Gr to make a declaration with con-
tent Content to a set of hearers Hs ⊆ Gr. Axiom A1, below, is the main axiom
governing declarative speech-acts. It stipulates that any suitably authorized dec-
laration establishes the truth of its propositional content.2

holds(auth(Gr,δ),T) ⇒ inits(δ,Content,T) (A1)

2.3 The PAR Protocol in the Recast Framework

In the sample PAR protocol [11, 12], agents use declarative speech-acts to make
proposals, vote on proposals, and announce group decisions. Such speech-acts are
represented by the event terms listed in Fig. 2. Axioms governing the incremental
accumulation of authority in the PAR protocol are listed in Fig. 3.

Axiom E1 stipulates that each agent G in a group Gr is initially authorized
to make proposals to Gr. In this axiom, the authorizing group and the set of
hearers are the same (Gr); the content of the declarative speech-act, δMP, is the
fluent, madeProp(G,Gr,Prop); and the predicate proposable(Prop) is used to
restrict the range of allowable content for proposals. Axioms SC1, A1 and E1
together entail that any agent G is authorized to make a PAR proposal to any
group Gr as long as: (1) G is a member of Gr; (2) the content of the proposal
is “proposable”; and (3) the agent’s authorization to make such proposals has
not been “clipped” by an intervening event (e.g., a group decision to revoke
it). To make a proposal, G simply declares that it has done so, whereupon (by
Axiom A1) a fluent of the form, madeProp(G,Gr,Prop), is initiated. Axiom E2
2 In all axioms in this paper, all free variables are implicitly universally quantified.

Whatever You Say 233

• decl(G,Gr,made(G,Gr,Prop)), abbreviated δMP:

“G declares to the group Gr that it has made a proposal Prop.”

• decl(G2,{G,G2},voted(G2,G,Gr,Prop,Vote)), abbreviated δV:

“G2 declares to G that it has made a vote concerning the proposal Prop,
where Vote ∈ {accept,reject}.”

• decl(G2,{G,G2},voted(G2,G,Gr,Prop,accept)), abbreviated δVA:

“G2 declares to G that it has voted to accept the proposal Prop.”

• decl(G,Gr,grAcc(Gr,Prop)), abbreviated δGA:

“G declares to the group Gr that they have accepted Prop.”

Fig. 2. Event terms representing declarations in the PAR protocol

[(G ∈ Gr) ∧ proposable(Prop)] ⇒ initially(auth(Gr,δMP)) (E1)

[(G2 ∈ Gr) ∧ (G2 �= G) ∧ holds(auth(Gr,δMP),T)] (E2)
⇒ inits(δMP,auth(Gr,δV),T)

holds(auth(Gr,δMP),T) ⇒ inits(δMP,accepters(G,Gr,Prop,∅),T) (E3)

[holds(accepters(G,Gr,Prop,Others),T) ∧ holds(auth(Gr,δVA),T)] (E4)
⇒ inits(δVA,accepters(G,Gr,Prop,{G2} ∪ Others),T)

[(Gr = {G} ∪ Others) ∧ holds(accepters(G,Gr,Prop,Others),T)] (E5)
⇒ inits(δGA,grAcc(Gr,Prop),T)

Fig. 3. Axioms governing incremental accumulation of authority in the PAR protocol

stipulates that the making of a proposal authorizes each of the other agents in
the group to vote on it—either to accept or reject it.

In the PAR protocol, if every agent votes to accept a proposal, then the
originator of that proposal—here, G—becomes authorized to declare, on behalf
of the group, that they have made a decision—namely, to accept the proposal.
G’s authorization to make such a declaration is accumulated incrementally, over
time, as each agent declares its own acceptance of the proposal, as governed
by axioms E3, E4 and E5. Axiom E3 stipulates that the making of a proposal
initiates a fluent of the form, accepters(G,Gr,Prop,∅), representing that no
one in the group has (yet) voted to accept G’s proposal. Axiom E4 stipulates that
an agent G2’s authorized vote to accept a proposal incrementally updates the list
of “accepters” (by adding G2). Axiom E5 stipulates that if all of the other agents
(Others) have voted to accept G’s proposal, then G becomes authorized to declare

234 L. Hunsberger

on behalf of the group that they have accepted the proposal. If so authorized,
then, by Axiom A1, G’s declaration establishes the fluent, grAcc(Gr,Prop).

These axioms were encoded in Prolog and fed as input to Shanahan’s abduc-
tive event-calculus planner [19] which was able to come up with valid sequences
of speech-acts to yield various group decisions under the PAR protocol. For ex-
ample, the following sequence was generated in response to a query about how
a group of agents {g,h,i} might decide to accept a proposal prop:

happens(decl(g,[g,h,i],madeProp(g,[g,h,i],prop)),t51)
happens(decl(i,[g,i],voted(i,g,[g,h,i],prop,accept)),t52)
happens(decl(h,[g,h],voted(h,g,[g,h,i],prop,accept)),t50)
happens(decl(g,[g,h,i],grAcc([g,h,i],prop)),t48)

where the time-points were subject to the constraints: t51 < t52 < t50 < t48.
Although the PAR protocol is quite simple, the same approach can be used to
specify arbitrarily complex protocols based on declarative speech-acts and the
incremental accumulation of authority in the GDMM framework.

3 Group Declarations for Contexts and Parameters

For this paper, the most important types of group decisions are those that es-
tablish names for social contexts or parameters within those contexts, and those
that bind parameters to values or delegate authority for binding parameters.
Such decisions can be made using any GDMM; thus, it is convenient to ab-
stract away the GDMM used to generate the group decision and focus instead
on the proposition established by that decision. Toward that end, this section
uses the GDMM framework to model group declarations—that is, declarations
attributable to groups of agents. It then addresses the use of group declarations
to manage social contexts and parameters within those contexts.

In the single-agent case, an agent might establish the binding of a param-
eter thusly: “I hereby declare that the parameter P in the context C shall be
bound to the value 67.” By analogy, a group can establish such facts by making
group declarations. In particular, a group declaration, if suitably authorized, has
the power to establish the truth of its propositional content. However, a group
declaration is not uttered; instead it “happens”, by convention, when, at the
successful culmination of a GDMM instance, one of the agents announces, on
behalf of the group, that they have decided to make a declaration. For example,
at the end of a complex group decision-making procedure, a member of Congress
might announce that the Congress has decided, as a group, to declare war against
some other country. In such a case, the declaration of war is attributed to the
Congress as a whole, not to the individual making the announcement.

It is important to distinguish two kinds of authorization associated with group
declarations: internal and external. Internal authorization is that which is incre-
mentally accumulated during a run of whatever GDMM is being used to generate
the group declaration. For example, the member of Congress announcing their
decision to declare war must be suitably authorized by the Congress; otherwise,

Whatever You Say 235

no group declaration takes place. In contrast, the external authorization for a
group declaration is independent of the GDMM used to generate it. Instead, ex-
ternal authorization, which frequently comes from outside the group making the
declaration, is that which gives the group’s declaration the power to establish the
truth of its propositional content. In other words, the external authorization for
group declarations is analogous to the authorization conditions for single-agent
declarations. For example, a declaration of war by the Congress has the power
to establish a state of war only because the people, via the Constitution, have
authorized Congress to make such declarations.

A group declaration is represented by an event term of the form

grDecl(Gr,Hs,Content), abbreviated as Δ

where Gr represents the group making the declaration, Hs represents the set of
hearers, and Content is a fluent representing the content of the declaration.3 A
group declaration is not an action that is directly “executable” by the group.
Instead, a group declaration “happens”, by convention, when a group makes a
group decision whose content has the form

done(grDecl(Gr,Hs,Content)), abbreviated as done(Δ).

In such a case, the group decision initiates (e.g., by Axiom E5) a fluent

grAcc(Gr,done(Δ))

which can be glossed as “Gr has decided to make a group declaration to Hs that
Content holds.” Axiom A2, below, stipulates that such a fluent “counts as” [18]
a group having made the indicated group declaration.

holds(grAcc(Gr,done(Δ)),T) ⇒ happens(Δ,T) (A2)

Then, in direct analogy with Axiom A1, Axiom A3 below stipulates that an
authorized group declaration establishes the truth of its propositional content.

holds(auth(AuthGr,Δ),T) ⇒ inits(Δ,Content,T) (A3)

In this axiom, AuthGr represents the (external) authorizing group.

The rest of this section focuses on how agents can use group declarations to
establish names for social contexts and social parameters, and to bind such pa-
rameters or delegate the authority for binding them. In what follows, all contexts
and parameters are presumed to be under the sole control of the group Gr—that
is, Gr is its own “external” authorizing group. In addition, the set of hearers
is presumed to be the entire group. Thus, Gr = AuthGr = Hs. In addition, for
convenience, repeated arguments are omitted. Thus, a group declaration is rep-
resented by a term of the form, grDecl(Gr,Content)—abbreviated as Δ—and
the corresponding authorization condition is represented by a fluent of the form,
3 Δ denotes a group declaration; δ denotes a single-agent declaration.

236 L. Hunsberger

• grDecl(Gr,sContext(Gr,C)), abbreviated ΔC:

“Group Gr declares a new social context named C.”

• grDecl(Gr,sParam(Gr,C,P)), abbreviated ΔP:

“Group Gr declares a new parameter named P associated with context C.”

• grDecl(Gr,sBindParam(Gr,C,P,V)), abbreviated ΔBP:

“Group Gr declares that parameter P in context C is bound to value V.”

• grDecl(Gr,sDelegParam(G,Gr,C,P)), abbreviated ΔDP:

“Group Gr declares that the authority for binding the parameter P in the
context C is delegated to the agent G.”

• decl(G,Gr,sBindParam(Gr,C,P,V)), abbreviated δBP:
“Agent G declares that parameter P in context C is bound to value V.”

Fig. 4. Event terms representing declarations for social contexts and parameters

initially(auth(ΔC)) (E6)

holds(auth(ΔC),T) ⇒ inits(ΔC,auth(ΔP),T) (E7)

holds(auth(ΔP),T) ⇒ inits(ΔP,auth(ΔBP),T) (E8)

holds(auth(ΔP),T) ⇒ inits(ΔP,auth(ΔDP),T) (E9)

holds(auth(ΔDP),T) ⇒ inits(ΔDP,auth(Gr,δBP),T) (E10)

Fig. 5. Axioms pertaining to the declarations in Fig. 4

auth(grDecl(Gr,Content))—abbreviated as auth(Δ). Fig. 4 lists the types of
group declarations (and one single-agent declaration) to be discussed. Fig. 5 lists
the axioms pertaining to the declarations in Fig. 4.

A group Gr creates a social context named C by making a declaration of the
form ΔC in Fig. 4. By Axiom E6 in Fig. 5, any group is initially authorized to cre-
ate arbitrary social contexts for itself. Thus, by Axiom A3, a group declaration,
ΔC, establishes a fluent of the form, sContext(Gr,C).

A group Gr creates a social parameter named P, linked to a social context
C, by making a declaration of the form ΔP in Fig. 4. By Axiom E7, a group’s
creation of a social context (Gr,C) automatically authorizes that group to create
social parameters within that context. Similarly, a group’s creation of a social
parameter (Gr,C,P) automatically authorizes that group to bind that parameter
to some value (Axiom E8) or delegate the authority for binding that parameter
to some other agent (Axiom E9).

A group Gr binds a parameter P in the context C to the value V by making a
declaration of the form ΔBP in Fig. 4. If suitably authorized, then, by Axiom A3,

Whatever You Say 237

such a declaration would initiate a fluent of the form sBindParam(Gr,C,P,V).4

Alternatively, a group might decide to delegate the authority for binding that
parameter to some agent, say G, by making a declaration of the form ΔDP in Fig. 4.
By Axiom E10, such a declaration authorizes G to bind P to any value V by making
a declaration of the form δBP in Fig. 4.5 Should G make such a declaration, it
would, by Axiom A1, initiate the fluent, sBindParam(Gr,C,P,V). Thus, whether
the group Gr binds P directly using a group decision or indirectly via the delegate
G, the end result is the initiation of the same fluent: sBindParam(Gr,C,P,V).

Example. Abe (a) intends to rent whatever car Zoe (z) selects for him. In this
case, they make group declarations that initiate the following fluents:

sContext({a,z},c) – c is a social context for them.
sParam({a,z},c,p) – p is a social parameter for them in that context.
sDelegParam(z,{a,z},c,p) – they have delegated the binding of p to Zoe.

By Axiom E10, the last fluent in the above list initiates the following fluent,
which represents that Zoe is authorized to bind p to any value V.

auth({a,z},decl(z,{a,z},sBindParam({a,z},c,p,V)))

4 Intentions with “Whatever” Content

This section presents a novel representation for intentions with “whatever” con-
tent. The satisfaction conditions for such intentions clearly distinguish conditions
that the intending agent seeks to achieve and those that it actively refrains from
determining. The representation is expressed in terms of the “sees to it that”
(stit) operator defined by Belnap et al. [1], which is briefly summarized below.
Afterward, intentions with “whatever” content and their satisfaction conditions
are defined and the definitions are illustrated with examples.

4.1 Seeing to It That

Belnap et al. [1] present a theory of “agents and choices in branching time”
within which they formally define a modal “sees to it that” (stit) operator, which
they use to represent agentive expressions. They argue that “[a proposition]
Q is agentive for [an agent] α just in case Q may be usefully paraphrased as
[α stit : Q].” For example, the sentence, “Abe sees to it that a car is rented”, is
agentive for Abe since it has the form, [A stit : φ], where A denotes Abe and φ
denotes the proposition, “a car is rented”.
4 The binding of a parameter should also terminate that group’s authority to subse-

quently bind that same parameter or to delegate the binding of that parameter. For
space reasons, providing such axioms is left to the reader.

5 A decision to delegate parameter-binding authority to an agent G would also entail
an obligation on G to eventually bind that parameter; however, this paper focuses on
authorization conditions, not obligations. Grosz and Hunsberger [9] address some of
the obligations entailed by various kinds of group decision.

238 L. Hunsberger

The semantics of the stit operator stipulate that [α stit : Q] holds now if and
only if: (1) Q holds now due to a prior choice (or sequence of choices) made by
α; and (2) α’s choice was real in the sense that some other choice open to α
might have resulted in Q not holding. For example, I might see to it that my
office gets cold by opening a window, where my alternative, leaving the window
closed, might have resulted in my office staying warm.

In their “Restricted Complement Thesis”, Belnap et al. argue that “a variety
of constructions concerned with agents and agency—including deontic state-
ments, imperatives, and statements of intention, among others—must take agen-
tives as their complements.” For example, the expression, Int : [α stit : Q], would
represent that the agent α intends to see to it that the proposition Q holds.

Belnap et al. define active refraining in terms of the stit operator, as follows:

refrain(α, ψ) ≡ [α stit : ¬[α stit : ψ]]

That is, an agent α actively refrains from bringing about ψ if α sees to it that α
does not see to it that ψ holds. In other words, some choice made by α, perhaps
even a choice to do nothing, must guarantee that ¬ψ remains an option—at
least insofar as α’s choices are concerned. Of course, the choice(s) of some other
agent(s) might nonetheless establish ψ, despite α’s refraining.

The following abbreviation will be useful later in this section:

refrain(α, ±ψ) ≡ refrain(α, ψ) ∧ refrain(α, ¬ψ)

That is, α both refrains from ψ and refrains from ¬ψ. Such an expression holds if
some prior choice(s) made by α guarantee that both ψ and ¬ψ remain options.

4.2 Intentions with “Whatever” Content

Definition 1. An intention with “whatever” content is an expression of the
form: Intw(G, x, ψ(x), φ(x)), where G is a term, x is a variable, and ψ(x) and
φ(x) are arbitrary propositions that may contain free occurrences of x.

The intended interpretation of such an expression is that the agent G intends
to see to it that the proposition φ(x) holds for whatever (unique) value of x the
proposition ψ(x) holds, while refraining from determining the choice of x for
which ψ(x) holds. The formal interpretation is given in Definition 2.

Definition 2. Intw(G, x, ψ(x), φ(x)) is satisfied if:

(1) (∀x)refrain(G, ±ψ(x)) holds; and
(2) if there is a unique object d in the semantic domain for which the ex-
pression ψ(cd) holds, where cd is a constant term denoting d and ψ(cd) is
obtained from ψ(x) by substituting cd for each occurrence of the free variable
x in ψ(x), then the expression, stit(G, φ(cd)), also holds.

Condition 1 stipulates that G should refrain from determining ψ(x) or ¬ψ(x) for
any x—that is, choices made by G should guarantee that both ψ(x) and ¬ψ(x)
remain options for any x. Condition 2 stipulates that if there is a unique value
of x for which the expression ψ(x) holds, then the agent G must see to it that
the expression φ(x) holds for that same value of x.

Whatever You Say 239

Example. Recall Abe’s intention to rent whatever car Zoe selects for him. Sup-
pose that Abe (A) and Zoe (Z) have already established a name C for a social
context and a parameter P for the car. Suppose further that they have delegated
the binding of P to Zoe. Abe’s intention can be represented by an intention with
“whatever” content where:

ψ(x) ≡ sBindParam({A, Z}, C, P, x); and
φ(x) ≡ Rents(A, x).

According to Definition 2, for Abe’s intention to be satisfied, he must refrain from
both ψ(x) and ¬ψ(x) for all x. In other words, his choices must not constrain
the possible values for the parameter P . In addition, if the condition ψ(x) holds
for some unique value of x (e.g., should Zoe declare P to have the value Car39),
then Abe must see to it that φ(x) holds for that value of x (e.g., that he rents
Car39). In short, if Abe refrains from determining which car is selected, and Zoe
selects a unique car, then Abe must see to it that he rents that car; however,
if no such car is selected, or more than one is selected, then Abe’s intention is
trivially satisfied.

Intentions with “whatever” content can be defined with multiple partially-
determined objects by substituting (x1, x2, . . . , xn) for x, (∀x1, x2, . . . , xn) for
(∀x), and ψ1(x1) ∧ . . . ∧ ψn(xn) for ψ(x) in Definition 1; and, in addition, sub-
stituting (d1, . . . , dn) for d and (cd1 , . . . , cdn) for c in Definition 2. For example,
Abe’s intention to hammer in a nail using whatever hammer Zoe specifies and
whatever nail Yao (Y) specifies could be represented by

Intw (A, (x1, x2), ψ1(x1) ∧ ψ2(x2), φ(x1, x2))

where ψ1(x1) ≡ sBindParam(Z,C , hamr, x1);
ψ2(x2) ≡ sBindParam(Y,C , nail, x2); and
φ(x1, x2) ≡ Pounds(A, x1, x2).

5 Related Work and Conclusions

Several researchers are actively investigating the use of the event calculus to
model interaction protocols in normative settings. For example, Yolum and
Singh [20] use it to model protocols as commitment machines. In that work,
agents use various kinds of speech-acts to adopt or modify (one-on-one) social
commitments. Pitt et al. [16] use the event calculus to formalize a complex voting
protocol for general-purpose decision-making in virtual organizations. In their
work, events such as proposing, voting, and so forth initiate or terminate various
powers (authorizations), permissions and obligations. These approaches are com-
plementary to the approach taken in this paper where the GDMM framework
is based solely on declarative speech-acts and the incremental accumulation of
authority, and is used to model declarations attributable to groups.

Other researchers are investigating contracts for multi-agent systems in terms
of normative concepts. For example, Farrell et al. [6] define a contract language in

240 L. Hunsberger

terms of obligation, power and permission and present an algorithm for tracking
the normative state of a contract over its entire life-cycle. And Boella and van
der Torre [2] view contracts as legal institutions based on Searle’s construction
of social reality [18]. In their work, mental states such as beliefs, desires and
intentions are attributed not only to agents, but also to normative systems. In
prior work, Grosz and Hunsberger [9] specify the obligations entailed by certain
common types of group decision (e.g., binding a parameter, selecting a recipe
for a complex task, or delegating a task) in the context of multi-agent coordi-
nation scenarios. Ongoing research is aimed at augmenting that work to include
authorizations and permissions, as well as intentions with “whatever” content.

The most related work on delegation is that of Norman and Reed [15]. In their
work, agents use imperative speech-acts to delegate tasks to other agents and to
command others to refrain from further delegating those same tasks. They use a
propositional logic and thus do not address intentions with “whatever” content,
but they employ two stit operators, one for propositions and one for actions.

In the field of linguistics, Dekker and van Rooy [5] formally analyze so-called
Hob-Nob sentences in which “a number of people ... have attitudes with a com-
mon focus, whether or not there actually is something at that focus” which is
a broad category that seems to include intentions with “whatever” content.6

In addition, Kamp and Reyle [13] use Discourse Representation Theory (DRT)
to analyze sentences (or sequences of sentences) that include partially specified
content in the form of indefinite noun phrases and pronouns that subsequently
refer to that content—as in: “Every farmer who owns a donkey beats it” or
“John owns a Porsche. It fascinates him.” An investigation into the potential
application of these methods to intentions with “whatever” content (i.e., par-
tially specified content to which agents need to refer as they coordinate with
others), is the subject of ongoing research.

The research presented in this paper is part of a long-term project aimed at
developing collaboration-capable computer agents [9]. Current work is focused
on providing a comprehensive logical foundation for intentions with “whatever”
content that can accommodate other types of partially specified content (e.g.,
Bea intends to drive whatever car Abe rents) as well as the obligations that are
entailed by group decisions in multi-agent planning and coordination scenarios.

References

1. Nuel Belnap, Michael Perloff, and Ming Xu. Facing the Future. Oxford University
Press, 2001.

2. Guido Boella and Leendert van der Torre. Contracts as legal institutions in orga-
nizations of autonomous agents. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM, 2004.

3. Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, 1997.

4. Michael E. Bratman. Faces of Intention: Selected Essays on Intention and Agency.
Cambridge University Press, 1999.

6 The quotation is from Geach [7], cited in Dekker and Rooy [5].

Whatever You Say 241

5. Paul Dekker and Robert van Rooy. Intentional identity and information exchange.
In R. Cooper and T. Gamkrelidze, editors, Second Tbilisi Symposium on Language,
Logic and Computation, 1997.

6. Andrew D. H. Farrell, Marek Sergot, Mathias Salle, and Claudio Bartolini. Using
the event calculus for tracking the normative state of contracts. International
Journal of Cooperative Information Systems, 14(2–3), June–September 2005.

7. P. Geach. Intentional identity. Journal of Philosophy, 74:309–44, 1967.
8. Barbara J. Grosz. The contexts of collaboration. In E. Sosa K. Korta and X. Ar-

razola, editors, Cognition, Agency and Rationality, pages 175–188. Kluwer Press,
Dordrecht, 1999.

9. Barbara J. Grosz and Luke Hunsberger. The dynamics of intention in collaborative
activity. Journal of Cognitive Systems Research, 7:259–272, 2006.

10. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86:269–357, 1996.

11. Luke Hunsberger. Group Decision Making and Temporal Reasoning. PhD thesis,
Harvard University, 2002. Available as Harvard Technical Report TR-05-02.

12. Luke Hunsberger. A framework for specifying group decision-making mechanisms
(poster). In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS-2005). ACM Press, 2005.

13. Hans Kamp and Uwe Reyle. From Discourse to Logic, volume 42 of Studies in
Linguistics and Philosophy. Kluwer Academic Publishers, 1993.

14. R.A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

15. Timothy J. Norman and Chris Reed. A model of delegation for multi-agent systems.
In M. Fisher M. d’Inverno, M. M. Luck and C. Preist, editors, Foundations and
Applications of Multi-Agent Systems, volume 2403 of Lecture Notes in Artificial
Intelligence, pages 185–204. Springer-Verlag, 2002.

16. Jeremy Pitt, Lloyd Kamara, Marek Sergot, and Alexander Artikis. Formaliza-
tion of a voting protocol for virtual organizations. In Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2005), pages
373–380. ACM, 2005.

17. J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge, UK, 1969.

18. J.R. Searle. The Construction of Social Reality. Allen Lane, London, 1995.
19. Murray Shanahan. The Event Calculus Explained, volume 1600 of Lecture Notes

in Computer Science. 1999.
20. Pinar Yolum and Munindar P. Singh. Reasoning about commitments in the event

calculus: An approach for specifying and executing protocols. Annals of Mathe-
matics and Artificial Intelligence (AMAI), 2003.

	Introduction
	The GDMM Framework in the Event Calculus
	A Quick Summary of the Event Calculus
	Declarative Speech-Acts and Authorization Conditions
	The PAR Protocol in the Recast Framework

	Group Declarations for Contexts and Parameters
	Intentions with ``Whatever'' Content
	Seeing to It That
	Intentions with ``Whatever'' Content

	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

