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Abstract
Simple Temporal Networks (STNs) are a well-studied model for representing and reasoning about
time. An STN comprises a set of real-valued variables called time-points, together with a set
of binary constraints, each of the form Y ≤ X + w. The problem of finding a feasible schedule
(i.e., an assignment of real numbers to time-points such that all of the constraints are satisfied)
is equivalent to the Single Source Shortest Path problem (SSSP) in the STN graph.

Simple Temporal Networks with Uncertainty (STNUs) augment STNs to include contingent
links that can be used, for example, to represent actions with uncertain durations. The duration
of a contingent link is not controlled by the planner, but is instead controlled by a (possibly
adversarial) environment. Each contingent link has the form, 〈A, `, u, C〉, where 0 < ` ≤ u <∞.
Once the planner executes the activation time-point A, the environment must execute the con-
tingent time-point C at some time A+ ∆, where ∆ ∈ [`, u]. Crucially, the planner does not know
the value of ∆ in advance, but only discovers it when C executes. An STNU is dynamically con-
trollable (DC) if there is a strategy that the planner can use to execute all of the non-contingent
time-points, such that all of the constraints are guaranteed to be satisfied no matter which dur-
ations the environment chooses for the contingent links. The strategy can be dynamic in that it
can react in real time to the contingent durations it observes. Recently, an upper bound of O(N3)
was given for the DC-checking problem for STNUs, where N is the number of time-points.

This paper introduces a new algorithm, called the RUL− algorithm, for solving the DC-
checking problem for STNUs that improves on the O(N3) bound. The worst-case complexity of
the RUL− algorithm is O(MN +K2N +KN logN), where N is the number of time-points, M is
the number of constraints, and K is the number of contingent time-points. If M is O(N2), then
the complexity reduces to O(N3); however, in sparse graphs the complexity can be much less.
For example, if M is O(N logN), and K is O(

√
N), then the complexity of the RUL− algorithm

reduces to O(N2 logN).
The RUL− algorithm begins by using the Bellman-Ford algorithm to compute a potential

function. It then performs at most 2K rounds of computations, interleaving novel applications of
Dijkstra’s algorithm to (1) generate new edges and (2) update the potential function in response to
those new edges. The constraint-propagation/edge-generation rules used by the RUL− algorithm
are distinguished from related work in two ways. First, they only generate unlabeled edges.
Second, their applicability conditions are more restrictive. As a result, the RUL− algorithm
requires only O(K) rounds of Dijkstra’s algorithm, instead of the O(N) rounds required by
other approaches. The paper proves that the RUL− algorithm is sound and complete for the
DC-checking problem for STNUs.
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1 Introduction

Simple Temporal Networks (STNs) are a well-studied model for representing temporal
constraints [5]. An STN comprises a set of time-points {P,Q,R, . . . }, together with a set
of constraints on those time-points, where each constraint has the form Q ≤ P + w with
w ∈ R. The goal for a planning agent is to schedule the execution of the time-points (i.e., to
assign a real value to each variable P,Q,R, . . . representing its execution time) so that all of
the constraints in the network are satisfied. The STN model forms the base of many other
models for temporal reasoning and planning.

It is possible to check whether an STN is consistent (i.e., whether it admits a schedule that
satisfies all of the constraints, and find such a scheduling if one exists) in polynomial time.
Specifically, this problem can be reduced to the Single Source Shortest Path problem for the
STN graph [5], which contains a node for each time-point and a weighted, directed edge for
each constraint. In turn, this problem can be solved with the Bellman-Ford algorithm [4],
whose running time is O(MN), where N is the number of time-points, and M is the number
of edges in the network.

Simple Temporal Networks with Uncertainty (STNUs) extend STNs to include contingent
links, which can be used, for example, to represent actions with uncertain durations [14].
Each contingent link has the form 〈A, `, u, C〉, where A is called the activation time-point, C
is called the contingent time-point, and 0 < ` ≤ u < ∞. The contingent link is activated
when the time-point A is executed. Once that happens, the execution of C is determined
not by the planning agent, but by the (possibly adversarial) environment. In particular,
the environment must execute C at some time ∆ after the execution of A, where ∆ ∈ [`, u].
The value ∆ is called the duration of the contingent link, it is under the control of the
environment, and is unknown to the planner until C is actually executed.

An STNU is said to be dynamically controllable (DC) if there exists a strategy for the
planning agent to execute all of the non-contingent (a.k.a., executable) time-points such
that all of the constraints in the network are guaranteed to be satisfied no matter how the
durations of the contingent links are chosen by the environment. The strategy must be
dynamic in the sense that the execution time it chooses for each executable time-point X
can only depend on the durations of contingent links that have already completed. In other
words, the strategy’s execution decisions must depend only on past execution events.

The DC-checking problem for STNUs, hereinafter called the STNU-DC problem, is that of
determining whether any given STNU is DC. Recently, Morris [12] presented an O(N3)-time
algorithm for the STNU-DC problem.

Being such a simple and flexible model, STNUs have been extended in several ways in
the literature [15, 10, 3, 6, 2]. For this reason, it is crucial to study and optimize algorithms
for the STNU-DC problem.

2 Preliminaries and notation

Following Morris et al. [14], an STNU is a tuple S = (T , C,L) where:

• T is a finite set of real-valued variables called time-points, denoted by capital letters
P,Q,R, . . . ;
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• C is a finite set of constraints, each of the form Q ≤ P +w, for some P,Q ∈ T and w ∈ R;
and

• L is a finite set of contingent links, each of the form 〈A, `, u, C〉, for some A,C ∈ T and
`, u ∈ R, where 0 < ` ≤ u <∞.

In a contingent link 〈A, `, u, C〉, A is called the activation time-point, and C is called the
contingent time-point. Distinct contingent links must have distinct contingent time-points.
Given the contingent time-point C of a contingent link 〈A, `, u, C〉 ∈ L we define AC = A,
uC = u, lC = l; however, when context allows, the superscripts will be omitted. The
set of contingent time-points is TC := {C | (A, l, u, C) ∈ L}; and the set of executable (or
non-contingent) time-points is TX = T \ TC. As in prior work, and without loss of generality,
we assume that each activation time-point is an executable time-point. In the following, we
assume that an STNU S = (T , C,L) is given.

2.1 Dynamic controllability
Following Morris et al. [14], a situation is a function σ: TC → R that assigns a duration
∆C

ω := ω(C) ∈ [`, u] to each contingent link 〈A, `, u, C〉 ∈ L. The set of all possible situations
is denoted by Ω :=

∏
C∈TC

[`C , uC ]. An execution strategy is a function σ : (Ω, TX) → R
that assigns an execution time [σ(ω)]X := σ(ω,X) to each executable time-point X, in each
possible situation ω ∈ Ω. Given a contingent link 〈A, `, u, C〉 ∈ L, we define the execution
time of its contingent time-point C to be [σ(ω)]C := [σ(ω)]A + ∆C

ω . In general, [σ(ω)]P ∈ R
denotes the execution time of the (executable or contingent) time-point P ∈ T in the
situation ω under the strategy σ.

An execution strategy σ is viable if it satisfies every constraint (i.e., for each constraint
Q ≤ P + w in C, and each situation ω ∈ Ω, [σ(ω)]Q ≤ [σ(ω)]P + w). The strategy
σ is dynamic if, for any two situations ω1, ω2 ∈ Ω, and for each executable time-point
X ∈ TX, if {〈C,∆C

ω1
〉 | [σ(ω1)]C < [σ(ω1)]X} = {〈C,∆C

ω2
〉 | [σ(ω2)]C < [σ(ω1)]X} then

[σ(ω2)]X = [σ(ω1)]X . This definition correctly captures the intuitive notion that the execution
time of X can only depend only on the durations of contingent links whose contingent time-
points have executed before X [7]. An STNU is said to be dynamically controllable (DC) if it
admits an execution strategy which is both dynamic and viable.

To simplify the mathematics, Morris [11] provided an alternative notion of dynamic
controllability that allows a dynamic strategy to react instantaneously to observations of
contingent executions. The only change required to the above definition of a dynamic
strategy is to replace “<” by “≤”. That change allows the execution of X to depend on
contingent links that have completed at or before X. The rest of the paper presumes DC
with instantaneous reaction.

2.2 Constraint Propagation/Edge Generation in STNU Graphs
Following Morris and Muscettola [13], each STNU can be represented by a directed, weighted
graph where the nodes correspond to the time-points, and the edges come in three varieties
depending on whether and how they are labeled. First, each constraint Q ≤ P + w in C
is represented by an ordinary (i.e., unlabeled) edge from P to Q of length (or weight) w,
notated as (P,w,Q).1 Next, for each contingent link 〈A, `, u, C〉 there is a lower-case edge

1 Putting the weight w between the time-points P and Q makes notating paths easier. For example, the
path consisting of the consecutive edges (P,w,Q) and (Q, v,R) can be notated as (P,w,Q, v,R).
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Figure 1 A sample STNU graph with two contingent links (A1, 2, 9, C1) and (A2, 3, 7, C2)

Rule Graphical Representation Applicability Conditions

No Case X Y W
v w

v + w
(none)

Upper Case
X Y A

v [C :−w]

[C :v − w] (none)

Lower Case A C X
[c :`] w

` + w
w < 0

Cross Case
A C AK

[c :`] [K :−y]

[K :`− y] K 6≡ C, w < 0

Label Removal X A C
[C :−y] [c :`]

−y
−y ≥ −`

Table 1 Contraint-propagation rules from Morris and Muscettola [13]

from A to C labeled by [c :`] that represents the uncontrollable possibility that the contingent
duration C −A might take on its lower bound `; and an upper-case edge from C to A labeled
by [C :−u] that represents the uncontrollable possibility that the contingent duration C −A
might take on its upper bound u. These edges are notated as (A, [c :`], C) and (C, [C :−u], A),
respectively. The sets of ordinary, lower-case and upper-case edges are denoted by Eo, E`

and Eu, respectively:

• Eo = {(P,w,Q) | (Q ≤ P + w) ∈ C}
• E` = {(A, [c :`], C) |〈A, `, u, C〉∈ TC}
• Eu = {(C, [C :−u], A) |〈A, `, u, C〉∈ TC}

Fig. 1 shows a sample STNU graph borrowed from Hunsberger [8].
Morris et al. [14] introduced a set of triangular reductions that formed the basis of

a pseudo-polynomial DC-checking algorithm for STNUs. Their reductions generated and
propagated a new kind of conditional constraint called a wait that captures part of the
dynamism of the STNU-DC problem. Each wait constraint can be glossed as “while the
contingent time-point C remains unexecuted, the time-point X must wait until A+ δ, where
A is the activation time-point for C and δ ∈ R.” Morris and Muscettola [13] then recast
those reductions as the five constraint-propagation rules listed in Table 1.2 In the figure, the
pre-existing edges are drawn with solid arrows, while the generated edges are drawn with
dashed arrows.

The No Case rule is the same as the Relax rule from standard shortest-path algorithms [4].
The Lower Case rule generates new constraints that guard against the possibility that a

2 The rules in Table 1 are presented in the form that allows instantaneous reaction. To disallow
instantaneous reaction, one need only change each occurrence of “w < 0” to “w ≤ 0”.
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contingent link 〈A, `, u, C〉 might take on its minimum duration `. Similarly, the Upper
Case rule generates new constraints that guard against the possibility that a contingent
link might take on its maximum duration u. However, unlike the Lower Case rule, which
generates ordinary edges, the Upper Case rule generates upper-case edges that represent
conditional wait constraints. For example, the generated edge (X, [C :v − w], A) represents
the conditional constraint that X must wait at least (w − v) after A as long as C remains
unexecuted. The Cross Case rule generates constraints that guard against one contingent link
〈A, `, u, C〉 taking on its minimum duration `, while another contingent link 〈AK , `K , uK ,K〉
takes on its maximum duration uK . Like the Upper Case rule, it generates upper-case edges.
Finally, the Label Removal rule stipulates that in certain cases an upper-case edge has the
force of an unconditional constraint. Each of the rules in Table 1 has been proven to be
sound in the sense that if a valid and dynamic execution strategy σ satisfies the pre-existing
edge(s) in the rule, then it must necessarily also satisfy the edge generated by that rule.

An important property of the rules in Table 1 is that they are length-preserving (i.e.,
the length of the generated edge is the same as the length of the corresponding path/edge
from which it was derived). This property is exploited by the O(N5), O(N4) and O(N3)
DC-checking algorithms due to Morris and colleagues [13, 11, 12].

Each of the rules from Table 1 can be viewed as a path-transformation rule. For example,
suppose that a path P contains two consecutive edges E1 and E2 to which one of the first four
rules can be applied to generate a new edge E. If P ′ is the path obtained from P by replacing
the two edges E1 and E2 by the new edge E, then we say that P has been transformed
into P ′. Similarly, the Label Removal rule can be viewed as a path-transformation rule that
involves the replacement of just one edge.

Morris [11] provided a theoretical analysis of semi-reducible paths in STNU graphs that
underlies much of the important work on DC-checking algorithms. A semi-reducible path
is any path P that can be transformed into a path P ′ by any sequence of applications of
the rules from Table 1 such that P ′ contains only ordinary or upper-case edges. Morris
proved that an STNU is DC if and only if its graph has no semi-reducible negative loops
(SRN loops). (Note that a negative loop containing only ordinary or upper-case edges can
be further transformed by the Upper Case rule into a negative loop that contains only
upper-case edges, which represents an inherently unsatisfiable cycle of constraints.) Central
to his analysis was the process of “reducing away” lower-case edges—that is, performing a
sequence of transformations that eliminate lower-case edges from the path.

Morris’ O(N4) DC-checking algorithm searches for SRN loops by propagating forward
from each contingent time-point C, looking for opportunities to reduce away the lower-case
edge (A, [c :`], C). (The path used to reduce away a lower-case edge e is called an extension
sub-path for e. The path consisting of e followed by its extension sub-path is transformed
into an ordinary or upper-case edge using the rules from Table 1.) To enable a modified
use of Dijkstra’s algorithm [4] to guide these forward propagations from each contingent
time-point C, Morris’ algorithm uses Bellman-Ford to compute (and update) a potential
function for the OU-graph (i.e., the graph consisting of all ordinary and upper-case edges).
He proved that in any non-DC network there must be an SRN loop in which the extension
sub-paths used to reduce away lower-case edges are nested to a maximum depth of K,
where K is the number of contingent links in the network. Thus, his algorithm performs at
most K rounds, in each round doing forward propagations from each contingent time-point.
After each round of edge generation, Bellman-Ford is run again, effectively recomputing
the potential function to accommodate the newly generated edges. The overall complexity
is thus O(K((M +KN)N +N logN)) = O(MNK +K2N2 +KN logN) which, in dense
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Graphical Representation Applicability Condition

X A C
[C :−y] [c :`]

−`
−y < −`

Table 2 The (non-length-preserving) General Unordered Reduction rule from Morris et al. [14]

graphs, reduces to O(N4). Hunsberger [9] subsequently introduced two improvements to the
algorithm: (1) using a modified version of Dijkstra to compute a new potential function after
each forward-propagation processing of a contingent time-point; and (2) using a heuristic to
choose a “good” order in which to process the contingent time-points. These changes allowed
newly generated edges to be inserted more quickly, and allowed the algorithm to terminate
much earlier depending on the quality of the heuristic ordering. Empirically, the algorithm
would often behave like an O(N3) algorithm, but in the worst case it was still O(N4).

More recently, Morris [12] presented a new approach to searching for lower-case reducing
paths in an STNU graph: by propagating backward from negative edges. The intuition is that
each negative edge could serve as the final edge (called a moat edge) in a path used to reduce
away a lower-case edge. The advantages to this approach included that: (1) no potential
function need be computed because the backward propagation could focus on propagating
through only positive edges; and (2) the conflict between lower-case and upper-case edges
from the same contingent link (which are not allowed in the Cross Case rule) effectively
disappeared. As a result, at most N rounds of Dijkstra-like traversals are required, leading
to a worst-case complexity of O(N((M + N2) + N logN)) = O(N3), which stands as the
tightest upper bound on the complexity of the STNU-DC problem to date.

In contrast to all of the preceding algorithms, the algorithm presented in this paper, called
the RUL− algorithm: (1) focuses on reducing away upper-case edges; (2) uses a lower-bound
potential function to enable Dijkstra’s algorithm to guide the traversal of edges in the LO-
graph; (4) only generates ordinary (i.e., unlabeled) edges; (5) includes a rule that is not length-
preserving; and (6) only generates edges that terminate at either contingent or activation
time-points. The RUL− algorithm uses one run of Bellman-Ford to initialize a potential
function. It then does at most 2K rounds of constraint propagation. After each round, it
uses a Dijkstra-like traversal to update the potential function for the next round. Thus, its
overall complexity is O(MN +K((M +KN) +N logN)) = O(MN +K2N +KN logN).
Although in the worst case this reduces to O(N3), in sparse graphs it can be much lower.
For example, if M = O(N logN) and K = O(

√
N), it reduces to O(N2 logN).

Notably, the one reduction from the earlier work that is not represented in Table 1 is the
General Unordered Reduction, shown in Table 2, which is not length-preserving. It stipulates
that, for a given contingent link 〈A, `, u, C〉, if X must wait at least y after A while C remains
unexecuted, where y > `, then in every situation, X must wait at least ` after A, since C
cannot execute before then. This rule will play an important role in this paper.
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Rule Graphical representation Applicability Conditions

Relax− P Q R
v w

v + w
Q ∈ TX , w < uR − `R, R ∈ TC

Upper− P C A
v [C :−u]

max{v − u,−`} (none)

Lower− A C R
c : ` w

` + w
C 6≡ R,w < uR − `R, R ∈ TC

Table 3 The edge-generation rules for the RUL− algorithm

2.3 The RUL− Edge-Generation Rules
The RUL− algorithm uses three rules: Relax−, Upper− and Lower−.3 As summarized in
Table 3, each rule takes two consecutive edges (S, x, T ) and (T, y, U) from the network and,
if certain conditions are satisfied, generates a new ordinary edge from S to U . Although the
rules have many similarities to rules from prior work [14, 13], they are distinguished in the
following important ways.

• The RUL− rules only generate ordinary (i.e., unlabeled) edges; they never generate
lower-case or upper-case edges.
• The Relax− and Lower− rules only generate edges terminating at contingent time-
points.

• The value uR − `R, which represents the amount of uncertainty associated with the
contingent link 〈AR, uR, `R, R〉, plays an important role in the applicability conditions
for the Relax− and Lower− rules.

The Relax− rule is identical to the Relax rule from the literature on shortest-path
problems [4], except that it has very restrictive applicability conditions. The Relax− rule
takes two ordinary edges (P, v,Q) and (Q,w,R), and generates the ordinary edge (P, v+w,R).
It only applies if Q is non-contingent, R is contingent, and w < uR − `R.

The Upper− rule is a combination of the Upper Case and Label Removal rules from
Table 1, and the General Unordered Reduction rule from Table 2. It takes an ordinary edge
(P, v, C), where C is contingent, and the original upper-case edge (C, [C :−u], A) associated
with C, and generates the ordinary edge (P,m,A), where m = max{v − u,−`}. Note that
the Upper− rule is not length-preserving.

The Lower− rule is similar to the Lower Case rule from Table 1; however, its applicability
conditions are quite different. The Lower− rule takes a lower-case edge (A, [c :`], C) and an
ordinary edge (C,w,R), and generates the ordinary edge (A, ` + w,R). Unlike the Lower
Case rule, the Lower− rule only applies if R is a contingent time-point. For this reason, it
can be applied whenever w < uR − `R, whereas the Lower Case rule only applies if w < 0.

I Proposition 1. The Relax− rule from Table 3 is sound.

Proof. The Relax− rule is identical to the sound No Case rule from Table 1, except that it
has more restrictive applicability conditions. Thus, it too must be sound. J

3 The RUL− rules have the same form as the RUL+ rules developed in prior work [1], but their applicability
conditions are quite different. As a result, the RUL+ rules do not form the basis of an efficient DC-
checking algorithm, whereas the RUL− rules do. To avoid confusion, the RUL+ rules are not discussed
further in this paper.
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P C A
v −u

C : v − u

Figure 2 An upper-case edge generated during the proof of Prop. 2

A

C R

AR

c : `

w

[R :−u R
][R :w − uR]

[R :` + w − uR]

Figure 3 Upper-case edges generated during the proof of Prop. 3

I Proposition 2. The Upper− rule from Table 3 is sound.

Proof. The soundness of the Upper− rule is obtained from the soundness of the Upper
Case and Label Removal rules from Table 1, and the General Unordered Reduction rule from
Table 2. First, let (P, v, C) and (C, [C :−u], A) be the pre-existing edges in the Upper− rule,
as shown in Table 3. The Upper Case rule generates the upper-case edge (P, [C :v − u], A),
as illustrated in Fig. 2.

Case 1: v − u ≥ −` (i.e., m = v − u). In this case, the Label Removal rule applies,
yielding the unlabeled edge (P, v − u,A) (i.e., (P,m,A)).

Case 2: v − u < −` (i.e., m = −`). In this case, σ satisfying the upper-case edge
(P, [C : v − u], A) implies that in each situation ω, either [σ(ω)]P ≥ [σ(ω)]A + (u − v) ≥
[σ(ω)]A + ` or [σ(ω)]P > [σ(ω)]C ≥ [σ(ω)]A + `.4 Thus, in each situation ω, σ must satisfy
[σ(ω)]P ≥ [σ(ω)]A + ` = [σ(ω)]A −m, represented by the edge (P,m,A). J

I Proposition 3. The Lower− rule from Table 3 is sound.

Proof. The soundness of the Lower− rule derives from the soundness of several of the rules
from Table 1, as follows. Let (A, [c :`], C) and (C,w,R) be the two pre-existing edges for the
Lower− rule, as shown in Table 3, where w < uR − `R and R is contingent.

Case 1: w < 0. Here, the Lower Case rule applies, yielding the desired edge.
Case 2: w ∈ [0, uR − `R). First, the Upper Case rule applied to the edges (C,w,R) and

(R, [R :−uR], AR) yields the upper-case edge (C, [R :w − uR], AR), as illustrated in Fig. 3.
And since w−uR < −`R < 0, the Cross Case rule can then be applied to yield the upper-case
edge (A, [R : `+ w − uR], AR), also shown in Fig. 3. Since σ is valid, it must satisfy this
generated upper-case edge. Thus, in each situation ω, one of the following holds:

(1) [σ(ω)]A > [σ(ω)]R, or
(2) [σ(ω)]A ≥ [σ(ω)]AR − `− w + uR.

For (1), [σ(ω)]R − [σ(ω)]A < 0 < ` + w, since ` > 0 and w ≥ 0. For (2), it follows that
[σ(ω)]R− [σ(ω)]A ≤ [σ(ω)]R− [σ(ω)]AR + `+w−uR. And, since the semantics of contingent
links ensures that [σ(ω)]R− [σ(ω)]AR ≤ uR, it follows that [σ(ω)]R− [σ(ω)]AR + `+w−uR ≤
uR + `+ w − uR = `+ w. Thus, in either case, σ satisfies the edge (A, `+ w,R). J

4 The semantics of satisfying a generated upper-case edge is detailed by Hunsberger [8].
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I Theorem 1 (Completeness of the RUL− rules). Let S be any STNU; let G be the graph for
S (prior to any application of the RUL− rules); and let G∗ be the closure of G under the
RUL− rules. If the LO-graph for G∗ has no negative loops (i.e., is consistent when viewed as
an STN, ignoring the alphabetic labels on its lower-case edges), then S must be DC.

Proof. Let S be any STNU with graph G prior to any application of the RUL− rules. Suppose
that S is not DC. By Morris [11], G must contain a semi-reducible negative loop π that is
breach-free (i.e., if (A, [c :`], C) is a lower-case edge in π, and P is the extension sub-path in π
that is used to “reduce away” that lower-case edge, then P does not contain any occurrence of
the corresponding upper-case edge (C, [C :−u], A)). By a similar argument, it can be shown
that no loss of generality results from assuming that the extension sub-path of any lower-case
edge (A, [c :`], C) in π does not include any occurrence of the contingent time-point C.

First note that if π contains no upper-case edges, then π is in the LO-graph, contradicting
that the LO-graph has no negative loops. Thus, π must have one or more upper-case edges.

In what follows, let Upper† denote the restriction of the Upper− rule to the case where
v ≥ u− ` (i.e., the length-preserving case). And let RUL† denote the set of rules {Relax−,
Lower−, Upper† }. Note that the RUL† rules are length-preserving. The following shall
focus on the use of the RUL† rules to reduce away all of the upper-case edges in (a suitably
transformed) π. However, in certain exceptional cases, the non-length-preserving case of the
Upper− rule will be applied.

⇒ This proof is supported by Morris’ analysis of semi-reducible paths in which each
lower-case edge is followed by an extension sub-path that can be used to reduce it away
by applying the rules from Table 1. In contrast, the RUL− algorithm uses the rules
from Table 3 to reduce away upper-case edges. The proof uses the properties of semi-
reducible paths to confirm that applying the RUL− algorithm to the semi-reducible path
π necessarily leads to a “Non-DC” conclusion.

Suppose that E is some upper-case edge (C, [C :−u], A) in π that cannot be reduced away
by the RUL† rules. Consider back-propagating from C using the Relax− and Lower−
rules. If this process ever results in an edge (T, s, C), where s ≥ u− `, then that edge could
be used to reduce away E via the Upper† rule, since s− u ≥ −`. To prevent this, one of the
following must happen:
(1) The lower-case edge (A, [c :`], C) for the same contingent link is encountered, resulting in

a path of the form, (A, [c :`], C, . . . , C, [C :−u], A). Now, given that the original path π
was breach-free, the sub-path used to reduce away the lower-case edge (A, [c :`], C) must
be a proper prefix of the path from C to C; and it must have negative length. Thus, the
path must have the form (A, [c :`], C, . . . , X,w,C, [C :−u], A), where the path from C to
X has some length δ < 0, and where w < u− `, since back-propagation continued from
C back to X and beyond. In this case, since w − u < −`, the non-length-preserving case
of the Upper− rule generates the edge (X,−`, A). But then the loop from A to A has
length `+ δ− ` = δ < 0. Since this loop consists only of ordinary and lower-case edges, it
contradicts the hypothesis that the LO-graph has no negative loops.

(2) A 2-edge path (X, r, P, v, C) is encountered, where P is contingent, but (X, r, P ) is an or-
dinary edge. (This blocks the Relax− rule since P is contingent, and blocks the Lower−
rule since (X, r, P ) is ordinary.) In this case, insert the path (P, [P :−uP ], Ap, [p :`p], P ).
Then use the Lower− rule to generate the edge (Ap, `P + v, C), as shown in Fig. 4. Now,
if `P + v ≥ u− `, then E can be reduced away. If not, then further back-propagation is
blocked by the upper-case edge (P, [P :−uP ], AP ).
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Figure 4 Inserting labeled edges into the path π in the proof of Theorem 1

C1 A1 C A
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Figure 5 An upper-case edge E1 blocking the reducing-away of another upper-case edge E

In view of the above analysis, the only way that the back-propagation could fail to reduce
away the upper-case edge E in π is if it is blocked by some upper-case edge E1, as illustrated
in Fig. 5. The upper-case edge E1 could be one that was originally in π, or one that was
added in Case (2) above, where p + v < u − `. In either case, note that the non-length-
preserving case of the Upper− rule can be used to generate a negative edge from E1’s
activation time-point A1 to E’s activation time-point A, as illustrated in the figure. Thus, if
the recursive processing of successive upper-case edges ever encounters a repeat, it would
signal a negative loop in the LO-graph, contradicting the hypothesis.

As a result, the recursive processing of some upper-case edge Ei must not be blocked
(i.e., Ei can be reduced away) which implies that the processing of the preceding upper-case
edge Ei−1 can resume. Continuing in this way, either Ei or one of its successor upper-case
edges in π must be unblocked (i.e., can be reduced away), and so on, until all upper-case
edges have been reduced away from π. Since the reducing away of upper-case edges only
uses the length-preserving Upper† rule, the transformed π (now in the LO-graph) still has
negative length and, thus, contradicts the hypothesis that the LO-graph is consistent. (The
non-length-preserving case of the Upper− rule was used only to signal inconsistencies that
terminated the recursion; it was not used in cases where the recursion continued.)

Finally, note that when inserting the upper-case edge (P, [P :−uP ], AP ) in Case (2) above,
it was assumed that the process of reducing away that upper-case edge could not affect the
semi-reducibility of π. That is true, but it must be proven, as follows. First, since P was
already in π, and P cannot appear in the extension sub-path PP used to reduce away the
lower-case edge (AP , [p :`P ], P ), it follows that introducing the upper-case edge for P into
π cannot cause a breach for the lower-case edge for P . Next, suppose that introducing the
upper-case edge for P , and subsequently reducing it away, consumed the moat edge in the
extension sub-path PQ used to reduce away the lower-case edge (AQ, [q :`Q], Q), as illustrated
in Fig. 6. Since all proper prefixes of the extension sub-path PQ must have non-negative
length (otherwise they could be used to reduce away the lower-case edge), a ≥ 0 and a+b ≥ 0.
However, the entire extension sub-path must have negative length; thus, a+ b+ c < 0, which
implies that c < −a− b ≤ 0. Now, c < 0 implies that c+ v < v < uP − `P ; hence the path
used to reduce away the upper-case edge extends backward, beyond X, to some W . Thus,
b+ c+ v ≥ uP − `P (to enable the use of the Upper† rule). But then:

uP − `P ≤ b+ c+ v < b+ (−a− b) + v = −a+ v ≤ v < uP − `P

which is a contradiction. Thus, our assumption that inserting the upper-case edge involving
P caused the path π to become non-semi-reducible was wrong. J
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AQ Q W X Y P AP
[q :`Q] a b c v < uP − `P [P :−uP ]

extension sub-path PQ

moat edge

path used to “reduce away” upper-case edge (P, [P :−uP ], AP )

Figure 6 A path discussed in the proof of Theorem 1, where a+ b+ c < 0 and b+ c+v ≥ uP − `P
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Figure 7 Reducing away an upper-case edge (R, [R :−uR], AR) with the RUL− algorithm

3 The RUL− DC-checking Algorithm

This section presents the main contribution of the paper: the RUL− DC-checking algorithm
for STNUs. When applied to a given semi-reducible negative loop, the algorithm essentially
follows the structure of the proof of Theorem 1. Of course, it is not generally given a semi-
reducible negative loop in advance; therefore, it effectively carries out its back-propagation
along all potential paths in parallel.

The pseudo-code for the RUL− DC-checking algorithm is given in Algorithm 1, where it is
called DC-Check. The constraint-propagation functions, CloseRelaxLower, ApplyRe-
laxLower and ApplyUpper, that are used by DC-Check are collected in Algorithm 2.
And the InitPotential, UpdatePotential and NegativeCycle functions, used to
initialize, update, and verify the consistency of a potential function h for the LO-graph
Eo ∪ E` are collected in Algorithm 3.

The input to the DC-Check function is an STNU graph G. The algorithm focuses on
reducing away each upper-case edge (R, [R :−uR], AR), as illustrated in Fig. 7. First, it uses
the CloseRelaxLower and ApplyRelaxLower functions to propagate backward from
the contingent time-point R along edges in the LO-graph Eo ∪E` (Fig. 7a) and then generate
new edges terminating at R using the Relax− and Lower− rules (Fig. 7b). Then for every
edge terminating at R, the ApplyUpper function uses the Upper− rule to generate new
edges terminating at the activation time-point AR (Fig. 7c), effectively providing all ways of
reducing away the upper-case edge (R, [R :−uR], AR).5

If the backward propagation from R is ever blocked by another upper-case edge E1, the
algorithm suspends processing of R and recursively begins to process E1. Similarly, the
processing of E1 could subsequently be blocked by other upper-case edges, which would
require suspending the processing of E1, and so on. At each stage, the processing of an
upper-case edge is only resumed when all of the blocking upper-case edges have been fully
processed. As in the proof of Theorem 1, if the algorithm ever recursively encounters the
same upper-case edge twice, it immediately terminates with a “Non-DC” answer. But if

5 Although the algorithm could postpone using the non-length-preserving case of the Upper− rule until all
other propagations were done, it is more convenient to apply both cases of RUL− when the opportunity
arises.
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Algorithm 1: DC-Check, the RUL− DC-checking algorithm
Input: G . An STNU graph
Output: 〈True,G〉, if DC; False, otherwise . Side Effect: Modifies G

1 h←− InitPotential (G)
2 if NegativeCycle (G, h) then return False
3 R ←− TC

4 S ←− new empty stack
5 push Z onto S
6 while S is not empty do
7 R←− top of S . Do not pop from stack
8 G ←− CloseRelaxLower (G, h,R)
9 G ←− ApplyUpper (G, R)

10 h←− UpdatePotential (G, h, AR)
11 if NegativeCycle (G, h) then return False
12 if ∃R′ ∈ R such that wAR′ R < uR − `R then
13 if R′ ∈ S then return False
14 else push R′ onto S
15 else
16 R ←− R \ {R}
17 pop R from top of S
18 if R is non-empty and S is empty then
19 push top element of R onto S . But keep it in R

20 return 〈True,G〉

it successfully completes the processing of all K upper-case edges without encountering a
negative loop in the LO-graph, it terminates with a “DC” answer.

To efficiently perform the back-propgation processes, the algorithm uses a potential
function h for the LO-graph. (The LO-graph can be viewed as an STN by ignoring any
alphabetic labels on its lower-case edges.) The InitPotential function uses the Single
Sink version of Bellman-Ford to create a potential function that specifies a lower bound
for each time-point in the network. In particular, if d(X) is the distance from X to some
arbitrary sink node, then h(X) = −d(X) specifies a lower bound for X. If the LO-graph has
no negative cycles, then the potential function provides a solution to the LO-graph, as an
STN. The potential function h is then used, as in Johnson’s algorithm [4], to transform each
edge weight into a non-negative value, thereby enabling Dijkstra’s algorithm to be used to
guide the back-propagation from each contingent time-point R in the CloseRelaxLower
function. Afterward, the ApplyUpper function is used to generate new edges terminating
at the activation time-point AR. Since these edges are derived from an upper-case edge, but
the potential function is based on the LO-graph, the potential function must be updated to
accommodate those new edges. The UpdatePotential function handles this chore using
a modified version of Dijkstra that allows negative edges as long as they all have the same
destination—in this case, they all terminate at AR.

After updating the potential function, the main algorithm checks whether there is an
upper-case edge (C ′, [C ′ :−u′], A′) that has not yet been processed for which there is an
edge (A′, s, R) for which s < uR − `R, which would block further back-propagation from
R. (It may help to recall Fig. 5, substituting R for C.) If so, it recursively processes
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Algorithm 2: Constraint-propagation functions for DC-Check algorithm
1 function CloseRelaxLower (G, an STNU graph; h, a potential function; R ∈ TC):

Pre: h(P ) ≥ h(Q)− w for each (P,w,Q) ∈ Eo ∪ E`

Post: All new edges (P, v,R) that can be generated by Relax− and Lower−
have been added to Eo

2 Q ←− new priority queue
3 foreach (Q, x,R) ∈ Eo ∪ E` do insert Q into Q with priority h(Q) + x

4 while Q is not empty do
5 Q←− pop min priority node from Q
6 foreach (P, v,R) ∈ ApplyRelaxLower (G, Q,R) do
7 if v < wP R then insert edge (P, v,R) into Eo

8 wP R ←− min{wP R, v}
9 if P ∈ Q then decrease priority of P to h(P ) + wP R

10 else insert P into Q with priority h(P ) + wP R

11 return G
12 function ApplyRelaxLower (G, an STNU graph; Q ∈ T ; R ∈ TC):

Output: The set of all edges (P,w,R) obtained by applying Relax− or
Lower− to the path (P,wP Q, Q,wQR, R) in Eo ∪ E`

13 if wQR ≥ uR − `R then return ∅
14 else if Q ∈ TC then return (AQ, `Q + wQR, R)
15 else return {(P,wP Q + wQR, R)}(P,wP Q,Q)∈Eo∪E`,P∈T \{R}

16 function ApplyUpper (G, an STNU graph; R ∈ TC):
Output: All new edges (P,w,AR) obtained by applying Upper− to paths

(P, v,R, [R :−uR], AR) in Eo ∪ E` have been added to Eo

17 foreach (P, v,R) ∈ Eo do
18 if v < uR − `R then wP A ←− min{wP A,−`R}
19 else wP A ←− min{wP A, v − uR}
20 insert edge (P,wP A, A

R) into Eo

21 return G

that upper-case edge. Once that process completes, it checks whether there are any other
as-yet-unprocessed upper-case edges that meet that criterion. If so, it processes each one
of them in turn. Once all such upper-case edges are successfully processed, the algorithm
processes R again, from scratch, and then moves to process any other as-yet-unprocessed
upper-case edges (even though they may not be blocking for R) until all such edges have been
processed. By maintaining separate stacks, R and S, respectively, of contingent time-points
that have not yet been processed, and those whose processing is in progress, the algorithm is
guaranteed to perform at most 2K rounds. (Each round terminates by pushing a time-point
R′ ∈ R onto S, or removing a time-point R from both R and S. Since no time-point is ever
pushed onto S or popped off of S more than once, it follows that at most 2K rounds can be
performed.) If updating the potential function ever fails, then the algorithm immediately
returns “Non-DC”. If the algorithm ever recursively encounters the same upper-case edge
twice, it immediately returns “Non-DC”. If none of those things happen then, after at most
2K rounds, the algorithm returns “DC”.

I Corollary 1. The RUL− algorithm is sound and complete for the STNU-DC problem.
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Algorithm 3: Functions to initialize/update/verify lower-bound potential function
1 function InitPotential (G, an STNU graph):

Post: h(P ) ≥ h(Q)− w for each (P,w,Q) ∈ Eo ∪ E`, unless graph has neg. cycle
. N − 1 rounds of Bellman-Ford, where N = |T |

2 foreach P ∈ T do h(P )←− 0
3 for i = 1 to N − 1 do
4 foreach edge (P,w,Q) ∈ Eo ∪ E` do
5 h(P )←− max{h(P ), h(Q)− w}

6 return h

7 function NegativeCycle (G, an STNU graph; h, a potential function for G):
Output: True if Eo ∪ E` has a negative cycle; False otherwise

8 foreach edge (P,w,Q) ∈ Eo ∪ E` do
9 if h(P ) < h(Q)− w then return True

10 return False
11 function UpdatePotential (G, STNU graph; h, potential function for G; A ∈ T ):

Pre: h(P ) ≥ h(Q)− w for each (P,w,Q) ∈ Eo ∪ E` where Q 6= A

Post: h′(P ) ≥ h′(Q)− w for each (P,w,Q) ∈ Eo ∪ E` unless graph has a neg.
cycle

12 h′ ←− h
13 Q ←− new priority queue
14 insert A into Q with priority 0
15 while Q is not empty do
16 Q←− extract min. priority node from Q
17 foreach (P,w,Q) ∈ Eo ∪ E` do
18 if h′(P ) < h′(Q)− w then
19 h′(P )←− h′(Q)− w
20 if P ∈ Q then decrease priority of P in Q to h(P )− h′(P )
21 else insert P into Q with priority h(P )− h′(P )

22 return h′

Proof. The RUL− rules are sound by Propositions 1–3. And if an STNU graph G has a
semi-reducible negative loop, then by the proof of Theorem 1, the RUL− algorithm will
return “Non-DC”. J

4 Conclusion

This paper introduced a new algorithm, called the RUL− algorithm, for solving the DC-
checking problem for STNUs. The algorithm, which is proven to be sound and complete, uses
three constraint-propagation rules, Relax−, Lower− and Upper−, that differ from other
approaches in that they generate only ordinary edges, and they focus on generating edges that
terminate either in contingent or activation time-points. As a result, the algorithm performs
at most O(K) rounds. Since each round generates at most N new edges, the algorithm
generates at most KN new edges overall. The constraint propagation in each round is guided
by Dijkstra’s algorithm, using a lower-bound potential function (as in Johnson’s algorithm).



M. Cairo, L. Hunsberger & R. Rizzi 23:15

Each round of edge generation is interleaved with another run of Dijkstra to update the
lower-bound potential function to accommodate the new edges. Thus, the complexity of each
round is O((M + KN) + N logN); and the overall complexity of the RUL− algorithm is
O(MN +K2N +KN logN), where the O(MN) term arises from the use of Bellman-Ford to
initialize the potential function. For sparse networks, this upper bound on the complexity of
the STNU-DC problem is tighter than the previous best-known bound of O(N3). Future work
will focus on experimentally evaluating the RUL− algorithm and Morris’ O(N3) algorithm
to see whether further enhancements might be found.
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