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Abstract
Recent work on Conditional Simple Temporal Networks (CSTNs) has introduced the problem
of checking the dynamic consistency (DC) property for the case where the reaction time of an
execution strategy to observations is bounded below by some fixed ε > 0, the so-called ε-DC-
checking problem. This paper proves that the ε-DC-checking problem for CSTNs can be reduced
to the standard DC-checking problem for CSTNs—without incurring any computational cost.
Given any CSTN S with k observation time-points, the paper defines a new CSTN S0 that is
the same as S, except that for each observation time-point P? in S: (i) P? is demoted to a non-
observation time-point in S0; and (ii) a new observation time-point P0?, constrained to occur
exactly ε units after P?, is inserted into S0. The paper proves that S is ε-DC if and only if S0 is
(standard) DC, and that the application of the ε-DC-checking constraint-propagation rules to S is
equivalent to the application of the corresponding (standard) DC-checking constraint-propagation
rules to S0. Two versions of these results are presented that differ only in whether a dynamic
strategy for S0 can react instantaneously to observations, or only after some arbitrarily small,
positive delay. Finally, the paper demonstrates empirically that building S0 and DC-checking it
incurs no computational cost as the sizes of the instances increase.
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1 Overview

A Conditional Simple Temporal Network (CSTN) is a data structure for reasoning about
time in domains where some constraints may apply only in certain scenarios. For example,
a patient who tests positive for a certain disease may need to receive care more urgently
than someone who tests negative. In different research fields CSTNs have been used to
model temporal reasoning tasks, for example, in planning [17, 20] and automating business
processes [6, 14, 16].

Conditions in a CSTN are represented by propositional letters whose truth values are
not controlled, but instead are observed in real time. Just as doing a blood test generates a
positive or negative result that is only learned in real time, the execution of an observation
time-point P? in a CSTN generates a truth value for its corresponding propositional letter p.

An execution strategy for a CSTN specifies when the time-points will be executed, but
cannot affect which truth values are generated by observations. However, a strategy can
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be dynamic in that its decisions can react to information from past observations. A CSTN
is said to be dynamically consistent (DC) if it admits a dynamic strategy that guarantees
the satisfaction of all relevant constraints no matter which outcomes are observed during
execution.

Different varieties of the DC property have been defined that differ in how reactive a
dynamic strategy can be. Originally, Tsamardinos et al. [19] stipulated that a dynamic
strategy could react to an observation only after some positive delay, but that the delay
could be arbitrarily small. Comin et al. [7] defined ε-DC, which assumes that a strategy’s
reaction time is bounded below by some fixed ε > 0. Finally, Cairo et al. [1] defined π-DC,
which allows a strategy to react instantaneously (i.e., after zero delay).

Several approaches to DC-checking algorithms have been presented in the literature to
address the different flavors of DC [19, 3, 4, 7]. However, the only approach that has been
demonstrated to be practical is the one based on the propagation of labeled constraints due
to Hunsberger et al. [13, 9]. Different versions of their algorithm have been used to solve the
(standard) DC-checking, ε-DC-checking, and π-DC-checking problems.

This paper makes the following contributions. First, it proves that the ε-DC-checking
problem for CSTNs can be reduced to the standard DC-checking problem. The proof involves
transforming the original CSTN instance S into a related CSTN, S0, and then showing that
S is ε-DC if and only if S0 is (standard) DC. Second, the paper proves that the application
of the ε-DC-checking constraint-propagation rules to S is equivalent to the application of
the corresponding DC-checking constraint-propagation rules to S0. Third, it empirically
compares the performance of (1) building S0 and DC-checking it versus (2) ε-DC-checking the
original instance S. On a suite of benchmark instances from the business application domain,
the results demonstrate that building S0 and DC-checking it incurs no computational cost as
the sizes of the instances increase.

In this way, the global contribution of the paper is to show that the ε-DC-checking
problem is not a new problem (as has been suggested in recent papers), but is in fact
reducible to the standard DC-checking problem. The empirical evaluation simply confirms
that the ε-DC-checking algorithm and the algorithm based on transforming to a standard
DC problem have comparable performances.

2 Background

Dechter et al. [8] introduced Simple Temporal Networks (STNs) to facilitate reasoning about
time. An STN comprises real-valued variables, called time-points, and binary difference
constraints on those variables. Typically, an STN includes a special time-point, Z, whose
value is fixed at zero. A consistent STN is one that has a solution as a constraint satisfaction
problem.

Tsamardinos et al. [19] introduced CSTNs, which augment STNs to include observation
time-points (OTPs) and their associated propositional letters. In a CSTN, the execution of
an OTP P ? generates a truth value for its associated propositional letter p. In addition, each
time-point can be labeled by a conjunction of propositional literals specifying the scenarios
in which that time-point must be executed. And since constraints among labeled time-points
may similarly be applicable only in certain scenarios, later work generalized CSTNs to also
include labels on constraints [12].

Building on prior observations by Tsamardinos et al. [19], Hunsberger et al. [12, 5]
formalized properties that must be satisfied by the labels in a well-defined CSTN. But then
Cairo et al. [2] showed that for any well-defined CSTN, no loss of generality results from
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Figure 1 A sample CSTN

subsequently removing the labels from its time-points, the result being a so-called streamlined
CSTN. Therefore, to simplify our presentation and results, without any loss of generality, the
rest of this paper restricts attention to streamlined CSTNs (i.e., CSTNs whose constraints
can have propositional labels, but whose time-points cannot).

Fig. 1 shows a sample CSTN in its graphical form, where the nodes represent time-points,
and the directed edges represent binary difference constraints. In the figure, Z is fixed at 0;
and P? and Q? are OTPs whose execution generates truth values for p and q, respectively.
The edge from U to Q? being labeled by p¬q indicates that it applies only in scenarios where
p is > and q is ⊥. The dashed edges with shaded labels are generated by the DC-checking
algorithm by Hunsberger et al. [13], to be discussed later on.

2.1 (Streamlined) CSTNs
The following definitions are from Hunsberger et al. [13], except that propositional labels
appear only on constraints. Henceforth, the term CSTN shall refer to streamlined CSTNs.

I Definition 1 (Labels). Given a set P of propositional letters: a label is a (possibly empty)
conjunction of (positive or negative) literals from P. The empty label is notated �; for any
label `, and any p ∈ P, if ` |= p or ` |= ¬p, then we say that p appears in `; for any labels `1
and `2, if `1 |= `2, then `1 is said to entail `2; if `1 ∧ `2 is satisfiable, then `1 and `2 are called
consistent; and P∗ denotes the set of all consistent labels whose literals are drawn from P.

I Definition 2 (CSTN). A Conditional Simple Temporal Network (CSTN) is a tuple,
〈T ,P, C,OT ,O〉, where:
T is a finite set of real-valued time-points (i.e., variables);
P is a finite set of propositional letters (or propositions);
C is a set of labeled constraints, each having the form, (Y −X ≤ δ, `), where X,Y ∈ T ,
δ ∈ R, and ` ∈ P∗;
OT ⊆ T is a set of observation time-points (OTPs); and
O : P → OT is a bijection that associates a unique OTP to each propositional letter.

In a CSTN graph, the OTP for p (i.e., O(p)) is typically denoted by P?; and each labeled
constraint, (Y −X ≤ δ, `), is represented by an arrow from X to Y annotated by the labeled
value, 〈δ, `〉: X 〈δ, `〉 Y . Since any time-pointsX and Y may participate in multiple constraints
of the form, (Y −X ≤ δi, `i), the edge from X to Y may have multiple labeled values of the
form, 〈δi, `i〉.

I Definition 3 (Scenario). A function, s : P → {>,⊥}, that assigns a truth value to each
p ∈ P is called a scenario. For any label ` ∈ P∗, the truth value of ` determined by s is
denoted by s(`). I denotes the set of all scenarios over P.

I Definition 4 (Schedule). A schedule for a set of time-points T is a mapping, ψ : T → R.
The set of all schedules over T is denoted by Ψ.

TIME 2018
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The projection of a CSTN onto a scenario, s, is the STN obtained by restricting attention to
the constraints whose labels are true under s (i.e., that must be satisfied in that scenario).

I Definition 5 (Projection). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, and s any scenario
over P. The projection of S onto s—notated S(s)—is the STN, (T , C+

s ), where:

C+
s ={(Y −X≤δ) | ∃`, (Y −X≤δ, `) ∈ C and s(`)=>}

I Definition 6 (Execution Strategy). An execution strategy for a CSTN S = 〈T ,P, C,OT ,O〉
is a mapping, σ : I → Ψ, from scenarios to schedules. The execution time for the time-point
X in the schedule σ(s) is denoted by [σ(s)]X . An execution strategy σ for a CSTN S is
viable if for each scenario s, the schedule σ(s) is a solution to the projection S(s) (i.e., σ is
guaranteed to satisfy all of the relevant constraints).

3 CSTN Reduction

This paper presents two related sets of results. Each set of results involves reducing a form
of ε-DC checking to a form of standard DC checking (one of which involves instantaneous
reaction). In each case, a given CSTN S is transformed (or reduced) to a related CSTN
S0 such that the form of ε-DC checking for S is equivalent to the corresponding form of
standard DC checking for S0. Although there are two different versions of this result, the
translation from S to S0 is the same.

I Definition 7 (Reduction CSTN, S0). Let S be any CSTN, and let ε > 0 be arbitrary. The
reduction of S is the CSTN S0 that is the same as S except that for each OTP P ? in S, and
its associated propositional letter p:

P? is demoted from an OTP in S to an ordinary time-point in S0;1
S0 contains a new OTP P0? that is associated with the letter p in S0; and
the constraint, (P0? = P? + ε,�), is contained in S0.2

More formally, S0 = 〈T ∪ OT 0,P, C ∪ C0,OT 0,O0〉, where:
OT 0 = {P0? | P? ∈ OT };
O0(p) = P0? ⇔ O(p) = P?;
C0 = {(P0? = P? + ε,�) | P0? ∈ OT 0}.

Fig. 2 shows the reduction S0 that corresponds to the CSTN S from Fig. 1. Note that in
any given instance, the value of ε will be fixed and known (e.g., ε = 3).

3.1 Computational Complexity
Let ε > 0 be arbitrary, and let S be any CSTN with k OTPs. The reduction of S to S0
involves O(k) elementary operations for:
1. demoting original OTPs to non-OTPs;
2. adding k new OTPs; and
3. inserting a pair of constraints between each demoted time-point P? and the corresponding

new OTP P0?.
Therefore, the overall computational complexity for the reduction is O(k).

1 Although the demoted time-point is not an OTP in S0, it shall still be notated as P? because keeping
its name the same will simplify subsequent definitions and proofs.

2 The constraint, P0? = P? + ε, abbreviates the pair of constraints, P0?− P? ≤ ε and P?− P0? ≤ −ε.
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Figure 2 The reduction S0 corresponding to S from Fig. 1

4 Dynamic Strategies/Dynamic Consistency

The truth values of propositions in a CSTN are not known in advance, but a dynamic
execution strategy can react to observations in real time. This paper addresses the following
four flavors of dynamic strategy that differ in how reactive the strategy can be, ordered from
most reactive to least reactive.

Type Reaction Time, ρ
π-dynamic ρ ≥ 0
dynamic ρ > 0
ε-dynamic ρ ≥ ε > 0
ε̂-dynamic ρ > ε > 0

A π-dynamic strategy can react instantaneously to observations, but must specify an order
of dependence among simultaneous observations [1]. The reaction times for a (standard)
dynamic strategy can be arbitrarily small, but must be positive [19]. The reaction times for
an ε-dynamic strategy must be greater than or equal to some fixed ε > 0 [7]. The reaction
times for an ε̂-dynamic strategy must be greater than some fixed ε > 0. Since a CSTN is
DC if and only if it has a viable and dynamic execution strategy, each distinct version of
dynamic strategy gives rise to a distinct version of dynamic consistency: DC, π-DC, ε-DC,
and ε̂-DC, respectively.

The paper will show that the ε̂-DC-checking problem can be reduced to (standard) DC
checking; and that the ε-DC-checking problem can be reduced to π-DC checking. These
reductions can be used to simplify the automated management of DC checking for CSTNs.

5 Reducing ε̂-DC Checking to (Standard) DC Checking

The following sections recall the relevant definitions for DC and ε̂-DC, and show that S is
ε̂-DC if and only if S0 is DC.

5.1 Dynamic Strategies and (Standard) DC
(Standard) dynamic strategies were first defined by Tsamardinos et al. [19]. To facilitate
comparisons with later definitions, the following are in the form given by Hunsberger et
al. [13].

To begin, a history at time t comprises the truth values of all propositions that were
observed before time t.

TIME 2018
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I Definition 8 (History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any scenario, σ any
execution strategy for S, and t any real number. The history of t in the scenario s, for the
strategy σ—notated Hist(t, s, σ)—is the set of observations made before time t according to
the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P? < t}

I Definition 9 (Dynamic Strategy). An execution strategy σ for a CSTN S is called dynamic
if for any scenarios s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t.

In other words, if a dynamic strategy σ executes X at time t in scenario s1, and the schedules
σ(s1) and σ(s2) have the same history of past observations, then σ must also execute X
at time t in s2. That is, execution decisions can only depend on past observations, even if
arbitrarily recent.

I Definition 10 (Dynamic Consistency (DC)). A CSTN is dynamically consistent (DC) if
there exists an execution strategy for it that is both viable and dynamic.

5.2 ε̂-Dynamic Strategies and ε̂-DC
The ε̂-dynamic consistency property has not been presented before in the literature. However,
it differs only slightly from ε-DC, defined later on. Informally, an ε̂-dynamic strategy must
schedule a time-point X at the same time t in two different scenarios s1 and s2 if both
scenarios have the same history of past observations before time t− ε (i.e., ε units before the
current time t).

I Definition 11 (ε̂-History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any scenario, σ any
execution strategy for S, t any real number, and ε > 0. The ε̂-history of t in the scenario s,
for the strategy σ, notated ε̂Hist(t, s, σ), is the set of observations made before time t − ε
according to σ(s):

ε̂Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P?<t−ε}

I Definition 12 (ε̂-Dynamic Execution Strategy ). Let ε > 0; and let S be any CSTN.
An execution strategy σ for S is called ε̂-dynamic if for any scenarios s1 and s2, and any
time-point X:

let: t = [σ(s1)]X
if: ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ)
then: [σ(s2)]X = t.

I Definition 13 (ε̂-DC). For any ε > 0, a CSTN S is ε̂-dynamically consistent if it has a
viable and ε̂-dynamic execution strategy.

The following theorem explicates the relation between ε̂-DC and DC.

I Theorem 14. Let S = 〈T ,P, C,OT ,O〉 be any CSTN; let ε > 0 be arbitrary; and let
S0 = 〈T ∪ OT 0,P, C ∪ C0,OT 0,O0〉 be the reduction of S. Then S is ε̂-DC if and only if S0
is DC.

Proof. (⇒) Suppose that S is ε̂-DC. Then there exists an ε̂-dynamic and viable strategy σ
for S. Define a strategy σ0 for the reduction S0, as follows. For any scenario s:
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(1) For each X ∈ T : let [σ0(s)]X = [σ(s)]X .
(2) For each P0? ∈ OT 0: let [σ0(s)]P0? = [σ(s)]P? + ε.

Since σ is viable for S, σ satisfies all of the constraints in C. And since, by (1) above, σ
and σ0 agree on all of the time-points in T , σ0 must also satisfy all of the constraints in C.
Finally, by (2) above, σ0 must satisfy all of the constraints in C0. Therefore, σ0 must be
viable for S0.

Next, suppose that σ0 is not dynamic. Then for some scenarios s1 and s2, and some time-
point X ∈ T ∪ T0, Hist(t, s1, σ0) = Hist(t, s2, σ0), but [σ0(s2)]X 6= t, where t = [σ0(s1)]X .
With no loss of generality, assume that t is minimal for this circumstance. Then:

ε̂Hist(t, s2, σ)
= {(p, s2(p)) | P? ∈ OT and [σ(s2)]P? < t− ε}
= {(p, s2(p)) | P0? ∈ OT 0 and [σ0(s2)]P0? < t}, by (2) above
= Hist(t, s2, σ0)
= Hist(t, s1, σ0)
= {(p, s1(p)) | P0? ∈ OT 0 and [σ0(s1)]P0? < t}
= {(p, s1(p)) | P? ∈ OT and [σ(s1)]P? < t− ε}, by (2) above
= ε̂Hist(t, s1, σ). (†)

Now, if X ∈ T , then [σ(s1)]X = [σ0(s1)]X = t, but [σ(s2)]X = [σ0(s2)]X 6= t, which,
given that the relevant ε̂-histories are equal, contradicts that σ is ε̂-dynamic. Therefore,
X 6∈ T ; thus, X must be some R0? ∈ OT 0, where [σ(s1)]R? = [σ0(s1)]R0? − ε = t − ε 6=
[σ0(s2)]R0?− ε = [σ(s2)]R?. Thus, the schedules σ(s1) and σ(s2) are different. Consider those
schedules, each annotated with the relevant observations as they occur. Let t∗ ≤ t− ε be the
earliest time at which the annotated schedules differ. There are two ways they can differ at
t∗.

Case 1: Both schedules execute some OTP Q? at t∗, but with different results (i.e.,
s1(q) 6= s2(q)). If t∗ < t − ε, it would contradict that ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ).
Therefore, t∗ = t− ε.

Now, the definition of t∗ ensures that ε̂Hist(t∗, s1, σ) = ε̂Hist(t∗, s2, σ). But then
[σ(s1)]R? 6= [σ(s2)]R?, shown earlier, contradicts that σ is ε̂-dynamic.

Case 2: One of the schedules executes some time-point Y at t∗ while the other schedule
executes Y at some later time: [σ(si)]Y = t∗ < [σ(sj)]Y , where {si, sj} = {s1, s2}. But this,
together with ε̂Hist(t∗, s1, σ) = ε̂Hist(t∗, s2, σ), contradicts that σ is ε̂-dynamic.

(⇐) Suppose that S0 is DC. Then there exists a viable and dynamic strategy σ0 for
S0. Let σ be the strategy for S such that for each scenario s, and each time-point X ∈ T ,
[σ(s)]X = [σ0(s)]X . Since σ0 is viable for S0, it satisfies all of the constraints in C ∪ C0. And
since σ and σ0 agree on all time-points in T , it follows that σ satisfies all of the constraints
in C. Thus, σ is viable for S.

Next, suppose that σ is not ε̂-dynamic. Then for some scenarios s1 and s2, and some time-
point X ∈ T , ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ), where t = [σ(s1)]X , but [σ(s2)]X 6= t. Arguing
similarly to (†) above, it follows that Hist(t, s1, σ0) = Hist(t, s2, σ0). And since X ∈ T ,
[σ0(s1)]X = [σ(s1)]X = t 6= [σ(s2)]X = [σ0(s2)]X , contradicting that σ0 is dynamic. J

6 Reducing ε-DC Checking to π-DC Checking

This section uses the same reduction of S to S0 to reduce the problem of ε-DC checking to
that of π-DC checking.
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6.1 ε-Dynamic Execution Strategy and ε-DC
The semantics for ε-DC is the same as that for ε̂-DC, except that an ε-history records the
observations at or before time t − ε, instead of strictly before t − ε. Nonetheless, for easy
reference, the full definitions are given below.

I Definition 15 (ε-History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any scenario, σ any
execution strategy for S, t any real number, and ε > 0. The ε-history of t in the scenario s,
for the strategy σ, notated εHist(t, s, σ), is the set of observations made at or before t− ε
according to σ(s):

εHist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P? ≤ t− ε}

I Definition 16 (ε-Dynamic Execution Strategy). Let ε > 0. An execution strategy σ is
ε-dynamic if for any scenarios s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: εHist(t, s1, σ) = εHist(t, s2, σ)
then: [σ(s2)]X = t.

I Definition 17 (ε-DC). Given any ε > 0, a CSTN is ε-dynamically consistent (ε-DC) if
there exists an execution strategy for it that is both viable and ε-dynamic.

6.2 π-Dynamic Execution Strategy and π-DC
This section summarizes the π-DC semantics introduced by Cairo et al. [1] that allows a
dynamic strategy to react instantaneously to observations, but requires an order of dependence
among simultaneous observations.

I Definition 18 (Order of dependence). For any ordering (P1?, . . . , Pk?) of observation time-
points, where k = |OT |, an order of dependence is a permutation π over (1, 2, . . . , k); and for
each P? ∈ OT , π(P?) ∈ {1, 2, ..., k} denotes the integer position of P? in that order. For
any non-observation time-point X, we set π(X) = ∞ . Finally, Πk denotes the set of all
permutations over (1, 2, . . . , k).

I Definition 19 (π-Execution Strategy). For any CSTN S = 〈T ,P, C,OT ,O〉, where k =
|OT |, a π-execution strategy for S is a mapping, σ : I → (Ψ×Πk), such that for each
scenario s, σ(s) is a pair (ψ, π) where ψ : T → R is a schedule and π ∈ Πk is an order of
dependence. For any X ∈ T , [σ(s)]X denotes the execution time of X (i.e., ψ(X)); and for
any P? ∈ OT , [σ(s)]πP? denotes the position of P? in the order of dependence (i.e., π(P?)).
Finally, a π-dynamic strategy must be coherent: for any scenario s, and any P?, Q? ∈ OT ,
[σ(s)]P? < [σ(s)]Q? implies [σ(s)]πP? < [σ(s)]πQ? (i.e., if σ(s) schedules P? before Q?, then it
orders P? before Q?).

I Definition 20 (Viability). The π-execution strategy σ = (ψ, π) is called viable for the
CSTN S if for each scenario s, the schedule ψ(s) is a solution to the projection S(s).

I Definition 21 (π-History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN. Let σ be any π-
execution strategy for S, s any scenario, t any real number, and d ∈ {1, 2, . . . , |OT |} ∪ {∞}
any integer position (or infinity). The π-history of (t, d) for the scenario s and strategy
σ—denoted by πHist(t, d, s, σ)—is the set

{(p, s(p)) | P? ∈ OT , [σ(s)]P? ≤ t, and π(P?) < d}.
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Thus, the π-history specifies the truth values of each proposition p that is observed before
time t in the schedule ψ, or observed at time t if its corresponding observation time-point P ?
is ordered before position d by the permutation π.

The following definition of a π-dynamic strategy is equivalent to that given by Cairo et
al. [1]. (The straightforward proof has been omitted to save space.)

I Definition 22 (π-Dynamic Strategy). A π-execution strategy, σ, for a CSTN is π-dynamic
if for every pair of scenarios, s1 and s2, and every time-point X ∈ T :

let: t = [σ(s1)]X , and d = [σ(s1)]πX .
if: πHist(t, d, s1, σ) = πHist(t, d, s2, σ)
then: [σ(s2)]X = t and [σ(s2)]πX = d.

Thus, if σ executesX at time t and position d in scenario s1, and the histories, πHist(t, d, s1, σ)
and πHist(t, d, s2, σ), are the same, then σ must also execute X at time t and in position d
in scenario s2. (X may be an observation time-point.)

I Definition 23 (π-Dynamic Consistency). A CSTN, S, is π-dynamically consistent (π-DC)
if there exists a π-execution strategy for S that is both viable and π-dynamic.

Theorem 24 explicates the relationship between the ε-DC and π-DC properties. Its proof,
which uses techniques similar to those used to prove Theorem 14, extended to accommodate
the order of dependence, is omitted to save space.

I Theorem 24. Let S = 〈T ,P, C,OT ,O〉 be any CSTN; let ε > 0 be arbitrary; and let
S0 = 〈T0,P, C0,OT 0,O0〉 be the reduction of S. Then S is ε-DC if and only if S0 is π-DC.

7 The π-DC- and ε-DC-Checking Algorithms

This section summarizes two versions of the constraint-propagation algorithm due to Huns-
berger et al. [13][11]: the π-DC-checking algorithm and the ε-DC-checking algorithm. Each
algorithm uses only three constraint-propagation rules.3 This section proves that applying
the rules for the ε-DC-checking algorithm to the CSTN S is equivalent to applying the rules
for the π-DC-checking algorithm to the corresponding reduced CSTN S0.

7.1 The π-DC-Checking Algorithm
Table 1 lists the three constraint propagation rules used by the π-DC-checking algorithm.
Note that the qR∗3 rule can generate a new kind of propositional label, called a q-label (defined
below); and the qR0 and qR∗3 rules can each be applied to q-labeled edges. Each q-label is a
conjunction of q-literals (defined below). Whereas a constraint labeled by p must hold in all
scenarios in which p is true, a constraint labeled by the q-literal ?p need only hold as long as
the truth value of p is unknown (i.e., as long as P? has not been executed).

I Definition 25 (Q-literals, q-labels). A q-literal is a literal of the form ?p, where p ∈ P. A
q-label is a conjunction of literals and/or q-literals. Q∗ denotes the set of all q-labels. For
any scenario s, and any q-literal ?p, it is convenient to stipulate that s 6|= ?p.

3 An earlier version of the π-DC-checking algorithm, called the IR-DC-checking algorithm (IR for
“instantaneous reaction”) used six rules, but recently, Hunsberger and Posenato [11] showed that three
rules are sufficient. We applied similar techniques to create a three-rule version of the ε-DC-checking
algorithm.

TIME 2018



15:10 Reducing ε-DC Checking for Conditional Simple Temporal Networks to DC Checking

LP: X Y Z
〈u, α〉 〈v, β〉

〈u + v, αβ〉
if αβ ∈ P∗ and u+ v < 0

qR0: P? Z
〈w,αp̃〉
〈w,α〉 if w < 0, p̃ ∈ {p,¬p, ?p}, and α ∈ Q∗

qR∗
3: P? Z Y

〈w,α〉 〈v, βp̃〉
〈m,α ? β〉 if w < 0, p̃ ∈ {p,¬p, ?p}, and α, β ∈ Q∗

X,Y ∈ T ; P? ∈ OT ; Z = 0. In qR0/qR
∗
3 , p does not appear in α or β; andm = max{v, w}.

LP: X Y Z
〈−3, pqr〉 〈−4, rs¬t〉

〈−7, pqrs¬t〉

qR0: P? Z
〈−9, (?p)qr〉
〈−9, qr〉

qR∗
3: A? Z B?

〈−1, b¬c〉 〈−1, ac〉
〈−1, b(?c)〉

Table 1 Propagation rules for the π-DC-checking algorithm (above) and instances of their use
(below)

For example, p(?q)¬r and (?p)(?q)(?r) are both q-labels.
The ? operator extends ordinary conjunction to accommodate q-labels. Intuitively, if the

constraint C1 is labeled by p, and C2 is labeled by ¬p, then both C1 and C2 must hold as
long as the value of p is unknown, represented by p ? ¬p = ?p.

I Definition 26 (?). The operator, ? : Q∗×Q∗ → Q?, is defined thusly. First, for any p ∈ P ,
p ? p = p and ¬p ? ¬p = ¬p; and for any p1, p2 ∈ {p,¬p, ?p}, such that p1 6= p2, p1 ? p2 = ?p.
Next, for any `1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction obtained by applying ? in
pairwise fashion to matching literals from `1 and `2, and conjoining any unmatched literals.

For example: (p¬q(?r)t) ? (qr¬s) = p(?q)(?r)¬st.

7.2 The ε-DC-checking Algorithm
The ε-DC-checking algorithm uses the same rules as the π-DC-checking algorithm, except
that in the qR∗3 rule, it uses m = max{v, w − ε}. For clarity, we shall refer to this version of
the qR∗3 rule as qRε3; and {LP, qR0, qRε3} shall be called the ε-DC-checking rules.

I Theorem 27. Let ε > 0; let S be any CSTN; and let S∗ be the CSTN that results from
exhaustively applying the ε-DC-checking constraint-propagation rules to S. Let S0 be the
corresponding reduced CSTN for S; and let S∗0 be the CSTN that results from exhaustively
applying the π-DC-checking rules to S0. Then S∗ and S∗0 are equivalent in the following
sense:
(1) Every constraint in S∗ is also in S∗0 .
(2) For each P0?, Q0? ∈ OT 0, X ∈ T \OT 0, δ ∈ R, and α ∈ Q∗:

(a) (P0?−X ≤ δ, α) ∈ S∗0 ⇒ (P?−X ≤ δ − ε, α) ∈ S∗
(b) (X−P0? ≤ δ, α) ∈ S∗0 ⇒ (X − P? ≤ δ + ε, α) ∈ S∗
(c) (P0?−Q0? ≤ δ, α) ∈ S∗0 ⇒ (P?−Q? ≤ δ, α) ∈ S∗

Proof. (Part 1) Let Σ be some arbitrary sequence of applications of ε̂-DC-checking rules
to edges from S∗. Let (Y −X ≤ δ, α) in S∗ be the first edge generated by that sequence
that does not belong to S∗0 . Call that constraint C. (Note that X and Y must be in T since
C is in S∗.)
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(a) X W Y
〈u, β〉 〈v, γ〉

LP: 〈u + v, βγ〉

(b) P? Z
〈δ, αp̃〉

qR0: 〈δ, α〉

(c) P0? P? Z−ε 〈δ, αp̃〉

LP: 〈δ − ε, αp̃〉
qR0: 〈δ − ε, α〉

(d) P? P0? Z
〈δ − ε, α〉ε

LP: 〈δ, α〉

(e) P? Z Y
〈w, β〉 〈v, γp̃〉

qRε
3: 〈max{v, w − ε}, β ? γ〉

(f) P0? P? Z Y
−ε 〈w, β〉

LP: 〈w − ε, β〉

〈v, γp̃〉
qR∗

3 : 〈max{v, w − ε}, β ? γ〉

(g) X Y P0?
〈u, β〉 〈v, γ〉

LP: 〈u + v, β ? γ〉

(h) X Y P?
〈u, β〉 〈v − ε, γ〉

LP: 〈u + v − ε, β ? γ〉

(i) P0? Z
〈δ, αp̃〉

qR0: 〈δ, α〉

(j) P? Z
〈δ + ε, αp̃〉

qR0: 〈δ + ε, α〉

(k) Q0? Z P0?
〈u, β〉 〈v, γq̃〉

qR∗
3 : 〈δ, α〉

(l) Q? Z P?
〈u + ε, β〉 〈v + ε, γq̃〉

qRε
3: 〈δ + ε, α〉

(m) Q0? W P0?
〈u, β〉 〈v, γ〉

LP: 〈δ, α〉

(n) Q? W P?
〈u + ε, β〉 〈v − ε, γ〉

LP: 〈u + v, β ? γ〉

Figure 3 Constraint propagations for the proof of Theorem 27

Case 1.1: The constraint C was generated by applying the LP rule to edges in S∗
(e.g., as shown in Fig. 3a, where δ = u + v and α = βγ). But then, by assumption, the
pre-existing edges (from X to W to Y ) must also be in S∗0 . Since the LP rule is also one of
the DC-checking rules, the generated edge (from X to Y ) must also be in S∗0 . But that edge
represents the constraint C, a contradiction.

Case 1.2: The constraint C was generated by the qR0 rule (e.g., as shown in Fig. 3b).
But then the pre-existing edge from P? to Z must be in S∗0 ; and so is the edge from P0? to
P ?, as shown in Fig. 3c. Applying the LP rule to these edges, followed by the qR0 rule, then
yields the shaded labeled values for the edge from P0? to Z in S∗0 , as shown in Fig. 3c. Next,
applying the LP rule to the edges from P? to P0? to Z, as shown in Fig. 3d, generates the
edge from P? to Z for S∗0 . But that edge represents the constraint C, a contradiction.

Case 1.3: The constraint C was generated by the qRε3 rule (e.g., as shown in Fig. 3e,
where m = max{v, w − ε} and α = β ? γ). But then the pre-existing edges (from P0? to P?
to Z) must be in S∗0 , which allows the LP rule to generate the edge from P0? to Z in S∗0 ,
shown in Fig. 3f, and then the qR∗3 rule to generate the shaded value for the edge from Y to
Z in S∗0 , which represents the constraint C, a contradiction.
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(Part 2) Let Σ0 be some arbitrary sequence of recursive applications of DC-checking rules to
edges from S∗0 . Let K in S∗0 be the first edge generated by that sequence that does not have
a corresponding edge in S∗ according to (2a), (2b) and (2c) in the statement of the theorem.

Case 2a: K has the form (P0? − X ≤ δ, α). Given that P0? 6≡ Z, K can only have
been generated by an application of the LP rule to edges in S∗0 , as shown in Fig. 3g, where
δ = u+ v and α = β ? γ. By assumption, the pre-existing edge from Y to P0? in S∗0 must
have a corresponding edge from Y to P? in S∗. For example, if Y ∈ T , then by (2a) there
must be an edge from Y to P? as shown in Fig. 3h. That edge enables the LP rule to then
be used to generate the edge from X to P? in S∗, also shown in Fig. 3h. But that is the
edge in S∗ that corresponds to K, a contradiction. The case where Y is some Q0? ∈ OT 0 is
even easier.

Case 2b.1: K has the form (X − P0? ≤ δ, α) and was generated by applying the LP rule
to edges in S∗0 . This case is similar to Case 2a, but focusing on the lefthand side of the LP
rule (i.e., the edge from X to Y ) instead of the right.

Case 2b.2: K has the form (Z− P0? ≤ δ, α) and was generated by applying the qR0 rule
to edges in S∗0 , as shown in Fig. 3i. But then, by (2b), the pre-existing edge from P0? to Z
has a corresponding edge in S∗ from P? to Z, leading to the propagation in Fig. 3j, which
generates the edge in S∗ that corresponds to K, a contradiction.

Case 2b.3: K has the form (Z − P0? ≤ δ, α) and was generated by applying the qR∗3
rule to edges in S∗0 , as shown in Fig. 3k, where δ = max{u, v} and α = β ? γ. By (2b), the
pre-existing edges from Q0? to Z, and from P0? to Z in S0 have corresponding edges from
Q? to Z, and from P ? to Z in S∗, as shown in Fig. 3l, leading to the generated edge from P ?
to Z, where δ + ε = max{u+ ε, v + ε}. That edge corresponds to K, a contradiction.

Case 3: K has the form (P0? − Q0? ≤ δ, α). Since P0? 6≡ Z, then K must have been
generated by an application of the LP rule. Fig. 3m illustrates the case where the intermediate
time-pointW is not in OT 0, and where δ = u+v and α = βγ. By (2b) and (2a), respectively,
the pre-existing edges from Q0? to W to P0? have corresponding edges from Q? to W to P?
in S∗, leading to the propagation in Fig. 3n, where the edge from Q? to P? corresponds to
K, a contradiction. The case where W ∈ OT 0 is handled similarly. J

Theorem 27 shows that the ε-DC-checking and π-DC-checking algorithms perform equiv-
alent constraint propagations. However, providing an analogous theorem that relates ε̂-DC-
checking and standard DC-checking algorithms must be left to future work, since (1) no
algorithm has yet been introduced for solving the ε̂-DC-checking problem; and (2) the sound
6-rule DC-checking algorithm for the standard DC-checking problem has not yet been proven
complete [9].

8 Empirical Evaluation

Theorem 24 shows that the ε-DC-checking problem can be reduced to the π-DC-checking
problem. In particular, the ε-DC-checking problem for a CSTN S is equivalent to the
π-DC-checking problem for the reduced CSTN S0. This section compares the performance
of implementations of an ε-DC-checking algorithm [9] and the π-DC-checking algorithm [10].
In what follows, the first algorithm is called ε-DC-Ch and the second is called S0π-DC-Ch
to reflect that it is applied to the reduced CSTN S0. Both implementations were obtained
from Posenato [18], but we modified the ε-DC-checking algorithm to use only three rules, as
discussed in Footnote 3 and Section 7.2. Algorithms and procedures for this evaluation were
implemented in Java and executed on a JVM 8 in a Linux machine with two AMD Opteron
4334 CPUs and 64GB of RAM.
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Figure 4 Execution time vs. number of time-points n

To facilitate comparisons with prior work, we tested both implementations on instances
of the four benchmarks proposed by Hunsberger and Posenato [9]. Each benchmark has at
least 60 DC and 60 non-DC CSTNs, obtained from random workflow schemata generated
by the ATAPIS toolset [15]. The numbers of activities (N) and observations (|P|) were
varied, as shown in Fig. 4. Since non-DC networks were regularly solved one to two orders
of magnitude faster than similarly sized DC ones, the rest of this section focuses on DC
networks.

Fig. 4 displays the average execution times of the two algorithms over all four benchmarks.
For S0π-DC-Ch, the execution times include the time required to build S0. Each data point
represents the average of the execution times for instances of the given size. We extended
the benchmarks, adding up to 50 DC instances, to generate tight error bars. In Figure 4,
each error bar represents a 95% confidence interval for the average of the execution times.

The results demonstrate that, although ε-DC-Ch performs better in Benchmark 1, the
performance difference becomes statistically insignificant as the sizes of the instances increase.
The main reason for this behavior is that in small instances the number of observation
time-points is quite small, which results in much less constraint propagation. As a result,
the linear time required to build S0 and do the extra propagations can have a significant
impact. In contrast, in larger instances, the number of observation time-points is larger, in
which case the time to build S0 is dwarfed by the exponential time required for propagating
constraints. The benchmark does not provide any larger instances because such instances are
determined from random workflow instances where the maximum instance size is commonly
limited to 30-40 tasks [15].

The experiments summarized in this section show that for all but the smallest CSTNs,
there is no computational penalty associated with solving the ε-DC-checking problem by first
computing the reduced CSTN S0 and then applying the π-DC-checking algorithm to it.

9 Conclusions

This paper presented a reduction of the ε̂-DC-checking problem to the (standard) DC-checking
problem for CSTNs, and a reduction of the ε-DC-checking problem to the π-DC-checking
problem. It also showed that the constraint-propagation rules for the π-DC-checking algorithm
are equivalent to the rules for the ε-DC-checking algorithm. As a result, the paper showed that
the ε-DC-checking problem for CSTNs can be easily represented within the standard CSTN
framework (i.e., the ε-DC-checking problem is not a “new” problem, as has been suggested
in recent related work). Furthermore, solving the ε-DC-checking problem by applying the
π-DC-checking algorithm to the reduced CSTN incurs no computational penalty.
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