
DRAFT

Efficient Execution of Dynamically Controllable
Simple Temporal Networks with Uncertainty

Luke Hunsberger

PRE-PUBLICATION DRAFT

Abstract A Simple Temporal Network with Uncertainty (STNU) is a data structure for rep-
resenting and reasoning about temporal constraints where the durations of certain temporal
intervals—the contingent links—are only discovered during execution. The most important
property of an STNU is whether it is dynamically controllable (DC)—that is, whether there
exists a strategy for executing its time-points that will guarantee that all of its constraints will
be satisfied no matter how the durations of the contingent links turn out. The literature on
STNUs includes a variety of DC-checking algorithms and execution algorithms. The fastest
DC-checking algorithm reported so far is the O(N3)-time algorithm due to Morris (2014).
The fastest execution algorithm for dynamically controllable STNUs is the O(N3)-time
algorithm due to Hunsberger (2013).

This paper begins by providing the first comprehensive, rigorous, and yet streamlined
treatment of the theoretical foundations of STNUs, including execution semantics, dynamic
controllability, and a set of results that have been collected into what has recently been called
the Fundamental Theorem of STNUs. The paper carefully argues from basic definitions to
proofs of the major theorems on which all of the important algorithmic work on STNUs
depends. Although many parts of this presentation have appeared in various forms, in var-
ious papers, the scattered nature of the STNU literature has allowed too many holes in the
theory to persist, and has relied all too often on proof sketches that leave important details
unexamined. The presentation combines results from many sources, while also introducing
novel approaches and proofs.

The paper concludes by presenting a modified version of a recent algorithm for man-
aging the execution of dynamically controllable STNUs, the fastest reported so far in the
literature. The modified version organizes its computations more efficiently and corrects an
oversight in the original algorithm.

Keywords Temporal Networks · Uncertainty · Execution

Luke Hunsberger
Computer Science Department, Vassar College, Poughkeepsie, NY USA
E-mail: hunsberg@cs.vassar.edu

DRAFT

2 Luke Hunsberger

1 Introduction

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing
and reasoning about temporal constraints in scenarios where the durations of some temporal
intervals are beyond the control of the planning agent (or executor) [18]. The most impor-
tant property of an STNU is whether it is dynamically controllable—that is, whether there
exists a strategy for executing the time-points in the network such that all constraints are
guaranteed to be satisfied no matter how the uncontrollable durations turn out over time. Al-
gorithms for determining whether arbitrary STNUs are dynamically controllable are called
DC-checking algorithms.

In 2001, Morris, Muscettola and Vidal [18] presented the most widely used semantics
for dynamic controllability, along with a pseudo-polynomial DC-checking algorithm, here-
inafter called the MMV-01 algorithm. However, the completeness proof for their algorithm
depended on an informally sketched dynamic strategy for generating execution decisions.

In 2005, Morris and Muscettola [19] presented the first truly polynomial DC-checking
algorithm, an O(N5)-time algorithm, hereinafter called the MM-05 algorithm. (N is the
number of time-points in the network.) Their algorithm demonstrated that edge genera-
tion (equivalently, constraint propagation) for STNUs could be bounded; however, they
assumed—without proof—that non-shortest labeled edges in an STNU could be discarded,
which turns out to be far from trivial to prove. In addition, the completeness proof for the
MM-05 algorithm depended on the completeness of the earlier, MMV-01 algorithm.

In 2006, Morris [16] presented a new approach to analyzing the graphical properties of
STNUs that made substantial contributions to the theoretical foundations of STNUs while
also enabling a faster, O(N4)-time DC-checking algorithm, hereinafter called the M-06
algorithm. However, Morris used a non-standard execution semantics that allows a form of
instantaneous reactivity. As in the MM-05 work, the proof of the main result—that an STNU
is DC if and only if its graph has no semi-reducible negative loops (cf. Sec. 2.4)—relied on
the completeness of the earlier, MMV-01 algorithm.

In 2009, this author discovered a minor technical flaw in the semantics for dynamic con-
trollability (cf. the discussion of prehistories in Sec. 2.3) that opened the door to a counter-
example [10]. Fixing that flaw vaporized the counter-example, while also enabling a more
practical characterization of dynamic execution strategies in terms of real-time execution
decisions. This author also presented the first polynomial algorithms for managing the exe-
cution of dynamically controllable networks, while also translating Morris’ definitions and
techniques into a form applicable to the standard execution semantics [11,12].

Meanwhile, in 2005, Stedl and Williams [28] introduced an incremental version of the
DC-checking problem. They defined the Incremental Dynamic Controllability (IDC) prob-
lem as that of determining whether an incremental change (e.g., adding a new constraint) to
a dynamically controllable STNU preserves its dynamic controllability. They presented an
algorithm, called FastIDC, for solving the IDC problem, but did not prove its completeness.1

In 2013, Nilsson et al. [22] showed that the FastIDC algorithm was, in fact, not com-
plete by presenting a counter-example. They fixed the problem and proved that the modified
algorithm was complete by showing that it was equivalent to the MMV-01 algorithm. They
subsequently made further improvements to the FastIDC algorithm yielding anO(N4)-time
algorithm called EIDC [24], and an O(N3)-time algorithm called EIDC2 [25].

1 They also highlighted interesting connections between the dispatchability of Simple Temporal Networks
(STNs) [29,21] and the dynamic controllability of STNUs, but did not formally define dispatchability for
STNUs. Similar remarks apply to a follow-up paper [27].

DRAFT

Efficient Execution of Dynamically Controllable STNUs 3

Finally, in 2014, Morris [17] presented the fastest DC-checking algorithm reported so
far in the literature, an O(N3)-time algorithm, hereinafter called the M-14 algorithm. The
M-14 algorithm solves the full DC-checking problem in the same worst-case time in which
the EIDC2 algorithm solves the incremental (IDC) problem.2 However, as with all of its
predecessors, the completeness proof for the M-14 algorithm ultimately depends on the
completeness of the original MMV-01 algorithm.

As the preceding overview suggests, there have been numerous incremental and substantial
contributions to the theoretical foundations of STNUs, which have led to important advances
in DC-checking algorithms. However, these contributions have never before been composed
into a comprehensive and rigorous treatment that connects important results into a coher-
ent framework, discarding unnecessary diversions, while filling in important details. The
presentation in this paper provides such a treatment.

Structure of the rest of the paper. Section 2 provides the relevant background on STNUs and
dynamic controllability. It begins with an overview of Simple Temporal Networks. It then
defines STNUs and, for completeness, presents both the MMV-01 semantics for dynamic
controllability and the equivalent semantics based on real-time execution decisions. It con-
tinues with STNU graphs and the commonly used edge-generation (constraint-propagation)
rules from Morris and Muscettola [19], before defining the important concept of a semi-
reducible negative loop (i.e., SRN loop).

Section 3 tackles the first part of what has recently been called the Fundamental Theo-
rem of STNUs [13]: that an STNU whose graph has an SRN loop must not be dynamically
controllable. It first formally defines what it means for an execution strategy to satisfy each
kind of edge in an STNU graph. It then defines a notion of soundness for the edge-generation
rules. Finally, it proves that each of the edge-generation rules is sound.

Section 4 addresses the second part of the Fundamental Theorem: that an STNU with
no SRN loops must be dynamically controllable. It first carefully defines edge-generation
rounds, and then proves that if an STNU has no SRN loops, then non-shortest edges can
be discarded during edge-generation, something that is commonly assumed in the literature
without proof, although it turns out to be surprisingly tricky, requiring a novel application
of techniques from Morris’ graphical analysis of STNUs [16]. It also shows that the no-
tion of shortest semi-reducible paths is well defined for STNUs that do not have any SRN
loops. Finally, it introduces an execution strategy that generates decisions based on incre-
mentally updated STNU graphs and the all-pairs, shortest-semi-reducible-paths (APSSRP)
matrix, and proves that for any STNU having no SRN loops, following that strategy will
guarantee that all constraints in the network will necessarily be satisfied no matter how the
uncontrollable durations turn out.

Section 5 then presents a modified version of the FAST-EX execution algorithm for
dynamically controllable STNUs. It is the fastest execution algorithm reported in the liter-
ature so far: at most N updates at O(N2) time per update, for a total computation time of
O(N3) time. The modifications include streamlining the constraints that are added to the
network, efficiently interleaving updates, and correcting an error of omission in the original
presentation of the algorithm [12].

Section 6 presents conclusions and discusses the many avenues for future work on
STNUs and dynamic controllability.

2 Nilsson et al. [25] have observed that the M-14 and EIDC2 algorithms, although derived independently,
employ many similar techniques. They conjecture that the algorithms are, in fact, equivalent.

DRAFT

4 Luke Hunsberger

X
−1

9 −
2

C

A

X
−1

9 −
2

C

A

8

D A C X

A 7 9 8
C −2 7 −1
X ∞ ∞ ∞

Fig. 1 (a) A sample STN graph (b) The same graph with a new edge (c) The distance matrix, D

2 Background

Temporal networks are data structures for representing and reasoning about temporal con-
straints on activities. The most basic kind of temporal network is a Simple Temporal Net-
work (STN) which can accommodate such constraints as release times, deadlines, prece-
dence constraints, and duration constraints [5]. The fundamental computational tasks asso-
ciated with STNs—checking consistency and managing execution—can be done in poly-
nomial time [5,29,9]. A Simple Temporal Network with Uncertainty (STNU) augments
an STN to include contingent links that can be used to represent actions with uncertain
durations [18]. Despite the increase in expressiveness, the analogous computational tasks—
checking dynamic controllability and managing execution—can still be done in polynomial
time [19,16,11]. This section summarizes relevant background information from the litera-
ture on STNs and STNUs that will be used in the rest of the paper.

2.1 Simple Temporal Networks

Definition 1 (STN [5]) A Simple Temporal Network (STN) is a pair, (T , C), where T is a
finite and non-empty set of real-valued variables called time-points and C is a set of binary
constraints, each having the form, Y −X ≤ δ, for some X,Y ∈ T and δ ∈R.

A solution for an STN is a set of values for its time-points that together satisfy all of
its constraints. An STN that has a solution is called consistent. The problem of determining
whether an STN is consistent is often called the Simple Temporal Problem (STP) [5]. Thus,
the STP is a kind of constraint satisfaction problem [4].

For example, consider the STN defined by:

T = {A,C,X} and C = {C −A ≤ 9, A− C ≤ −2, X − C ≤ −1}.

It is consistent because it has a solution—for example: {A = 0, X = 5, C = 7}.

Definition 2 (STN graph [5]) The graph for an STN, (T , C), is a pair, 〈T , E〉, where the
time-points in T serve as the nodes in the graph, and the constraints in C correspond one-
to-one to the edges in E . In particular, each constraint, Y −X ≤ δ in C, corresponds to an
edge, X δ

Y in E .

Fig. 1a shows the graph for the sample STN seen above. To facilitate subsequent contrast
with STNUs, constraints and edges in an STN are called ordinary constraints and edges.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 5

Paths in an STN graph. Paths in an STN graph correspond to constraints that must be sat-
isfied by any solution for the associated STN. In general, if P is a path from X to Y of
length `, then the constraint, Y −X ≤ `, must be satisfied by any solution. For example, the
path fromA to C toX of length 8 in Fig. 1a corresponds to the constraint,X−A ≤ 8. This
constraint is made explicit by the dashed edge from A to X in Fig. 1b. It is easy to check
that this constraint is satisfied by the solution given earlier. Since shorter paths correspond
to stronger constraints, the all-pairs, shortest-paths (APSP) matrix for an STN graph plays
an important role in the theory of STNs.

Definition 3 (Distance matrix [5]) The distance matrix for an STN is the all-pairs, shortest-
paths matrix, D, for the associated STN graph.

For any time-points X and Y, D(X,Y) equals the length of the shortest path from X to Y
in the STN graph. Thus, the constraint, Y −X ≤ D(X,Y), must be satisfied by any solution
for the STN. Fig. 1c shows the distance matrix for the STN from Fig. 1a.

The following theorem specifies the important relationships between an STN, its graph,
and its distance matrix [5]. For this reason, it has recently been called the Fundamental
Theorem of STNs [13].

Theorem 1 (Fundamental Theorem of STNs [5,13]) For any STN S, with graph G, and
distance matrix D, the following are equivalent: (1) S is consistent; (2) every loop in G has
non-negative length; (3) the notion of shortest path is well defined for G; and (4)D has only
non-negative values down its main diagonal.3

The Zero Time-Point. In many applications, it is useful to include a special reference time-
point, Z, whose value is fixed at 0. Z is frequently called the zero time-point. Binary con-
straints involving Z are equivalent to unary constraints. For example, given that Z = 0,
the constraints, Y − Z ≤ b and Z − Y ≤ −a, are respectively equivalent to the unary
constraints, Y ≤ b and a ≤ Y , which in turn can be abbreviated as Y ∈ [a, b].

Given the observations about shortest paths and the definition of the distance matrix D,
it follows that for any X , the constraints, X − Z ≤ D(Z,X) and Z −X ≤ D(X,Z),
must be satisfied (i.e., X ∈ [−D(X,Z), D(Z,X)]). The interval [−D(X,Z), D(Z,X)]
is often called the execution window forX . To executeX at some time tmeans to assign the
value t to X , which can be explicitly represented in the network by adding the constraints,
X − Z ≤ t and Z − X ≤ −t (i.e., X = t). This is equivalent to inserting the edges,
Z

t
X and X −t

Z, into the STN graph. Once executed, the value of X is fixed.
Although most STNs will already have a zero time-point to accommodate unary con-

straints such as deadlines or release times, the following lemma ensures that each consistent
STN has a time-point that can play the role of Z; it also shows how to find such a time-point.

Lemma 1 Let S = (T , C) be a consistent STN. For each time-point X ∈ T , let µX =
min{D(X,Xi) | Xi ∈ T }; and let µ = max{µX | X ∈ T }. Then µ ≥ 0. In addition, if
X0 is any time-point for which µX0

= µ, then constrainingX0 to equal 0, and constraining
every other time-point to occur at or after X0 will not affect the consistency of the network.

3 Many researchers prefer to automatically include trivial self-loops of length 0 at each time-point in an
STN, corresponding to constraints of the form,X−X ≤ 0, in which case, the diagonal entries of a consistent
distance matrix will all necessarily be zero, instead of being merely non-negative.

DRAFT

6 Luke Hunsberger

Proof Suppose that µ < 0. Let X1 be any time-point in T . Since µX1
≤ µ < 0, there must

be some X2 ∈ T , such that D(X1, X2) < 0. Similarly, there must be some X3 ∈ T such
that D(X2, X3) < 0. And so on. Since there are only finitely many time-points in T , this
process must eventually yield a sequence of shortest paths that, when strung together, form
a loop of negative length, contradicting the Fundamental Theorem. Thus, µ ≥ 0.

Next, let X0 be any time-point for which µX0
= µ. For each Xi, it follows that

D(X0, Xi) ≥ µX0
= µ ≥ 0. That is, the shortest path from X0 to Xi has non-negative

length. Thus, constraining Xi to occur at or after X0—which is equivalent to inserting the
edge, Xi

0
X0, into the graph)—cannot introduce a negative loop. Thus, the resulting

network must still be consistent.
Now, adding that edge, which terminates atX0, cannot affect the lengths of any shortest

paths emanating from X0 (cf. Fact 1 and Corollary 1, below); and hence cannot change any
of the D(X0, Xj) values. In this way, one after the other, every Xj can be constrained to
occur at or after X0 without introducing any negative loops. Thus, the resulting network,
S′ = (T , C ∪ {X0 − Xi ≤ 0 | Xi ∈ T }), must be consistent. Thus, there must a set of
variable assignments, Σ, that is a solution for S′. Let v be the value assigned to X0 by Σ;
and letΣ′ be the same asΣ except that each value is decremented by v. Since all constraints
in the network are binary difference constraints, Σ′ must also be a solution for S′; and in
that solution, X0 has the value 0. ut

The following elementary results are used not only in the above proof, but also in several
places in the rest of the paper.

Fact 1 Suppose that U and V are distinct time-points in an STN, and that P is a shortest
path from U to V . Then there exists a shortest path, P ′, from U to V that does not include
any edges of the form, V δ

Y , for any time-point Y .

Proof Suppose that P is a shortest path from U to V that includes an edge of the form,
V

δ
Y . Let E be the first such edge in P . Now, by construction, the suffix of P whose

first edge is E must be a loop, PL, from V back to V . If PL had negative length, then
splicing an extra copy ofPL intoP would generate a shorter path fromU to V , contradicting
that P is a shortest path. But if PL had positive length, then extracting it from P would
similarly lead to a shorter path, and thus a contradiction. Therefore, PL must have length 0.
Let P ′ be the path from U to V obtained by extracting the loop PL from P . Since PL has
length 0, the length of P ′ is the same as that of P . Thus, P ′ is a shortest path from U to V .
Furthermore, since U and V are distinct time-points, P ′ contains at least one edge. ut

Corollary 1 Suppose S is a consistent STN, and G its graph. If inserting the edge, V δ
Y,

into G preserves its consistency, then doing so cannot affect the lengths of any shortest paths
terminating at V .

2.2 Simple Temporal Networks with Uncertainty

Consider the following example of taking a taxi to the airport. Suppose that I want to arrive
at the airport sometime between 9:45 and 10:00, but that I do not control the duration of the
taxi ride, which may be anywhere from 15 to 25 minutes. It is not hard to verify that I can
ensure that my arrival falls between 9:45 and 10:00 simply by making sure that I get into
the taxi sometime between 9:30 and 9:35. That is, although I only directly control the time

DRAFT

Efficient Execution of Dynamically Controllable STNUs 7

at which I get into the taxi, I can nonetheless satisfy constraints involving a time I do not
directly control (i.e., the time I arrive at the airport). Although this example is quite simple,
the uncertain duration of the taxi ride cannot be properly represented within an STN.

A Simple Temporal Network with Uncertainty (STNU) augments an STN to include a
set of contingent links, where each contingent link represents a bounded temporal interval
whose duration is not controlled by the planning agent and is thus uncertain [18].4 Contin-
gent links are typically used to represent actions whose durations are uncertain—like the taxi
ride in the above example. The agent may control when an action starts, but not how long
it will take to complete; the agent only discovers the actual duration in real time. The most
important property of an STNU is whether it is dynamically controllable—that is, whether
there exists a strategy for executing the controllable time-points such that all constraints
will be satisfied no matter how the durations of the contingent links turn out in real time—
within their specified bounds. As will be seen, the dynamic controllability of STNUs can be
determined in polynomial time.

Definition 4 (STNU [18]) A Simple Temporal Network with Uncertainty (STNU) is a triple,
(T , C,L), where (T , C) is an STN, and L is a set of contingent links.5 Each contingent
link has the form, (A, x, y, C), where A,C ∈ T , and 0 < x < y <∞. In addition, if
(A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct contingent links, then C1 and C2 must be
distinct time-points in T .

For any contingent link (A, x, y, C), A and C are called its activation and contingent
time-points, respectively; and x and y respectively specify lower and upper bounds on the
link’s duration, C − A. In most cases, an agent will control the execution of A, but not C.
Instead, C can be thought of as being controlled by the environment. The execution seman-
tics, defined later on, will ensure that, from the agent’s perspective, the duration, C −A, is
uncontrollable, but nonetheless guaranteed to lie within the interval, [x, y]. Thus, the agent
may be able to indirectly exert some control over C through its control over A.

For example, consider the STNU, S† = (T , C,L), where:

T = {X,A1, C1, A2, C2};
C = {C1 − C2 ≤ 2, X − C1 ≤ −1}; and
L = {(A1, 2, 9, C1), (A2, 3, 7, C2)}.

This STNU will be used as a running example.

Contingent vs. executable time-points. Any time-point in an STNU that is not a contingent
time-point for some contingent link is said to be executable. Thus, the time-points in an
STNU are partitioned into two sets: Tc , the contingent time-points; and Tex , the executable
time-points. For example, for the STNU S†, Tc = {C1, C2} and Tex = {A1, A2, X}. The
agent is presumed to directly control the execution of the executable time-points, but not
the contingent time-points. For example, with regard to the contingent link (A1, 2, 9, C1),
the agent directly controls only the execution of A1. Once A1 has been executed (i.e., once
the contingent link has been activated), the execution of C1 is out of the agent’s control.
Although C1 is guaranteed to be executed such that C1 − A1 ∈ [2, 9], the agent does not

4 Agents are not part of the semantics of STNUs. They are used here for expository convenience.
5 The notation presented in Defn. 4 is equivalent to the original notation introduced by Morris et al. [18].

It is used in this paper primarily to facilitate access to the constituents of the contingent links—for example,
(A, x, y, C) instead of the more cumbersome (start(e), `(e), u(e),finish(e)).

DRAFT

8 Luke Hunsberger

get to choose the particular time, but only observes the execution of C1 when it happens.
Similar remarks apply to a chain (or even a tree) of contingent links with an executable
time-point at its root.6

2.3 The Semantics of Execution and Dynamic Controllability

As will be seen, an STNU is dynamically controllable (DC) if there exists a dynamic strategy
for executing the executable time-points that guarantees that all constraints will be satisfied
no matter how the durations of the contingent links turn out—within their specified bounds.
Crucially, the decisions constituting a dynamic execution strategy can depend only on past
execution events, including past observations of contingent durations. Thus, the semantics
of dynamic controllability is necessarily related to the semantics of execution in an STNU.

In 2001, Morris, Muscettola and Vidal introduced the most widely used semantics for
dynamic controllability, hereinafter called the MMV-01 semantics [18]. Although widely
cited, its definitions do not clearly articulate some important concepts. For example, ex-
ecution decisions are not explicitly defined; instead, they are only implicitly captured by
the definitions of execution strategies and prehistories. Perhaps for this reason, an error in
the MMV-01 specification involving the crucial requirement that execution decisions can
depend only on already past execution events contained an error that was not caught until
2009 (cf. the discussion of prehistories in Sec. 2.3.1) [10]. Fixing that flaw not only enabled
the semantics to properly capture the desired requirement, it also enabled an equivalent
characterization of dynamic controllability in terms of explicit real-time execution decisions
(RTEDs). Unlike the MMV-01 semantics, the RTED-based semantics focuses squarely on
the evolution of execution events over time. Insodoing, it clearly distinguishes the execution
semantics from the definition of dynamic controllability. For these reasons, the theoretical
contributions of this paper are expressed in terms of the RTED-based semantics. Nonethe-
less, for the sake of comparison, the (corrected) MMV-01 semantics is summarized first, in
Sec. 2.3.1, followed by the RTED-based semantics in Sec. 2.3.2.7

2.3.1 The MMV-01 Semantics for Dynamic Controllability

Definition 5 (Situations [32]) If (A1, x1, y1, C1), . . . , (AK , xK , yK , CK) are theK con-
tingent links in an STNU S, then the corresponding space of situations for S, denoted by
Ω, is given by: Ω = [x1, y1]× . . .× [xK , yK].8

Each situation, ω = (ω1, . . . , ωK) ∈ Ω, represents one possible (complete) set of values for
the durations of the contingent links in a given STNU. For example, the space of situations
for the sample STNU S† is [2, 9] × [3, 7]; and (3, 6) is the situation where C1 − A1 = 3
and C2 − A2 = 6. The particular situation that actually obtains is, of course, not known in
advance, but only gradually discovered, over time, as each contingent time-point executes.

Definition 6 (Projection [32,18]) The projection of an STNU S = (T , C,L) onto a sit-
uation ω is defined to be the STN—not STNU—that results from, in effect, forcing each

6 Note that there is no prohibition against a contingent time-point C for one contingent link serving as the
activation time-point for some other contingent link. In this way, contingent links may form chains or trees.

7 The equivalence of the MMV-01 and RTED-based semantics is addressed in detail elsewhere [10].
8 Context usually makes clear to which STNU a given space of situations applies.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 9

contingent link to take on the duration specified in ω. Thus, the projection of S onto ω,
denoted by Sω , is given by: Sω = (T , C ∪ {Ci −Ai = ωi | 1 ≤ i ≤ K}).9

For example, the projection of S† onto the situation, (3, 6), is the STN (T , C′) where:

T = {X,A1, C1, A2, C2}; and
C′ = {C1 − C2 ≤ 2, X − C1 ≤ −1, C1 −A1 = 3, C2 −A2 = 6}

Definition 7 (Schedule [18]) A schedule for an STNU (T , C,L) is a mapping ξ : T −→ R.

Notice that a schedule does not distinguish between contingent and executable time-points.
For example, ξ† = {A1 7→ 0, X 7→ 1, C1 7→ 3, A2 7→ 3.5, C2 7→ 9.5} is a schedule for
the sample STNU S†.

For convenience, the execution time of X in a schedule ξ may be denoted by either ξ(X)
or [ξ]X . In addition, when context allows, the set of all schedules for a given STNU may be
denoted simply by Ξ .

Definition 8 (Execution Strategy [18,10]) An execution strategy for an STNU (T , C,L)
is a mapping S : Ω −→ Ξ (i.e., a mapping from situations to schedules).10

For example, consider the following informally expressed execution strategy for S†:

• Execute A1 at time 0.
• Execute X at time 1.
• If C1 is observed to execute before time 4, then execute A2 at time (C1 + 4)/2;

otherwise, execute A2 at time 4.

The rather tedious task of transforming this informal description into a formal mapping from
situations to schedules, as prescribed by Defn. 8, is left to the reader.

Definition 9 (Viable [18]) An execution strategy S for an STNU S = (T , C,L) is called
viable if for each situation ω ∈ Ω, the schedule S(ω) is consistent with (i.e., is a solution
for) the projection Sω .

Let S = (T , C,L) be any STNU. Recall that, for any situation ω, the constraints in the
projection Sω are precisely the constraints from C together with constraints that the contin-
gent links in L have the durations specified in ω. Therefore, an execution strategy S for S is
viable if and only if for each situation ω, the execution times specified by the schedule S(ω)
satisfy the constraints in C, while also being consistent with the durations specified by ω.

Regarding the informally expressed strategy for the STNU S† seen above, it is not hard
to verify that in each situation ω ∈ [2, 9]× [3, 7], the schedules generated by this strategy
invariably satisfy all of the constraints in C, while also being consistent with the durations
in ω. Therefore, the strategy is viable. For example, in the situation ω = (3, 6), the strategy
generates the schedule, ξ†, seen earlier. That schedule satisfies the constraints in C (i.e.,
C1−C2 ≤ 2 andX−C1 ≤ −1), while also being consistent with the contingent durations
in ω (since C1 −A1 = 3 and C2 −A2 = 6).

9 Note that Ci −Ai = ωi is shorthand for the pair of constraints, Ci −Ai ≤ ωi and Ai − Ci ≤ −ωi.
10 Morris et al. defined execution strategies as mappings from projections to schedules, which is equivalent.

DRAFT

10 Luke Hunsberger

In the MMV-01 semantics, execution strategies are represented as mappings from (com-
plete) situations to (complete) schedules; and execution decisions are not explicitly repre-
sented at all. As a result, the crucial requirement that execution decisions can depend only
on past execution events is specified indirectly, in terms of prehistories. Given a schedule ξ,
and a time-point (i.e., variable) X ∈ T , the original MMV-01 semantics defined the prehis-
tory of X in ξ to be the set of all contingent durations that finish before X in ξ. However,
defining prehistories in this way turns out to allow execution strategies to bypass the above-
mentioned requirement. (See Hunsberger [10] for an in-depth discussion of this important
point.) Fortunately, the problem is easily fixed by defining the prehistories of numbers, in-
stead of the prehistories of time-points (i.e., variables), as follows.

Definition 10 (Prehistory [10]) Given a schedule ξ for an STNU (T , C,L), and any real
number k, the prehistory of k in ξ, denoted by ξ<k, is given by:

ξ<k = {〈(A, x, y, C), ξ(C)− ξ(A)〉 | (A, x, y, C) ∈ L and ξ(C) < k}.

For example, given the sample STNU S† and the schedule ξ† discussed above, the following
are some of the prehistories associated with ξ†:

ξ†
<1

= ∅
ξ†
<3.5

= {〈(A1, 2, 9, C1), 3〉} since ξ†(C1) = 3 < 3.5

ξ†
<10

= {〈(A1, 2, 9, C1), 3〉, 〈(A2, 3, 7, C2), 6〉} since ξ†(C2) = 9.5 < 10

Definition 11 (Dynamic Execution Strategy [18,10]) An execution strategy S for an STNU
S = (T , C,L) is a dynamic execution strategy (DES) if for any situations, ω′ and ω′′, and
any executable time-point X ∈ Tex , the following condition holds:

if [S(ω′)]X = k and S(ω′)
<k

= S(ω′′)
<k, then [S(ω′′)]X = k.

In other words, if the strategy S in the situation ω′ assigns the value k to the executable
time-point X , and the prehistories of k in the situations ω′ and ω′′ are the same, then S
must assign the same value k to the time-point X in the situation ω′′.

For example, let S be the informally expressed execution strategy for S† discussed
above. Note that, when following the strategy S, A2 is the only executable time-point in S†
whose execution time varies across different situations. In addition, the execution time ofA2

only depends on ω1 (i.e., the duration of the first contingent link, (A1, 2, 9, C1)). Consider
the situation ω′ = (3, 6). In that situation, A2 is executed at time k = 3.5, and the relevant
prehistory is S(ω′)<3.5

= {〈(A1, 2, 9, C1), 3〉} since, in this situation, A1 was executed
at time 0 and C1 has already been observed to have executed at time 3 < 3.5. Now, if ω′′

is any other situation such that S(ω′′)<3.5
= {〈(A1, 2, 9, C1), 3〉} = S(ω′)

<3.5, then in
the situation ω′′ the duration of the first contingent link is 3, but the duration of the second
contingent link may be any value in [3, 7]. In any case, the schedule S(ω′′) also executesA2

at time k = 3.5 (i.e., [S(ω′′)]A2
= 3.5), since the execution time of A2 only depends on

the duration of the first contingent link. Generalizing this argument leads to the conclusion
that S is a dynamic execution strategy for S†.

With the above machinery, the definition of dynamic controllability is now straightforward.

Definition 12 (Dynamic Controllability [18]) An STNU S is dynamically controllable
(DC) if there exists a viable dynamic execution strategy for it.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 11

Since the sample strategy S discussed above is a dynamic execution strategy for S†, S†
is dynamically controllable. However, it is quite tedious to apply the semantics directly to
confirm this. As will be seen, DC-checking algorithms that manipulate STNU graphs make
the problem of checking dynamic controllability much easier.

2.3.2 The RTED-based Semantics for Dynamic Controllability

As discussed in the previous section, the MMV-01 semantics does not clearly articulate such
important concepts as execution decisions and the evolution of execution events over time.
In contrast, the RTED-based semantics presented in this section: (1) uses partial schedules
to define the limited information upon which execution decisions may depend; (2) explicitly
represents the real-time execution decisions (RTEDs) that an execution strategy dynamically
generates throughout the execution of an STNU; (3) explicitly models the uncertainty fac-
ing an agent in real-time by specifiying the set of situations that are compatible with (or
respected by) each partial schedule and using them to define the possible outcomes for each
execution decision; and (4) defines an execution strategy not as a mapping from (complete)
situations to (complete) schedules, but as a mapping from partial schedules to real-time
execution decisions. In this way, the RTED-based semantics directly models the practical
circumstances faced by an agent managing the execution of an STNU in real time.

Definition 13 (Partial Schedule [10]) Let S = (T , C,L) be an STNU. A partial schedule
for S is any mapping, ξ : T ′ −→ R, where T ′ is a proper subset of T .

Each partial schedule specifies the execution times for those time-points that have already
executed. As with (complete) schedules (cf. Defn. 7), ξ(X) denotes the execution time ofX
according to ξ. For convenience, a (partial or complete) schedule ξ may be represented by a
set of pairs of the form, (X, ξ(X)), and the following notation may be used:

Varsξ = T ′ = the set of time-points that have already executed according to ξ.
nowξ = max{ξ(X) |X ∈ T ′} = the time of the latest execution event in ξ.

A partial schedule contains the information upon which the next execution decision may
depend. All past execution events occurred at or before nowξ; all subsequent executions will
occur strictly after nowξ. For example, the initial partial schedule for any STNU is ξ0 = ∅,
indicating that no time-points have yet been executed. In this case, where Varsξ0 = ∅, the
current time is taken to be nowξ0 = −∞. For another example, ξ = {(A1, 0), (X, 1)} is a
partial schedule for the sample STNU S†, representing that the time-points A1 and X have
already executed at times 0 and 1, respectively. For this partial schedule, nowξ = 1. Finally,
note that, for this partial schedule, the activation time-point A1 has already been executed,
but the corresponding contingent time-point C1 has not. In such cases, the contingent time-
point C1 is said to be currently active in ξ.

Suppose that ξ is a partial schedule according to which at least one contingent time-point
either has not yet been activated or is currently active. Then the information in ξ is not suf-
ficient to determine a unique situation. Instead, the set of situations that are consistent with
(or respected by) the information in ξ represents the uncertainty facing an agent managing
the execution of the STNU in real time.

Definition 14 (Respect [10]) A (partial or complete) schedule ξ is said to respect a situation
ω = (ω1, . . . , ωK) if for each contingent link, (Ai, xi, yi, Ci), one of the following holds:

DRAFT

12 Luke Hunsberger

(1) Ai 6∈ Varsξ and Ci 6∈ Varsξ (i.e., neither Ai nor Ci have yet been executed);
(2) Ai ∈ Varsξ, Ci 6∈ Varsξ, and ξ(Ai) + ωi > nowξ (i.e., the contingent link has

been activated and will complete at some later time); or
(3) Ai ∈ Varsξ, Ci ∈ Varsξ, and ξ(Ci) − ξ(Ai) = ωi (i.e., the contingent link has

completed, and its duration equals ωi).

The set of situations that are respected by ξ (i.e., that are consistent with ξ) is notated
Ωξ ⊆ Ω. A schedule ξ is called respectful if Ωξ is non-empty (i.e., if ξ respects at least
one situation).

For example, the initial partial schedule, ξ0 = ∅, necessarily respects every situation—since
condition (1) above holds for every contingent link. Thus, Ωξ0 = Ω, and ξ0 is a respectful
partial schedule.

As will be seen, the outcomes of allowable execution decisions, defined below, necessar-
ily preserve the property of respect. Thus, the execution semantics ensures that the decisions
of an agent cannot affect the environment’s choice of duration for any contingent link.

Definition 15 (Real-Time Execution Decision (RTED) [10]) Let ξ be a partial schedule
for an STNU (T , C,L), where Tex ⊆ T is the set of executable time-points. A real-time
execution decision (RTED) for ξ has one of two forms: wait or (t, χ). In the latter form,
t ∈ R and χ ⊆ Tex .

Definition 16 (Allowable RTED [10]) Let ξ be a partial schedule for an STNU (T , C,L),
where Tex ⊆ T is the set of executable time-points. A wait RTED is allowable for ξ only
if at least one contingent time-point is currently active in ξ. A (t, χ) RTED is allowable
for ξ only if nowξ < t < ∞, and χ is a non-empty set of executable time-points that have
not yet been executed (i.e., ∅ 6= χ ⊆ Tex and χ ∩Varsξ = ∅).

The wait RTED represents a decision to simply wait for whatever contingent time-point
happens to execute next. To avoid waiting forever, the wait decision is only allowed for
partial schedules where at least one contingent time-point is currently active. For example,
wait is allowable for the partial schedule, ξ = {(A1, 0), (X, 1)}, discussed earlier, since
the contingent time-point C1 is currently active in ξ. However, wait is not allowable for
the initial partial schedule ξ0 = ∅, or the partial schedule {(A1, 0), (X, 1), (C1, 3)}, since
neither of these partial schedules has any currently active contingent time-points.

A (t, χ) RTED represents a decision to execute the time-points in χ at some later time t.
Note that because contingent time-points are controlled by the environment, χ must be a
subset of executable time-points. The allowability conditions for a (t, χ) decision can be
understood as follows. First, since each time-point can only be executed once, all of the
time-points in χ must be unexecuted according to ξ. Second, to ensure that something al-
ways happens as the result of an execution decision (cf. outcomes, discussed below), the set
χ must be non-empty. Third, to ensure that execution decisions can depend only on past
observations, t must be strictly greater than nowξ.11

It is useful to interpret a (t, χ) decision as a conditional commitment that can be glossed
as: “If nothing happens before time t (i.e., if no contingent time-points happen to execute
between now and time t), then execute the time-points in χ at time t.” For example, given the
partial schedule, {(A1, 0), (X, 1)}, for which now = 1, the decision (4, {A2}) is allowable

11 Allowing t to be equal to nowξ would enable a form of instantaneous reactivity. For example, an agent
might observe the execution of a contingent time-point at time 3, and then instantaneously react by deciding
to execute an executable time-point at that same time 3.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 13

since now = 1 < 4 = t, and A2 is a currently unexecuted executable time-point. The deci-
sion (4, {A2}) can be interpreted as: “If nothing happens before time 4 (i.e., if the currently
active contingent time-point C1 does not happen to execute before time 4), then execute the
executable time-point A2 at time 4.” As will be seen, if C1 does happen to execute before
time 4—say, at time 3—then the agent may choose to react—but not instantaneously—say,
by deciding to execute A2 at 3.5.

Outcomes for real-time execution decisions. Suppose that ξ is a respectful partial schedule
representing the limited information available at a certain point during the execution of an
STNU; and that δ is an allowable RTED for ξ. Recall that Ωξ (i.e., the set of situations
respected by ξ) represents the uncertainty faced by the agent managing the execution of the
STNU. As defined below, each situation ω ∈ Ωξ determines a potential outcome for the
decision δ. For example, in one situation the outcome of a (10, {X}) decision might be that
X is executed at time 10, while in another situation the outcome of that same decision might
be that a contingent time-point C happens to execute before time 10.

Outcomes for wait decisions. Suppose that wait is an allowable RTED for a respectful
partial schedule ξ. Since wait is allowable, there must be at least one contingent time-
point Ci that is currently active in ξ. Equivalently, there must be at least one contingent
link (Ai, xi, yi, Ci) that, according to ξ, is activated, but not yet completed. Thus, for any
situationω that is respected by ξ, condition (2) from Defn. 14 must hold: ξ(Ai)+ωi > nowξ.
Hence, in the situation ω, this link will complete some time after nowξ. If more than one
contingent link is currently active in ξ, then the outcome of the wait decision is determined
by the earliest time, ET(ξ, ω), at which one of the activated contingent links will finish,
according to ξ and ω:

ET(ξ, ω) = min{ξ(Ai) + ωi : Ai ∈ Varsξ, Ci 6∈ Varsξ}.
Since the inequality, ξ(Ai) + ωi > nowξ, holds for each currently active contingent link
(Ai, xi, yi, Ci), it follows that ET(ξ, ω) > nowξ.

For example, consider the sample STNU S†, the partial schedule ξ1 = {(A1, 0)}, and
the situation ω = (3, 6). Note that the contingent link (A1, 2, 9, C1) is currently active
in ξ1, and that ξ1 respects ω. In this case, ET(ξ1, (3, 6)) = 3, since A1 = 0 in ξ1, and
C1 −A1 = 3 in ω. Therefore, the outcome of the wait decision in this situation would
involve the execution of C1 at time 3. Note that nowξ1 = 1 < 3 = ET(ξ1, (3, 6)).

In general, it is possible—although rare in practice—for multiple contingent links to
complete at the same time. For this reason, Defn. 17, below, specifies the set χc(ξ, ω) of
contingent time-points that will execute at the time ET(ξ, ω), according to ξ and ω.

Definition 17 (O(ξ, ω, wait) [10]) Let ω be any situation, and ξ any partial schedule that
respects ω. If wait is an allowable RTED for ξ, then O(ξ, ω, wait) denotes the unique
outcome of the wait decision, determined by ξ and ω, as follows:

O(ξ, ω, wait) = ξ ∪ {(Ci,ET(ξ, ω)) | Ci ∈ χc(ξ, ω)}, where:
ET(ξ, ω) = min{ξ(Ai) + ωi : Ai ∈ Varsξ, Ci 6∈ Varsξ}; and
χc(ξ, ω) = {Ci | Ai ∈ Varsξ, Ci 6∈ Varsξ, and ξ(Ai) + ωi = ET(ξ, ω)}.

Note that O(ξ, ω, wait) is a (typically partial) schedule that augments ξ to include the
next execution event—namely, the simultaneous execution of the contingent time-points in
χc(ξ, ω) at the time ET(ξ, ω). As a result, the now time for that new schedule will nec-
essarily be equal to ET(ξ, ω). In other words, nowO(ξ,ω,wait) = ET(ξ, ω). For exam-
ple, for the sample STNU S† and the partial schedule ξ1 discussed above, the outcome

DRAFT

14 Luke Hunsberger

O(ξ1, (3, 6), wait) is: ξ1 ∪ {(C1, 3)} = {(A1, 0), (C1, 3)}; and nowO(ξ1,(3,6),wait) =
ET(ξ1, wait) = 3.

Outcomes of (t, χ) decisions. Suppose that (t, χ) is an allowable RTED for a respectful
partial schedule ξ, and that ω is a situation respected by ξ (i.e., ω ∈ Ωξ). Since (t, χ)
is allowable, t > nowξ and χ is a non-empty set of unexecuted executable time-points.
The unique outcome of the (t, χ) decision in the situation ω is denoted by O(ξ, ω, (t, χ)).
That outcome depends on the relationship between the times, t and ET(ξ, ω), where t is
the time at which the agent has decided to execute the time-points in χ, and ET(ξ, ω)
is the earliest time at which one or more contingent time-points will execute according
to the situation ω, as described above. (Keep in mind that, in general, the agent does not
know the situation ω and, thus, does not know the value of ET(ξ, ω).) If t < ET(ξ, ω),
then the time t arrives before any contingent time-point has a chance to execute; thus, the
outcome involves only the execution of the time-points in χ at time t. On the other hand, if
ET(ξ, ω) < t, then one or more contingent time-points will execute before time t arrives;
thus, the outcome involves only the execution of the contingent time-points in χc(ξ, ω) at
time ET(ξ, ω), as in the case of a wait decision. In this case, as will be seen, the agent
need not remain committed to executing the time-points in χ at time t, but may choose to
react to the newly observed contingent execution(s) by following some alternative execution
decision. Finally, if t = ET(ξ, ω), which is rarely expected in practice, then the outcome
involves the coincidental execution of the time-points in both χ and χc(ξ, ω) at time t.

Definition 18 (O(ξ, ω, (t, χ)) [10]) Let ω be any situation, and ξ any partial schedule that
respects ω. If (t, χ) is an allowable RTED for ξ, then O(ξ, ω, (t, χ)) denotes the unique
outcome of the (t, χ) decision, determined by ξ and ω, as follows:

O(ξ, ω, (t, χ)) =

 ξ ∪ {(X, t) |X ∈ χ}, if t < ET(ξ, ω)
ξ ∪ {(C,ET(ξ, ω)) | C ∈ χc(ξ, ω)}, if t > ET(ξ, ω)
ξ ∪ {(X, t) |X ∈ χ} ∪ {(C, t) | C ∈ χc(ξ, ω)}, if t = ET(ξ, ω)

For example, recall the sample STNU S†, the partial schedule ξ1 = {(A1, 0)}, and the
situation (3, 6). As discussed above, ET(ξ1, (3, 6)) = 3. Therefore, in this situation, any
decision, (t, χ), for which t ≥ 3 would result inC1 executing at time 3. However, a decision
such as (2.5, {X}) would, in that same situation, instead result in X being executed at
time 2.5. Finally, in a different situation, such as (2, 6), the decision (2.5, {X}) would
result in an outcome where C1 executed at time 2.

Definition 19 (RTED-based execution strategy [10]) An RTED-based execution strategy
for an STNU is a mapping, R, from respectful partial schedules to allowable real-time exe-
cution decisions. Thus, if ξ is a respectful partial schedule, thenR(ξ) is an allowable RTED.

For example, recall the informally expressed execution strategy for S† seen earlier:

• Execute A1 at time 0.
• Execute X at time 1.
• If C1 is observed to execute before time 4, then execute A2 at time (C1 + 4)/2;

otherwise, execute A2 at time 4.

This strategy can be translated into an RTED-based strategy, R, as follows:

• If nowξ < 0, then R(ξ) = (0, {A1}).
• If nowξ ∈ [0, 1), then R(ξ) = (1, {X}).

DRAFT

Efficient Execution of Dynamically Controllable STNUs 15

• If nowξ ∈ [1, 4) and C1 6∈ Varsξ, then R(ξ) = (4, {A2}).
• If nowξ ∈ [1, 4) and C1 ∈ Varsξ, then R(ξ) = ((ξ(C1) + 4)/2, {A2}).
• Else R(ξ) = wait.

For any situation ω, an RTED-based strategyR determines a unique sequence of (mostly
partial) schedules, starting with the initial partial schedule, ξ0 = ∅, as follows. R(ξ0) pro-
vides the first execution decision. The outcome of that decision is O(ξ0, ω,R(ξ0)) which,
of course, depends on the situation. That outcome becomes the next partial schedule, ξ1, in
the sequence. The execution cycle then continues with R(ξ1) providing the next execution
decision, and so on. Since each outcome involves the execution of at least one time-point,
the process eventually terminates in a complete schedule, ξp.

A straightforward proof by induction [10] confirms the following lemma.

Lemma 2 LetR be an RTED-based execution strategy for some STNU. Then each situation
ω determines a unique sequence of (mostly partial) schedules, ∅ = ξ0 ⊂ ξ1 ⊂ . . . ⊂ ξp,
such that:

• For each i < p, ξi respects ω, ξi+1 = O(ξi, ω,R(ξi)), and nowξi < nowξi+1
; and

• ξp is a complete schedule that respects ω.

Definition 20 (O∗(R,ω)) Let R be an RTED-based execution strategy for some STNU;
and let ω ∈ Ω be any situation. Then O∗(R,ω) denotes the complete schedule, ξp, that is
uniquely determined by R and ω, as described in Lemma 2. The schedule O∗(R,ω) may
be called the result of following the strategy R in the situation ω.

In this way, each RTED-based execution strategy R, like the dynamic execution strategies
from MMV-01, effectively specifies a mapping from situations to complete schedules. How-
ever, the RTED-based execution semantics ensures that the complete schedules resulting
from RTED-based strategies necessarily respect each situation.

For example, recall the execution strategy R for the sample STNU S†, given above. In
the situation, ω = (3, 6), it yields the following sequence of (mostly partial) schedules. Note
that A1 plays the role of the zero time-point.

ξ0 = ∅ and R(ξ0) = (0, {A1})
ξ1 = O(ξ0, ω, (0, {A1})) = {(A1, 0)} and R(ξ1) = (1, {X})
ξ2 = O(ξ1, ω, (1, {X})) = {(A1, 0), (X, 1)} and R(ξ2) = (4, {A2})
ξ3 = O(ξ2, ω, (4, {A2})) = {(A1, 0), (X, 1), (C1, 3)} and R(ξ3) = (3.5, {A2})
ξ4 = O(ξ3, ω, (3.5, {A2})) = {(A1, 0), (X, 1), (C1, 3), (A2, 3.5)} and R(ξ4) = wait

ξ5 = O(ξ4, ω, wait) = {(A1, 0), (X, 1), (C1, 3), (A2, 3.5), (C2, 9.5)}
Notice that the outcome, ξ3, of the decision, R(ξ2) = (4, {A2}), does not involve the exe-
cution of A2 at time 4 because, in the given situation, C1 happens to execute first, at time 3.
The strategy is then able to react—although not instantaneously—by deciding to execute
A2 at time 3.5 instead. In the given situation, that leads to A2 actually being executed at
time 3.5. Finally, consider the complete schedule, ξ5 = O∗(R, (3, 6)), that results from
following this strategy in the situation (3, 6). As guaranteed by Lemma 2, ξ5 respects the
durations in that situation. It also happens to satisfy all of the constraints in the STNU.

More generally, suppose that R is an RTED-based strategy for an STNU S = (T , C,L),
and that ω is any situation. Although Lemma 2 guarantees that the result O∗(R,ω) of fol-
lowing the strategy R in the situation ω necessarily respects the durations in ω, it does not
guarantee that the schedule O∗(R,ω) will necessarily satisfy the constraints in C. Only
reliable RTED-based strategies, defined below, have that property.

DRAFT

16 Luke Hunsberger

Definition 21 (Reliable) An RTED-based strategy R for an STNU S = (T , C,L) is called
reliable if for each situation ω ∈ Ω, the complete schedule O∗(R,w) satisfies all of the
constraints in C.

To clarify the relationship between RTED-based strategies and dynamic execution strate-
gies (cf. Defn. 11), it is useful to extend the notion of respect (cf. Defn. 14) to dynamic
execution strategies and to formally define a notion of equivalence between RTED-based
strategies and dynamic execution strategies.

Definition 22 (Respectful DES [10]) A dynamic execution strategy S is called respectful
if for each situation ω ∈ Ω, the complete schedule S(ω) respects the durations in ω.

Definition 23 (Equivalence of Execution Strategies [10]) A dynamic execution strategy
S and an RTED-based strategy R are called equivalent if for each ω ∈ Ω, the complete
schedules, S(ω) and O∗(R,ω), are identical.

Fact 2 Let S = (T , C,L) be any STNU; let R be any RTED-based strategy for S; and let
S be an equivalent dynamic execution strategy for S, as described in Defn. 23. Then S is
necessarily respectful; and R is reliable if and only if S is viable.

Proof Letω be any situation. SinceR and S are equivalent, the complete schedulesO∗(R,ω)
and S(ω) are identical. By Lemma 2, O∗(R,ω)—and hence S(ω)—respects the durations
in ω. Thus, S is respectful. If, in addition,R is reliable, thenO∗(R,ω)—and hence S(ω)—
satisfies all the constraints in C, whence S is viable. The converse is handled similarly. ut

The following theorem explicates the correspondence between RTED-based strategies and
respectful dynamic execution strategies. Its in-depth proof is available elsewhere [10].

Theorem 2 (Correspondence of Execution Strategies [10]) For any STNU S, there is
a one-to-one correspondence between RTED-based execution strategies and respectful dy-
namic execution strategies. In particular, for any RTED-based strategy R, there is an equiv-
alent respectful dynamic execution strategy S; and for any respectful dynamic execution
strategy S, there is an equivalent RTED-based strategy R.

Corollary 2 An STNU is dynamically controllable if and only if there exists a reliable
RTED-based execution strategy for it.

Proof First, suppose that S is dynamically controllable. Then, by definition, there exists a
viable dynamic execution strategy S for S. Since S being viable implies that S is respect-
ful, there must be an equivalent RTED-based strategy, by Theorem 2. But then R must be
reliable, by Fact 2. The converse is handled similarly. ut

As summarized above, the MMV-01 and RTED-based semantics for STNUs and dynamic
controllability are equivalent. The rest of the paper uses the RTED-based semantics exclu-
sively, primarily because its explicit representation of the incremental nature of the execution
of an STNU over time facilitates the theoretical analysis.

2.4 STNU Graphs

The most efficient algorithms for determining whether STNUs are dynamically controllable
are based on the generation of edges in STNU graphs. There are many helpful parallels

DRAFT

Efficient Execution of Dynamically Controllable STNUs 17

X
2−1

C2 :−4A1

C1 C2

A2

c 2
:3

c 1
:2

C
1

:−
9

C
2

:−
7

X
2−1

C1 C2

A1 A2

c 2
:3C 1

:−
7

C1 :−4

C
1

:−
9

C
2

:−
7

c 1
:2

1

1

Fig. 2 (a) The graph G† for the sample STNU S† (b) The same graph after adding new edges

between STN graphs and STNU graphs; however, there are also important differences. First,
not every path in an STNU graph corresponds to a constraint that must be satisfied; instead,
only a subset of paths—the so-called semi-reducible paths—have that property. As will be
seen, an STNU is dynamically controllable if and only if its graph has no semi-reducible
negative loops. This section reviews STNU graphs, rules for generating new edges, and the
key notion of semi-reducible paths.

Definition 24 (STNU graphs [19]) The graph for an STNU, S = (T , C,L), is a pair,
G = 〈T , E+〉, where the time-points in T serve as the nodes in the graph, and the constraints
in C and the contingent links in L together correspond to the edges in E+, as follows. First,
for each ordinary constraint, Y −X ≤ δ in C, there is an ordinary edge, X δ

Y in E+,
exactly the same as for STNs. Next, for each contingent link, (A, x, y, C), there are two
labeled edges in E+: a lower-case edge, A

c:x
C, and an upper-case edge, A C:−y

C.

Each lower-case edge in an STNU graph represents the uncontrollable possibility that the
duration of the corresponding contingent link might be its minimum value x; and each upper-
case edge represents the uncontrollable possibility that the duration of the corresponding
contingent link might be its maximum value y.12 The graph for the sample STNU S† is
shown in Fig. 2a. Note that the labeled edges joining A1 and C1 in the STNU graph are
quite different from the ordinary edges joining A and C in the only-superficially-similar
STN graph in Fig. 1a. With the STN, the agent controls the execution of both A and C,
and is free to choose any value in [2, 9] for the duration, C − A. With the STNU, the agent
controls only A1; the environment chooses the duration, C1 −A1.

Edge Generation & Path Transformation in STNU Graphs

Given that the labeled edges in an STNU graph represent uncontrollable possibilities, unlike
the ordinary edges which represent constraints to be satisfied, constraint propagation (equiv-
alently, edge generation) for STNUs is necessarily more complicated than for STNs. For ex-
ample, without their alphabetic labels, the two labeled edges from the same contingent link
would be mutually inconsistent. As this example suggests, the alphabetic labels on edges in
an STNU graph must be carefully managed during constraint propagation/edge generation.
Toward that end, Morris and Muscettola [19] presented the edge-generation rules listed in

12 In the original definition of STNU graphs [19], each contingent link also gave rise to two ordinary
edges, A

y
C and A −x

C, representing the known fact that the duration of the contingent link must
fall within the interval [x, y]. However, it has been shown that including these extra edges is not necessary—
because the execution semantics for STNUs ensures that they will be satisfied [13].

DRAFT

18 Luke Hunsberger

Rule If these edges exist . . . And if . . . Then add this edge:

(No Case) D
v

E
w

F D
v+w

F

(Upper Case) D
v

E
B:w

F D 6≡ B D
B:v+w

F

(Lower Case) A
c:v

C
w

F w ≤ 0, C 6≡ F A
v+w

F

(Cross Case) A
c:v

C
B:w

F w ≤ 0, B 6≡ C 6≡ F A
B:v+w

F

(Label Removal) D
C:z

A
c:x

C z ≥ −x D
z

A

Table 1 The edge-generation rules for STNUs from Morris and Muscettola [19]

Table 1.13 These rules are equivalent to, but more uniformly and concisely expressed than
the constraint-propagation rules for STNUs presented in earlier work [18].

For convenience, the pre-existing edges in the edge-generation rules from Table 1 are
called parent edges, and the generated edges are called child edges. The only exception is
the pre-existing lower-case edge from A to C in the Label Removal rule. That edge is not
considered to be a parent edge; instead, it is viewed as providing the context within which
the upper-case label can be removed from the pre-existing edge from D to A. Since the first
four rules involve pairs of parent edges, they are called binary edge-generation rules.

The No Case rule. The No Case rule encodes the generation of ordinary edges as happens
in STN graphs or any shortest-paths computation. In the context of determining dynamic
controllability, this rule is sound in the sense that any RTED-based strategy that satisfies the
parent constraints, F − E ≤ w and E − D ≤ v, necessarily satisfies the generated child
constraint, F −D ≤ v + w, since F −D = (F − E) + (E −D) ≤ w + v = v + w.

The next three rules in Table 1 generate edges that effectively guard against the uncontrol-
lable possibilities represented by involved lower-case and upper-case edges. These rules are
illustrated in Fig. 2b, starting from the sample STNU graph seen earlier in Fig. 2a. For com-
parison purposes, the edges generated by the rules are shown as dashed arrows in Fig. 2b.

The Lower Case rule. The Lower Case rule generates edges that effectively guard against
the uncontrollable possibility that a contingent link might take on its minimum duration.
Applying this rule to the edges from A1 to C1 to X in Fig. 2b generates the ordinary edge,
A1

1
X, shown as dashed in the figure. (Note that the edge, A1

1
X, generated by

the Lower Case rule represents a much stronger constraint than the corresponding edge,
A

8
X , generated earlier for the sample STN in Fig. 1.) Intuitively, this application of

the rule expresses the following: given the uncontrollable possibility that the contingent
duration, C1 − A1, might equal its minimum value 2, any RTED-based strategy that satis-
fies the pre-existing constraint, X − C1 ≤ −1, must also satisfy the generated constraint,
X −A1 ≤ 1. To informally verify that this is the case, first, note that to satisfy the pre-
existing constraint, X − C1 ≤ −1 (i.e., X ≤ C1 − 1), the agent must execute X before
C1 (i.e., before knowing the value of the contingent duration, C1 − A1). Since C1 might
happen to execute as early as 2 units after A1, the agent can only ensure that X ≤ C1 − 1
holds by requiring X to occur no more than 1 unit after A1.

13 In Table 1, applicability conditions of the form, X 6≡ Y , should be construed as requiring that X and Y
be distinct time-points, not as a constraint on their values.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 19

The Upper Case rule. The Upper Case rule generates edges that effectively guard against
the uncontrollable possibility that a contingent link might take on its maximum duration.
For example, applying this rule to the edges from C2 to C1 to A1 in Fig. 2 generates the
upper-case edge, C2

C1:−7
A1, shown as dashed in the figure. This new edge represents

a conditional wait constraint that can be glossed as: “If C1 is not yet executed, then C2 must
wait at least 7 units after A1” [18]. Thus, this application of the Upper Case rule effectively
makes the following assertion: given the uncontrollable possibility that the contingent dura-
tion, C1−A1, might equal its maximum value 9, any RTED-based strategy that satisfies the
pre-existing constraint, C1 − C2 ≤ 2, must also ensure that while C1 remains unexecuted,
C2 waits at least 7 units after A1. Given that the agent cannot directly control the execu-
tion of the contingent time-point C2, the only way it can ensure that this conditional wait
constraint is satisfied by C2 is through its direct control over the corresponding activation
time-point A2.

The Cross Case rule. The Cross Case rule from Table 1 covers the interaction of two differ-
ent contingent links. Thus, it generates new edges that effectively guard against the uncon-
trollable possibility of one contingent link taking on its minimum duration, while another
takes on its maximum duration. Applying the Cross Case rule to the edges from A2 to C2

toA1 in Fig. 2b, where the upper-case edge from C2 toA1 was generated previously, yields
the upper-case edge, A2

C1:−4
A1. This upper-case edge can be glossed as: “As long

as C1 remains unexecuted, A2 must wait until at least 4 units after the execution of A1.”
Since A2 is an executable time-point that the agent directly controls, the agent can enforce
this constraint. Doing so will ensure that the wait constraint on the contingent time-point
C2, discussed above, will be satisfied. Thus, by controlling the execution of the activation
time-point, A2, the agent indirectly controls the timing of the contingent time-point, C2.

The Label Removal rule. The Label Removal specifies conditions under which the upper-
case label may be removed from an upper-case edge. The Label Removal rule is not consid-
ered a binary rule because it has only one parent edge: the upper-case edge from D to A in
Table 1. The lower-case edge from A to C is not considered to be a parent edge; instead,
its presence is part of the applicability conditions for this rule. Those conditions stipulate
that if the wait time for the upper-case edge is less than or equal to the minimum duration
for the corresponding contingent link, then the upper-case label may be removed from the
upper-case edge. In other words, because the contingent time-point C cannot execute before
the wait-time has expired, the conditional wait constraint has the force of an unconditional
constraint. For example, suppose that, in Fig. 2b, the contingent link from A1 to C1 had
a lower bound of 5 instead of 2. In that case, the conditional constraint, “As long as C1

remains unexecuted, A2 must wait until at least 4 units after A1”, could be replaced by the
unconditional constraint, “A2 must wait until at least 4 units afterA1”. Thus, in such a case,
the upper-case edge,A2

C1:−4
A1, could be replaced by the ordinary edge,A2

−4
A1.

Each edge-generation rule R from Table 1 will be shown to be sound in the following
sense: any RTED-based strategy that satisfies the parent constraints in any instance of the
ruleR must also satisfy the child constraint generated by that rule instance. However, some
techniques introduced by Morris [16] for analyzing the structure of STNU graphs will sim-
plify the task of proving the soundness of the rules.

DRAFT

20 Luke Hunsberger

e2e1

P

P ′
e′

P

P ′

e1

e′

Fig. 3 Using edge-generation rules to transform a path in an STNU graph

Path transformation. Each of the edge-generation rules from Table 1 can be viewed as a
path-transformation (or path-reduction) rule, as follows.

Definition 25 (Path transformation/reduction [16]) Suppose a path P contains consecu-
tive edges, e1 and e2, to which one of the binary edge-generation rules applies, yielding a
new edge, e′, as illustrated on the lefthand side of Fig. 3. The path P ′ obtained from P by
replacing e1 and e2 by e′ is called a transformation of P . Equivalently, P is said to reduce
to P ′. The Label Removal rule can similarly be used to transform (or reduce) a path, as il-
lustrated on the righthand side of Fig. 3. Furthermore, any sequence of such transformations
is also considered a transformation.

For example, the path from C2 to C1 to A1 in Fig. 2b reduces to the edge from C2 to A1 in
one step, while the path from A2 to C2 to C1 to A1 reduces to the edge from A2 to A1 in
two steps. Of course, path transformations do not always result in a single edge (cf. Fig. 3).

Definition 26 (Reduced distance [16]) For any path P in an STNU graph, the reduced
distance of P , denoted by |P|, is the length of P, ignoring any alphabetic labels.

For example, the reduced distance (or length) of the path from A2 to C2 to C1 to A1 in
Fig. 2b is −4. Note that all of the edge-generation rules from Table 1 preserve reduced
distance. As a result, the generated edge from A2 to A1 in Fig. 2b also has length −4.

Semi-Reducible Paths

Recall that any path in an STN graph represents a constraint that must be satisfied by any
solution for that STN. However, it is not in general the case that any path in an STNU graph
represents a constraint that must be satisfied by any reliable RTED-based execution strategy
for that STNU. As will be seen, for STNUs, it is only the semi-reducible paths, defined
below, that represent constraints that must be satisfied by any reliable RTED-based strategy.
Thus, in a dynamically controllable network, the shortest semi-reducible paths represent the
strongest constraints that any reliable execution strategy must satisfy.

Definition 27 (Semi-reducible path [16]) A path in an STNU graph is called semi-reducible
if it can be transformed into a path without any lower-case edges.

For a negative example, consider the loop in Fig. 2b from A1 to C1 to A1. Since the
constituent edges are the lower-case and upper-case edges from the same contingent link,
(A1, 2, 9, C1), the Cross Case rule does not apply to this loop; thus, it is not semi-reducible.
Neither does it represent any kind of constraint that must be satisfied by a reliable execu-
tion strategy because its two labeled edges represent alternative possibilities for a single
contingent duration. Nonetheless, each of these edges can be used separately by the edge-
generation rules from Table 1 to generate other edges that do represent constraints that must
be satisfied by any reliable strategy, as discussed earlier.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 21

A1

C1

X

c
1 : 2

A2

C2C1

C
1

:−
9

c
2 : 3−1

2

P

A1

C1

X
1

c
1 : 2

A2

C2C1

C
1

:−
9

c
2 : 3−1

2

C1 :−4

C1
:−7

P ′

P

Fig. 4 Transforming a semi-reducible path, P , into a path, P ′, having only ordinary or upper-case edges

For a positive example of a semi-reducible path, consider the path, P , shown on the
lefthand side of Fig. 4. The edges in this path belong to the graph for the sample STNU S†,
seen previously in Fig. 2b. To clarify the order of the edges in P , the time-point C1 has been
drawn twice in Fig. 4. As shown on the righthand side of Fig. 4, P is semi-reducible because
it can be transformed into a path, P ′, containing only ordinary or upper-case edges. In this
case, P ′ has two edges. Note that although P is semi-reducible, it contains a sub-loop, from
C1 to A1 to C1, that is not semi-reducible.

Analogously to the negative loops in an STN graph whose presence characterizes incon-
sistent STNs, the presence of semi-reducible negative loops (SRN loops) in an STNU graph
will be shown to characterize STNUs that are not dynamically controllable.

Definition 28 (SRN Loop [13]) A semi-reducible negative loop (SRN loop) is any semi-
reducible path P that is a loop with negative length.

The following notation helps to simplify the subsequent presentation.

Definition 29 (LO-edge/path, OU-edge/path, OUg-edge/path)

LO-edge Any edge that is either a lower-case edge or an ordinary edge
OU-edge Any edge that is either an ordinary edge or an upper-case edge
OUg-edge Any edge that is either an ordinary edge or a generated upper-case edge
LO-path Any path consisting solely of LO-edges
OU-path Any path consisting solely of OU-edges
OUg-path Any path consisting solely of OUg-edges

For example, a semi-reducible path is any path that can be transformed into an OU-path
using the edge-generation rules from Table 1. Below, concepts and techniques introduced
by Morris [16] for analyzing the structure of semi-reducible paths are summarized.

Extension sub-paths, moat edges and breaches. If a path P is semi-reducible, then in the
transformation of P into an OU-path, each occurrence, e, of a lower-case edge in P must
eventually be “eliminated” by an application of either the Lower Case or Cross Case rule.14

Thus, for each such e, there must be some sub-path ofP—call itPe—that reduces to a single
edge, e′, such that e and e′ can then be transformed into a single edge, ẽ, as illustrated in
Fig. 5, where e′ is the edge, C C3:−3

Xm, and ẽ is the edge, A C3:−1
Xm.15

14 Note that a semi-reducible path might contain multiple occurrences of the same lower-case edge [13].
15 Defns. 30 and 31, and the proof technique for Theorem 5, below, were originally presented by Mor-

ris [16], but only in the context of an execution semantics that allowed a form of instantaneous reactivity.
This author subsequently modified them to conform to the standard STNU execution semantics [11,13].

DRAFT

22 Luke Hunsberger

A

C

X1

7

c :
2

X2 X3 X4 X5
5C1 :−42 C2 :−2

5

Xm

C
3 :−

9C2 : 1C1 : 3X X 6

Pe

moat edge

e e′
C3 :−3

ẽ

C3 :−1

Fig. 5 The canonical elimination of a lower-case edge, e, by its extension sub-path, Pe

Definition 30 (Extension sub-path & moat edge [16,13]) Let e be an occurrence of a
lower-case edge in a path P in an STNU graph. The extension sub-path and moat edge for
e in P are defined as follows. First, let e1, e2, . . . be the sequence of edges immediately
following e in P . (Thus, e 6= e1.) Then, for each i, let Pie be the path consisting of the
edges, e1, . . . , ei and, if it exists, let m be the smallest integer such that either: |Pme | < 0;
or |Pme | = 0 and Pme is not a loop. The extension sub-path (ESP) for e in P , notated Pe,
is the sub-path Pme ; and its last edge, em, is the moat edge for e in P . If no such m exists,
then e has no ESP or moat edge in P .

Within any semi-reducible path, each occurrence, e, of a lower-case edge can be reduced
away by its extension sub-pathPe, as illustrated in Fig. 5 (cf. Corollary 2 in Hunsberger [13]).
Furthermore, the properties of extension sub-paths (e.g., every proper prefix has non-negative
length) are such that the transformation of Pe into a single edge, e′, can always be done in
the left-to-right manner shown in the figure, where any upper-case edges that are encoun-
tered along the way can have their labels removed, indicated by their being crossed out in
the figure. Morris calls this the canonical elimination of a lower-case edge [16].

If e is the lower-case edge,A
c:x

C, and some upper-case edge, V C:−w
A, whose

upper-case label is C, occurs in an extension sub-path for e, then that upper-case edge has
the potential of blocking the elimination of e—and thereby threatening the semi-reducibility
of the path P . (Recall that the Cross Case rule does not apply if the lower-case and upper-
case edges have corresponding alphabetic labels.) Such edges are called breaches.

Definition 31 (Breach) [16] Let e be a lower-case edge, A
c:x

C; and let Pe be the
extension sub-path for e in some path P . Any occurrence in Pe of an upper-case edge
labeled by C is called a breach.

3 Fundamental Theorem for STNUs, Part 1

The main thrust of the Fundamental Theorem for STNUs is that an STNU is dynamically
controllable if and only if its graph contains no semi-reducible negative loops. This result
provides the basis for all DC-checking algorithms that have been presented so far in the
literature. However, this crucial result has, to date, not been given a rigorous and complete
proof. As a result, important details have been glossed over or missed altogether. One of the
main goals of this paper is to provide such a proof. This is done in two steps: (1) proving
that an STNU that has an SRN loop must not be dynamically controllable; and (2) proving
that an STNU without any SRN loops must be dynamically controllable. The first step is
addressed in this section, the second step in the next section.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 23

Proving that an STNU that has an SRN loop must not be dynamically controllable is done
by proving that the edge-generation rules from Table 1 are sound—that is, whenever an
RTED-based strategy “satisfies” the relevant parent edge(s) in an edge-generation rule, then
it necessarily satisfies the corresponding child edge generated by that rule. Therefore, this
section begins by specifying what it means for an RTED-based strategy to satisfy an edge in
an STNU, effectively specifying how each kind of STNU edge should be interpreted.

A subtle point arises with regard to the upper-case edges that are generated by the Upper
Case and Cross Case rules, in contrast to the upper-case edges in the original STNU graph.
As has already been suggested, the original upper-case edges represent uncontrollable possi-
bilities, while the generated upper-case edges, such as V C:−r

A, represent conditional
wait constraints that can be glossed as: “WhileC remains unexecuted, V must wait at least r
units afterA.” Now, suppose that the generated upper-case edge, V C:−r

A, corresponds
to the contingent link is (A, x, y, C), and the wait amount r is greater than y. (Such wait
times will be called improper.) Since C cannot remain unexecuted after A + y, this upper-
case edge could be replaced by V C:−y

A, where the wait time has been decreased to y.
Although such a rule would be sound, it would not be length preserving; thus, its use would
violate one of the most important preconditions of Morris’ techniques for analyzing the
structure of semi-reducible paths, which play important roles in the rest of the paper. Simi-
lar remarks apply to the General Unordered Reduction rule from the MMV-01 paper [18],
which is also not length preserving. This issue becomes particularly important here because
some of the proofs in Sec. 4 depend on propagating all wait constraints, even those whose
wait times are greater than the upper bound on the corresponding contingent link.

Recall that the execution semantics for STNUs ensures that the complete schedule that
results from following an RTED-based strategy in any given situation necessarily satisfies
the bounds on all contingent links. This models the property that a decision by an agent
cannot cause the environment to violate the bounds on any contingent link. However, not all
RTED-based strategies will necessarily generate complete schedules that satisfy the ordinary
constraints associated with ordinary edges in an STNU graph or the conditional wait con-
straints associated with generated upper-case edges. To determine whether the outcomes
of an RTED-based strategy will satisfy the constraints associated with ordinary or gen-
erated upper-case edges (i.e., with OUg-edges) requires specifying what it means for an
RTED-based strategy to satisfy an OUg-edge. Doing so provides a formal interpretation of
OUg-edges in terms of ordinary constraints or conditional wait constraints.

Definition 32 (Satisfaction of OUg Edges/Constraints) Let S = (T , C,L) be an STNU;
let R be an RTED-based strategy; let e be an ordinary edge, X δ

Y ; and let E be a gen-

erated upper-case edge, V C:u
A, where the relevant contingent link is (A, x, y, C).

• R is said to satisfy the ordinary edge e if for every situation ω, the corresponding
complete schedule, ξω = O∗(R,ω), satisfies ξω(Y) − ξω(X) ≤ δ. In such cases, R
may also be said to satisfy the corresponding constraint, Y −X ≤ δ.

• R is said to satisfy the generated upper-case edge E if for each situation ω, the corre-
sponding complete schedule, ξω = O∗(R,ω), satisfies either ξω(V) ≥ ξω(A)−u (i.e.,
V waited −u units after A) or ξω(V) > ξω(C) (i.e., C executed before V). In such
cases, R may also be said to satisfy the corresponding conditional constraint, “while C
is unexecuted, V must wait at least −u units after A”.

DRAFT

24 Luke Hunsberger

Definition 33 (Soundness for Edge-Generation Rules) An edge-generation rule (cf. Ta-
ble 1) is sound if for all RTED-based strategies R the following holds: whenever R satisfies
all of the rule’s OUg parent edges under the relevant applicability conditions,R also satisfies
the corresponding child edge.

The soundness of the edge-generation rules is given by Lemmas 3–10, below. Aside
from the heavy use of Lemma 3, which draws from prior work [10], and the proof of
Lemma 9, which is novel, many of the techniques used in the proofs of Lemmas 5–8 and 10
are similar to those introduced by Morris et al. in the soundness proofs of the MMV-01
edge-generation rules [18]. To simplify the presentation of the proofs, the following nota-
tion is used: given an RTED-based strategy R, a situation ω, and a time-point X , the value
assigned to X by the complete schedule O∗(R,ω) that results from following the strategy
R in the situation ω is denoted by Xω . Notation such as Xω is only used when the strategy
R is understood from the context.

Lemma 3, below, encapsulates a technique used repeatedly in the subsequent lemmas.

Lemma 3 Let R be an RTED-based strategy for an STNU S = (T , C,L); let (A, x, y, C)
be a contingent link in S; let ω̃ and ω̂ be two situations that are identical except that
Cω̃ −Aω̃ < Cω̂ −Aω̂; and let d ∈ R be the first point at which the sequences of (mostly
partial) schedules generated by following the strategy R in the situations, ω̃ and ω̂, differ.
Then all of the following hold:

• Aω̂ = Aω̃ < Cω̃ = d < Cω̂;
• if X is an executable time-point such that Xω̃ ≤ d or Xω̂ ≤ d, then Xω̃ = Xω̂; and
• if B is a contingent time-point other than C such that Cω̃ ≤ d or Cω̂ ≤ d, then
Bω̃ = Bω̂ .

Proof By Lemma 2, the situation ω̃ determines a unique sequence of (mostly partial) sched-
ules that result from following the strategy R in ω̃, notated as follows:

∅ = ξω̃0 ⊂ ξω̃1 ⊂ . . . ⊂ ξω̃p̃ , where for each 0 ≤ i < p̃, ξω̃i+1 = O(ξω̃i , ω̃, R(ξω̃i)).

Similarly, the situation ω̂ determines a unique sequence notated as follows:

∅ = ξω̂0 ⊂ ξω̂1 ⊂ . . . ⊂ ξω̂p̂ , where for each 0 ≤ i < p̂, ξω̂i+1 = O(ξω̂i , ω̂, R(ξω̂i)).

Let j be the greatest index for which ξω̃j = ξω̂j . Then j + 1 is the first index for which
ξω̃j+1 6= ξω̂j+1. As a result, d, the time of the first difference between the two sequences, is
given by: d = min{nowξω̃

j+1
, nowξω̂

j+1
}. Furthermore, by construction, no execution events

occur in either sequence strictly between the time of the jth partial schedules and d. Finally,
because the jth partial schedules are identical, the decisions generated by R based on them
must be identical: R(ξω̃j) = R(ξω̂j). For convenience, let (t, χ) denote that decision.

Now, suppose A were not yet executed in the jth partial schedules. In that case, the
contingent time-point C would not be currently active and, because all contingent durations
other than C − A are identical in ω̃ and ω̂, it follows that ET(ξω̃j , ω̃) = ET(ξω̂j , ω̂) and
χc(ξ

ω̃
j , ω̃) = χc(ξ

ω̂
j , ω̂). But then the outcomes, ξω̃j+1 and ξω̂j+1 would necessarily be the

same, contradicting the choice of j. Thus, A must already be executed in the jth partial
schedules (i.e., Aω̃ = Aω̂) and C must be currently active. Furthermore, the difference in
the (j+1)st outcomes can only be due to differences in the corresponding ET values and χc
sets, which are due to the fact that Cω̃ −Aω̃ < Cω̂ −Aω̂ . Thus, ET(ξω̃j , ω̃) < ET(ξω̂j , ω̂),

DRAFT

Efficient Execution of Dynamically Controllable STNUs 25

and ET(ξω̃j , ω̃) ≤ t, where t is the proposed execution time in the decision (t, χ). Therefore,
in the situation ω̃, C executes at time d, while in the situation ω̂, C executes at some later
time (i.e., Cω̃ = d < Cω̂).

Now, suppose that X is an executable time-point that executes at or before time d in ω̃
or ω̂. If X is already executed in the jth partial schedules, then Xω̃ = Xω̂ . Otherwise, X
must execute at time d, whence X ∈ χ and d = t, implying that X executes at time d in
both situations (i.e., Xω̃ = Xω̂).

Similarly, suppose that B is a contingent time-point other than C that executes at or
before time d in ω̃ or ω̂. IfB is already executed in the jth partial schedules, thenBω̃ = Bω̂ .
Otherwise, B must execute at time d in one of the situations. But that implies that B was
currently active in the jth partial schedules, in which case its activation time-point was
executed at the same time in both situations. Since the contingent duration for the relevant
contingent link is the same in both situations, B must execute at the same time in both
situations (i.e., Bω̃ = Bω̂). ut

Lemma 4 The No Case rule from Table 1 is sound.

Proof Let R be an RTED-based strategy that satisfies the ordinary edges, D
v

E and

E
w

F . Then, for every situation ω, Eω − Dω ≤ v and Fω − Eω ≤ w, whence

Fω −Dω ≤ v + w. Thus, R satisfies the generated edge, D v+w
F . ut

Lemma 5 The Lower Case rule from Table 1 is sound.

Proof Suppose that S = (T , C,L) is an STNU that contains a lower-case edge, A
c:v

C,

and that R is an RTED-based strategy for S that satisfies an edge, C
u

F , for some
F ∈ T and some u ≤ 0.16 Contrary to the statement of the lemma, suppose that R does not
satisfy the child edge, A v+u

F .

Now, since R satisfies the edge, C
u

F , then for every situation ω, Fω − Cω ≤ u
and, hence, Fω ≤ Cω + u ≤ Cω , since u ≤ 0. However, since R does not satisfy the
edge, A v+u

F , there must be some situation ω̂ for which Fω̂ −Aω̂ > v+u and, hence,
Aω̂ + v + u < Fω̂ .

Next, note that if the duration, C−A, equals its lower bound v in the situation ω̂ (i.e., if
Cω̂ = Aω̂ + v), then Fω̂ ≤ Cω̂ + u = Aω̂ + v + u < Fω̂ , which yields the contradiction,
Fω̂ < Fω̂ . Therefore, C − A must not equal v in ω̂. But in that case, let ω̃ be the situation
that is the same as ω̂ except that C − A = v in ω̃. Then Lemma 3 gives that Aω̃ = Aω̂
and Cω̃ = d < Cω̂ , where d is the time of the first difference between the schedules
resulting from following R in the situations ω̃ and ω̂. Furthermore, since Fω ≤ Cω in every
situation ω, it follows that Fω̃ ≤ Cω̃ = d, in which case, since F 6≡ C, Lemma 3 gives that
Fω̃ = Fω̂ . Thus: Fω̂ = Fω̃ ≤ Cω̃ +u = Aω̃ + v+u = Aω̂ + v+u < Fω̂ , again yielding
the contradiction, Fω̂ < Fω̂ . ut

That the Upper Case and Cross Case rules are sound is given by Lemmas 6–9, below.
They address different cases based on whether the parent upper-case edge is original or
generated, and whether or not the associated wait time is proper (i.e., less than or equal to
the maximum duration of the corresponding contingent link), as follows:

16 To avoid confusion between the letters w and ω, the proof uses the letter u instead of w.

DRAFT

26 Luke Hunsberger

Lemma Rule(s) Upper-Case Parent Edge
Lemma 6 Upper Case rule Original
Lemma 7 Upper Case rule Generated with proper wait time
Lemma 8 Cross Case rule Generated with proper wait time
Lemma 9 Upper Case and Cross Case Generated with improper wait time

Note that the applicability conditions for the Cross Case rule prevent it from being applied
in the case of a parent edge that is an original upper-case edge.

Lemma 6 The Upper Case rule, when restricted to orginal upper-case edges, is sound.

Proof Suppose that C C:−y
A is an original upper-case edge in an STNU graph cor-

responding to a contingent link, (A, x, y, C); and that R is an RTED-based strategy that
satisfies the ordinary edge, D

v
C (i.e., for every situation ω, Cω −Dω ≤ v).17

Contrary to the lemma, suppose R does not satisfy the generated edge, D C:v−y
A.

Then there must be some situation ω̃ for which Dω̃ < Aω̃ + y − v and Dω̃ ≤ Cω̃ .
Case 1: v < 0. In this case, Cω̃ ≤ Dω̃ + v < Dω̃ ≤ Cω̃ , which is a contradiction.
Case 2: v ≥ 0. First, note that if the contingent duration, C −A, happens to take on its

maximum value in the situation ω̃ (i.e., ifCω̃ = Aω̃+y), thenDω̃ ≥ Cω̃−v = Aω̃+y−v,
thereby satisfying the generated edge. On the other hand, if C − A does not take on its
maximum value in the situation ω̃, let ω̂ be the same situation as ω̃, except that C −A does
take on its maximum value in ω̂. Therefore, by Lemma 3, Aω̃ = Aω̂ , and Cω̃ = d < Cω̂ ,
where d is the time of the first difference between the schedules resulting from following R
in the situations ω̃ and ω̂. In addition, Dω̃ ≤ Cω̃ = d implies that Dω̃ = Dω̂ . Therefore,
Dω̂ = Dω̃ < Aω̃+y−v = Aω̂+y−v = Cω̂−v, and henceCω̂ > Dω̂+v, contradicting
that R satisfies the ordinary edge, D

v
C. ut

Lemma 7 The Upper Case rule from Table 1, in the case where the parent upper-case edge
is a generated upper-case edge whose wait time is proper, is sound.

Proof Suppose thatR is an RTED-based strategy that satisfies the ordinary edge,D
v

E.
Thus, in every situation ω, Eω ≤ Dω + v. Suppose further that R satisfies the generated
upper-case edge, E B:u

F , where (F, x, y,B) is the corresponding contingent link

and the wait time, −u, satisfies −u ≤ y.18 Thus, in every situation ω, Eω ≥ Fω − u or
Eω > Bω . Finally, contrary to the lemma, suppose thatR does not satisfy the corresponding
child edge,D B:v+u

F . Thus, for some situation ω̃, Dω̃ < Fω̃ − (v + u) andDω̃ ≤ Bω̃ .
Case 1: v < 0. In this case, Eω̃ ≤ Dω̃ + v < Dω̃ ≤ Bω̃; hence, Eω̃ < Bω̃ . But then

Eω̃ ≤ Dω̃ + v < (Fω̃ − (v + u)) + v = Fω̃ − u and, thus, Eω̃ < Fω̃ − u. But Eω̃ < Bω̃
and Eω̃ < Fω̃ − u together contradict that R satisfies the upper-case edge from E to F .

Case 2: v ≥ 0. First, note thatEω̃ ≤ Dω̃+v < Fω̃−u ≤ Fω̃+y. Thus, ifBω̃ = Fω̃+y
(i.e., if the contingent duration, B − F , takes on its maximum value y), then Eω̃ < Bω̃
which, together with Eω̃ < Fω̃−u, contradicts that R satisfies the upper-case edge from E
to F . Therefore, it must be that Bω̃ < Fω̃ + y (i.e., B − F does not take on its maximum
value). In that case, let ω̂ be the same situation as ω̃ except that Bω̂ = Fω̂ + y > Bω̃ .
Then, by Lemma 3 (with F and B playing the roles of A and C, respectively), Fω̂ = Fω̃ ,
and Bω̃ = d < Bω̂ , where d is the time of the first difference between the schedules
obtained in ω̃ and ω̂. In addition, Dω̃ ≤ Bω̃ = d implies that Dω̃ = Dω̂ . As a result,

17 This is an application of the Upper Case rule from Table 1 where E 7→ C,B 7→ C, and F 7→ A.
18 The letter u is used instead of the w from the Upper Case rule in Table 1 to avoid confusion with ω.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 27

Eω̂ ≤ Dω̂ + v = Dω̃ + v < Fω̃ − u = Fω̂ − u and, hence, Eω̂ < Fω̂ − u; and, since
Fω̃ − u ≤ Fω̃ + y = Fω̂ + y = Bω̂ , it follows that Eω̂ < Bω̂ . But Eω̂ < Fω̂ − u and
Eω̂ < Bω̂ together contradict that R satisfies the upper-case edge from E to F . ut

Lemma 8 The Cross Case rule from Table 1, in the case where the parent upper-case edge
is a generated upper-case edge whose wait time is proper, is sound.

Proof Let R be an RTED-based strategy for an STNU S; let A
c:v

C be a lower-case

edge in the graph for S; and let C B:u
F be a generated upper-case edge, where the

corresponding contingent link is (F, x, y,B), B 6≡ C, u ≤ 0, and −u ≤ y. Suppose that
R satisfies that upper-case edge. Thus, for each situation ω, Cω ≥ Fω − u or Cω > Bω .
Finally, contrary to the statement of the lemma, suppose that R does not satisfy the corre-
sponding child edge, A B:v+u

F . In that case, there must be some situation ω̂ for which
Aω̂ < Fω̂ − (v + u) and Aω̂ ≤ Bω̂ .

Case 0:Bω̂ = Fω̂+y (i.e., the durationB−F takes on its maximum value in ω̂). Now,
since R satisfies the upper-case edge from C to F , either Cω̂ ≥ Fω̂ − u or Cω̂ > Bω̂ . But
Cω̂ > Bω̂ leads to the following: Cω̂ > Bω̂ = Fω̂ + y ≥ Fω̂ − u. Thus, Cω̂ ≥ Fω̂ − u
necessarily holds. But then Aω̂ − Fω̂ = (Aω̂ − Cω̂) + (Cω̂ − Fω̂) ≥ (Aω̂ − Cω̂)− u.

Now suppose that Cω̂ = Aω̂ + v (i.e., the duration C − A takes on its minimum value
in ω̂). But then Aω̂ − Fω̂ ≥ −v − u, contradicting the choice of ω̂. Therefore, the duration
C − A must not take on its minimum value in ω̂. But then let ω̃ be the same situation as ω̂,
except that C−A = v in ω̃. Then, by Lemma 3, Aω̃ = Aω̂ , and Cω̃ = d < Cω̂ , where d is
the time of the first difference between the schedules obtained by following R in ω̃ and ω̂.

Sub-Case 0.A: Cω̃ ≥ Fω̃ − u. But then d = Cω̃ ≥ Fω̃ − u ≥ Fω̃ which, by Lemma 3,
implies that Fω̃ = Fω̂ . But then: Aω̂−Fω̂ = Aω̃−Fω̃ = (Aω̃−Cω̃)+ (Cω̃−Fω̃) =
−v + (Cω̃ − Fω̃) ≥ −v − u, contradicting the choice of ω̂.

Sub-Case 0.B: Cω̃ > Bω̃ . Here, d = Cω̃ > Bω̃ implies that Bω̃ = Bω̂ , by Lemma 3.
Similarly, d = Cω̃ > Bω̃ = Bω̂ > Fω̂ implies that Fω̃ = Fω̂ . But then Aω̂ − Fω̂ =
Aω̃ − Fω̃ = (Aω̃ − Cω̃) + (Cω̃ − Fω̃) = −v + (Cω̃ − Fω̃) > −v + (Bω̃ − Fω̃) =
−v + y ≥ −v − u, contradicting the choice of ω̂.

Case 1: Bω̂ < Fω̂ + y (i.e., the duration B − F does not take on its maximum value
in ω̂). Let ω′ be the same situation as ω̂, except that B − F takes on its maximum value
in ω′. That is: Bω′ = Fω′ + y. Then, by Lemma 3, Fω̂ = Fω′ , and Bω̂ = d < Bω′ ,
where d is the time of the first difference between the corresponding schedules. In addition,
Aω̂ ≤ Bω̂ = d implies that Aω′ = Aω̂ and, since the duration of C − A is the same in ω̂
and ω′, Cω′ = Cω̂ . Thus, F,A and C all have the same values in ω̂ and ω′.

Now, exactly as in the first part of Case 0, C − A = v in ω′ leads to a contradiction.
Therefore, Cω′ −Aω′ > v. So, let ω̃ be the same situation as ω′ except that Cω̃ −Aω̃ = v.
Then, by Lemma 3, Aω̃ = Aω′ , and Cω̃ = e < Cω′ , where e is the time of the first
difference between the corresponding schedules. Thus, Aω̃ = Aω′ = Aω̂ .

Case 1.A:Cω̃ ≥ Fω̃−u. But then, e = Cω̃ ≥ Fω̃−u ≥ Fω̃ , which by Lemma 3 implies
that Fω̃ = Fω′ = Fω̂ . Thus, Aω̂ − Fω̂ = Aω̃ − Fω̃ = (Aω̃ − Cω̃) + (Cω̃ − Fω̃) =
−v + (Cω̃ − Fω̃) ≥ −v − u, contradicting the choice of ω̂.
Case 1.B: Bω̃ < Cω̃ . Then, Bω̃ < Cω̃ = e implies, by Lemma 3, that Bω̃ = Bω′ .
Similarly, Fω̃ < Bω̃ < e implies that Fω̃ = Fω′ . Thus, Fω̃ = Fω′ = Fω̂ . But
then: Aω̂ − Fω̂ = Aω̃ − Fω̃ = (Aω̃ − Cω̃) + (Cω̃ − Fω̃) = −v + (Cω̃ − Fω̃) >
−v+(Bω̃ −Fω̃) = −v+(Bω′ −Fω′) = −v+ y ≥ −v−u, contradicting the choice
of ω̂. ut

DRAFT

28 Luke Hunsberger

Xr

Xr−1

Xr−2

X3

X2

X1

B

B
:−

y

F
B : (v1 + . . . + vr − y)

vr

vr−
1

v3

B : (v1 + . . . + vr−1 − y)

B : (v1 + . . . + vr−2 − y)

(only lengths, v i
, shown)

v1

v2

B
: (v

1 +
v
2 −
y)

B
: (v

1 −
y)

Ordinary or lower-case parent edges

T
he

originalupper-case
edge

B
: (v

1 + v
2 + v

3 −
y)

The generated edge e, where u = v1 + . . . + vr − y

Fig. 6 A sequence of applications of the Upper Case or Cross Case rules discussed in the proof of Lemma 9

Lemma 9 The Upper Case and Cross Case rules from Table 1 are sound in the case where
the parent upper-case edge is a generated edge whose wait time is not proper.

Proof Let e be any generated upper-case edge, E B:u
F , for some contingent link,

(F, x, y,B), where the wait time is improper (i.e., −u > y). Since e is a generated upper-
case edge, it must have been generated from some prior application of the Upper Case or
Cross Case rule, using some parent upper-case edge e′. And if e′ happens to be a generated
edge, it must have been generated from another prior application of the Upper Case or Cross
Case rule using some parent upper-case edge e′′. This process continues until the original
upper-case edge, B B:−y

F , is eventually reached, as illustrated in Fig. 6, where the
original upper-case edge lies vertically on the righthand side; each generated upper-case
edge in the sequence is dashed; the lengths of the lefthand parent edges (i.e., the lower-case
or ordinary parent edges) are notated as v1, . . . , vr; and the upper-case edge e, which could
be any one of the dashed edges, is shown as the last generated edge in the sequence.

The rest of this proof addresses sequences of the kind shown in Fig. 6, proving that for
any RTED-based strategy R, if R satisfies all of the ordinary parent edges shown in the
figure, then R necessarily satisfies all of the generated upper-case edges. For convenience,
let X0 = B. Then for each i ∈ {0, 1, 2, . . . , r − 1}, the edge from Xi+1 to Xi is either a
lower-case or ordinary edge that is the lefthand parent edge for the corresponding application
of the Upper Case or Cross Case rule. The proof analyzes the chain of LO-edges starting at
X0 = B and working backward toward Xr . All lower-case edges considered below have
contingent time-points that are distinct from B, as required by the Cross Case rule.

Case 1: A chain of ordinary edges from Xj to X0 = B. The No Case rule can be used
to collapse the path from Xj to X0 into a single ordinary edge, Xj

v
B, whose length is

v = vj+vj−1+. . .+v2+v1. Since the No Case rule is sound (cf. Lemma 4),Rmust satisfy
this edge. Next, applying the Upper Case rule to the edges, Xj

v
B and B B:−y

F ,

DRAFT

Efficient Execution of Dynamically Controllable STNUs 29

generates the upper-case edge, Xj
B:v−y

F , which R must satisfy by Lemma 6. Note
that the wait time, y − v, for this generated upper-case edge may not be proper.

Case 2: A chain consisting of a single lower-case edge followed by one or more ordinary
edges, terminating at B = X0. Let A

c:s
C be the lower-case edge that starts the chain,

and let the rest of the chain be as described in Case 1, using C = Xj . As in Case 1,
the ordinary edges from Xj to X0 = B can be collapsed into a single ordinary edge,
Xj

v
B, that must be satisfied by R.

Case 2a: v > 0. As in Case 1, the Upper Case rule can be used to generate the edge,
Xj

B:v−y
F , which must be satisfied by R. But here the wait time, −v + y, must

be proper since v > 0. Therefore, the Cross Case rule can be applied to the edges,
A

c:s
Xj and Xj

B:v−y
F , to generate the upper-case edge, A B:s+v−y

F ,
whose wait time, −s− v + y, must also be proper since s and v are both positive.

Case 2b: v ≤ 0. In this case, the ordinary path from Xj to X0 has negative length; thus,
some prefix of that path—say the path from Xj to Xh, where j > h ≥ 0—constitutes
an extension sub-path for the lower-case edge and, thus, can be used to reduce it away,
resulting in the ordinary edge, A s+vr+...+vh+1 Xh. This edge must be satisfied by R
since the No Case and Lower Case rules are sound (cf. Lemmas 4 and 5). Then, the
ordinary path consisting of this edge followed by all of the edges from Xh to X0 = B
can be collapsed into a single ordinary edge by the No Case rule, as in Case 1. Then, an
application of the Upper Case rule generates an upper-case edge from A to F that must
be satisfied by R (cf. Lemma 6), although its wait time may be improper.

Cases 3 and 4, below, are similar to Cases 1 and 2, respectively, except that, instead of
the original upper-case edge, B B:−y

F , they deal with any generated upper-case edge,

X0
B:w

F , that is satisfied by the strategy R, and whose wait time, −w, is proper
(i.e., −w ≤ y). In these cases, X0 is some time-point other than B.

Case 3: A sequence of ordinary edges terminating atX0. This case is identical to Case 1,
except that it is Lemma 7 instead of Lemma 6 that ensures that the resulting upper-case edge
must be satisfied by the strategy R.

Case 4: A lower-case edge followed by zero or more ordinary edges terminating at X0.
Let A

c:s
C be the lower-case edge, whose length s is necessarily positive.

Case 4a: C = X0 (i.e., zero ordinary edges). Here, one application of the Cross Case
rule generates the upper-case edge, A B:s+w

F , whose wait time, −s− w, is proper
since −s− w < −w ≤ y, since s > 0. R must satisfy this child edge by Lemma 8.

Case 4b: The lower-case edge followed by a non-negative-length path consisting solely
of ordinary edges. In this case, let C = Xj , and let P be the non-negative length path
from C = Xj to X0, all of whose edges are ordinary. Now, the No Case rule can be
used to transform P into a single ordinary edge, C

v
X0, where v = |P| ≥ 0. By

Lemma 4, R must satisfy this edge. Next, an application of the Upper Case rule to the
edges, C

v
X0 and X0

B:w
F , generates the upper-case edge, C B:v+w

F ,
whose wait time, −v − w ≤ −w ≤ y, is proper, since v ≥ 0. Lemma 7 ensures that
R must satisfy this edge. Finally, the Cross Case rule can be used to combine the edges,
A

c:s
C and C B:v+w

F , to generate the upper-case edge, A B:s+v+w
F ,

which, by Lemma 8, must be satisfied by R. Furthermore, its wait time, −s − v − w,
must be proper since −s < 0,−v ≤ 0 and −w ≤ y.

DRAFT

30 Luke Hunsberger

Case 4c: The lower-case edge followed by a negative-length path, P , consisting solely
of ordinary edges. Since the ordinary path P has negative length, some prefix of P—
say the path from C = Xj to Xh—constitutes an extension sub-path for the lower-case
edge. The No Case rule can be used to reduce this extension sub-path to a single ordinary
edge from C to Xh, which by Lemma 4 must be satisfied by R. A single application of
the Lower Case rule, which is also sound (cf. Lemma 5), then yields an ordinary edge
from A to Xh, that R must also satisfy. The No Case rule can then be used to generate
a single ordinary edge, A δ

X0, that must be satisfied by R, and whose length is:

δ = s + vj + . . . + v1. Finally, the Upper Case rule can be applied to A δ
X0 and

X0
B:w

F , to generate the upper-case edge, A B:δ+w
F , that must be satisfied

by R (cf. Lemma 8). However, the wait time, −δ − w, may not be proper.

Finally, recall the arbitrary sequence of applications of the Upper Case and Cross Case rules
shown in Fig. 6, under the assumption that the strategy R satisfies all of the ordinary edges
that appear in the path from Xr to X0 = B. First, if all of the edges from Xr to X0 = B
are ordinary, then Case 1 ensures that all of the generated upper-case edges are satisfied
by R. Second, working backward from X0 toward Xr , let e be the first lower-case edge
encountered—say that e is a lower-case edge from Xj+1 to Xj . By Case 2, the generated
upper-case edge is satisfied by R, but its wait time need not be proper. However, if it is not
proper, recall from the proof of Case 2 that the lower-case edge, e, can be reduced away to
an ordinary edge, resulting in only ordinary edges from Xj+1 to X0. Now, if the result of
the above is a path of ordinary edges from Xj to X0, then the same line of reasoning can
be used to handle the next lower-case edge encountered on the way to Xr . But if the result
of the above is a generated upper-case edge from Xj to F whose wait time is proper, then
Cases 3 and 4 can instead be used to process the next lower-case edge encountered. Since
this processing again yields the same kinds of results—either a sequence of ordinary edges
or a generated child edge with a proper wait time—it follows that all of the upper-case edges
generated by this process are satisfied by R.

Lemma 10 The Label Removal rule from Table 1 is sound.

Proof Let D C:z
A be any upper-case edge, and (A, x, y, C) the corresponding con-

tingent link, where z ≥ −x. Let R be any RTED-based strategy that satisfies that UC
edge (i.e., for any situation ω, Dω ≥ Aω − z or Dω > Cω). Now, if Dω > Cω , then
Dω > Cω ≥ Aω + x ≥ Aω − z. Thus, Dω ≥ Aω − z invariably holds. Since ω was arbi-
trary, it follows that R satisfies the unconditional constraint, A −D ≤ z, that corresponds
to the ordinary edge, D

z
A, generated by the Label Removal rule. ut

Theorem 3 Each edge obtained from any sequence of applications of the edge-generation
rules in Table 1 must be satisfied by any reliable RTED-based strategy.

Proof Let R be a reliable RTED-based strategy for an STNU S = (T , C,L). By definition,
R satisfies all of the constraints in C. Thus,R satisfies all OUg edges in the original graph G
for S. Furthermore, this property is recursively maintained by any application of the edge-
generation rules, all of which are sound (cf. Lemmas 4–10). ut

For example, the upper-case edge, A2
C1:−4

A1 in Fig. 2b, must be satisfied by any
reliable RTED-based strategy for the given STNU. It is not hard to verify that the sample
execution strategy discussed earlier satisfies the corresponding conditional wait constraint
(i.e., “While C1 remains unexecuted, A2 must wait at least 4 units after A1”).

DRAFT

Efficient Execution of Dynamically Controllable STNUs 31

Finally, Theorem 4, below, states that an STNU that has an SRN loop must not be dynam-
ically controllable, which is the first half of the Fundamental Theorem for STNUs.

Theorem 4 (SRN Loop ⇒ non-DC [16]) Suppose that S is an STNU whose graph G
contains an SRN loop. Then S is not dynamically controllable.

Proof Let S be an STNU whose graph, G, contains an SRN loop, P . Since P is semi-
reducible, the rules from Table 1 can be used to transform P into a loop, P ′, that con-
tains only ordinary or upper-case edges. Now, any ordinary edge that is followed by an
upper-case edge can effectively be “reduced away” by the Upper Case rule, resulting in
a single upper-case edge. And the Label Removal rule can remove the upper-case label
from any upper-case edge whose wait time is smaller than the lower bound on the corre-
sponding contingent link. And any sequence of ordinary edges can be transformed into a
single ordinary edge by the No Case rule. Applying these rules in this way, in any com-
bination, must eventually terminate since each application of the No Case or Upper Case
rule decreases the number of edges in the loop; and each application of the Label Removal
rule eliminates one upper-case label. The end result will be a loop P ′′ that (1) consists
of a single ordinary edge of the form, X δ

X , where δ < 0; or (2) consists solely
of upper-case edges each of whose wait time is greater than the lower bound on the cor-
responding contingent link. By Theorem 3, any reliable RTED-based strategy for S must
satisfy the edges in P ′′. However, in the first case, the edge represents the constraint,
X − X ≤ δ < 0, which cannot be satisfied. For the second case, let R be any reliable
strategy for S; let ω be any situation; and let X C:−u

A be an upper-case edge for some
contingent link (A, x, y, C), where u > x. If the edge is an original upper-case edge, then
the RTED-based semantics ensures thatXω −Aω ≥ x > 0. Otherwise,R satisfies the gen-
erated edge by either Xω ≥ Aω + u > Aω + x or Xω > Cω > Aω + x. Thus, in either
case, Xω − Aω > 0. Therefore, a cycle of upper-case edges implies a cycle of constraints
of the form, X1 −X2 > 0, X2 −X3 > 0, . . . , Xn −X1 > 0. Summing these constraints
yields 0 > 0, which is impossible to satisfy. Thus, in both cases, no reliable RTED-based
strategy exists for S. ut

4 Fundamental Theorem for STNUs, Part 2

This section addresses the second half of the Fundamental Theorem for STNUs: if S is any
STNU whose graph G does not contain any SRN loops, then S must be dynamically con-
trollable. This result is proven in steps. First, G having no SRN loops is shown to imply that
the notion of shortest semi-reducible path is well defined for G and, in addition, that the all-
pairs, shortest-semi-reducible-paths (APSSRP) matrix,D∗, can be computed in polynomial
time. Next,D∗ is used to generate RTEDs on the fly, in any incrementally revealed situation,
effectively defining an RTED-based execution strategy for S. Finally, that strategy is proved
to be a reliable strategy for S, thereby confirming that S is dynamically controllable. As will
be seen, proving these results requires addressing important details that have been glossed
over in the literature.

4.1 Preliminary Definitions and Results

Lemma 11 IfP is an LO-path in an STNU graph that is a loop whose length is non-positive,
then P must be semi-reducible.

DRAFT

32 Luke Hunsberger

Proof Suppose that P contains at least one lower-case edge. Since P is a loop containing
only lower-case and ordinary edges, the No Case rule can be used to transform P into a loop
P ′ such that at most one ordinary edge separates any pair of consecutive lower-case edges;
and |P ′| = |P| ≤ 0. (If P has only one lower-case edge, then P ′ will have only two edges:
one lower-case and one ordinary.) Since each lower-case edge has positive length, P ′ must
contain at least one ordinary edge, E, that has negative length. Let E1 be the lower-case
edge immediately preceding E in P ′. Then the Lower Case rule can be used to replace E1

and E by some ordinary edge, resulting in a loop P ′′ that has one fewer lower-case edges
than P . Since such transformations preserve lengths, |P ′′| = |P ′| = |P| ≤ 0. Hence,
continuing in this way, P can be transformed into a loop containing only ordinary edges;
thus, P is semi-reducible. ut

Definition 34 (Signature of an Edge) The signature of an edge in an STNU graph is a term
of the form, type(args), where type is one of Ord, LC, or UC; and args identifies certain
time-points that are relevant to the edge, as follows:

Edge Type Sample Edge Signature

Ordinary X
δ

Y Ord(X,Y)

Lower-Case A
c:x

C LC(C)

Upper-Case V
C:w

A UC(V,C)

Note that for any kind of edge, its length is not part of its signature. In addition, since the
edge-generation rules generate only OU-edges, an STNU having K contingent links will
always have exactly K lower-case edges, one for each contingent link; thus, the signature
of a lower-case edge need only specify the corresponding contingent time-point. Finally,
since the target of any upper-case edge, whether generated or original, must be the activa-
tion time-point for the corresponding contingent link, the signature for an upper-case edge
need only specify the source time-point V , and the upper-case label C. Given these obser-
vations, it follows that in a network with N time-points and K contingent links, there are at
most N2 distinct signatures for ordinary edges, at most NK distinct signatures for upper-
case edges, and exactly K distinct signatures for lower-case edges. Thus, there are at most
N2 +NK +K distinct signatures overall.

The following theorem enables subsequent proofs to effectively side-step the problems
introduced by breaches in semi-reducible paths (cf. Defn. 31).

Theorem 5 Let G be an STNU graph; and let P be any semi-reducible path from X to Y
in G. Then there exists a breach-free semi-reducible path P ′, also from X to Y , that is
obtained by extracting zero or more non-negative sub-loops from P . Hence, |P ′| ≤ |P|.

Proof Let e be an occurrence of the lower-case edge, A
c:x

C, in a semi-reducible path P
whose extension sub-path, Pe, contains a breach: V C:−w

A. If there multiple instances

of breaches in P , choose the one that is outermost with that property.19 Thus, any extension
sub-paths in P that contain Pe are breach-free. Now, since P is semi-reducible, it follows
that |Pe| ≥ −x. (Otherwise, the upper-case label from the breach could not be removed,
which would block the use of the Cross Case rule in the canonical elimination of e.) Let ẽ be

19 Morris showed that extension sub-paths within the same path P must either be disjoint or nested, one
inside the other [16,13]. An outermost extension sub-path is one that is not nested inside any other.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 33

the edge whose generation effectively eliminates e. Then |ẽ| = |e|+ |Pe| ≥ x+(−x) = 0.
Furthermore, ẽ is a loop from A (the source of e) to A (the destination of the breach edge).
Let S be the corresponding loop inP that consists of e followed byPe. Since |S| = |ẽ| ≥ 0,
and any extension sub-paths that contain Pe are breach-free, extracting S from P cannot
introduce any breaches into such extension sub-paths; it can only potentially shrink the
number of edges in them. Thus, extracting S from P cannot affect its semi-reducibility.
Since this process results in a path having fewer edges, repeating it to remove all other
breaches must eventually terminate in the desired path P ′. ut

4.2 Ensuring that the notion of Shortest Semi-Reducible Path is Well Defined

In the case of an STN, if its graph has no negative loops, then it is easy to show that the
notion of shortest path is well defined. However, the analogous result for STNUs—if its
graph has no semi-reducible negative loops, then the notion of shortest semi-reducible path
is well defined—is much more challenging to prove. In particular, the intuitively appealing
claim that one can discard any non-shortest edges during the process of edge generation is
true, but requires great care to prove. The intuitive appeal of this claim is undoubtedly why
its proof has not before appeared in the literature.

Definition 35 (Shortest Edges) For any set E of edges, let shortest(E) be the set of edges
obtained by keeping, for each signature, only the shortest edge from E with that signature.

Below, rounds of edge generation are defined. Note that lower-case edges are kept separate
because the edge-generation rules can only generate OU-edges.

Definition 36 (Rounds of Edge Generation) Let S = (T , C,L) be an STNU having N
time-points and K contingent links; let G be the corresponding graph; let EL be the set of
K lower-case edges in G; and let Eou be the original OU-edges in G (i.e., the edges in C
together with the orginal upper-case edges in G). The rounds of edge generation for G are
defined as follows.

children(EL, E): For any set E of OU-edges, children(EL, E) is the set of edges ob-
tained by non-recursively applying the edge-generation rules from Table 1 to all possible
combinations of parent edges drawn from EL ∪ E . Note that, like E , children(EL, E)
contains only OU-edges.

Edge-Generation Rounds, (E0, E1, E2, . . .): First, E0 = Eou is the set of all original
OU-edges in G. Then, for each i ≥ 0, Ei+1 = Ei ∪ children(EL, Ei) contains the
original OU-edges, plus all OU-edges obtained from i+ 1 rounds of edge generation.

Shortest-Only Edge-Generation Rounds, (F0,F1,F2, . . .): First, F0 = Eou. Then, for
each i ≥ 0, Fi+1 = shortest(Fi ∪ children(EL,Fi)) contains all of the OU-edges
obtained by i+1 rounds of edge generation, where any non-shortest edges are discarded
at the end of each round.

For example, if E0 is the set of four OU-edges represented by the solid arrows in Fig. 2b
(not including the two lower-case edges), then E1 contains the edges in E0 together with
the (dashed) edges from A1 to X , and from C2 to A1; and E2 contains all of those edges
together with the (dashed) edge from A2 to A1.

Note that the sets, Ei, may contain an inordinate number of redundant edges (i.e., edges
that are weaker than other edges in Ei having the same signature). As a result, the number

DRAFT

34 Luke Hunsberger

of edges in those sets can grow quite quickly—in fact, exponentially. In contrast, since each
Fi contains at most one edge per signature, each |Fi| is bounded above byN2 +NK +K,
which is constant for a given network. Thus, the process of computing shortest semi-reducible
paths can be made vastly more efficient if all non-shortest generated edges can be discarded.
Theorem 6 ensures that this is the case.

Theorem 6 (Non-shortest edges can be discarded during edge generation) Let G be an
STNU graph; let EL be the set of lower-case edges in G; let F0,F1, . . . be the sequence
of shortest-only edge-generation rounds defined above, where non-shortest edges are dis-
carded after each round; and let P be any semi-reducible path in G from X to Y . Then
there exists a semi-reducible path P† in G from X to Y such that |P†| ≤ |P|, and P† can
be transformed into an OU-path Pou such that (1) for some k, the set Fk contains all of the
edges in Pou; and (2) each OU-edge encountered during the transformation of P† into Pou

belongs to some Fi where i ≤ k.

Proof Let P be any semi-reducible path in G from someX to some Y . By Theorem 5, there
is a breach-free semi-reducible path, P ′, from X to Y that can be obtained by extracting
zero or more non-negative loops from P . Thus, |P ′| ≤ |P|. The rest of the proof constructs
a sequence of paths, P0,P1,P2, . . . ,Pk, where:

(1) for each i, Pi is a breach-free, semi-reducible path from X to Y ;
(2) for each i, all of the OU-edges in Pi belong to Fi;
(3) |Pk| ≤ |Pk−1| ≤ . . . ≤ |P1| ≤ |P0| ≤ |P|; and
(4) Pk is an OU-path.

The construction relies on the following fact.

Fact. Suppose that Q is a breach-free, semi-reducible path from X to Y , and E is an
OU-edge inQ. LetQs be the same asQ except that E is replaced by a shorter edge Es
having the same signature as E. ThenQs is breach-free and semi-reducible.

Proof of Fact. Suppose that the insertion of the edge Es introduced a breach into an
extension sub-path, Pe, for some lower-case edge e in Q. Since |Es| < |E|, the moat
edge for e inQs is either Es or some earlier edge from Pe. But, sinceQ is breach-free,
the only way a breach could be introduced intoQs is by Es being the offending breach
edge. ButE andEs have the same signature, implying thatE would have been a breach
in Q, which is a contradiction. Thus, Qs must be breach-free. Furthermore, Qs must
also be semi-reducible since replacing E by Es can, at worst, only decrease the number
of edges in a breach-free extension sub-path, which cannot prevent it from being able
to reduce away the corresponding lower-case edge. Thus, Qs is both breach-free and
semi-reducible.

Base Case. Let P0 = P ′, which is a breach-free, semi-reducible path from X to Y . In
addition, |P0| = |P ′| ≤ |P|. Finally, since all of the edges in P ′ belong to G, it follows that
all of the OU-edges in P0 belong to F0.

Recursive Case. Suppose that i ≥ 0 and Pi is a breach-free, semi-reducible path from X
to Y , all of whose OU-edges belong to Fi. If Pi is an OU-path, then let k = i and the
construction is completed. Therefore, consider the case where Pi has at least one lower-
case edge. Below, the path Pi+1 is constructed in stages: from Pi to P ′i to P ′′i to Pi+1. It
is shown that Pi+1 is a breach-free, semi-reducible path from X to Y , all of whose edges
belong to Fi+1, and such that |Pi+1| ≤ |Pi|.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 35

To begin, since Pi is semi-reducible, there is a (not necessarily unique) sequence of
transformations in which each lower-case edge in Pi is canonically eliminated (i.e., reduced
away) by its corresponding extension sub-path. Restrict attention to the first step in this
sequence, whereby a child OU-edge E replaces its (one or two) parent edges. Let P ′i be
the path that is the same as Pi except that the parent edge(s) have been replaced by E, as
illustrated previously in Fig. 3. Since the edge-generation rules preserve length, |P ′i| = |Pi|.
In addition, P ′i must be semi-reducible since it represents the first step in the transformation
of Pi into an OU-path. Furthermore, the canonical elimination of lower-case edges never
introduces breaches; thus, P ′i is breach-free.

Next, since every OU-edge in Pi belongs to Fi, it follows thatE ∈ children(EL,Fi).
However, it may happen that E 6∈ shortest(Fi ∪ children(EL,Fi)) (i.e., E 6∈ Fi+1).
In such a case, there must be an edge Es ∈ Fi+1 that has the same signature as E but such
that |Es| < |E|. Let P ′′i be the same as P ′i except that E is replaced by Es. By the fact
proven earlier,P ′′i must be breach-free and semi-reducible. In addition, |P ′′i | ≤ |P ′i| = |Pi|.
On the other hand, if E ∈ Fi+1, then let P ′′i = P ′i , and note that the same properties hold.

At this point, P ′′i has all of the desired properties, except that its remaining OU-edges
are only guaranteed to belong to Fi, not necessarily to Fi+1. However, repeated use of
the fact proven earlier ensures that replacing each such occurrence of a non-shortest OU-
edge by its shorter counterpart from Fi+1 will preserve the breach-free and semi-reducible
properties of the path. Therefore, let Pi+1 be the path obtained from P ′′i by replacing all
non-shortest OU-edges, if any, by their shorter counterparts from Fi+1. Then Pi+1 is a
breach-free, semi-reducible path from X to Y such that |Pi+1| ≤ |P ′′i | ≤ |P ′i| = |Pi|.

Regarding termination, note that the original path P0 = P ′ has only finitely many
edges and upper-case labels, and that each transformation fromPi toP ′i either decreases the
number of edges in the path by one or removes an upper-case label from an edge. Therefore,
the iterative process of creating the paths in the sequence, P0,P1,P2, . . ., must eventually
terminate. Thus, there must be a smallest integer k such that Pk is an OU-path from X
to Y that is breach-free, semi-reducible, all of whose edges belong to Fk, and such that
|Pk| ≤ |Pk−1| ≤ . . . ≤ |P1| ≤ |P0| = |P ′| ≤ |P|. Therefore, Pou = Pk has the desired
properties.

Finally, let P† be the path obtained from Pou by unwinding the transformations that
generated each of its edges. Now, by its construction, P† is a semi-reducible path from X
to Y in G such that |P†| = |Pou| ≤ |P ′| ≤ |P|. Furthermore, every edge in Pou belongs to
Fk. It only remains to show that every OU-edge appearing anywhere during the transforma-
tion ofP† intoPou must belong to someFi. That follows immediately from how theFi sets
are defined (cf. Defn. 36): for each i ≥ 0, Fi+1 = shortest(Fi ∪ children(EL,Fi)).
Thus, the only way that an edge E can belong to Fi+1 is if it already belongs to Fi or it
was generated by parent edges that were either lower-case edges or OU-edges in Fi. ut

The next theorem ensures that if an STNU has no SRN loops, then the process of gen-
erating strictly shorter edges cannot continue indefinitely. In particular, the generation of
strictly shorter edges converges to shortest edges after a finite number of rounds, thereby
ensuring that the notion of shortest semi-reducible paths is well defined. The proof technique
draws from Morris and Muscettola [19].

Theorem 7 (No SRN Loop⇒ Edge Generation Bounded [19]) Let S be an STNU with
N time-points and K contingent links; and let G be the graph for S. If G has no SRN loops,
then after at mostN2+NK+K rounds, the application of the edge-generation rules from
Table 1 to edges in G cannot generate any strictly shorter edges. In other words,Fi+1 = Fi,
for each i ≥ N2 +NK +K.

DRAFT

36 Luke Hunsberger

X

Y T5

X

Y

E3

E4
E5

E6

E7

E8

E9

T4

T6
T7

T8

T9

E11

E10

PLO, a loop from X to X containing only LO-edges

POU , a loop from Y to Y containing only OU-edges

Fig. 7 A chain of reductions resulting in an LO-loop from X to X , and an OU-loop from Y to Y

Proof Suppose, contrary to the statement of the theorem, that for some r ≥ N2+NK+K,
Fr+1 contains an edge,Er+1, that does not belong to Fr . SinceEr+1 6∈ Fr , it follows that
(at least) one of the edges used to generate Er+1 must belong to Fr , but not Fr−1. Call
that edge Er . Similarly, (at least) one of the edges used to generate Er must belong to
Fr−1, but not Fr−2. Call that edge Er−1. Continue in this way until, after r steps, an edge
E1 is found that belongs to F1, but not F0. Now, consider the sequence of r + 1 edges,
Er+1, Er, Er−1, . . . , E1. Since r + 1 > N2 +NK +K, it follows that for some i > j,
the edgesEi andEj have the same signature. Furthermore, sinceEi was generated afterEj ,
and only shortest edges are kept in the sets Fi, it follows that |Ei| < |Ej |. Since Ei and Ej
have the same signature, they must have the same end-points—say, X and Y . As a result,
the chain of transformations used to generate Ei from Ej must include two loops: PLO ,
a loop from X to X consisting of LO-edges; and POU , a loop from Y to Y consisting of
OU-edges, as illustrated in Fig. 7, whereEi = E11 andEj = E3. The reason is that in each
of the binary edge-generation rules, the lefthand edge must be an LO-edge and the righthand
edge must be an OU-edge. (The Label Removal rule converts upper-case edges into ordinary
edges, which does not disturb this conclusion.) Since |Ei| < |Ej | and the rules preserve
path-length, it follows that one of these loops must have negative length. Now, if POU has
negative length, then unwinding the transformations that generated its edges results in a path
P1 in G that, because it reduces to POU is, by definition, semi-reducible. On the other hand,
if PLO has negative length, then, by Lemma 11, it must be semi-reducible. Unwinding the
transformations that generated the edges in PLO therefore results in a path P2 in G that
also must be semi-reducible. Thus, either case results in an SRN loop in G, contradicting the
premise of the theorem. ut

Definition 37 (F∗ and strip(F∗)) Let G be the graph for an STNU with N time-points
and K contingent links. If G does not have any SRN loops, then F∗ = FN2+NK+K

denotes the set of OU-edges obtained from at mostN2+NK+K rounds of edge generation
in which, for each signature, non-shortest edges are discarded at the end of each round; and
strip(F∗) denotes the set of ordinary edges obtained by stripping the alphabetic labels
from any upper-case edges in F∗.

Lemma 12 Let G be the graph for an STNU. If G has no SRN loops, then the notion of
shortest semi-reducible paths in G is well defined.

Proof Let S = (T , C,L) be an STNU whose corresponding graph, G = 〈T , E+〉, has
no SRN loops; and let F∗ be the set of all OU-edges obtained by applying the edge-

DRAFT

Efficient Execution of Dynamically Controllable STNUs 37

X

Y C

A

C :−102

2

C :−8
C :−6
−6 X

Y C

A

C :−102

2

C :−8

−6
C :−7

3

Fig. 8 Examples illustrating some subtleties of discarding non-shortest edges

generation rules from Table 1 to edges in G. By Theorem 7, F∗ is obtained in at most
N2 + NK +K rounds; and since F∗ contains only the shortest OU-edge for each signa-
ture, |F∗| ≤ N2 +NK. Furthermore, note that each path P∗ consisting of edges in F∗
has a corresponding semi-reducible path Psr in G that is obtained by unwinding the trans-
formations used to generate the edges in P∗ and, hence, |Psr| = |P∗|.

Next, letX and Y be distinct time-points in G. Since |F∗| is finite, there are only finitely
many loopless paths from X to Y whose edges belong to F∗. Therefore, the value

δ∗(X,Y) = min{|P∗xy| : P∗xy is a loopless path from X to Y whose edges are in F∗}

is guaranteed to satisfy δ∗(X,Y) > −∞. (If there are no paths from X to Y whose edges
are in F∗, then δ∗(X,Y) =∞.)

Next, letP be any semi-reducible path in G fromX to Y . By Theorem 6, there is a semi-
reducible path P† from X to Y in G such that |P†| ≤ |P| and P† can be transformed into
an OU-path,Pou, such that (1) the edges inPou all belong toF∗; and (2) each OU-edge that
appears during the transformation of P† into Pou belongs to some Fi. Now, if Pou happens
to contain any subsidiary loops, let P?ou be the path obtained by extracting all such loops
from Pou. Now, any such loop, P◦, because its edges are all in F∗, has a corresponding
semi-reducible loop in G with the same length; and since G has no SRN loops, it follows
that |P◦| ≥ 0. Therefore, extracting all such loops from Pou cannot increase its length;
hence, |P?ou| ≤ |Pou|. But then the loopless path P?ou, with edges in F∗, satisfies:

−∞ < δ∗(X,Y) ≤ |P?ou| ≤ |Pou| = |P†| ≤ |P|.

Therefore, δ∗(X,Y) is a lower bound for the lengths of semi-reducible paths from X to Y
in G. Furthermore, since there are only finitely many loopless paths from X to Y having
edges in F∗, it follows that one of them—call it Pxy

ou—has a path length equal to δ∗(X,Y).
Since its edges are all in F∗, Pxy

ou must have a corresponding semi-reducible path Pxy
sr from

X to Y in G such that |Pxy
sr | = |Pxy

ou |, it follows that Pxy
sr is a shortest semi-reducible path

from X to Y in G, and that |Pxy
sr | = δ∗(X,Y).

Finally, consider the case where X ≡ Y . If there are no semi-reducible loops contain-
ing X , then δ∗(X,X) = ∞. Otherwise, the same kind of argument as that used above
can be used for any semi-reducible loop P containing X , except that only proper sub-loops
should be extracted from the corresponding loop Pou to generate a loop P?ou that does not
contain any proper sub-loops. Similarly, the definition of δ∗(X,X) should be based on loops
with edges in F∗ that contain X , but do not have any proper sub-loops. Finally, since G has
no SRN loops, the length of any semi-reducible loop containing X is bounded below by 0;
hence, 0 ≤ δ∗(X,X) ≤ |P?ou| ≤ |Pou| ≤ |P|. Thus, whether X ≡ Y or not, δ∗(X,Y)
equals the length of the shortest semi-reducible path from X to Y in G. ut

Fig. 8 illustrates some of the subtleties associated with discarding non-shortest edges.
The left side of the figure shows an STNU graph that leads to the generation of the upper-
case edge, X C:−6

A. Assuming that the relevant contingent link is (A, 6, 10, C), the

Label Removal rule then yields the ordinary edge, X −6
A. The right side of the figure

DRAFT

38 Luke Hunsberger

X
2−1

C2 :−4A1

C1 C2

A2

c 2
:3

c 1
:2

C
1

:−
9

C
2

:−
7

X
2−1

C1 C2

A1 A2

C
1

:−
9

C
2

:−
7

X
2−1

C1 C2

A1 A2

-9 -7

(a) The graph G for the STNU S† (b) The corresp. OU-graph Gou (c) The corresp. AllMax graph Gx

Fig. 9 Graphs associated with the sample STNU S† (cf. Fig. 2)

shows the same graph, except that it now includes an edge of length 3 from X to C. That
leads to the generation of the upper-case edge, X C:−7

A. However, the Label Removal
rule does not apply to this edge, since the wait time 7 is greater than the lower bound on
the contingent link. If the non-shortest upper-case edge, X C:−6

A, is discarded, then

the ordinary edge, X −6
A, will never be generated. Therefore, the shortest ordinary edge

from X to A is missed. However, the shortest semi-reducible path from X to A, as repre-
sented by the upper-case edge of length −7, is not missed. And that is what counts with
regard to dynamic controllability.

Given that the notion of shortest paths is well defined for STNUs having no SRN loops,
the following definitions culminate in a definition of the All-Pairs-Shortest-Semi-Reducible-
Paths (APSSRP) matrix, D∗, which plays a central role in all that follows.

Definition 38 (OU-graph, Gou [13]; AllMax graph, Gx [19]) Let S = (T , C,L) be an
STNU; G its graph; and Eou the set of all OU-edges from G. Then:

Gou = the graph 〈T , Eou〉—called the OU-graph for S.
Gx = the STN graph, 〈T , strip(Eou)〉, obtained by stripping the alphabetic labels

from any upper-case edges in Eou—called the AllMax graph for S.

Fig. 9 shows a sample STNU graph G with the corresponding OU-graph and AllMax graph.
Note that the paths in Gou are precisely the OU-paths from G. Note further that, unlike
the OU-graph, the AllMax graph is an STN graph: it contains only ordinary edges. The
AllMax graph acquired its name from the fact that removing the labels from upper-case edges
effectively forces the corresponding contingent links to take on their maximum durations.20

The graphs G∗,G∗ou and G∗x, defined below, are obtained by inserting the edges from F∗
into the graphs G,Gou and Gx, respectively, except that in the case of G∗x, any upper-case
labels are first stripped from the edges in F∗. The graphs, G∗ou and G∗x play particularly
important roles during the execution of an STNU.

Definition 39 (G∗,G∗ou, G∗x, D∗x) Let G = 〈T , E+〉 be an STNU graph that has no SRN
loops. Then:

20 Recall that, for any contingent link, (A, x, y, C), the execution semantics for STNUs ensures that the
duration of each contingent link must stay within its upper bound, y. This, together with the ordinary con-
straint, C−A ≥ y, represented by the edge, C −y

A in the AllMax graph, effectively forces C−A = y.
For an alternative view, note that if the additional ordinary edges discussed in Footnote 12 were included
in the STNU graph, then for each contingent link, (A, x, y, C), the AllMax graph would have two ordinary
edges together representing the constraint, C −A = y.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 39

X
2−1

C1 C2

A1 A2

c 2
:3C 1

:−
7

C1 :−4

C
1

:−
9

C
2

:−
7

c 1
:2

1

1

X
2−1

C1 C2

A1 A2

C 1
:−
7

C1 :−4

C
2

:−
7

1 C
1

:−
9

1

X
2−1

C1 C2

A1 A2

1

-9 -7

-4

-7

1

(a) G∗ = 〈T , E+ ∪ F∗〉 (b) G∗ou = 〈T ,F∗〉 (c) G∗x = 〈T , strip(F∗)〉

Fig. 10 The graphs, G∗,G∗ou and G∗x , derived from the corresponding graphs from Fig. 9

D∗ A1 C1 A2 C2 X

A1 0 1
C1 −9 0 −8
A2 −4 0 −3
C2 −11 2 −7 0 −10
X −11 −11 −11 0

Fig. 11 The APSSRP matrix for the sample STNU from Figs. 9 and 10 (blank entries are∞)

G∗ = 〈T , E+ ∪ F∗〉;
G∗ou = 〈T ,F∗〉 is the OU-graph for G∗;
G∗x = 〈T , strip(F∗)〉 is the AllMax graph for G∗; and
D∗x = the distance matrix for G∗x.

Fig. 10 shows the graphs, G∗,G∗ou and G∗x, that correspond to the graphs in Fig. 9 after
inserting the edges from the set F∗. Note that G∗x is an STN graph.

Corollary 3 If G is an STNU graph that has no SRN loops, then shortest paths in the graph,
G∗x = 〈T , strip(F∗)〉, correspond to shortest semi-reducible paths in G.

Proof Let X and Y be any time-points in G. In the proof of Lemma 12, the value δ∗(X,Y)
is shown to equal the length of the shortest path from X to Y whose edges are in F∗, as
well as the length of the shortest semi-reducible path from X to Y in G. Since stripping the
alphabetic labels from upper-case edges does not affect path lengths, δ∗(X,Y) also equals
the lengths of the shortest path from X to Y in the STN graph, G∗x = 〈T , strip(F∗)〉. ut

In view of Corollary 3, if G is an STNU graph that has no SRN loops, then for any
time-points X and Y , the value D∗x(X,Y) equals the length of the shortest semi-reducible
path from X to Y in G, thus motivating the following definition.

Definition 40 (APSSRP Matrix) Let S be an STNU whose graph G = 〈T , E+〉 has no
SRN loops. Then the AllMax matrix D∗x, defined above, is also called the all-pairs shortest-
semi-reducible-paths (APSSRP) matrix for S. It is frequently notated as D∗.

The APSSRP matrix for the sample STNU from Figs. 9 and 10 is shown in Fig. 11, where
entries that are infinite are left blank to improve readability.21 For example, there are no
edges emanating fromX , hence all off-diagonal entries,D∗(X,Y), are infinite. For another
example, note that D∗(C2, X) = −10, which is the length of the path in G∗x that goes from
C2 to A2 to A1 to X . Although this path is shorter than the ordinary edge in G∗ou from C2

toX , that ordinary edge must be retained for use by the execution algorithm, as will be seen.

21 The distance matrix shown in Fig. 11 presumes that there are self-loops of length 0 at each time-point,
which is common practice in the literature. For dynamically controllable networks, this leads to the distance
matrix having zeroes down its main diagonal.

DRAFT

40 Luke Hunsberger

Computing the APSSRP matrix. Morris and Muscettola’s O(N5)-time DC-checking algo-
rithm computes the APSSRP matrixD∗ using at mostN2+NK+K rounds of edge genera-
tion, at a cost ofO(N3) time per round, to incrementally generate the sets,F0,F1, . . . ,F∗,
followed by an O(N3)-time APSP computation to generate the distance matrix for G∗x [19].
Since the lower-case edges in any semi-reducible path must eventually get “reduced away”,
Morris’ faster, O(N4)-time DC-checking algorithm searches for extension sub-paths that
can be used to reduce away lower-case edges [16]. Although based on a much different ap-
proach, Morris’ algorithm has been shown to compute the same matrix, D∗ [11]. Finally,
Shah et al. [27] and Nilsson et al. [23] have argued, in effect, that it suffices to restrict the
No Case and Upper Case to cases where w ≤ 0 ≤ v. The reader can easily verify that re-
stricting the rules in this way does not hinder the canonical elimination of lower-case edges
first described by Morris [16]. Adapting the proofs of Theorems 6 and 7 to accommodate
this (slightly) more restricted form of edge generation is left as an exercise.

4.3 An STNU with no SRN Loops must be Dynamically Controllable

This section uses the matrix, D∗x, to define an RTED-based execution strategy that is then
shown to be reliable (i.e., it satisfies all constraints in the network no matter how the con-
tingent durations turn out). The RTED-based strategy presented in this section draws from
prior work [11,12], but is streamlined to facilitate the proof of its reliability.

The main insight behind the execution strategy is that the AllMax graph G∗x, which does
not distinguish ordinary and upper-case edges, contains all of the information needed to
generate the next execution decision [11]. The reason for this is that, prior to the execution
of a contingent time-point C, any upper-case edge, Y C:−w

A, labeled by C, is indis-

tinguishable from the corresponding ordinary edge, Y −w
A, in terms of its effect on

as-yet-unexecuted time-points. The catch, however, is that after C executes, the conditional
“wait” constraints represented by upper-case edges labeled by C are no longer applica-
ble and, thus, must be removed from the corresponding OU-graph G∗ou, thereby leading to
changes in the AllMax graph G∗x and its corresponding distance matrix, D∗x.22

The execution algorithm is iterative. Each iteration involves the following steps. First,
the matrix, D∗x, is used to generate an execution decision. Second, the execution outcome is
observed: one or more time-points executing at some time t. Third, the OU-graph and the
AllMax graph are updated. Finally, the matrix, D∗x, is updated in preparation for the next
iteration.

Let S = (T , C,L) be an STNU, and G = 〈T , E+〉 its graph. This section presumes that
there are no SRN loops in G, and hence no negative loops in the corresponding AllMax
graph, G∗x = 〈T , strip(F∗)〉. Now, initially,D∗x is both the APSSRP matrix for G, and the
distance matrix for the AllMax graph G∗x. The main goal during the execution of the network
is to ensure that no negative loops are ever introduced into the AllMax graph. Since that
STN graph contains all of the constraints in C, it suffices to preserve its consistency during
execution. As a consequence, the edge-generation rules from Table 1 are not used during
execution. Instead, edges are merely inserted into or removed from the graphs, G∗ou and G∗x,
and the distance matrix D∗x is appropriately updated. It is not necessary to address whether
the updated matrixD∗x remains the APSSRP matrix for the correspondingly updated STNU.

22 As a consequence, during execution, the AllMax graph only forces all as-yet-unexecuted contingent links
to take on their maximum durations.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 41

The Execution Phase. By Lemma 1, there is some time-point,X0 ∈ T , such that constrain-
ing X0 to equal 0, and constraining every other time-point in the AllMax STN to occur at
or after X0, will not affect the consistency of that STN. That time-point shall henceforth be
called Z. Distance matrix entries involving Z play an important role during execution.

LetUx denote the as-yet-unexecuted executable time-points. Recall that for anyX ∈ Ux,
its execution window is: [−D∗x(X,Z),D∗x(Z,X)]. As a result, the earliest time that any
time-point in Ux can be executed is: tL = min{−D∗x(X,Z) | X ∈ Ux}. And the latest
time before some time-point in Ux must be executed is: tU = min{D∗x(Z,X) |X ∈ Ux}.

During execution, the graphs, G∗ou and G∗x, are both updated—by inserting or removing
edges—in response to the most recent execution events. For example, if a (contingent or
executable) time-point X executes at time t, then the edges, Z t

X and Z
−t

X ,
are inserted into the graphs, representing the execution constraints, X ≤ t and X ≥ t
(i.e., X = t). Second, since upper-case edges correspond to conditional wait constraints
(“As long as C remains unexecuted, V must wait at least w units after A”), whenever a
contingent time-point C is executed, all upper-case edges labeled by C are removed from
the OU-graph, which typically leads to changes in the AllMax graph, G∗x [11]. In turn, the
distance matrix D∗x for G∗x must be updated. For example, if all upper-case edges labeled
by C1 were removed from the OU-graph G∗ou in Fig. 10b, then the corresponding ordinary
edges would be removed from the AllMax graph G∗x in Fig. 10c. Those changes would then
make the edge from C2 to X of length 1 the new (longer) shortest path from C2 to X ,
requiring updating D∗(C2, X) from −10 to 1.

All edges that are inserted into these graphs during execution invariably involve Z,
whether as a source or destination time-point; but edges that are removed may not involve Z.

The execution strategy. Defn. 41, below, defines an execution strategy, R̂, that is used to
demonstrate the existence of a reliable strategy for an STNU S whose graph has no SRN
loops. The decisions generated by R̂ depend solely on the information in the updated matrix
D∗x which, in turn, is derived solely from the initial STNU graph together with execution
constraints of the form, X = t, for the already executed time-points. As a result, the deci-
sions generated by R̂ depend only on information present in the current partial schedule. In
this way, R̂ is effectively a mapping from respectful partial schedules to RTEDs and, thus,
is an RTED-based execution strategy.

As usual, the initial partial schedule is ξ0 = ∅. The first decision, R̂(ξ0), is defined to
be (0, χ0), where χ0 is the set of time-points that are constrained to co-occur with Z in
the AllMax STN. (Typically, χ0 will only contain Z.) Since no contingent time-points have
been activated yet, the outcome of this initial decision is fully determined: the time-points
in χ0 are executed at 0. For all other partial schedules ξ, R̂(ξ) is defined as follows.

Definition 41 (RTED-based Strategy, R̂) Let ξ be a non-empty respectful partial sched-
ule; let Ux = Tx −Vars(ξ) be the set of executable time-points that are not yet executed
in ξ; and let D∗x be the corresponding AllMax matrix. If Ux is empty, then R̂(ξ) = wait.
Otherwise, R̂(ξ) = (t, χ), where t and χ are determined as follows. First, let tL be the
minimum lower bound for as-yet-unexecuted executable time-points; and let χ be the set of
time-points whose lower bound is tL:

tL = min{−D∗x(X,Z) |X ∈ Ux}; and
χ = {X ∈ Ux | − D∗x(X,Z) = tL}.

Next, if tL > nowξ, then let t = tL. Otherwise, tL ≤ nowξ, which is not a legal time for an
execution decision based on ξ; therefore, let t = nowξ+tU

2 , where tU is the minimum upper
bound for all as-yet-unexecuted executable time-points:

DRAFT

42 Luke Hunsberger

tU = min{D∗x(Z,X) |X ∈ Ux}.

Under the assumption that tU > nowξ, t is thus guaranteed to be greater than nowξ.23

Theorem 8, below, confirms the most important property of STNUs.

Theorem 8 (No SRN Loops⇒ DC) Let S be any STNU. If the graph for S has no SRN
loops, then S must be dynamically controllable.

Proof Let S = (T , C,L) be any STNU whose graph G = 〈T , E+〉 has no SRN loops. It
will be shown that the RTED-based execution strategy R̂ from Defn. 41 is a reliable strategy
for S (i.e., for every situation ω, the complete scheduleO∗(R̂, ω) that results from following
R̂ in ω satisfies all of the constraints in C) and, therefore, that S is dynamically controllable.

Let G∗ou = 〈T ,F∗〉 be the OU-graph for G (cf. Defn. 39). During execution, G∗ou will
be updated (i.e., destructively modified) as follows: (1) whenever any (contingent or exe-
cutable) time-pointX executes, edges corresponding to constraints of the form,X = t, will
be inserted into G∗ou; and (2) whenever any contingent time-point C executes, the upper-
case edges labeled by C will be removed from G∗ou. At each point during the execution of
the network, the AllMax graph G∗x (cf. Defn. 39) is the graph obtained by stripping any al-
phabetic labels from whatever edges are currently in G∗ou; and the AllMax matrix D∗x is the
corresponding distance matrix.24

Let ω be any situation; and let ξ0, ξ1, ξ2, . . . , ξp = O∗(R̂, ω) be the unique sequence
of schedules that results from following R̂ in ω (cf. Lemma 2). For each i ≤ p:

• let U ix be the set of executable time-points that are not yet executed in ξi;
• let (G∗ou)i be the OU-graph updated to reflect all of the execution events in ξi;
• let (G∗x)i be the AllMax graph derived from (G∗ou)i;
• let (D∗x)i be the AllMax matrix derived from (G∗x)i;
• let tiL = min{−(D∗x)i(X,Z) | X ∈ U ix} be the minimum lower bound among the

executable time-points that are not yet executed in ξi; and
• let tiU = min{(D∗x)i(Z,X) | X ∈ U ix} be the minimum upper bound among the

executable time-points that are not yet executed in ξi.

Next, for each i ≤ p, consider the following propositions.

• P (i): the graph (G∗x)i has no negative loops; and
• Q(i): nowξi < tiU .

The main goal of the rest of the proof is to show by induction that P (i) holds for each i ≤ p
(i.e., that the AllMax STN remains consistent throughout the execution of the network).
Since the AllMax STN contains all of the constraints in C, as well as all of the execution
constraints, P (p) holding implies that the unique outcome obtained by following the strat-
egy R̂ in the situation ω satisfies all constraints in C, as desired. The proof is facilitated by
showing in parallel that Q(i) also holds for each i ≤ p (i.e., that the upper bounds for all
as-yet-unexecuted time-points are in the future).

23 The proof of Theorem 8 will show that tU > nowξ invariably holds when following the strategy R̂.
24 For the purposes of the proof, it is convenient to ignore issues of computational efficiency. Thus, the

graph G∗x , and the distance matrixD∗x are thought of as being effectively re-computed from scratch after each
update to the OU-graph G∗ou. The FAST-EX algorithm presented in Section 5 uses incremental techniques to
efficiently update G∗x and D∗x after each execution event.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 43

Base Cases: P (0) and P (1). Since G has no SRN loops, the initial AllMax graph, (G∗x)0,
cannot have any negative loops. Therefore, P (0) holds. In addition, since the set χ0 in
the initial decision, R̂(ξ0) = (0, χ0), contains precisely those executable time-points X
that, in the AllMax graph, are constrained to co-occur with Z, the corresponding execution
constraints, X = 0, are redundant in (G∗x)0 (cf. Lemma 1). Therefore, (G∗x)1 and (G∗x)0 are
equivalent. Hence, P (1) also holds.

Base Cases: Q(0) and Q(1). Since (G∗x)0 is consistent, it follows that for each X ∈ U0
x ,

(D∗x)0(Z,X) > −∞ = nowξ0 . Thus, t0U > nowξ0 (i.e., Q(0) holds). In addition, all
executable time-points that remain unexecuted at time 0 must have upper bounds that are
strictly greater than 0, since all those executable time-points that were constrained, in the
AllMax graph, to co-occur with Z were defined, by R̂, to be in the set χ0. As a result,
nowξ1 = 0 < t1U (i.e., Q(1) holds).

Recursive Case. Suppose the propositions P (i) andQ(i) hold for some i, where 1 ≤ i < p.
Let ∆i = R̂(ξi) be the execution decision determined by R̂ for the partial schedule ξi, as
prescribed by Defn. 41. In view of Defns. 17 and 18, there are three possibilities for the
outcome ξi+1 that results from the decision R̂(ξi):25

(1) Some set, χc, of contingent time-points execute together at some time ρ;
(2) Some set, χ, of executable time-points execute together at some time t; or
(3) Some set, χc ∪ χ, of contingent and executable time-points execute together

at some time ρ = t.

The following analysis shows that the propositionsP (i+1) andQ(i+1) must hold no matter
which combination of time-points happens to execute. The analysis is done incrementally.
First, the updates associated with any contingent executions that might have occurred are
applied to the graph (G∗x)i. Afterward, the updates associated with the execution of any
executable time-points are applied.

For clarity, G∗ou will notate the OU-graph at each stage of the analysis. Thus, G∗ou will
start out as (G∗ou)i and, after all the updates are done, will end up as (G∗ou)i+1. Similar
remarks apply to G∗x and D∗x, which will start out as (G∗x)i and (D∗x)i, respectively, and end
up as (G∗x)i+1 and (D∗x)i+1.

Case 1: Contingent Executions. Let χc be the set of contingent time-points that, according
to the outcome ξi+1, execute at the time ρ = nowξi+1

> nowξi . According to the execu-
tion semantics, a contingent time-point C can only execute at time ρ if the corresponding
contingent link, (A, x, y, C), is active in ξi, and nowξi < a + y, where a = ξi(A) is the
execution time forA in ξi. The following updates will be done to the graph G∗ou, in the order
specified.

(i) for each C ∈ χc, remove all generated upper-case edges labeled by C;
(ii) for each C ∈ χc, remove the corresponding original upper-case edge, C C:−y

A,

and then insert the ordinary edge, C −ρ
Z (i.e., C ≥ ρ); and

(iii) for each C ∈ χc, insert the ordinary edge, Z
ρ

C (i.e., C ≤ ρ).

25 For complete generality, each outcome involves a set of time-points that executes. However, in practice,
these sets are often singleton sets.

DRAFT

44 Luke Hunsberger

Z

−δ < −ρ

OU-edges in F∗

C

execution constraint

ρ ≤ a + y
Z CA

a

−δ + w V
−w ≤ 0

c :x

x− w

extension sub-path, Pe

e

Fig. 12 The scenario described in Case 1a in the proof of Theorem 8

Since operation (i), above, only removes edges from G∗ou, its only impact on the AllMax
graph G∗x is the possible weakening of constraints, which cannot introduce an inconsistency.
For example, if E is some upper-case edge from X to Y that is removed from G∗ou, that
might cause some other edge (or path) from X to Y in G∗ou to become the new (longer)
shortest path from X to Y in G∗ou, and its stripped counterpart in G∗x to become the new
(longer) shortest path from X to Y in the AllMax graph, but it cannot introduce any shorter
paths into the AllMax graph. Thus, after all of the edge removals by operation (i), the graph
G∗x cannot have any negative loops.

Similarly, the updates in operation (ii), above, correspond to weakening constraints in
the AllMax graph and, thus, cannot introduce any negative loops into G∗x. To see this, note
that each remove-then-insert update is equivalent to replacing the original upper-case edge,
C

C:−y
A, associated with some contingent link (A, x, y, C), by the weaker ordinary

edge,C −ρ+a
A, where a = ξi(A). The execution semantics ensures that ρ ≤ a+y and,

hence, that −ρ+ a ≥ −y. Thus, the net effect of this replacement on the path from C to A
toZ in the graph G∗ou is to increase its length from−y−a to (−ρ+a)−a = −ρ ≥ −y−a.
(If ρ = a+y, then the path length stays the same.) This weakened path from C toA to Z of
length −ρ is equivalent to the execution constraint, Z − C ≤ −ρ (i.e., C ≥ ρ). Increasing
path lengths in G∗ou cannot introduce negative loops into G∗x. Therefore, after all of the
remove-then-insert updates by operation (ii), the graph G∗x cannot have any negative loops.

Unlike the first two operations, operation (iii) typically involves the insertion of tighter
constraints and, thus, the possibility of it introducing a negative loop into G∗ou—and, hence,
into G∗x—must be checked. Toward that end, suppose that an upper-bound edge, Z

ρ
C,

is the first such edge to introduce a negative loop into G∗ou (and G∗x). Now, that can only
happen if G∗x contains a path from C to Z of some length −δ < −ρ; and, hence, G∗ou must
contain a path from C to Z of length −δ < −ρ. There are two sub-cases to consider.

Case 1a. The lefthand side of Fig. 12 illustrates the case where all of the edges in the
path from C to Z belong to F∗ and, hence, were present during the edge-generation phase,
prior to any execution. Although F∗ does not contain any lower-case edges, all lower-case
edges are available for use during the edge-generation phase. Thus, for example, let e be the
lower-case edge,A

c:x
C, associated with the contingent link, (A, x, y, C). Since the path

from C to Z has negative length, some prefix of that path must be an extension sub-path Pe
for e, as illustrated on the righthand side of Fig. 12, where |Pe| = −w ≤ 0. In addition,
since all upper-case edges labeled by C were removed during operations (i) and (ii), the
extension sub-path Pe cannot contain any breach edges. Therefore, F∗ must also contain
the (ordinary or upper-case) edge from A to V of length x − w, obtained by using Pe to
“reduce away” the lower-case edge e, as shown in the figure.

Now, suppose that the generated edge from A to V was an upper-case edge labeled by
some contingent time-point K. That could only happen if the moat edge (i.e., last edge) in

DRAFT

Efficient Execution of Dynamically Controllable STNUs 45

Z C
ρ ≤ a + y

OU-edges in F∗
B

execution constraints

−b −γ < b− ρ

Z C

B

A
c :xa

V

x− w
−b −w ≤ 0

−γ + w

e

extension sub-path, Pe

Fig. 13 The scenario described in Case 1b in the proof of Theorem 8

Pe was itself an upper-case edge labeled byK. Since that moat edge is in G∗ou, thenK must
still be unexecuted, since otherwise all upper-case edges labeled by K would have been
removed. But that implies that the generated edge from A to V , also labeled by K, must
still belong to G∗ou. Thus, whether ordinary or upper-case, the generated edge from A to V
must still belong to G∗ou. (Ordinary edges never get removed during execution.)

Next, since the execution semantics ensures that the activation time-point A executes
before C, A must have already been executed in ξi. Therefore, the execution edge from Z
to A of length a, where a is the execution time for A, must belong to (G∗x)i. As a result, all
of the edges in the loop from Z to A to V to Z must have been present in (G∗x)i. But the
length of this loop is a + (x − w) + (−δ + w) = a + x − δ < a + x − ρ ≤ ρ − ρ = 0,
which, being negative, contradicts the inductive hypothesis, P (i).

Case 1b. The lefthand side of Fig. 13 illustrates the only other alternative. In this case,
the path from C to Z that completes the negative loop in G∗x—and hence also in G∗ou—
terminates in an execution edge from B to Z, where B is some time-point that executed
at some time b ≤ ρ. Note that in the STN graph G∗x, the shortest path from C to Z can
be assumed to involve only one occurrence of the time-point Z (cf. the proof of Fact 1);
therefore, the shortest path fromC to Z in G∗ou can similarly be assumed to involve only one
occurrence of Z. Thus, without loss of generality, the path from C toB of length−γ can be
assumed to not include the time-point Z. Therefore, all of the edges in the path from C toB
must belong toF∗. Now, in this case, the length of the negative loop is ρ−γ−b < 0, which
implies that −γ < b− ρ ≤ 0. Therefore, the path from C to B must contain an extension
sub-path Pe for the lower-case edge e, as illustrated on the righthand side of Fig. 13. In
addition, because all upper-case edges labeled by C were removed by operations (i) and (ii),
Pe cannot contain any breaches. And, since all of the edges in Pe belong to F∗, it follows
that the (ordinary or upper-case) edge, A x−w

V , obtained by using Pe to “reduce away”
the lower-case edge e must also belong to F∗. As in Case 1, if the generated edge from A
to V is an upper-case edge, it cannot yet have been removed. But then all of the edges in
the path from Z to A to V to B to Z must be present in G∗ou prior to any of the updates
done by operation (iii). Since the length of this path is a + (x − w) + (−γ + w) − b =
a+ x− γ − b ≤ ρ− γ − b < 0, which is negative, it contradicts that G∗ou had no negative
loops prior to the beginning of operation (iii).

From the above analyses, it follows that, after all the updates from operations (i), (ii)
and (iii) have been completed, the graph G∗x has no negative loops. Thus, the execution of
contingent time-points has not caused the proposition P (i+ 1) to be violated.

Next, recall that values of the form, D∗x(Z,D), where D ∈ U i+1
x , are relevant to the

computation of ti+1
U , whose value is the subject of the proposition Q(i + 1). Although

updates from operations (i), (ii) and (iii) may change entries in the D∗x matrix, it will be
shown that each relevant D∗x(Z,D) value remains strictly greater than nowξi+1

at every

DRAFT

46 Luke Hunsberger

Z C

execution constraint

ρ ≤ a + y

−w ≤ 0
D

OU-edges in F∗

Z C

D

A
c :xa

V

−r

−w + r

x− r
extension
sub-path

Fig. 14 The scenario described in Case 1d of the proof of Theorem 8

stage of the updating process, in conformance with the proposition Q(i + 1). Since, as
already observed, updates from operations (i) and (ii) can only lengthen shortest paths in
G∗ou (and G∗x), any violation of Q(i + 1) involving some D∗x(Z,D) ≤ nowξi+1

must occur
either before any updates have been made (i.e., when D∗x = (D∗x)i) or as a result of an
update from operation (iii).

First, note that if U i+1
x = ∅, then ti+1

U = ∞, in which case Q(i + 1) is guaranteed to
hold no matter what updates are done. Therefore, suppose that U i+1

x 6= ∅, in which case,
U ix 6= ∅, since U i+1

x ⊆ U ix. As a result, the decision R̂(ξi) generated by the strategy R̂ for
the partial schedule ξi must have the form (t, χ) for some time t > nowξi . Furthermore,
since the outcome represented by ξi+1 involves the execution of at least one contingent
time-point at some time ρ, it follows that ρ = nowξi+1

≤ t.
Suppose, contrary to the goal, that for some D ∈ U i+1

x , D∗x(Z,D) ≤ ρ at some point
during the updating process (e.g., before any updates are done or as the result of an update
from operation (iii)). Without loss of generality, consider the first point during the updating
process at which this occurs. For convenience, let d = D∗x(Z,D) be the upper-bound for D
in G∗x. Thus, d = D∗x(Z,D) ≤ ρ ≤ t; and there must exist a path from Z to D of length d
in G∗x, and hence also in G∗ou.

Case 1c. Suppose that all edges in the upper-bound path from Z to D are in (G∗ou)i.
Now, by P (i), there are no negative loops in (G∗x)i or (G∗ou)i; thus, it follows that the lower
bound for D in (G∗x)i satisfies: −(D∗x)i(D,Z) ≤ d. Now, if the value of t for the decision
(t, χ) was derived from t = tiL (cf. Defn. 41), then t = tiL ≤ −(D∗x)i(D,Z) ≤ d ≤ ρ ≤ t,
from which it follows that t = ρ and, therefore, that D is executed in ξi+1, contradicting
that D ∈ U i+1

x . On the other hand, if t was derived from t = (nowξi + tiU)/2, where
tiU > nowξi by Q(i), then d ≤ ρ ≤ t = (nowξi + tiU)/2 < tiU , which contradicts the
definition of tiU , since D ∈ U i+1

x ⊆ U ix.
Case 1d. The only other alternative is that the upper-bound path in G∗x from Z to D of

length d ≤ ρ ≤ t involves an upper-bound execution edge, Z
ρ

C, introduced by an up-
date from operation (iii) in response to a contingent time-point C executing at time ρ. Since
that path is a shortest path in an STN graph, it can be assumed to have only one occurrence
of the time-point Z. But then the corresponding path in G∗ou from Z toC toD would require
a path from C to D in G∗x of some length, −w ≤ 0, as illustrated on the lefthand side of
Fig. 14, where the path from C to D must consist solely of OU-edges from F∗. Since that
path has non-positive length, and since operations (i) and (ii) removed all upper-case edges
labeled by C, the path from C to D must contain a breach-free extension sub-path for the
lower-case edge, A

c:x
C, as shown on the righthand side of Fig. 14, where the exten-

sion sub-path goes from C to V and has length −r ≤ 0. But this implies that F∗ must also
contain the (ordinary or upper-case edge) fromA to V of length x−r obtained by “reducing
away” that lower-case edge, as shown in the figure. As in prior cases, if the generated edge

DRAFT

Efficient Execution of Dynamically Controllable STNUs 47

from A to V is some upper-case edge labeled by K, then it must be that the moat edge in
the extension sub-path is also an upper-case edge labeled by K; and since that moat edge
has not yet been removed from G∗ou, the generated edge from A to V must still belong to
G∗ou. In addition, since the activation time-point A must have already been executed in ξi,
it follows that all of the edges in the OU-path from Z to A to V to D must be in G∗ou. The
length of that path is: a + (x − r) + (−w + r) = a + x − w ≤ ρ − w ≤ ρ. But then the
upper-bound for D in (G∗x)i satisfies: (D∗x)i(Z,D) ≤ ρ ≤ t. But then the same arguments
used in Case 1c, above, yield the same contradictions.

Since Cases 1c and 1d both lead to contradictions, it follows that after all of the updates
from operations (i), (ii) and (iii), D∗x(Z,D) > nowξi+1

holds for all D ∈ U i+1
x (i.e., there

are no violations of Q(i+ 1) due to these updates).

Case 2: Executable executions, but no contingent executions. In this case, the outcome
ξi+1 involves the execution of only executable time-points in some set χ at some time
t = nowξi+1

. Therefore, the decision R̂(ξi) generated by the strategy R̂ for the partial
schedule ξi must have been (t, χ). The only updates to G∗ou (and G∗x) in response to these
execution events are the insertion of execution constraints of the form, X = t. It remains
to show that these updates do not cause any violations of P (i+ 1) or Q(i+ 1). For conve-
nience, it is assumed that all lower-bound edges, X −t

Z, are inserted first, followed by

all upper-bound edges, Z t
X . There are two cases to consider, depending on how the

value of t was generated for the decision R̂(ξi) (cf. Defn. 41).
Case 2a: t = tiL = min{−(D∗x)i(X,Z) | X ∈ U ix}. In this case, the lower-bound

constraints for all time-points X ∈ χ were already present in (G∗x)i and, thus, inserting
lower-bound edges of the form, X −t

Z, could not introduce any negative loops. In addi-

tion, each executable time-point X ∈ U ix that is not in χ must have a lower bound that is
greater than tiL = t = nowξi+1

; otherwise, R̂ would have put X into χ. Therefore, since
the inductive hypothesis P (i) ensures that (G∗x)i has no negative loops, the corresponding
upper bound for X must also be greater than tiL = t. In other words, for each X ∈ U i+1

x ,
(D∗x)i(Z,X) > t = nowξi+1

.
Next, suppose that some upper-bound edge, Z t

X , introduced a negative loop in
G∗ou (and G∗x). That would require a path in G∗x (and hence also in G∗ou) from X to Z of
some length −δ < −t. Now, such a path may be presumed to have only one occurrence
of Z (cf. the proof of Fact 1); and since all lower-bound edges for any time-points that
executed at time t were redundant, there must have already been such a path in (G∗x)i. But
then −(D∗x)i(X,Z) > t = tiL contradicts that X ∈ χ. Thus, no upper-bound edge can
introduce a negative loop into G∗ou or G∗x.

Finally, suppose that the insertion of the upper-bound edge, Z t
X , into the graphs

G∗x and G∗ou caused the upper bound of some still-unexecuted executable time-point Y ∈ U i+1
x

to become less than or equal to nowξi+1
= t = tiL. The only way this could happen is if

there were a path from X to Y in G∗x of some length −w ≤ 0, yielding a path from Z to
Y of length t − w ≤ t. As discussed previously, such a path from Z to Y can be assumed
to not involve multiple occurrences of Z, in which case the path from X to Y of length
−w ≤ 0 does not involve Z and, thus, consists of edges in F∗, and hence in (G∗x)i. But that
would imply that the lower bound for Y in (G∗x)i must have been less than or equal to the
lower bound for X (i.e., −(D∗x)i(Y,Z) ≤ −(D∗x)i(X,Z) = tiL = t), contradicting that
X ∈ χ, while Y 6∈ χ. Therefore,D∗x(Z, Y) > t = nowξi+1

, and no violation of proposition
Q(i+ 1) has occurred.

DRAFT

48 Luke Hunsberger

Case 2b: t = (nowξi + tiU)/2. This case arises when tiL ≤ nowξi . Thus, some
of the lower-bound edges being inserted into G∗ou (and G∗x) may represent stronger con-
straints (i.e., shorter paths). Suppose that for some X ∈ χ, inserting the lower-bound edge,
X
−t

Z, introduced a negative loop into G∗x. Choose the insertion that caused the first
such negative loop. Since all prior insertions of lower-bound edges did not introduce a neg-
ative loop, they could not have changed the lengths of any paths emanating from Z (cf.
Corollary 1). Therefore, they could not have caused any entries of the form, D∗x(Z,X),
to change. Therefore, inserting the lower-bound edge from X to Z could only cause a
negative loop now if there were already a path from Z to X of length less than t in G∗x
(and G∗ou). Without loss of generality, such a path can be assumed to have only one occur-
rence of Z. Therefore, (D∗x)i(Z,X) < t. Now, by Q(i), nowξi < tiU , which implies that
nowξi < (nowξi + tiU)/2 < tiU . Thus, t = (nowξi + tiU)/2 < tiU . But, by definition,
tiU ≤ (D∗x)i(Z,X). Thus, t < tiU ≤ (D∗x)i(Z,X) < t, which is a contradiction. Thus, no
insertions of lower-bound edges can introduce a negative loop into G∗x. As a result, none of
the insertions can change any upper bounds on any still-unexecuted executable time-points.
Therefore, nowξi+1

= t < tiU ≤ D∗x(Z, Y), for all Y ∈ U i+1
x ⊆ U ix. Therefore, no

insertion of lower-bound edges can cause a violation of either P (i+ 1) or Q(i+ 1).
Next, consider the insertion of an upper-bound edge, Z t

X , into the graphs G∗ou
and G∗x. Suppose this edge caused the first negative loop. That would require the existence
of a path in G∗x from X back to Z of length less than −t. Without loss of generality, that
path can be assumed to have only the terminal occurrence of Z. If all the edges in that
path were in (G∗x)i, then the lower bound for X in (G∗x)i would have been greater than t,
contradicting that the decision, R̂(ξi) = (t, χ), involved executing X at time t. The only
other possibility is that all of the edges in the path from X to Z are in (G∗x)i except for the
terminal edge, which would have to be a lower-bound execution edge, B −t

Z, for some
time-point B ∈ χ that also executed at time t. But then the path from X to B to Z could
only have length less than −t if the sub-path from X to B had negative length. But that
would contradict that B and X had the same lower bound in (G∗x)i, which is required if
both were in χ. Thus, inserting the upper-bound edge cannot introduce a negative loop.

Finally, consider whether inserting an upper-bound edge,Z t
X , into G∗x could cause

D∗x(Z, Y) ≤ nowξi+1
to hold for some Y ∈ U i+1

x . Since all shortest paths from Z to Y that
begin with Z can be assumed to have no repeat occurrences of Z, that would require a
path from X to Y of some length −w ≤ 0, all of whose edges are in (G∗x)i. But then
(D∗x)i(X,Z) ≤ (D∗x)i(Y,Z), which means that the lower bound for X is at least as great
as the lower bound for Y in G∗x, contradicting that Y 6∈ χ. Thus, the insertion of an upper-
bound edge cannot cause a violation of Q(i+ 1).

As a result of the above analyses, after all of the updates associated with the execution
of the executable time-points in χ at time t, there are no negative loops in G∗x, and for every
Y ∈ U i+1

x , xD∗x(Z, Y) ≤ nowξi+1
Since G∗x now equals (G∗x)i+1 and D∗x now equals

(D∗x)i+1, it follows that P (i+ 1) and Q(i+ 1) both hold.

Case 3: Simultaneous execution of contingent and executable time-points. This case in-
volves the simultaneous execution of the contingent time-points in some set χc and the
executable time-points in some set χ, at some time ρ = t. The updates associated with the
execution of the contingent time-points are carried out first, exactly as discussed in Case 1.
After those updates have been done, the analysis of Case 1 shows that there are no negative
loops in the updated G∗x, and for every Y ∈ U i+1

x , D∗x(Z, Y) ≤ nowξi+1
.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 49

Z C
t

X
−t δ − t < 0

Z CA
a c :x

X V

extension sub-path

−w ≤ 0x− w
−t

δ − t + w

Fig. 15 The scenario described in Case 3b in the proof of Theorem 8

Next, the updates associated with the execution of the executable time-points are carried
out. Since some contingent time-points have already executed, and the above conclusions
are in hand, there turns out to be less work to do here. The following sub-cases are analogous
to Cases 2a and 2b seen earlier.

Case 3a: t = tiL > nowξi . In this case, the insertion of a lower-bound edge, X −t
Z,

must be redundant, since t = tiL = −(D∗x)i(X,Z). Thus, no negative loops can be intro-
duced. In addition, since such an insertion cannot change the lengths of any shortest paths
emanating from Z, the inequality, D∗x(Z, Y) ≤ nowξi+1

, must still hold for all Y ∈ U i+1
x .

Next, consider the insertion of an upper-bound edge, Z t
X . Showing that such an

edge cannot introduce a negative loop can be handled as in Case 2a, except that there is
one additional possibility to consider: suppose there is a path from X to Z of some length
−δ < −t whose terminal edge is an execution constraint for some contingent time-point
C ∈ χc that happened to execute at time t. Since that terminal edge has length −t, it
follows that the path from X to C must have negative length. But then, in (G∗ou)i, where
the corresponding contingent time-point A must have already executed at some time a, it
follows that there is an OU-path from C to A consisting of the original upper-case edge,
C

C:−y
A, followed by the execution edge, A −a

Z. Now, the length of this path is
−y−a ≤ −t, since the execution semantics ensures that the contingent duration,C−A ≤ y.
But that implies that there was a path in (G∗ou)i from X to Z whose length is less than −t
(i.e., that the lower-bound forX in (G∗ou)i was greater than t), which contradicts thatX ∈ χ.
Thus, no upper-bound edge can introduce a negative loop.

Finally, to show whether such an upper-bound edge could cause D∗x(Z, Y) ≤ t =
nowξi+1

for some Y ∈ U i+1
x can be handled exactly as in Case 2a.

Case 3b: t = (nowξi + tiU)/2. To show that the insertion of a lower-bound execution
edge, X −t

Z, cannot introduce a negative loop into G∗x can be handled as in Case 2b, ex-
cept that there is one additional case to consider: suppose that the negative loop is completed
by a path from Z toX of some length δ < t, whose initial edge is an upper-bound execution
edge, Z t

C, for some newly executed contingent time-point, C ∈ χc, as illustrated on
the lefthand side of Fig. 15. Since the path from Z to C to X has length δ < t, it follows
that the subsidiary path from C to X has length δ − t < 0; and, furthermore, that all of its
edges belong to F∗. But then, assuming that the relevant contingent link is (A, x, y, C), it
follows that the path from C to X contains a breach-free extension sub-path for the lower-
case edge, A

c:x
C, as illustrated on the righthand side of Fig. 15, where the extension

sub-path goes from C to V and has length −w ≤ 0. Reducing away the lower-case edge
generates an (ordinary or upper-case) edge fromA to V of length x−w. Furthermore, since
the activation time-point A must have already executed, at some time a, it follows that all
of the edges in the path from Z to A to V to X were in the graph (G∗ou)i. But this path has
length a+(x−w)+ (δ− t+w) = a+x+ δ− t ≤ t+ δ− t = δ < t, since the execution
semantics ensures that a + x ≤ t. But in that case, t > (D∗x)i(Z,X) ≥ tiU > t, which
is a contradiction. Thus, no lower-bound execution edge can introduce a negative loop. In

DRAFT

50 Luke Hunsberger

addition, as in Case 2b, the insertion of edges terminating at Z cannot change the lengths of
shortest paths emanating from Z; thus, such edges cannot cause a violation of proposition
Q(i+ 1).

Finally, consider the insertion of an upper-bound execution edge, Z t
X . To show

that such an edge cannot introduce a negative loop into G∗x can be handled as in Cases 2b
and 3a. And to show that such an edge cannot cause D∗x(Z, Y) ≤ t = nowξi+1

for any
Y ∈ U i+1

x can be handled as in Case 2b.

In conclusion, the updates associated with the execution of contingent or executable time-
points, in any combination, cannot introduce any negative loops into G∗ou or G∗x; and they
cannot causeD∗x(Z, Y) ≤ nowξi+1

for any Y ∈ U i+1
x . Furthermore, by the time all of these

updates have been done, G∗ou and G∗x are equal to (G∗ou)i+1 and (G∗x)i+1, respectively; and
D∗x is equal to (D∗x)i+1. Therefore, the propositions P (i+1) andQ(i+1) have been shown
to hold. ut

Theorem 9 (Fundamental Theorem of STNUs) Let S be any STNU; let G be its graph;
and let D∗ be its APSSRP matrix. Then the following are equivalent: (1) S is dynamically
controllable; (2) G has no SRN loops; (3) the notion of shortest semi-reducible paths is well
defined for G; and (4) D∗ has non-negative entries down its main diagonal.

Proof (⇒) Suppose that condition (4) does not hold (i.e., that D∗ has a negative entry
along its main diagonal). In that case, there must be a negative loop in the AllMax graph
(i.e., condition (2) does not hold), which corresponds to an SRN loop in G. Furthermore,
a negative loop in the AllMax graph implies that the notion of shortest paths is ill-defined
for that graph which, in turn, implies that the notion of shortest semi-reducible paths is
ill-defined for G (i.e., condition (3) does not hold). (Recall that semi-reducible paths in G
correspond to ordinary paths in G∗x.) In addition, G having an SRN loop implies that S is not
dynamically controllable, by Theorem 4 (i.e., condition (1) does not hold).

(⇐) Suppose that condition (4) holds. Since D∗ is the distance matrix for the AllMax
STN, its having only non-negative entries down its main diagonal ensures that the notion
of shortest path in G∗x is well defined, by the Fundamental Theorem of STNs, and hence
that the notion of shortest semi-reducible path in G is well defined (i.e., that condition (3)
holds). In addition, only non-negative diagonal entries implies that G has no SRN loops (i.e.,
that condition (2) holds). And, finally, Theorem 8 ensures that S is dynamically controllable
(i.e., condition (1) holds). ut

All of the DC-checking algorithms that have been presented in the literature so far work
by determining whether the corresponding graph has any SRN loops. Thus, all such algo-
rithms depend on the Fundamental Theorem of STNUs. The presentation in this paper is the
first comprehensive and rigorous treatment of the theory of STNUs and dynamic control-
lability aimed squarely at the Fundamental Theorem. By addressing important details that
have been glossed over or missed altogether in prior work, this paper solidifies the theoreti-
cal foundations of STNUs and dynamic controllability.

5 Efficiently Executing Dynamically Controllable STNUs

The proof of Theorem 8 provides a constructive algorithm for generating the execution deci-
sions that form a reliable RTED-based execution strategy for any dynamically controllable

DRAFT

Efficient Execution of Dynamically Controllable STNUs 51

STNU. The execution decisions depend on properly updating the graphs, G∗ou and G∗x, as
well as the AllMax matrix, D∗x. Once those updates have been completed for a given partial
schedule, ξi, the actual computation of the execution decision, R̂(ξi), can be done in linear
time. Thus, efficiently managing the updating of the graphs and the AllMax matrix is the key
to efficiently managing the execution of a dynamically controllable STNU. Furthermore, it
is the removal of upper-case edges in response to the execution of contingent time-points
that dominates the computations.

In prior work, this author presented an execution algorithm, called NEW-EX, that up-
dates the entire AllMax matrix after each execution event. Each NEW-EX update of D∗x in
response to the removal of upper-case edges uses O(N3) time, where N is the number of
time-points in the network [11]. Thus, NEW-EX uses O(N4) time over an entire execution
run: at most N updates at O(N3) time per update.

More recently, this author presented a faster execution algorithm, called FAST-EX, that
requires only O(N3) time total: at most N updates at O(N2) time per update [12]. The
faster performace is achieved by only updating the entries of D∗x that involve the Z time-
point, as described below. The FAST-EX algorithm usesO(N2) space. This section presents
a modified version of the FAST-EX algorithm that more effectively (and correctly) organizes
its computations by: (1) eschewing the unnecessary greater-than-now constraints for unex-
ecuted time-points; and (2) generating RTEDs as described in Defn. 41, which properly
addresses the possibility that the removal of upper-case edges might allow lower bounds for
some unexecuted time-points to slip into the past (cf. the case where tL ≤ nowξ).

Overview of the FAST-EX algorithm. A glance at Defn. 41 reveals that the execution deci-
sions, R̂(ξ), depend only on entries of D∗x that involve Z. However, the removal of upper-
case edges may not involveZ. The FAST-EX algorithm takes care of this by using a standard
STN technique: reducing a rigid component down to a single point. In particular, as each
time-point X executes, whether contingent or executable, it becomes rigid with Z (defined
carefully below). As a result, any edges involving X can be re-oriented to interact with Z
instead. Crucially, when an activation time-point A for a contingent link, (A, x, y, C), ex-
ecutes, all upper-case edges for C, which ordinarily point at A, get re-oriented to point at
Z instead. Thus, by the time C executes and its upper-case edges must be removed, all of
those edges are pointing at Z. In turn, that enables faster techniques for updating only the
entries of D∗x that involve Z.

The FAST-EX algorithm uses the following techniques:

• It only updates D∗x entries that involve Z, because they are the only entries that are
needed to generate execution decisions.
• It collapses down to a single point the rigid component consisting of Z and all executed

time-points.
• Similarly to Johnson’s algorithm [4], it uses a potential function to convert all edge-

weights in the AllMax graph to non-negative values, thereby enabling Dijkstra’s single-
source shortest-paths (SSSP) algorithm [4] to be used to update the needed D∗x entries.

Each of these techniques is discussed in more detail below.

5.1 Managing the Rigid Component of Executed Time-Points

Any time-points, X and Y , in an STN are rigidly connected if D(X,Y) +D(Y,X) = 0.
In such a case, although there may be many consistent choices for the values of X and Y ,

DRAFT

52 Luke Hunsberger

X

W1 W2

3

Y1
8

17

Y25

4

−7 W2 = X + 4
W1 = X − 3

X Y1

Y2

11

21

9

Fig. 16 (a) An STN with a rigid component (b) The same STN after collapsing its rigid component

they are not independent, because the value, Y − X , is restricted to a constant. For exam-
ple, if D(X,Y) = 3 and D(Y,X) = −3, then X and Y must satisfy both Y −X ≤ 3
and X − Y ≤ −3 (i.e., Y −X = 3). Whatever X’s value, Y must equal X + 3. More
generally, any set, R, of rigidly connected time-points is called a rigid component.26 Many
researchers [7,33,8] have noted that since the time-points in a rigid component,R, are fixed
relative to one another, the entire component can be effectively represented by a single time-
point, as follows. First, let X be any time-point in R; X will serve as the representative.
Next, re-orient any edges in the network that interact with time-points in R, as follows. Re-
place any edge, Y δ

W , whereW ∈ R, by an edge, Y δ+w
X , wherew = D(W,X).

And replace any edge, W
γ

Y , where W ∈ R, by an edge, X γ−w
Y , again, where

w = D(W,X) = −D(X,W). Fig. 16 illustrates the collapsing of a rigid component con-
taining time-points, X,W1, and W2.

At any time during execution, let R denote the set consisting of Z together with all of
the already-executed time-points. Since the execution of each time-point causes it to become
rigid with Z, the set R is a rigid component. Using the techniques described above, the
FAST-EX algorithm represents the rigid component,R, by a single point. For convenience,
Z is chosen as the representative time-point forR. As each time-point, X , executes, it joins
R and is, thus, effectively removed from the network. In particular, edges that formerly
pointed to X are re-directed toward Z; and edges that formerly emanated from X are re-
directed to emanate from Z.

5.2 Using Dijkstra’s Algorithm to Update D∗x

Unlike the NEW-EX algorithm, every edge that the FAST-EX algorithm adds to or removes
from the various graphs during execution necessarily involves Z. This special feature en-
ables a more efficient way of updating the desired distance-matrix entries.

Recall from Fact 1 that ifX andZ are distinct time-points in an STN, andP is a shortest
path from Z to X , then there exists a shortest path from Z to X that does not include any
edges of the form, Y δ

Z. As a result, it follows that whenever an edge of the form,

Y
δ

Z, is added to (or removed from) an STN graph, it cannot affect the lengths of
shortest paths whose source time-point is Z. In other words, adding such an edge to an
STN (or removing it from the STN) cannot cause changes to distance-matrix entries of the
form, D(Z,X). Thus, as in Johnson’s algorithm [4], the values, h(X) = D(Z,X), can be
used as a potential function to re-write the edge-weights in the graph so that they will all
be non-negative. To see this, note that for any edge, U

w
V , h(V) ≤ h(U) + w, since

the length of the shortest path from Z to V must be less than or equal to the length of the
shortest path from Z to V via U . But then h(U) + w − h(V) ≥ 0. Thus, a new graph, G?,

26 Being rigidly connected is an equivalence relation; so, the notion of a rigid component is well defined.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 53

INPUTS:
G, a graph for a consistent STN
D, the distance matrix for G, except that only the entries of the form, D(Z,X),

for all X , are guaranteed to be correct.
OUTPUT:
D, updated so that entries, D(X,Z), for all X , are correct.

(1) For each X , let h(X) = D(Z,X).
(2) Create a new graph, G?, whose edges correspond to those in G, as follows. For each edge,

U
w

V , in G, there is an edge, U h(U)+w−h(V)
V , in G?.

(3) Run Dijkstra’s single-sink-shortest-paths algorithm on G?, using Z as the single sink.
(4) For each X , set D(X,Z) = D?(X,Z)− h(X).

Fig. 17 Pseudo-code for the SinkDijkstra algorithm

is created containing edges derived from those in the original graph, G. In particular, each
edge, U

w
V , in the STN graph G gives rise to an edge, U h(U)+w−h(V)

V , in G?.
Next, since all edge-weights in G? are non-negative, Dijkstra’s single-sink-shortest-

paths algorithm can be run using Z as the single sink/destination. Shortest path information
in the new graph is easily translated into shortest path information in the original graph, as
follows. For each time-point X , D(X,Z) = D?(X,Z)− h(X), where D? is the distance
matrix for the new graph G?. (Of course, Dijkstra’s algorithm does not compute all of the
entries in D?; it only computes those terminating in Z.)

For convenience, the technique just described is called SinkDijkstra, since it computes
the lengths of shortest paths whose sink (or destination) is Z. Pseudo-code for the SinkDijk-
stra procedure is given in Fig. 17.

Similarly, whenever an edge of the form, Z δ
Y , is added to (or removed from) an

STN, it cannot affect the lengths of the shortest paths whose destination time-point is Z.
That is, it cannot affect any entry of the form, D(X,Z). Thus, h(X) = D(X,Z) can be
used as a potential function to re-write the edge-weights, to make them all non-negative,
and Dijkstra’s single-source-shortest-paths (SSSP) algorithm can be run on the new graph
to generate all of the updated D(Z,X) values. This procedure, which is analogous to Sink-
Dijkstra, is called SourceDijkstra, since it uses Z as its single source.

Since the only kinds of edges that are added to (or removed from) the AllMax graph,
G∗x, during the execution of the time-points in an STNU are edges that involve Z, the
FAST-EX algorithm uses SinkDijkstra and SourceDijkstra, in alternation, to compute the
needed updates to the matrix, D∗x. The SinkDijkstra algorithm updates the values needed by
the SourceDijkstra algorithm, and vice-versa.

5.3 Data Structures used by FAST-EX

The FAST-EX algorithm uses multiple hash tables [4] to store the edges that belong to the
AllMax graph.27 In particular, for each time-point X , the hash table, Ins(X), stores all of
the edges in the AllMax graph that point at X (i.e., that have X as their destination). For
example, an edge, Y δ

X , would be stored in the hash table Ins(X) with a key of Y ,
and a value of δ. Similarly, all of the edges in the AllMax graph that emanate from X (i.e.,
that have X as their source) are stored in a hash table, Outs(X). Although each edge is
stored in two hash tables, this bit of redundancy enables fast access.

27 If desired, the hash tables used by FAST-EX can be replaced by vectors and arrays.

DRAFT

54 Luke Hunsberger

Now, when a time-point X is executed at some time t, any edge whose destination is X
must be moved from Ins(X) to Ins(Z), with its weight appropriately adjusted. Similarly,
any edge whose source is X must be moved from Outs(X) to Outs(Z). These kinds of
changes are also made to the FAST-EX algorithm’s store of ordinary edges, as follows.

Prior to execution, the FAST-EX algorithm stores the ordinary edges from F∗ in an
N -by-N matrix, called the ordinary matrix, Om. In particular, for any time-points,X and Y ,
the entry, Om(X,Y), equals the length of the ordinary edge from X to Y in F∗. (If no such
edge exists, then Om(X,Y) =∞.) Because the FAST-EX algorithm re-directs edges in the
process of collapsing the rigid component, R, the entries in the Om matrix are similarly re-
directed. For example, suppose that Om(X,Y) = 22 is an initial entry in the Om matrix,
representing an ordinary edge, X 22

Y . Now suppose that X is subsequently executed

at time 5. Redirecting the above edge to emanate from Z yields the edge, Z 27
Y . If

the current entry, Om(Z, Y), is greater than 27, representing a weaker constraint, it must be
strengthened: Om(Z, Y) := 27. If the current entry is less than or equal to 27, representing
a stronger constraint, no change to Om(Z, Y) is made. Similar remarks apply to re-directing
entries of the form, Om(Y,X). Note that no additional propagation is done during this re-
direction process.

Similarly, the upper-case edges from F∗ are stored in a K-by-N matrix, called UC. For
example, if Y C:−w

A is the strongest upper-case edge from Y to A labeled by C, then

UC(C, Y) = −w.28 Note that no new upper-case edges are generated during the process
of executing the network. In addition, to facilitate the search for replacement edges when
upper-case edges are removed from the network, the FAST-EX algorithm does not do the
kind of re-directing of entries in the UC matrix that it does for the Om matrix. Implications of
this minor point are addressed in the next section.

The FAST-EX algorithm also uses hash tables to keep track of the execution status of
each time-point, contingent or executable. And, of course, the SinkDijkstra and SourceDijk-
stra algorithms use priority queues.

5.4 Dealing with the Removal of Upper-Case Edges

The main contribution of the FAST-EX algorithm is its more efficient processing of the
removal (or weakening) of edges from the AllMax graph, G∗x, that occurs whenever a con-
tingent time-point is executed. Recall that for each contingent link, (A, x, y, C), the upper-
case edges labeled by C (available in the UC matrix) are stored—without any alphabetic
labels—in the AllMax graph, using the Ins and Outs hash tables.29 (Being an STN graph,
the AllMax graph cannot distinguish ordinary and upper-case edges.) Now, before a con-
tingent time-point C can execute, its activation time-point, A, must have already executed.
Thus,Amust have already joined the rigid component,R, and all edges in the AllMax graph
(i.e., in the Ins and Outs hash tables) that involve A must have already been re-directed to
involve Z. Furthermore, since each upper-case edge labeled by C necessarily points at A
(in the STNU graph), each edge in the AllMax graph that derives from an upper-case edge
labeled by C must have already been re-directed to point at Z. Thus, removing the upper-
case edges labeled by C from the STNU graph corresponds to removing (ordinary) edges

28 C is used as an index into the UC matrix instead of A, since multiple contingent links could have the
same activation time-point, A.

29 Only the shortest edge between each pair of time-points is stored in the Ins and Outs hash tables.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 55

• Hash tables:
Ux : the unexecuted executable time-points
Uc : the unexecuted contingent time-points
R : the rigid component, containing executed time-points, initially only Z
Ins(X) : for each X , the edges coming into X in G∗x
Outs(X): for each X , the edges leaving X in G∗x

• The N -by-N AllMax matrix, D∗x. Only the entries involving Z are used by FAST-EX.
• The ordinary edges from F∗ are collected into an N -by-N matrix, called the ordinary matrix, Om.
• The upper-case edges from F∗ are collected into a K-by-N matrix, called the upper-case matrix, UC.
• The variable, now, is initialized to −∞.

Fig. 18 The initialization of data structures by the FAST-EX algorithm

from the AllMax graph that point at Z. This paves the way for the use of the SinkDijkstra
procedure to compute the necessary updates to D. However, before that can be done, the
FAST-EX algorithm must deal with the possibility that the removal of an edge from some Y
to Z in the AllMax graph might effectively uncover some previously longer edge that, due
to the first edge’s removal, now becomes the shortest edge from Y to Z.

Consider the following example. Suppose that, due to the contingent time-point C hav-
ing just executed, an upper-case edge, Y C:−9

A, is to be removed from the STNU
graph. Now, because A must have executed previously—say, at time 8—this edge, stripped
of its label, might be in the AllMax graph as an ordinary edge from Y to Z of length −17.
Removing this edge from the AllMax graph is necessary. But what should it be replaced
by? Well, an entry, Om(Y,Z) = −14, in the matrix of ordinary edges would give rise to
an edge, Y −14

Z, in the AllMax graph. Alternatively, any upper-case edge of the form,

Y
Ci:−wi Ai, for which the activation time-point Ai has already executed, but the contin-

gent time-point Ci has not, also gives rise to an ordinary edge from Y to Z in the AllMax
graph. (The length of that edge is −wi − ai, where ai is the time at which Ai executed.)
Whichever of these edges leads to the shortest edge from Y to Z in the AllMax graph is the
one that needs to be inserted into the Ins and Outs hash tables as a replacement for the edge
that was removed. The relevant entries are UC(Ci, Y) for each activated-but-unexecuted con-
tingent time-point Ci, as well as Om(Y,Z). In short, the length of the replacement edge is
given by: min{Om(Y,Z),min{UC(Ci, Y) − ai | Ci 6∈ R, Ai ∈ R}}, where ai denotes
the execution time for Ai, the activation time-point for the activated-but-not-yet-executed
contingent time-point Ci. Since there are at most K entries in the UC matrix that need to be
considered, finding the strongest replacement edge can be done in linear time.

Once the strongest replacement edge is found, then the SinkDijkstra procedure described
earlier can be used to compute the updates to all of the D∗x(X,Z) values.

5.5 Putting it all Together

Given a dynamically controllable STNU; the corresponding STNU graphs G∗ and G∗ou,
which include the edges from F∗; the corresponding AllMax graph G∗x; and the correspond-
ing distance matrix, D∗ = D∗x, the FAST-EX algorithm initializes the structures shown in
Fig. 18. After initialization, the FAST-EX algorithm iteratively runs through the steps listed
in Fig. 19. Note that the time-points in NewExec discussed in Steps 4, 6 and 8 of Fig. 19
may be contingent, executable or both.

DRAFT

56 Luke Hunsberger

IF Ux and Uc are both empty, THEN done, ELSE:
1. Generate the next real-time execution decision, RD, as in Defn. 41.
2. Observe the outcome of RD: (now′, NewExec), where now′ is the time of the latest execution event and

NewExec is the set of time-points that executed at now′. For convenience, let t = now′.
3. For each newly executed contingent time-point C (if any), remove each upper-case edge,
Y

C:−w
A, labeled by C, from the STNU graphs (i.e., from the UC matrix) and replace the cor-

responding edge from Y to Z from the AllMax graph (i.e., the Ins and Outs hash tables) with the
strongest replacement edge—that is, the edge, Y δ

Z, where δ is the minimum of Om(Y, Z) and
one of at most K entries in the UC matrix, as described in Sec. 5.4.

4. For each newly executed time-point, X ∈ NewExec, add the lower-bound edge, X −t
Z.

5. Run the SinkDijkstra procedure to update all entries of the form, D∗x(V, Z), for any V .
6. For each newly executed time-point, X ∈ NewExec, add the upper-bound edge, Z t

X .
7. Run the SourceDijkstra procedure to update all entries of the form, D∗x(Z, V), for any V .
8. For each newly executd time-point, X ∈ NewExec, effectively remove X from the network re-orienting

any edges involving X so that they instead involve Z, as discussed in Section 5.1. If X is executable,
move it from Ux toR; otherwise, move it from Uc toR.

9. Go to the next iteration with now := now′.

Fig. 19 Pseudo-code for one iteration of the FAST-EX algorithm

5.6 Analysis of the FAST-EX Algorithm

Theorem 10 Given a dynamically controllable STNU S, and the corresponding APSSRP
matrix D∗ = D∗x, the FAST-EX algorithm correctly updates the STNU and AllMax graphs,
and the matrix D∗x. Thus, by Theorem 8, FAST-EX will successfully execute the network,
assuming that all contingent links satisfy their specified durational bounds. And the FAST-
EX algorithm operates in O(N3) time overall: O(N) updates at O(N2)-time per update.

Proof The proof addresses the correctness of FAST-EX, and then its time complexity.
Correctness of the FAST-EX algorithm. The FAST-EX algorithm uses the execution

strategy R̂ specified in Defn. 41 which, by Theorem 8, is guaranteed to satisfy the constraints
in the network in any situation, assuming that the contingent links satisfy their durational
bounds, and assuming that the matrixD∗x is correctly updated. Since the execution decisions
computed by R̂ depend only on the entries of D∗x that involve Z, it suffices to show that the
FAST-EX algorithm correctly computes the updates to those entries.

As in the proof of Theorem 8, the FAST-EX algorithm maintains the graphs, G∗ou and
G∗x. It uses the Om and UC matrices to respectively represent the ordinary and upper-case
edges from the set F∗, which provides the initial contents of G∗ou; and it uses the Ins and
Outs hash tables to represent the edges in G∗x. Inserting edges that correspond to execution
constraints is straightforward: ordinary edges are inserted into both the Om matrix and the
Ins and Outs hash tables. The correctness of the FAST-EX implementation of the removal of
upper-case edges from G∗ou relies on the following observations. First, the edges in G∗x are,
by definition, the edges from G∗ou, but without any upper-case labels. Therefore, removing
an upper-case edge, Y C:−w

A, from G∗ou can only affect, if at all, the edge from Y to A
in G∗x. Now there are at most K + 1 edges in G∗ou from Y to A: one ordinary edge and at
mostK upper-case edges—one for each contingent link. Therefore, whenever the FAST-EX
algorithm removes an upper-case edge, Y C:−w

A, from the UC matrix, it need only look
for the strongest replacement edge from among one entry in the Om matrix and at most K
entries in the UC matrix. Thus, the FAST-EX algorithm correctly updates its representations
of the G∗ou and G∗x graphs.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 57

After updating the G∗ou and G∗x graphs, the FAST-EX algorithm does not re-compute
the entire matrix D∗x from scratch. Instead, it restricts attention to the entries of the form,
D∗x(Z,X) and D∗x(X,Z), for each time-point X . Since all edges that are inserted or re-
moved involve Z (see the next paragraph), the FAST-EX algorithm uses the SinkDijkstra
and SourceDijkstra algorithms to correctly compute the necessary updates.

Before a contingent time-point C can execute, its corresponding activation time-point
A must have already executed. Therefore, before any upper-case edges labeled by C are
removed from G∗ou, A will have already joined the rigid component involving Z; and each
ordinary edge in the AllMax graph that derives from an upper-case edge labeled by C will
have already been re-oriented in the Ins and Outs hash tables to effectively point at Z in-
stead of A. Re-orienting edges in this way is well known to result in an equivalent STN
graph [7,33,8]. Doing so ensures that all upper-case edges to be removed from the network
effectively point at Z, thereby ensuring that the SinkDijkstra and SourceDijkstra algorithms
will subsequently correctly update the entries of D∗x that involve Z.

Time complexity of the FAST-EX algorithm. The time complexity of the FAST-EX algo-
rithm is dominated by its management of the removal of upper-case edges. For each edge
removal, there are at most K + 1 possible replacement edges, as described above, each of
which is examined in constant time. Since there are at most KN upper-case edges in the
network at the start of execution, and no such edges are ever inserted during execution, the
total time needed to find replacement edges for all of those upper-case edges when they are
subsequently removed is O(N3): NK edges at O(K) time per replacement.

The only other modifications to the STNU graphs involve the insertion of execution con-
straints for each newly executed time-point, which happens N times. When any time-point
is executed, the SinkDijkstra and SourceDijkstra algorithms are run once each:O(N logN)
per iteration. Thus, the overall time required for all of the runs of SinkDijkstra and Source-
Dijkstra is O(N2 logN).

Since all other computations (e.g., generating each decision) can be done in linear time,
the overall worst-case complexity of the FAST-EX algorithm is dominated by the O(N3)-
time replacement of upper-case edges when they are removed from the network. ut

6 Conclusions

This paper presents a comprehensive, rigorous, and yet streamlined treatment of the theo-
retical foundations of STNUs and dynamic controllability, thus filling an important hole in
the literature on STNUs. The presented theory combines work from a variety of sources,
while also introducing novel approaches and proofs. The proof of the Fundamental Theo-
rem of STNUs provides an execution strategy that is then efficiently implemented as the
FAST-EX algorithm for managing the execution of a dynamically controllable network, the
fastest execution algorithm presented so far.

While this paper was under review, Morris [17] presented an O(N3)-time DC-checking
algorithm that represents the new state of the art. Like all existing DC-checking algorithms,
the new algorithm works by checking whether an STNU graph has any SRN loops and,
thus, relies on the Fundamental Theorem. In addition to providing a DC-checking algorithm,
Morris’ paper also clarifies the relationships between the dynamic controllability of STNUs
and prior work on the dispatchability of temporal networks [29,21,27].

There are many important avenues for future work involving STNUs and dynamic con-
trollability. For example, there has been substantial interest recently in incremental DC-
checking algorithms (i.e., algorithms that check whether inserting a new constraint into

DRAFT

58 Luke Hunsberger

a DC network preserves its dynamic controllability) [28,24,25,14]. A thorough emprical
evaluation and comparison of these incremental algorithms would be extremely useful for
those seeking to incorporate STNUs into their applications.

A variety of extensions to the STNU framework have also been presented. For example,
Rossi et al. [26] augmented STNUs to include soft temporal constraints; Morris et al. [20]
considered STNUs with preferences and probabilities; Conrad and Williams [3] considered
STNUs with choice nodes; Effinger et al. [6] presented temporally-flexible reactive pro-
grams; Venable et al. [31] studied STNUs with disjunctive constraints; and Hunsberger et
al. [15] extended STNUs to include the observation nodes from prior work on the Condi-
tional Temporal Problem (CTP) [30].

Other work has shown how to reduce the dynamic controllability problem for STNUs to
a reachability problem for Timed Game Automata (TGAs), thereby clarifying the surprising
relationships between these two very different formalisms [2]. Although that work does
not provide faster DC-checking algorithms for STNUs, it has subsequently been extended
to provide the first sound-and-complete DC-checking algorithm for a much wider class of
temporal networks that allow disjunctive constraints and constraints conditioned on real-
time observation of boolean propositions [1].

References

1. Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco Roveri. Sound
and complete algorithms for checking the dynamic controllability of temporal networks with uncer-
tainty, disjunction and observation. In Amedeo Cesta, Carlo Combi, and Francois Laroussinie, editors,
Proceedings of the 21st International Symposium on Temporal Representation and Reasoning (TIME-
2014). IEEE, 2014.

2. Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco Roveri. Using timed game automata
to synthesize execution strategies for simple temporal networks with uncertainty. In C. E. Brodley and
P. Stone, editors, Proceedings of the 28th National Conference on Artificial Intelligence (AAAI-2014).
AAAI Press, 2014.

3. Patrick R. Conrad and Brian C. Williams. Drake: An efficient executive for temporal plans with choice
and uncertainty. Journal of Artificial Intelligence Research, 42:607–659, 2011.

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. MIT Press, 2009.

5. Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence, 49:61–
95, 1991.

6. Robert Effinger, Brian Williams, Gerard Kelly, and Michael Sheehy. Dynamic controllability of
temporally-flexible reactive programs. In Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioan-
nis Refanidis, editors, Proceedings of the Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS 09). AAAI Press, 2009.

7. Alfonso Gerevini, Anna Perini, and Francesco Ricci. Incremental algorithms for managing temporal
constraints. Technical Report IRST-9605-07, IRST, 1996.

8. Luke Hunsberger. Group Decision Making and Temporal Reasoning. PhD thesis, Harvard University,
2002. Available as Harvard Technical Report TR-05-02.

9. Luke Hunsberger. A practical temporal constraint management system for real-time applications. In
M. Ghallab, C.D. Spyropoulos, N. Fakotakis, and N. Avouris, editors, Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI-2008), Amsterdam, 2008. IOS Press.

10. Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more practical char-
acterization of dynamic execution strategies. In Proceedings of the 16th International Symposium on
Temporal Representation and Reasoning (TIME-2009), pages 155–162. IEEE Computer Society, 2009.

11. Luke Hunsberger. A fast incremental algorithm for managing the execution of dynamically controllable
temporal networks. In Proceedings of the 17th International Symposium on Temporal Representation
and Reasoning (TIME-2010), pages 121–128, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

12. Luke Hunsberger. A faster execution algorithm for dynamically controllable stnus. In Cesar Sanchez,
K. Brent Venable, and Esteban Zimanyi, editors, Proceedings of the 20th International Symposium on
Temporal Representation and Reasoning (TIME-2013). IEEE Computer Society, 2013.

DRAFT

Efficient Execution of Dynamically Controllable STNUs 59

13. Luke Hunsberger. Magic loops in simple temporal networks with uncertainty. In Joaquim Filipe and Ana
Fred, editors, Proceedings of the Fifth International Conference on Agents and Artificial Intelligence
(ICAART-2013). SCITEPRESS, 2013.

14. Luke Hunsberger. New techniques for checking dynamic controllability of simple temporal networks
with uncertainty. To be published by Springer, Forthcoming.

15. Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dynamic controllability of conditional stns
with uncertainty. In Proceedings of the Planning and Plan Execution for Real-World Systems: Principles
and Practices (PlanEx) Workshop associated with the ICAPS-2012 Conference, pages 121–128, 2012.

16. Paul Morris. A structural characterization of temporal dynamic controllability. In Principles and Practice
of Constraint Programming (CP 2006), volume 4204 of Lecture Notes in Computer Science, pages 375–
389. Springer, 2006.

17. Paul Morris. Dynamic controllability and dispatchability relationships. In Integration of AI and OR
Techniques in Constraint Programming — 11th International Conference, CPAIOR 2014, volume 8451
of Lecture Notes in Computer Science, pages 464–479. Springer, 2014.

18. Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal uncertainty.
In Bernhard Nebel, editor, 17th International Joint Conference on Artificial Intelligence (IJCAI-01),
pages 494–499. Morgan Kaufmann, 2001.

19. Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In Manuela M.
Veloso and Subbarao Kambhampati, editors, The Twentieth National Conference on Artificial Intelli-
gence (AAAI-2005), pages 1193–1198. The MIT Press, 2005.

20. Robert Morris, Paul Morris, Lina Khatib, and Neil Yorke-Smith. Temporal constraint reasoning with
preferences and probabilities. In Ronen Brafman and Ulrich Junker, editors, Proceedings of the IJCAI-
05 Multidisciplinary Workshop on Advances in Preference Handling, pages 150–155, 2005.

21. Nicola Muscettola, Paul Morris, and Ioannis Tsamardinos. Reformulating temporal plans for efficient
execution. In Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors, Proceedings of
the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR-98),
pages 444–452. Morgan Kaufman, 1998.

22. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic controllability revisited.
In Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini, editors, Proceedings of
the 23rd International Conference on Automated Planning and Scheduling (ICAPS-2013). AAAI Press,
2013.

23. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Classical dynamic controllability revisited: A
tighter bound on the classical algorithm. In Proceedings of the 6th International Conference on Agents
and Artificial Intelligence (ICAART-2014), pages 130–141. SCITEPRESS, 2014.

24. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Efficientidc: A faster incremental dynamic con-
trollability algorithm. In Steve Chien, Alan Fern, Wheeler Ruml, and Minh Do, editors, Proceedings of
the 24th International Conference on Automated Planning and Scheduling (ICAPS-2014), page 199207.
AAAI Press, 2014.

25. Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic controllability in cubic
worst-case time. In Amedeo Cesta, Carlo Combi, and Francois Laroussinie, editors, Proceedings of the
21st International Symposium on Temporal Representation and Reasoning (TIME-2014). IEEE, 2014.

26. F. Rossi, K. B. Venable, and N. Yorke-Smith. Uncertainty in soft temporal constraint problems: A general
framework and controllability algorithms for the fuzzy case. Journal of Artificial Intelligence Research,
27:617–674, 2006.

27. Julie Shah, John Stedl, Paul Robertson, and Brian C. Williams. A fast incremental algorithm for main-
taining dispatchability of partially controllable plans. In Mark Boddy, Maria Fox, and Sylvie Thiébaux,
editors, Proceedings of the Seventeenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2007). AAAI Press, 2007.

28. John Stedl and Brian C. Williams. A fast incremental dynamic controllability algorithm. In Proceedings
of the ICAPS Workshop on Plan Execution: A Reality Check, pages 69–75, 2005.

29. Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast transformation of temporal plans for
efficient execution. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-
98), pages 254–261, Cambridge, MA, 1998. The MIT Press.

30. Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: A new constraint-based formalism for
conditional, temporal planning. Constraints, 8(4):365–388, 2003.

31. Kristen Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith. Weak and dynamic con-
trollability of temporal problems with disjunctions and uncertainty. In Proceedings of COPLAS 2010:
ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems, pages
50–59, 2010.

32. Thierry Vidal and Hélène Fargier. Handling contingency in temporal constraint networks: from consis-
tency to controllabilities. Journal of Experimental and Theoretical Artificial Intelligence, 11(1):23–45,
1999.

DRAFT

60 Luke Hunsberger

33. Rattana Wetprasit and Abdul Sattar. Qualitative and quantitative temporal reasoning with points and
durations (an extended abstract). In Fifth International Workshop on Temporal Representation and Rea-
soning (TIME-98), pages 69–73, 1998.

