Magic Loops and the Dynamic Controllability
of Simple Temporal Networks with Uncertainty

Luke Hunsberger®)

Computer Science Department, Vassar College, Poughkeepsie, NY 12604, USA
hunsberg@cs.vassar.edu

Abstract. A Simple Temporal Network with Uncertainty (STNU) is a
structure for representing and reasoning about temporal constraints and
uncontrollable-but-bounded temporal intervals called contingent links.
An STNU is dynamically controllable (DC) if there exists a strategy for
executing its time-points that guarantees that all of the constraints will
be satisfied no matter how the durations of the contingent links turn
out. The fastest algorithm for checking the dynamic controllability of
STNUs is based on an analysis of the graphical structure of STNUs. This
paper (1) presents a new method for analyzing the graphical structure of
STNUs, (2) determines an upper bound on the complexity of certain
structures—the indivisible semi-reducible negative loops; (3) presents
an algorithm for generating loops—the magic loops—whose complexity
attains this upper bound; and (4) shows how the upper bound can be
exploited to speed up the process of DC-checking for certain networks.

Keywords: Temporal networks - Dynamic controllability

1 Background

Agent-based applications invariably involve actions and temporal constraints.
Dechter et al. [1] introduced Simple Temporal Networks (STNs) to facilitate the
management of temporal constraints. Vidal and Ghallab [14] were the first to
incorporate actions with uncertain durations into an STN-like framework, and
to define a notion of dynamic controllability. Morris et al. [6] developed the
most widely accepted formalization of Simple Temporal Networks with Uncer-
tainty (STNUs) and dynamic controllability. Morris and Muscettola [7] devel-
oped an O(N®)-time algorithm for checking the dynamic controllability of
STNUs. Morris [5] presented an O(N*)-time DC-checking algorithm based on
an analysis of the structure of STNU graphs; it is the fastest DC-checking algo-
rithm to date. This paper presents a new way of analyzing the structure of
STNU graphs, and shows how it can be used to speed up DC checking for some
networks.

The rest of this section summarizes the definitions and results for STNs,
STNUs and dynamic controllability that will be used in the rest of the paper.

(© Springer-Verlag Berlin Heidelberg 2014
J. Filipe and A. Fred (Eds.): ICAART 2013, CCIS 449, pp. 332-350, 2014.
DOI: 10.1007/978-3-662-44440-5_20

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 333

1.1 Simple Temporal Networks

Dechter et al. [1] introduced Simple Temporal Networks (STNs) and presented
the basic theoretical results for them. An STN is a pair, (7,C), where 7 is a
set of time-point variables (or time-points) and C is a set of constraints, each
having the form, Y — X < 4, for some X,Y € 7, and real number . Typically,
the time-points in 7 represent starting or ending times of actions, or abstract
coordination times. The constraints in C can accommodate release, deadline,
duration and inter-action constraints. An STN is consistent if there exists a set
of values for its time-points that together satisfy all of its constraints.

For any STN, § = (7,C), there is a corresponding graph, G, where the nodes
in G correspond to the time-points in 7', and for each constraint, ¥ — X < §, in

C, there is an edge in G of the form, X .Y For convenience, this paper calls
the constraints and edges in an STN ordinary constraints and edges.

The all-pairs, shortest-paths (APSP) matrix for G is called the distance matriz
for S (or G) and is denoted by D. Thus, for any X and Y in 7, D(X,Y) equals
the length of the shortest path from X to Y in the graph G. If D has nothing
but zeros down its main diagonal, then D is said to be consistent.

Theorem 1 (Fundamental Theorem of STNs). For any STN S, with graph G,
and distance matriz D, the following are equivalent: (1) S is consistent; (2) G has
no negative loops; and (3) D is consistent.

1.2 STNs with Uncertainty

Some applications involve actions whose durations are uncontrollable, but none-
theless guaranteed to fall within known bounds. For example, when I turn on
my laptop, I do not control how long it will take to load its operating system;
however, I know that it will take anywhere from one to four minutes. A Sim-
ple Temporal Network with Uncertainty (STNU) augments an STN to include
contingent links that represent this kind of uncontrollable-but-bounded tempo-
ral interval [6]. A contingent link has the form, (A, z,y,C), where A and C are
time-points and 0 < & < y < 0o. A is called the activation time-point; C' is called
the contingent time-point. Intuitively, the duration of the interval from A to C
is uncontrollable, but guaranteed to fall within the interval [z,y]. Typically, an
agent controls the execution of the activation time-point A, but only observes
the subsequent execution of the contingent time-point C' in real time.!
Formally, an STNU is a triple, (7,C, £), where (7,C) is an STN, and L is a set
of contingent links. IV is used to denote the number of time-points in an STNU,
K the number of contingent links. The most important property of an STNU
is whether it is dynamically controllable (DC)—that is, whether there exists a
strategy for executing the non-contingent time-points that guarantees that all
of the constraints in the network will be satisfied no matter how the contingent
durations turn out. The strategy is dynamic in that its execution decisions are

! Agents are not part of the semantics of STNUs; they are used here for illustration.

334 L. Hunsberger

Fig. 1. The ordinary and labeled edges associated with a contingent link, (A, z,y, C).

allowed to react to past observations, but not present or future observations. The
formal semantics for dynamic controllability is quite complicated, but it need
not be presented here because a more convenient—and equivalent—graphical
characterization is available, as follows.

Graph for an STNU. Let S = (7,C, L) be an STNU. The graph for S contains
all edges from the STN, (7,C), as well as additional edges derived from the
contingent links in £. In particular, for each contingent link (A, z,y,C) € L, the
graph contains the edges shown in Fig. 1. The ordinary edges, A—¥Y—>C and
C ——L+ A, represent the constraints, C—A <yand A—C < —x (ie,C—-A€
[,y]). The other edges are labeled edges representing uncontrollable possibilities.
In particular, A—S-L- | which is called a lower-case (LC) edge, represents
the possibility that the contingent duration might take on its minimum value,
x; and C LQ»A, which is called an upper-case (UC) edge, represents the
possibility that the contingent duration might take on its maximum value, y.
Because the graph of an STNU contains ordinary, lower-case and upper-case
edges, paths in an STNU graph can be quite complicated. However, as shall be
seen, the so-called semi-reducible paths are particularly important. For exposi-
tory convenience, the definition of a semi-reducible path is postponed; however,
the SR-distance matriz, D*, can be defined now as the all-pairs, shortest-semi-
reducible-paths matrix for an STNU graph (i.e., for any time-points X and Y,
D*(X,Y) equals the length of the shortest semi-reducible path from X to V).

Theorem 2 (Fundamental Theorem of STNUs). For any STNU S, with graph
G, and SR-distance matriz D*, the following are equivalent: (1) S is dynamically
controllable; (2) G has no semi-reducible negative loops; and (3) D* is consistent.?

1.3 DC-Checking Algorithms

In view of Theorem 2, the problem of determining whether an STNU is dynami-
cally controllable can be answered by computing the SR-distance matrix D*. If,
during the process, a negative entry along the main diagonal is ever discovered—
which would correspond to a semi-reducible negative loop—then the network

2 Morris and Muscettola [7] showed that an STNU is DC iff a certain matrix is con-
sistent. Morris [5] highlighted semi-reducible paths and showed that an STNU is DC
iff its graph has no semi-reducible negative loops. Hunsberger [3] showed that the
matrix computed by Morris and Muscettola is the SR-distance matrix, D*.

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 335

cannot be dynamically controllable. Algorithms for determining whether an
STNU is dynamically controllable are called DC-checking algorithms.

Two polynomial-time DC-checking algorithms have been presented so far in
the literature: the O(N®)-time algorithm of Morris and Muscettola [7], hence-
forth called the N® algorithm; and the O(N*)-time algorithm of Morris [5],
henceforth called the N* algorithm. The N? algorithm uses a set of rules to gen-
erate new edges in the graph, effectively a new kind of constraint propagation
that accommodates labeled edges. After at most O(N?) rounds of edge genera-
tion, the algorithm is guaranteed to have computed the matrix D* or determined
that it is inconsistent. Since each round takes O(N?) time, the overall complex-
ity is O(N®). The N* algorithm uses the same edge-generation rules but, as will
be seen, restricts their application to “reducing away” LC edges. This restricted
form of edge-generation is sufficient to compute the matrix D* or determine that
it is inconsistent. Based on an analysis of the structure of semi-reducible negative
loops, the N4 algorithm requires only K < N rounds of edge-generation. Since
each round can be done in O(N?) time, its overall time-complexity is O(N?).

Edge-generation Rules. Intuitively, the ordinary constraints in an STNU are con-
straints that the agent in charge of executing time-points wants to satisfy. In con-
trast, the lower-case and upper-case edges represent uncontrollable possibilities
that could potentially threaten the satisfaction of the ordinary constraints. Typ-
ically, to eliminate such threats, the agent must satisfy additional constraints—
or, in graphical terms, add new edges to the graph. Toward that end, Morris
and Muscettola [7] presented the five edge-generation rules in Table1, where
pre-existing edges are denoted by solid arrows and newly generated edges are
denoted by dashed arrows. Each rule takes two pre-existing edges as input and
generates a single edge as output. Incidentally, applicability conditions of the
form, Y # Z, should be construed as stipulating that Y and Z must be distinct
time-point variables, not as constraints on the wvalues of those variables.

Table 1. The edge-generation rules from Morris and Muscettola [7].

S S
U v u 2,
No Case: Q/ B \ T Upper Case: Q/ . \; T
u+v R:iu+wv
S S

g h v 5l
Lower Case: Q/ \ Cross Case:

Applicability Conditions:
v<Oor(v=0and S #T)

Applicability Conditions:
R#Sand(w<Oor(v=0and S #T))

Label Removal: g

R:v r.x

Applicability Condition: v > —z.

336 L. Hunsberger

P
P / ; \
B R- S. <
e e 2 =7 0
- > %_E: —_— /) o A 3
e Q ———————————————————————————— =T U
\
P’ P

Fig. 2. Two examples of transforming a path P into a path P’.

The rules only generate new ordinary or upper-case edges, never new lower-
case edges. The generated ordinary edges represent additional constraints that
must be satisfied to avoid threatening the satisfaction of the original constraints.
The generated upper-case edges represent additional conditional constraints that
the agent must satisfy. A generated UC edge of the form, Y Ciow, A, rep-
resents a conditional constraint that can be glossed as: “As long as the contin-
gent duration C' — A might take on its maximum value, then A — Y < —w (i.e.,
Y > A+ w) must be satisfied (i.e., Y must wait at least w after A).”

Path Transformations. Morris [5] showed that the process of edge generation
can also be viewed as one of path transformation or path reduction. For example,
suppose a path P contains two adjacent edges, e; and es, to which one of the first
four edge-generation rules can be applied to generate a new edge e, as illustrated
in the lefthand side of Fig. 2. Let P’ be the path obtained from P by replacing e;
and e by the new edge e. We say that P has been transformed into (or reduced
to) P’. Similarly, if P contains a UC edge F to which the Label-Removal rule
can be applied to generate a new ordinary edge E°, then P can be transformed
by replacing E by E°. Finally, any sequence of zero or more such transformations
also counts as a path transformation. The righthand side of Fig.2 illustrates a
two-step transformation of a path P, using the No-Case and Lower-Case rules.

Importantly, path transformations preserve unlabeled length (i.e., the length
of the path ignoring any alphabetic labels on its edges). This follows directly
from the fact that each edge-generation rule preserves unlabeled length.

Morris [5] introduced semi-reducible paths, which play a central role in the
determination of dynamic controllability. For convenience, we present the defin-
ition of semi-reducible paths in terms of OU-edges and OU-paths.

Definition 1 (OU-edge, OU-path, Semi-reducible path, SRN loop). An OU-
edge is an edge that is either ordinary or upper-case. An OU-path is a path
consisting solely of OU-edges. A path in an STNU graph is called semi-reducible
if it can be transformed into an OU-path. A semi-reducible loop with negative
unlabeled length is called an SRN loop.

Note that the path, P, on the righthand side of Fig. 2 is semi-reducible, since it
can be transformed into the QU-path, P’.

The N* DC-checking Algorithm. The N* algorithm takes a two-step approach
to determining whether an STNU has any SRN loops. In Step 1, it generates

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 337

Fig. 3. Reducing away a lower-case edge, e.

the OU-edges that could arise from the transformation of semi-reducible paths
into OU-paths. The dashed edges in Fig. 2 are examples of such edges. In Step
2, it gathers the OU-edges from Step 1—minus any alphabetic labels—into an
STN, St. It then computes the corresponding distance matrix, DT, which turns
out to equal the SR-distance matrix, D*, for the original STNU.

To illustrate Step 1, suppose P is a semi-reducible path consisting of original
STNU edges, including at least one LC edge e, as shown in Fig. 3. Since P is
semi-reducible, there must be a sequence of reductions by which P is transformed
into an OU-path. Thus, sometime during that transformation, the Lower-Case
or Cross-Case rule must be applied to e and some other edge e’ to yield a
new OU-edge é, effectively removing e from the path. We say that e has been
“reduced away”. To enable this, the original path P must have a sub-path, P,
immediately following e, such that P, reduces to the edge €', as shown in Fig. 3.
The concatenation of the LC edge e with the sub-path P, is called a lower-
case reducing sub-path (LCR sub-path); edges such as € that are generated by
transforming an LCR sub-path into a single edge, are called core edges [3].

In view of the above, every occurrence of an LC edge, e, in any semi-reducible
path, P, must belong to an LCR sub-path in P. Equivalently, the edges in any
semi-reducible path, P, that do not belong to an LCR sub-path must be OU-
edges from the original STNU. Thus, Step 1 of the N* algorithm searches for
LCR sub-paths and the core edges they generate. Crucially, this search does not
require exhaustively applying the edge-generation rules from Table 1. Instead,
as will be seen, the search can be limited to extension sub-paths, which have an
important nesting property. After Step 1, the algorithm has a set, £, of OU-edges.

For Step 2, note that there is a one-to-one correspondence between shortest
semi-reducible paths in the original STNU and shortest paths consisting of edges
in £. In particular, if P is a shortest semi-reducible path, then it can be trans-
formed into a path, P’, whose edges are in &; and since path transformations
preserve unlabeled length, |P| = |P’|. Conversely, if P’ is a shortest path with
edges in &, then, by “unwinding” the transformations that generated the edges
in £, P’ can be “un-transformed” into a semi-reducible path P, with |P’| = |P].

Next, since alphabetic labels are irrelevant to the computation of unlabeled
lengths, let £T be the set of ordinary edges obtained by stripping any alphabetic
labels from the edges in &; let ST be the corresponding STN; and let Dt be the
corresponding distance matrix. Then DT is equal to the all-pairs, shortest-paths
matrix for paths with edges in &€, and hence DI = D*. Thus, the N* algorithm
concludes that the original STNU is DC iff DT is consistent.

338 L. Hunsberger
2 Modifying Morris’ Analysis

To simplify his mathematical analysis, Morris [5] introduces two kinds of instan-
taneous reactivity into the semantics of dynamic controllability. First, he allows
contingent links of the form, (A,0,y,C), in which the lower bound on the con-
tingent duration is zero. This effectively allows scenarios in which it is uncertain
whether the temporal interval between a cause and its effect will be instanta-
neous. Second, he allows an agent to react instantaneously to an observation
of a contingent execution. Although these sorts of instantaneous reactions may
be applicable to some domains, this author prefers to stick with the more real-
istic assumptions of the original semantics—and the edge-generation rules in
Table 1—in which both the lower bounds of contingent durations and agent reac-
tion times must be positive. The rest of this section shows how Morris’ approach
can be modified to conform to the original semantics of dynamic controllability.

Given his assumptions, Morris changed the conditions for the Lower-Case
rule to v < 0 (i.e., he eliminated the case, v = 0). The reason is that when v = 0,
the edge, S—Y—T, represents the constraint, 7 — S < 0 (i.e., T < S), which
expresses that T must execute no later than the contingent time-point S. If able
to react instantaneously, an agent need only wait for S to execute and then
instantaneously execute T. Thus, no additional constraint is required to guard
against S executing early. If unable to react instantaneously, then the new edge
from @ to T is needed. Similar remarks apply to the Cross-Case rule.

Ezxtension Sub-paths. Let e be some LC edge in a path, P; and let e1,eq,... be
the sequence of edges immediately following e in P. If e can be reduced away in
‘P, then it may be that there are many values of m > 1 for which the sub-path,
€1,€2,...,em, could be used to reduce away e. For example, the LC edge from
Q@ to R in Fig.2 can be reduced away not only by the two-edge sub-path from
R to T, as shown in the figure, but also by the three-edge sub-path from R to
U. In such cases, the ezxtension sub-path, defined below, will turn out to be the
sub-path that can reduce away e for which the value of m is the smallest.

Definition 2 (Extension sub-path; moat edge). Let e be an LC edge in a path
P. Let ey, eq, ... be the sequence of edges that immediately follow e in P. For each
i>1, let P be the sub-path of P consisting of the edges, ey, ..., e;. If it exists,
let m be the smallest integer such that either: (1) |PI*| < 0; or (2) |P)*| =0 and
P is not a loop. Then the extension sub-path (ESP) for e in P, notated Pe, is
the sub-path PI*; and its last edge, en,, is called the moat edge for e in P. If no
such m exists, then e has no ESP or moat edge in P.>

For the LC edge from @ to R in Fig. 2, the extension sub-path is the two-edge
path labeled P.; and the moat edge is the edge from S to T.

3 For Morris [5], case (2) is not needed because he eliminated the case, v = 0, from
the applicability conditions for the Lower-Case and Cross-Case rules.

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 339

extension sub-path X3
45 Q
3 *3 2 XQ
1 X,
. / \C/ . 1 =X -
pesky prefix /

pesky prefix nice suffix

X

Fig. 4. An extension sub-path with two pesky prefixes.

Structure of ESPs. Given the setup in Definition 2, m is the smallest value for
which [P < 0 or P is a zero-length non-loop. Conversely, for any i < m,
either |P!| > 0 or P! is a zero-length loop. This implies that any ESP must
cousist of zero or more loops of length zero, followed by a (non-empty) sub-path
that has no prefixes that are zero-length loops. These observations motivate the
following.

Definition 3 (Pesky prefix; nice path). A pesky prefix of P is a non-empty
prefiz of P that is a loop of length 0. A nice path is one having no pesky prefixes.

In general, an ESP may have zero or more pesky prefixes, followed by a non-
empty nice path.* Figure4 shows an ESP with two pesky prefixes, one nested
inside the other, followed by a non-empty nice suffix.

Nesting Property for ESPs. The following lemma confirms that ESPs as defined
in Definition 2 have the nesting property highlighted by Morris [5].°

Lemma 1 (Nesting Property for ESPs). Let P and Ps be two ESPs within the
same path P. Then Py and Py are either disjoint (i.e., share no edges) or one
is nested inside (i.e., is a sub-path of) the other.

Breaches and Usable/Unusable Moat Edges. Suppose that P is a path that con-
tains an occurrence of a lower-case edge, e, that derives from a contingent link,
(A,2,y,C). Thus, e has the form, A —¢-L s C. Suppose further that ¢ has an
extension sub-path, P, in P. The existence of an ESP for e in P turns out to be a
necessary, but insufficient condition for reducing away e in P. For example, using
Fig.3 as a reference, if the edge, €/, into which P, is transformed, happens to
be an upper-case edge with alphabetic label C' (i.e., that matches the lower-case
label on e), then the Cross-Case rule cannot be applied to e and ¢/, blocking the
reducing away of e. (Recall the condition, R # S, for the Cross-Case rule.) Such
moat edges are called unusable. (It could also be said that P, is unusable.) The
following definitions specify the characteristics of usable/unusable moat edges.

* Unlike Morris [5], for whom every ESP has negative length, this paper must carefully
distinguish pesky prefixes from ESPs of length zero.
5 Proofs for this lemma and all subsequent results are in a companion paper [4].

340 L. Hunsberger

Fig. 5. A semi-reducible path with nested ESPs.

Definition 4 (Breach; usable/unusable moat edge). Let e be an LC edge for a
contingent link, (A,z,y,C); let P, be the ESP for e in some path P; and let
em be the corresponding moat edge. Any occurrence in P, of an upper-case edge
labeled by C is called a breach. If P. has no breaches, it is called breach-free. If
em 18 a breach and |P.| < —x, then e, is said to be unusable; else, it is usable.

Theorem 3 shows the crucial role of usable moat edges for semi-reducible paths [5].

Theorem 3. A path P is semi-reducible if and only if each of its lower-case
edges has a usable moat edge in P.

Since a pesky prefix, by definition, has length zero, extracting a pesky prefix
from an extension sub-path cannot affect its length. In addition, since a pesky
prefix cannot constitute the entirety of an extension sub-path, extracting a pesky
prefix cannot affect the moat edge. Therefore, the usability of a moat edge cannot
be affected by extracting a pesky prefix from an ESP and, hence, the semi-
reducibility of a path cannot be affected by extracting pesky prefixes.

Corollary 1. Let P be any path. Let P’ be the path obtained from P by extract-
ing all pesky prefizes from any extension sub-paths within P. Then P is semi-
reducible if and only if P’ is semi-reducible.

Given this result, the rest of this paper presumes that all pesky prefixes are
extracted from any path without affecting its semi-reducibility.

Corollary 2. Any semi-reducible path, P, can be transformed into an OU-path
using a sequence of reductions whereby each LC edge e in P is reduced away by
its corresponding extension sub-path Pe,.

Figureb illustrates a semi-reducible path with nested extension sub-paths. In
the figure, lower-case edges are shown with a distinctive arrow type, ESPs are
shaded, and the core edges are dashed.

Morris [5] proved that an STNU with K contingent links has an SRN loop
if and only if it has a breach-free SRN loop in which extension sub-paths are
nested to a depth of at most K. Thus, his N* DC-checking algorithm performs
K rounds of searching for breach-free extension sub-paths that could be used
to reduce away lower-case edges, each round effectively increasing the nesting
depth of the extension sub-paths it considers. The core edges generated in this

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 341

way are then collected—minus any upper-case labels—into an STN, ST, as previ-
ously described, to compute the distance matrix, D, which equals the all-pairs,
shortest-semi-reducible-paths matrix for the original STNU.

3 Indivisible SRN Loops

This section introduces a new approach to analyzing the structure of semi-
reducible negative loops. The key feature of the approach is its focus on the
number of occurrences of lower-case edges in what it calls indivisible SRN loops
(or iSRN loops). As will be seen, for the purposes of DC checking, it suffices to
restrict attention to iSRN loops. However, the main result of this section is that
the number of occurrences of LC edges in any iSRN loop in any STNU having
K contingent links is at most 2% — 1.

Definition 5. For any path, P, the number of occurrences of lower-case edges
in P is denoted by #P.

This sub-loop has non-negative length.

Fig. 6. An indivisible SRN loop, P.

Suppose that P is an SRN loop and Q is a sub-loop of P that also happens to
be an SRN loop (i.e., @ is an SRN sub-loop of P). Since every LC edge in Q
also belongs to P, it follows that #Q < #P. However, if P is an indivisible SRN
loop, then #Q must equal #P. That is, no SRN sub-loop of an iSRN loop P
can have fewer occurrences of LC edges than P.

Definition 6 (iSRN loop). Let P be an SRN loop. P is called an indivisible
SRN loop (or iSRN loop) if #Q = #P for every SRN sub-loop Q of P.

Figure 6 shows an example of an SRN loop, P, that has no SRN sub-loops and,
thus, is indivisible. P contains three occurrences of LC edges (two from A to
B, one from C to D); thus, #P = 3. P is semi-reducible because each LC edge
has a corresponding breach-free extension sub-path that can be used to reduce
it away. In addition, |P| = —7 < 0. Finally, although P has many sub-loops, two
of which are shaded in the figure, none of them are SRN sub-loops. For example,
the lefthand shaded sub-loop is not semi-reducible and the righthand shaded
sub-loop is non-negative. Thus, P is an iSRN loop.

Lemma 2, below, shows that for DC checking, it suffices to restrict attention
to iSRN loops. The iSRN loop, P’, is obtained by recursively extracting SRN
sub-loops until, eventually, an iSRN loop is found.

342 L. Hunsberger

Lemma 2. If an STNU S has an SRN loop P, then S also has an iSRN loop
P’. Furthermore, P’ can be chosen such that #P' < #P.

The search for an upper bound on the number of occurrences of LC edges in any
iSRN loop begins by focusing on root-level LCR sub-paths (i.e., LCR sub-paths
that are not contained within any other). This notion can be defined since, by
Lemma 1, ESPs in any semi-reducible path must be disjoint or nested.

Definition 7 (Root-level). Let e be an occurrence of an LC edge in a semi-
reducible path P; and let P, be the extension sub-path for e in P. If P, is not
contained within any other ESP in P, then P, is called a root-level ESP inP; e is
called a root-level LC edge in P; and the LCR sub-path formed by concatenating
e and P, is called a root-level LCR sub-path.

Theorem 4 bounds the number of root-level LCR, sub-paths in any iSRN loop.

Theorem 4. Any iSRN loop in any STNU with K contingent links has at most
K root-level LCR sub-paths.

Theorem 5, below, bounds the depth of nesting of LCR sub-paths (or, equiva-
lently, ESPs) in an iSRN loop. It extends Morris’ result that if an STNU with
K contingent links has an SRN loop, then it has a breach-free SRN loop whose
extension sub-paths are nested to a depth of at most K.

Theorem 5. Let P be an 1SRN loop in an STNU having K contingent links.
Then P is breach-free and has LCR sub-paths nested to a depth of at most K.

Although Theorem 5 bounds the nesting depth of LCR sub-paths in an iSRN
loop, it does not limit the number of LC edges within any root-level LCR sub-
path. Theorem 6, below, shows that any non-trivial iSRN loop must have an L.C
edge that occurs exactly once—and at the root level. Theorem 6 provides the
key for the inductive proof of Theorem 7, below, the main result of this section.

Theorem 6. If P is an iSRN loop that contains at least one lower-case edge,
then P must have a root-level LC' edge that occurs exactly once in P.

Theorem 7. If P is an iSRN loop in an STNU with K contingent links, then
#P < 2K 1.

Finally, Theorem 8 shows that the ordinary edges associated with contingent
links (cf. Fig. 1) can be ignored for the purposes of DC checking. Although this
does not affect the worst-case complexity of DC checking, it has the potential
to limit the branching factor of edge generation in practice.

Theorem 8. Any STNU having an SRN loop has an iSRN loop that contains
none of the ordinary edges associated with contingent links.

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 343
4 Magic Loops

Section 3 showed that the number of LC edges in any iSRN loop is at most
2K — 1. This section defines a magic loop as any iSRN loop that has exactly
2K — 1 occurrences of LC edges. It then presents an algorithm for constructing
such loops, thereby proving that the 2% — 1 bound is tight. Interestingly, the
STNUs used to generate these magic loops have only 2K + 1 time-points (two
time-points for each contingent link, plus one extra time-point) and 4K edges.

Definition 8 (Magic Loop). A magic loop of order K is any iSRN loop that (1)
belongs to an STNU having K contingent links; and (2) contains exactly 2% — 1
occurrences of LC edges

The algorithm for constructing magic loops is recursive. For each K > 1, it
defines an STNU, Sk, that contains a magic loop, Mg, of order K. The STNUs
and magic loops employ edges whose lengths are specified by numerical parame-
ters, such as z;,y;, oy, Bi, Vi, and §;, where 1 < i < K. All of these parameters
have positive integer values; thus, any negative values are specified with explicit
negative signs, as in: —y;, —q; or —v;. Each magic loop, Mg, also has sev-
eral sub-paths, called ¢;, x; and w;. These sub-paths have important properties
that are exploited in the proofs. Whereas all of the parameters are positive, the
lengths of the sub-paths, ¢;, x; and w;, are invariably negative. For convenience,
the rest of this section uses k instead of K, and * instead of k + 1. Thus, for
example, S, is shorthand for Sk 1.

- , o C:—3 A cr:l %) -1 ¥)
oF 2 v
Ae——=C\——= X P

01173 -1

Fig. 7. The STNU S; (left) and magic loop M (right).

For the base case, the STNU &; and its magic loop M; are shown in Fig. 7.
M contains two sub-loops, neither of which is an SRN loop; thus, M; is an
iSRN loop. Also, M, contains 2! — 1 = 1 occurrence of an LC edge; thus, M;
is a magic loop of order 1.

For the recursive case, suppose Sy is an STNU with &k contingent links with
the form shown at the left of Fig. 8, and My is a magic loop of order k with the
form shown at the right of Fig. 8. Note that &7 and M; have the desired forms.

The values of i, |¢x| and | x| suffice to generate the values of the parameters,
sy By Yy Ox, To and y,, which are determined sequentially, as shown in Rules
1-6 of Table2. (Recall that the asterisk is used as a shorthand for k 4 1.) Once
these values are in hand, the STNU, S,, is built out of Sy as shown in Fig.9;
and the magic loop, M., is created with the structure shown in Fig. 10.

344 L. Hunsberger

 additional
' time-points *
~ and edges

611.1:1“'. ‘ O,
Al — o Ci+——3 X

Cri—yr = —Vk

Fig. 8. The generic form of Sy (left) and My, (right).

Notice, too, that M, introduces a single, new lower-case edge associated with
a contingent link, (A, Z, y«, C). Since each yj, sub-path has 2% — 1 occurrences
of LC edges, the total number of occurrences of LC edges in M, is 1+2(2F—1) =
2k+1 1, as desired. Figure 11 shows the STNU S, and magic loop My generated
using these parameters; the LCR sub-paths are shaded for convenience.

Finally, Theorem 9, below, shows that for each & > 1, the loop, My, is indeed
a magic loop; and Theorem 10 shows that for each & > 1, the only iSRN loops
in Sj are necessarily magic loops; thus, there are no iSRN loops in S having
fewer than 2% —1 occurrences of lower-case edges. Taken together, these theorems
show that magic loops are not only worst-case scenarios in terms of the number
of occurrences of LC edges in an iSRN loop, but also that there are STNUs for
which this worst-case scenario is the only case.

Theorem 9. For each k > 1, the loop, My, is a magic loop of order k (i.e., an
iSRN loop having exactly 2% — 1 occurrences of lower-case edges).

Theorem 10. Let S be the STNU as described in this section for some k > 1.
Every SRN loop in Sy, has at least 28 — 1 occurrences of LC edges.

Table 2. Rules for generating parameters for the case k + 1.

(D) s =i B) v« =2 =2|¢x]| + |xk| +7% G)a=1
2) Be =1 =2|p1| +v 4) 6« =2 — 3|r| + & (6) y» =3 — 3|ow| + [xx|

additional time-points and edges for S.

’ . 6* Cy:

“additional time-points CN

.. and edges for Sy ﬁr C'*:\y* A,
- (5*

C1:21 .

P E——] —
Cii—mn —Vx

Fig. 9. Building the STNU, S., from Sj.

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 345

cy:l 8 12
AT > =X

Cy:—10 —1 -7
Cy:—3 A

Fig.11. STNU S; (top) and magic loop M2 (bottom).

5 Speeding up DC Checking

This section presents a recursive O(N?3)-time pre-processing algorithm that
exploits the 25 — 1 bound on the number of occurrences of LC edges in iSRN
loops. For certain networks, this pre-processing algorithm decreases the compu-
tation time for the N4 DC-checking algorithm from O(N?) to O(N3).

Let S be an STNU having K contingent links. The pre-processing algorithm
computes, for each contingent time-point, C';, an upper bound on the number
of distinct contingent time-points that can co-occur in any iSRN loop in S that
contains C. The largest of these upper bounds then serves as an upper bound,
UB, on the number of distinct contingent time-points—and hence the number
of distinct LC edges—that can co-occur in any single iSRN loop in &. Since
any 1SRN loop having at most UB distinct lower-case edges can be viewed as an
iSRN loop in an STNU having exactly UB contingent links, such a loop can have
extension sub-paths nested to a depth of at most UB (cf. Theorem 5). Thus,
UB also provides an upper bound on the number of rounds needed for the N*
algorithm to check the dynamic controllability of S.

In cases where UB < K, the pre-processing algorithm can provide significant
savings. Indeed, for some STNUs, UB = 1, implying the need for only one
O(N?)-time round of the N* algorithm, even though the unaware N* algorithm
might still perform K rounds at a cost of O(N*). At the other extreme, for

346 L. Hunsberger

/771'_7' P 73;}
/—/\—/\/\/\ /—/\—/\/\/\
& c o7 e
- -
= =
Pji P

Fig. 12. The iSRN loop, P (left), and its OU-cousin, P° (right).

some STNUs, UB = K, in which case, the pre-processing algorithm provides no
benefit. However, since the pre-processing algorithm runs in O(N?) time, it does
not introduce a significant overhead for the N* algorithm, whose first step is an
O(N3)-time computation of a distance matrix.

In more detail. Given an STNU, S, with K contingent links, the algorithm
begins by computing:

e 2K _ 1 the max. number of occurrences of LC edges in any iSRN loop in S;
e A, the max. value of y — z among all contingent links, (4, z,y,C), in S; and
e D° the APSP matrix for the OU-paths in S, computable in O(N?3) time.

Next, for each pair of distinct contingent time-points, C; and Cj, it computes:
LBij = IDO(Cth) + DO(Cj,Ci) — (2K — l)A

As will be shown, if P is any iSRN loop in & that contains both C; and Cj,
then |P| > LB;; (i.e., LB;; is a Lower Bound for the lengths of iSRN loops
that contain both C; and C;). Thus, if LB;; > 0, it follows that C; and C;
cannot co-occur in any iSRN loop in §. But in that case, any iSRN loop—if
such exists—can have at most K — 1 distinct LC edges and, thus, no more than
2(K=1) _ 1 occurrences of LC edges.

If the upper bound on the number of occurrences of LC edges in iSRN loops
in § can be lowered in this way, the algorithm recursively seeks to identify
additional combinations of contingent time-points that cannot co-occur within
any iSRN loop. It terminates when no further combinations can be found.

Consider the scenario in Fig. 12, where the lefthand loop is an iSRN loop, P,
that contains a pair of distinct contingent time-points, C; and C;. Note that the
sub-path from C; to Cj is called P;;, and the sub-path from C; to C; is called
Pj;. Next, define the ordinary cousin of an LC edge, A —%-L— C, to be the
corresponding ordinary edge, A—Y—C, for the contingent link (4,x,y,C)
(cf. Fig. 1). The righthand loop, P°, in Fig. 12 is the same as P, except that any
occurrences of LC edges have been replaced by their ordinary cousins. Since P°
may yet contain upper-case edges, we call it the OU-cousin of P. Notice that P°
is the concatenation of the OU-cousins of P;; and Pj;. Furthermore, since P
and Pj; are OU-paths, it follows that their lengths are bounded below by the
corresponding OU-distance-matrix entries, whence:

D°(C;, Cy) +D°(Cy,Cy) < [Pyl +[Ps;| = |P°| (1)

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 347

Now, by Theorem 7, since P is an iSRN loop, #P < 2% — 1. Thus, the
difference in the lengths of P and P° is bounded as follows:

Ap = [P°|=|P| < #P2" -1A < (2F - 1A (2)

where A is the maximum value of y — x over all the contingent links in the
STNU. Combining the inequalities (1) and (2) then yields:

Pl > [P~ (25— 1A > D(C;,C)) +D°(C;,Ch) — (2K~ 1)A

Since this inequality must hold whenever P is an iSRN loop in which the
distinct contingent time-points, C; and C}, both occur, it follows that if

DO(CZ',CJ‘) + DO(Cj,Ci) - (2K — I)A >0

then there cannot be any such loop. (]P| must be negative if P is an iSRN loop.)

Next, for each pair of contingent time-points, C; and Cj, let F(i,j) =
D°(C;,C;) + D°(C;, C;). Then the preceding rule, which is the main rule used
by the pre-processing algorithm, can be re-stated as:

e If C; and C; are distinct contingent time-points such that F(i,j) > (25 -1)A,
then C; and C; cannot both occur in the same iSRN loop.

Pseudo-code for the pre-processing algorithm is given in Table3. For each
contingent time-point, C;, it defines the following variables:

e ctr;, an upper bound (initially ctr; = K) on the number of distinct contingent
time-points that can co-occur in any iSRN loop that contains Cj.
e [;, alist of entries from row 4 of the F matrix, sorted into decreasing order.

As the algorithm runs, any entry, (¢,7, F(i,7)) from L;, for which F(i,5) >
(2¢fri — 1) A, signals that C; could not occur in the same iSRN loop with C;.
Such entries are popped off L; and pushed onto the global queue. As each entry
from the global queue is processed, the corresponding ctr; value decreases, which
may lead to further entries moving from L; to the global queue. The algorithm
terminates whenever the global queue is emptied, at which point no further
reductions in ctr; values can be made. The algorithm returns the maximum ctr;
value, which specifies the maximum number of distinct contingent time-points
that can co-occur in any iSRN loop in the given STNU. The Appendix proves
that the algorithm’s worst-case running time is O(N?3).

In best-case scenarios, the pre-processing algorithm results in all off-diagonal
entries in F being crossed out, implying that there can be no nesting of LCR
paths in any iSRN loop. In such cases, it is only necessary to do one O(N3)-time
round of the N* algorithm to ascertain whether the STNU is dynamically con-
trollable. The benefit in such cases can be dramatic, for if the network contains
even one semi-reducible path having K levels of nesting, then the unaided N4
algorithm would needlessly perform K rounds of processing in O(N*) time.

348 L. Hunsberger

Table 3. Pseudo-code for the pre-processing algorithm.

Given: An STNU S with K contingent links.
0. Initialization:
e Let A and F be as defined in the text.
e Foreachi € {1,2,..., K},

o ctr; = K.
o L; := alistof K entries, (4, j, (4, j)), sorted into decreasing order of the F (3, j)
values.

e () := the empty list.
1. Pop all entries off all L; lists for which F (i, j) > (2°" — 1) A.
2. While Q not empty:
a. Pop anentry, (4, j, F (i, 7)), off of Q.
b. If (4, j) entry in F not yet crossed out:
i. Cross out the (¢, 7) entry in F, and decrement the counter, ctr;.
ii. Pop all entries, (3,7, F(i,4")), from L; for which F(i,5") > (2™ — 1)A, and
push them onto Q.
c. Do Step b, above, for the entry, (5,7, F(7,1)).
3. Let UB = max{ctr;}.

6 Conclusions

This paper presented a new way of analyzing the structure of STNU graphs with
the aim of speeding up DC checking. It proved that the number of occurrences
of lower-case edges in iSRN loops is bounded above by 2% — 1. It presented an
algorithm for constructing STNUs that contain iSRN loops that attain this upper
bound, thereby showing that the bound is tight. Given their highly convoluted
structure, such loops are called magic loops. And it presented an O(N3)-time pre-
processing algorithm that exploits the 2% —1 bound to speed up DC checking for
some networks. Thus, the paper makes theoretical and practical contributions.

Other researchers have sought to speed up the process of DC checking using
incremental algorithms. Stedl and Williams [11] developed Fast-IDC, an incre-
mental algorithm that maintains the dispatchability of an STNU after the inser-
tion of new constraints or the tightening of existing constraints. Shah et al. [10]
extended Fast-IDC to accommodate the removal or weakening of constraints.
Although intended to be applied incrementally, their algorithm showed orders
of magnitude improvement over an earlier pseudo-polynomial DC-checking algo-
rithm when evaluated empirically, checking dynamic controllability from scratch.
It would be interesting to see if their work could be applied to generate an incre-
mental version of the Morris’ N* algorithm.

Others have extended the concept of dynamic controllability to accommo-
date various combinations of probability, preference and disjunction. Tsamardi-
nos [12] augmented contingent durations with probability density functions and
provided a method that, under certain restrictions, finds “the schedule that max-
imizes the probability of executing the plan in a way that respects the temporal
constraints.” Tsamardinos et al. [13] developed algorithms to compute lower

Magic Loops and the Dynamic Controllability of Simple Temporal Networks 349

and upper bounds for the probability of a legal plan execution. Morris et al. [§]
used probability density functions to represent the uncertainties associated with
contingent durations, but also incorporated preferences over event durations.
Rossi et al. [9] augmented STNUs with preferences (but not probabilities) and
defined the Simple Temporal Problem with Preferences and Uncertainty (STPPU)
and notions of weak, strong and dynamic controllability.

Effinger et al. [2] defined dynamic controllability for temporally-flexible reac-
tive programs that include the following constructs: “conditional execution,
iteration, exception handling, non-deterministic choice, parallel and sequential
composition, and simple temporal constraints”. They presented a DC-checking
algorithm for temporally-flexible reactive programs that frames the problem as
an “AND/OR search tree over candidate program executions.”

References

1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49,
61-95 (1991)

2. Effinger, R., Williams, B., Kelly, G., Sheehy, M.: Dynamic controllability of
temporally-flexible reactive programs. In: Gerevini, A., Howe, A., Cesta, A.,
Refanidis, 1. (eds.) Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 09). AAAI Press (2009)

3. Hunsberger, L.: A fast incremental algorithm for managing the execution of dynam-
ically controllable temporal networks. In: Proceedings of the 17th International
Symposium on Temporal Representation and Reasoning (TIME-2010), pp. 121—
128. IEEE Computer Society, Los Alamitos (2010)

4. Hunsberger, L.: Magic loops in simple temporal networks with uncertainty. In: Pro-
ceedings of the Fifth International Conference on Agents and Artificial Intelligence
(ICAART-2013) (2013)

5. Morris, P.: A structural characterization of temporal dynamic controllability. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 375-389. Springer, Heidelberg
(2006)

6. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: Nebel, B. (ed.) 17th International Joint Conference on Artificial
Intelligence (IJCAI-01), pp. 494-499. Morgan Kaufmann (2001)

7. Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In:
Veloso, M.M., Kambhampati, S. (eds.) The 20th National Conference on Artifi-
cial Intelligence (AAAI-05), pp. 1193-1198. The MIT Press (2005)

8. Morris, R., Morris, P., Khatib, L., Yorke-Smith, N.: Temporal constraint reasoning
with preferences and probabilities. In: Brafman, R., Junker, U. (eds.) Proceedings
of the IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling,
pp. 150-155 (2005)

9. Rossi, F., Venable, K.B., Yorke-Smith, N.: Uncertainty in soft temporal constraint
problems: a general framework and controllability algorithms for the fuzzy case. J.
Artif. Intell. Res. 27, 617-674 (2006)

10. Shah, J., Stedl, J., Robertson, P., Williams, B.C.: A fast incremental algorithm for
maintaining dispatchability of partially controllable plans. In: Boddy, M., et al. (ed.)
Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling (ICAPS 2007). AAAT Press (2007)

350

11.

12.

13.

14.

L. Hunsberger

Stedl, J., Williams, B.C.: A fast incremental dynamic controllability algorithm.
In: Proceedings of the ICAPS Workshop on Plan Execution: A Reality Check, pp.
69-75 (2005)

Tsamardinos, I.: A probabilistic approach to robust execution of temporal plans
with uncertainty. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS
(LNAI), vol. 2308, pp. 97-108. Springer, Heidelberg (2002)

Tsamardinos, I., Pollack, M.E., Ramakrishnan, S.: Assessing the probability of
legal execution of plans with temporal uncertainty. In: Proceedings of the ICAPS-
03 Workshop on Planning under Uncertainty and Incomplete Information (2003)

Vidal, T., Ghallab, M.: Dealing with uncertain durations in temporal constraint
networks dedicated to planning. In: Wahlster, W. (ed.) 12th European Conference
on Artificial Intelligence (ECAI-96), pp. 48-54. Wiley, Chichester (1996)

	Magic Loops and the Dynamic Controllability of Simple Temporal Networks with Uncertainty
	1 Background
	1.1 Simple Temporal Networks
	1.2 STNs with Uncertainty
	1.3 DC-Checking Algorithms

	2 Modifying Morris' Analysis
	3 Indivisible SRN Loops
	4 Magic Loops
	5 Speeding up DC Checking
	6 Conclusions
	References

