
Fixing the Semantics for Dynamic Controllability and Providing a More
Practical Characterization of Dynamic Execution Strategies

Luke Hunsberger
Vassar College

Poughkeepsie, NY 12604-0444 USA
hunsberg@cs.vassar.edu

Abstract

Morris, Muscettola and Vidal (MMV) presented an algo-
rithm for checking the dynamic controllability (DC) of tem-
poral networks in which certain temporal durations are be-
yond the control of the planning agent. Their DC-checking
algorithm is based on rules for inferring new constraints
based on the real-time context within which execution deci-
sions must be made. This paper presents a counter-example
to demonstrate that some of the inference rules are, in fact,
not sound. The paper fixes the problem by strengthening the
definition of dynamic execution strategies to correctly cap-
ture the central prohibition against advance knowledge of
future events. The new definition enables MMV’s soundness
proof to go through with minimal changes. It then uses the
stronger definition to derive an equivalent, alternative char-
acterization of dynamic execution strategies that highlights
the real-time execution decisions that a planning agent must
make. The procedural strategy used by MMV in their com-
pleteness proof is shown to satisfy the stronger definition,
thus ensuring that the DC-checking algorithm is also com-
plete with respect to the stronger definition. As a result, the
paper puts MMV’s DC-checking algorithm on a more solid
theoretical foundation, while also providing a more practi-
cal characterization of dynamic execution strategies.

1. Introduction

Dechter et al. [1] introduced Simple Temporal Networks
(STNs), a practical formalism for representing and man-
aging time-points and temporal constraints. Vidal and
Ghallab [8] argued that certain processes are only initi-
ated by a planning agent, but their durations are beyond
the agent’s control. They augmented STNs to include con-
tingent constraints and defined the controllability of such
networks. Vidal and Fargier [6, 7], and later Vidal [5], pre-
sented more concise definitions of networks with contingent

constraints—called Simple Temporal Networks with Uncer-
tainty (STNUs)—and three kinds of controllability: weak,
strong and dynamic. Of these, dynamic controllability has
the most practical use. Loosely speaking, a network is dy-
namically controllable (DC) if there exists a dynamic exe-
cution strategy (DES) that an agent can use to execute the
time-points under its control that will guarantee the consis-
tency of the network no matter how the contingent durations
turn out. Crucially, a DES is not allowed to depend on ad-
vance knowledge of future events. In particular, real-time
execution decisions cannot depend on the values of contin-
gent durations that have not yet completed.

Morris, Muscettola and Vidal [3]—henceforth MMV—
further refined the semantics of dynamic controllability and
presented a pseudo-polynomial-time algorithm for check-
ing the dynamic controllability of arbitrary STNUs. Their
proof of the soundness of their DC-checking algorithm is
based on rules for inferring new constraints that reflect the
real-time context within which execution decisions must be
made. Their completeness proof demonstrates that any net-
work accepted by the algorithm has a viable DES.

Later, Morris and Muscettola [4] presented a more con-
cise, O(n5)-time DC-checking algorithm, and Morris [2]
presented an even faster, O(n4)-time algorithm.1 The cor-
rectness of the later algorithms is based on the MMV se-
mantics and the correctness of the MMV algorithm; thus,
this paper focuses on the MMV semantics and algorithm.

1.1. This paper

This paper begins by presenting a counter-example to the
soundness of MMV’s DC-checking algorithm. The problem
is two-fold. First, MMV’s definition of a DES—and hence
of dynamic controllability—does not adequately capture the
prohibition against advance knowledge of future events that
lies at the heart of our pre-theoretic notion of dynamic con-
trollability. Second, MMV’s soundness proof relies on a

1n is the number of time-points in the network.

property of DESs that is not entailed by their definition.
The paper fixes the problem by augmenting MMV’s def-

inition of DES to include a stronger property that correctly
captures the above-mentioned prohibition. It then proves
that MMV’s soundness proof, with minimal changes, goes
through using the new definitions. No changes to the DC-
checking algorithm are required; it is sound with respect to
the new definitions.

Finally, the paper uses the new definition of dynamic
execution strategies to derive a more practical, alternative
characterization of such strategies. The new characteriza-
tion is based directly on the kinds of real-time execution
decisions that a planning agent must make. Each real-time
decision has one of two forms. They can be glossed as
“wait until something happens” or “if nothing happens be-
fore time τ , then execute the time-points in the set χ”. Such
strategies can be derived using the sorts of incremental com-
putations that are reflected in the procedural strategy used
by MMV in their completeness proof. This paper demon-
strates that their procedural strategy satisfies the new defini-
tion of a dynamic execution strategy, thereby ensuring that
the existing DC-checking algorithm is also complete with
respect to the new definition of dynamic controllability.

Although some of the elements of the alternative char-
acterization of strategies developed in this paper bear some
similarity to notions defined by Vidal and Fargier [6, 7],
they are quite distinct. In addition, the strategies based on
real-time execution decisions are novel, their properties are
rigorously analyzed, and they are proven to be equivalent to
the (revised) MMV definitions.

1.2. Summary of MMV’s approach

This section summarizes the definitions used by MMV,
but also draws from Vidal [5] and Vidal and Fargier [7].

Simple Temporal Network (STN). An STN is a 4-tuple,
〈N,E, l, u〉, where N is a finite set of nodes (or time-
points), E is a set of directed edges, and l : E → R∪{−∞}
and u : E → R ∪ {∞} are functions that map edges to
lower and upper bounds, respectively. An edge, e ∈ E,
from the time-point X to the time-point Y, represents the
constraint, Y −X ∈ [l(e), u(e)], indicated as follows:

[l(e), u(e)]
X Y

The edges are also called links. One of the time-points,
called the zero time-point (or Z), is fixed at the value 0.
All other time-points are constrained to occur after Z.

Simple Temporal Network with Uncertainty (STNU).
An STNU is a 5-tuple, 〈N,E, l, u, C〉, where N,E, l and u

are as in an STN, and C ⊆ E is a subset of the edges: the
contingent links. (The rest of the edges are called require-
ment links.) For each contingent link, e ∈ C, the bounds
are assumed to satisfy 0 < l(e) < u(e) < ∞. If e is a
contingent link from A to C, then C is called a contingent
time-point, and A is called the activation time-point for C.
In this paper, contingent links are indicated as follows:

[l(e), u(e)]
A C

Let N c ⊆ N denote the set of contingent time-points and
Nx = N −N c − {Z} the set of executable time-points.

To execute a time-point means to fix its value to the cur-
rent time. The planning agent directly controls the execu-
tion of only the executable time-points. Nature is presumed
to control the duration of each contingent link. A contin-
gent time-point, C, is said to be activated if its activation
time-point, A, has been executed.

Situations and Projections. Let N be an STNU whose
contingent links are e1, . . . , eq and whose corresponding la-
bels are [x1, y1], . . . , [xq, yq]. The space of situations forN
is the cross-product, ΩN = [x1, y1]× . . .× [xq, yq]. Each
ω ∈ ΩN is called a situation. Each situation specifies dura-
tions for all of the contingent links in N .

For a situation, ω = (ω1, ω2, . . . , ωq), the projection,
Nω, is the STN (not STNU) derived from N by replacing
each contingent link, ei, with a requirement link labeled by
[ωi, ωi], thereby fixing its duration to the value ωi.

Schedules. Given an STNU, N = 〈N,E, l, u, C〉, a
schedule is a mapping T : N → R (i.e., a complete set
of variable assignments for all of the time-points in N).
For convenience, the shorthand Tt is used instead of T (t)
to denote the time at which t is executed according to the
schedule T . The set of schedules for N is denoted by TN .
A schedule T is consistent with N (resp., a projection Nω)
if the assignments in T satisfy all of the constraints in N
(resp., Nω). Henceforth, we restrict attention to schedules
in which TAi < TCi for each contingent link, AiCi.

Pre-histories. Given a schedule T for an STNU N , and a
time-point x ∈ N , the pre-history of x with respect to T is:

T<x = {(Ci, TCi − TAi) : AiCi ∈ C, TCi < Tx}

Thus, T<x specifies the durations of all contingent links that
execute before x according to the schedule T .

Execution Strategies. An execution strategy for an
STNU N is a mapping, S : ΩN → TN , from situations to
schedules.2 S is called viable if for each situation ω ∈ ΩN ,

2

(a) B

A
C[10, 20]

[2, 15]
(b) B

A
C[10, 20]

[−4, 7]

Figure 1. Sample triangular networks

C

Z

C0 [10, 20]
B

[2, 3] [10, 15]

Figure 2. A counter-example, N !

the schedule S(ω) is consistent with the projection Nω. S
is called a dynamic execution strategy (DES) for N if

[S(ω′)]<x = [S(ω′′)]<x =⇒ [S(ω′)]x = [S(ω′′)]x

for all situations, ω′, ω′′, and executable time-points, x.
Thus, if two schedules generated by a DES have identical
pre-histories for x, they must assign the same value to x.

Dynamic Controllability. An STNU, N , is dynamically
controllable (DC) if there exists a viable DES for N .

The DC-Checking Algorithm. MMV’s DC-checking al-
gorithm infers constraints that any viable DES must satisfy.
Some of the constraints are ternary constraints, called waits.
For example, the networks in Fig. 1 each contain a contin-
gent link, AC, and a requirement link, BC. For (a), the
DC-checking algorithm infers the constraint, B−A ∈ [5, 8].
For (b) it infers a wait: while C is unexecuted, B must wait
until at least 13 units after A (i.e., B −A ≥ 13). The algo-
rithm also propagates waits. MMV prove that the rules for
generating and propagating waits are sound (i.e., the result-
ing waits must be satisfied by any viable DES). They also
prove that any STNU accepted by the algorithm has a viable
DES (i.e., that the algorithm complete).

2 Counter-example

The STNU, N !, shown in Fig. 2, contains two contin-
gent links—ZC0 and ZC—and one requirement link: BC.
Since Z is fixed at 0, the duration of ZC is the same as the
value of C; and the duration of ZC0 equals the value of C0.
N ! does not satisfy our intuitive notion of dynamic con-

trollability since there is no safe time to execute B. For ex-
ample, executing B at time 0 risks violating the constraint,

2MMV define strategies as mappings from projections to schedules, not
situations to schedules. However, since situations correspond one-to-one
to projections, this difference is purely superficial.

C−B ≤ 15, should C happen to execute after time 15. But
executing B sometime after 0 risks violating the constraint,
C −B ≥ 10, should C happen to execute at time 10.

For N !, the DC-checking algorithm infers the (impossi-
ble) constraint, C−B ∈ [5, 0], and thus rejectsN !. But the
strategy, S!, defined below, is a viable DES for N !.

For any situation, ω, if ZC ≤ 15 in ω,
let [S!(ω)]B = 0; otherwise, let [S!(ω)]B = 5.

S! clearly violates the important prohibition against deci-
sions that depend on advance knowledge of future events.
In particular, the execution time for B, which must be cho-
sen before C executes, depends on the execution time of C.
However, this strategy is viable, since all of the schedules
it generates are consistent with the corresponding projec-
tions. Furthermore, it is a DES. To see this, notice that
the pre-history for any schedule that assigns B the value
0 is necessarily empty, but the pre-history for any schedule
that assigns B the value 5 necessarily contains information
about C0—since ZC0 is constrained to occur within [2, 3].
Thus, any schedules having the same pre-histories for B as-
sign the same value to B, which is what the DES definition
requires. Thus, according to MMV’s definition, N ! is DC,
although the DC-checking algorithm rejects it. Thus, N !

contradicts the soundness of the DC-checking algorithm.
This counter-example employs what should be an irrele-

vant contingent time-point, C0, to take advantage of a loop-
hole in the DES definition. The presence of C0 causes the
different sets of schedules to have different pre-histories
for B, thereby escaping the main DES requirement. In so
doing, the execution time of B is allowed to depend on ad-
vance knowledge of the future execution of C.

In view of this contradiction, MMV’s proof of the sound-
ness of the DC-checking algorithm must have an error. In
particular, their proof depends on the following claim:3

Let S be a DES, ω a situation, t 6= C a time-point,
and AC a contingent link where C 6∈ [S(ω)]<t. Let
ω′ be a situation that differs from ω only in its value
for the duration of AC—but such that C 6∈ [S(ω′)]<t.
Then [S(ω′)]t = [S(ω)]t.

Although this property holds in the case of triangular net-
works, it does not hold for N !. In particular, S! is a
DES, ω = (2, 10) is a situation (i.e., C0 = 2, C = 10),
[S!(ω)]B = 0, and C 6∈ [S!(ω)]<B = ∅. However,
ω′ = (2, 20) is a situation that differs only in the value
it assigns to C, C 6∈ [S!(ω′)]<B = {(C0, 2)}, and yet
[S!(ω′)]B = 5 6= 0 = [S!(ω)]B .

3In MMV’s discussion of the Precede case: “Since C is not in T<B or
T<A, TB cannot depend on AC. Therefore TA and TB are unchanged if
the projection is mutated to a projection p′ where AC equals y.” A similar
assumption is made in their Lemma 1, which covers propagation of waits.

3

3. Closing the loophole

The problem with the DES definition is that it compares
pre-histories relative to time-point variables. The revised
DES definition, given below, instead compares pre-histories
relative to fixed times, k ∈ R. To facilitate comparison, the
revised definitions for DES and DC are marked by asterisks.

Pre-histories relative to a number k. Given an STNU
N , a schedule T , and some k ∈ R, then T<k denotes the
pre-history of T relative to k, which specifies the durations
of the contingent links in N that finish before k in T :

T<k = {(Ci, TCi − TAi) : AiCi ∈ C, TCi < k}

Dynamic Execution Strategy∗. A strategy, S, is called
a dynamic execution strategy∗ (DES∗) if for any situa-
tions, ω′, ω′′ ∈ ΩN , and executable time-point x in N :
if [S(ω′)]x = k and [S(ω′)]<k = [S(ω′′)]<k, then
[S(ω′′)]x = k. In other words, if the strategy S in the sit-
uation ω′ assigns the value k to the executable time-point
x, then S must also assign k to x for any other situation ω′′

whose pre-history relative to k matches that of ω′.

Dynamic Controllability∗. An STNU is called dynami-
cally controllable∗ (DC∗) if there is a viable DES∗ for it.

Although the strategy, S!, is a DES for the network,N !, it
is not a DES∗. To see this, first note that [S!(ω)]<0 = ∅ for
all situations ω, since no contingent time-point can execute
before 0. Next, note that for some ω′, [S!(ω′)]B = 0.
Thus, for S! to be a DES∗ would require [S!(ω)]B = 0 for
all situations ω. However, for some ω′′, [S!(ω′′)]B = 5.

In general, being a DES∗ requires a strategy to make the
same decisions about executable time-points in the same
real-time contexts. As will be shown subsequently, the ex-
isting DC-checking algorithm is both sound and complete
with respect to the new DES∗ and DC∗ definitions.

Lemma 1. Let S be a DES∗, and ω′ and ω′′ situations
such that S(ω′) 6= S(ω′′). Let k0 ∈ R be the first time
at which S(ω′) and S(ω′′) differ. Then S(ω′) and S(ω′′)
agree about which executable time-points execute at k0;
however, for some contingent link, AiCi, one of S(ω′) and
S(ω′′) says Ci executes at k0, while the other says Ci exe-
cutes after k0. In any case, [S(ω′)]Ai = [S(ω′′)]Ai < k0.

Proof 1. By construction, [S(ω′)]<k0 = [S(ω′′)]<k0

which, given that S is a DES∗, implies that S(ω′) and
S(ω′′) agree about the executable time-points that execute
at k0. Thus, S(ω′) and S(ω′′) can only disagree about
the execution of contingent time-points at k0. Without loss

of generality, let Ci be a contingent time-point such that
[S(ω′)]Ci = k0, but [S(ω′′)]Ci > k0. Let Ai be the activa-
tion time-point for Ci. Then [S(ω′)]Ai < [S(ω′)]Ci = k0

implies that [S(ω′)]Ai = [S(ω′′)]Ai , by the choice of k0.

Lemma 2. If S is a DES∗ for N , then it is a DES for N .

Proof 2. Suppose [S(ω′)]<x = [S(ω′′)]<x for some ω′

and ω′′, and executable x. Let k0, Ai and Ci be as in
Lemma 1.4 Since S(ω′) and S(ω′′) agree about Ai, but
not Ci, it follows that Ci 6∈ [S(ω′)]<x = [S(ω′′)]<x. Thus,
Ci occurs at or after x in both S(ω′) and S(ω′′). Thus, x
occurs before k0 in both. Thus, [S(ω′)]x = [S(ω′′)]x.

Lemma 3. Suppose [S(ω′)]<k = [S(ω′′)]<k for a DES∗

S, and some k, ω′ and ω′′. Then for all time-points t,
if [S(ω′)]t < k or [S(ω′′)]t < k, then [S(ω′)]t =
[S(ω′′)]t. Furthermore, for all executable time-points x, if
[S(ω′)]x ≤ k or [S(ω′′)]x ≤ k, then [S(ω′)]x = [S(ω′′)]x.
Thus, if S(ω′) and S(ω′′) have the same pre-histories rela-
tive to k, then they must agree about the execution times of
all time-points before k, and all executable time-points at k.

Proof 3. Let k0, Ai and Ci be as in Lemma 1. By choice
of k0, S(ω′) and S(ω′′) agree about all executions before
k0. If k0 < k, then Ci executes before k in S(ω′) or S(ω′′).
But then Ci ∈ [S(ω′)]<k = [S(ω′′)]<k, which implies
[S(ω′)]Ci = [S(ω′′)]Ci , contradicting the choice of Ci.
Thus, k ≤ k0, and S(ω′) and S(ω′′) agree about all time-
points executing before k. Finally, suppose [S(ω′)]x = k
or [S(ω′′)]x = k for some executable x. If k < k0, then
[S(ω′)]x = [S(ω′′)]x by the choice of k0; if k = k0, then
[S(ω′)]x = [S(ω′′)]x by Lemma 1.

Lemma 4 shows that the DES∗ definition correctly cap-
tures the prohibition against advance knowledge of future
events, which is the property on which MMV based their
soundness proof for their DC-checking algorithm.

Lemma 4. Let S be a DES∗, ω a situation, t 6= C a time-
point, and AC a contingent link such that C 6∈ [S(ω)]<t.
If ω′ is the same as ω, except that the duration of AC is
changed, and C 6∈ [S(ω′)]<t, then [S(ω′)]t = [S(ω)]t.

Proof 4. Let k0, Ai and Ci be as in Lemma 1. Thus, S(ω)
and S(ω′) disagree about the duration of AiCi. Thus, AC
must be the link AiCi. Without loss of generality, suppose
[S(ω)]C = k0 and [S(ω′)]C > k0. Since C 6∈ [S(ω)]<t,
C must occur at or after t in S(ω) (i.e., [S(ω)]t ≤ k0). If t
is executable, or if t is contingent with [S(ω)]t < k0, then

4Proofs of Lemmas 2, 3, 4 and 8 ignore trivial case, S(ω′) = S(ω′′).

4

[S(ω)]t = [S(ω′)]t by Lemma 1. If t is contingent with
[S(ω)]t = k0, then S(ω) and S(ω′) must agree about the
execution of t’s activation time-point. Furthermore, since
t 6= C, S(ω) and S(ω′) must agree about the duration of
the contingent link ending in t. Thus, [S(ω)]t = [S(ω′)]t.

Corollary 4.1. MMV’s DC-checking algorithm is sound
with respect to the definitions of DES∗ and DC∗.

4. Alternative Characterization of a DES∗

Defining strategies as mappings from (complete) situa-
tions to (complete) schedules obscures the real-time fea-
tures of typical execution scenarios. For example, an agent
typically becomes aware of the unfolding situation only in-
crementally, over time. As more contingent durations com-
plete, the space of possible situations contracts. In addition,
when making real-time execution decisions, an agent knows
the execution times of only those time-points that have al-
ready executed. Finally, the DES∗ definition obscures the
kinds of execution decisions an agent can make.

This section introduces partial schedules to represent not
only the contexts within which an agent must make real-
time execution decisions, but also the outcomes of those de-
cisions. A partial schedule specifies the execution times of
some, but not all of the time-points. However, since par-
tial schedules represent what has actually happened so far,
it is important to restrict attention to partial schedules that
respect (i.e., are consistent with) at least one situation.

Two kinds of real-time execution decisions (RTEDs) are
defined: WAIT and (τ, χ). These can be glossed as: “Wait
until some contingent duration completes” or “If nothing
happens before τ , then execute the (executable) time-points
in χ.” The outcome of an RTED depends on the situation,
and is represented by a partial schedule that specifies the ex-
ecution of one or more additional time-points. The outcome
of a WAIT decision involves the execution of only contin-
gent time-points; the outcome of a (τ, χ) decision can in-
volve the execution of contingent or executable time-points.

An RTED-based strategy is defined as a mapping from
partial schedules to real-time execution decisions. This sec-
tion proves that RTED-based strategies correspond one-to-
one to DES∗s. In addition, an RTED-based strategy is used
to verify that MMV’s DC-checking algorithm is complete
with respect to the new DES∗ and DC∗ definitions.

Schedules∗. Given an STNU, N = 〈N,E, l, u, C〉, a
schedule∗ is a (possibly partial) mapping T : N → R. Let
Dom(T) ⊆ N denote the domain of T . If Dom(T) = N ,
then T is a (complete) schedule as previously defined; oth-
erwise, T is a partial schedule. If t ∈ Dom(T), then t is
said to appear in T . The shorthand notation, Tt instead of

T (t), is also used for partial schedules. For convenience,
T may be viewed as a set of elements of the form, (t, Tt).
Let µ(T) = max{Tt : t ∈ Dom(T)} denote the maximum
execution (MaxEx) time of time-points appearing in T .

If t 6∈ Dom(T), then t is unexecuted in T . The set of
time-points that are unexecuted in T is denoted by U(T).
Similarly, Ux(T), U c(T) and Ua(T) respectively denote
the sets of executable, contingent and activated time-points
that are unexecuted in T . Note that Ua(T) ⊆ U c(T), since
only contingent time-points can be activated.

Respect. Let T be a (possibly partial) schedule∗ for an
STNU N . Let ω = (ω1, . . . , ωq) ∈ ΩN . T respects ω if
for each contingent link, AiCi, one of the following holds:

(1) neither Ai nor Ci appear in T ;

(2) only Ai appears in T , and TAi + ωi > µ(T); or

(3) both Ai and Ci appear in T , and TAi
+ ωi = TCi

.

For each T , the set of situations respected by T is denoted
by Ω(T). T is called respectful if it respects at least one
situation in ΩN (i.e., if Ω(T) 6= ∅). If T is both respectful
and partial, it is called a respectful, partial schedule (RPS).
A strategy S is respectful if for each ω, S(ω) respects ω.5

The WAIT Decision. Let T be some RPS for N such that
Ua(T) is non-empty (i.e., there is at least one contingent
time-point that is activated, but not yet executed in T). Then
WAIT is an allowable RTED for T .

The Outcome of a WAIT Decision. If Ua(T) 6= ∅ and
ω ∈ Ω(T) is a situation respected by T , then the time at
which the next contingent time-point will execute (accord-
ing to T and ω) is defined by:

tnc(T , ω) = min{TAi
+ ωi : Ci ∈ U a(T)}

Since Ua(T) 6= ∅, tnc(T , ω) is well defined; and since T
respects ω, tnc(T , ω) > µ(T).

Next, let χa(T, ω) ⊆ Ua(T) denote the non-empty set of
activated contingent time-points that, according to T and ω,
will execute next, at the time tnc(T , ω):

χa(T, ω) = {Ci ∈ Ua(T) : TAi + ωi = tnc(T , ω)}

Then O(T, ω, WAIT) denotes the outcome of the WAIT de-
cision for T in the situation ω, which is defined to be:

T ∪ {(Ci, tnc(T , ω)) : Ci ∈ χa(T , ω)}

Note that O(T, ω, WAIT) is a schedule∗ that augments T to
include all of the contingent time-points that execute at the
time, tnc(T , ω). Thus, the MaxEx time for this outcome is
tnc(T , ω). In addition, T ⊂ O(T, ω, WAIT).

5A viable strategy is necessarily respectful since S(ω) being consistent
withNω requires S(ω) to respect all durations in ω; however, a respectful
strategy need not be viable, since it need not satisfy all constraints in N .

5

A (τ, χ) Decision. Let T be some RPS for N such that
Ux(T) is non-empty (i.e., at least one executable time-point
is unexecuted in T). If τ > µ(T) and χ is a non-empty
subset of Ux(T), then (τ, χ) is an allowable RTED for T .

The Outcome of a (τ, χ) Decision. Let ω ∈ Ω(T) be a
situation respected by T . Then O(T, ω, (τ, χ)) denotes the
outcome of the decision, (τ, χ), for T in the situation ω.
The outcome depends on the relationship between the num-
bers tnc(T , ω) and τ . For simplicity, let τ c = tnc(T , ω),
and let χa = χa(T, ω). (If Ua(T) = ∅, let τ c = ∞.)
If τ c < τ , the outcome involves the execution of only the
(contingent) time-points in χa; if τ < τ c, the outcome in-
volves the execution of only the (executable) time-points
in χ; if τ c = τ , the outcome involves the execution of the
time-points in both χa and χ. In particular, O(T, ω, (τ, χ))
is defined by: T ∪ {(C, τ c) : C ∈ χa}, if τ c < τ

T ∪ {(x, τ) : x ∈ χ}, if τ < τ c

T ∪ {(C, τ c) : C ∈ χa} ∪ {(x, τ) : x ∈ χ}, if τ c = τ

Note that the MaxEx time of the outcome is min{τ c, τ}. In
addition, T ⊂ O(T, ω, (τ, χ)).

Lemma 5. If T is a partial schedule that respects the sit-
uation ω, and δ is an RTED that is allowed for T , then the
outcome O = O(T, ω, δ) also respects ω.

Proof 5. Let AiCi be some contingent link.
Case 1: Neither Ai nor Ci appear in T . Thus, Ci 6∈ Ua(T)
and Ci is unexecuted in O. If Ai is still unexecuted in O,
then condition (1) of the definition of respect is satisfied;
otherwise, condition (2) is satisfied, since ωi > 0.
Case 2: Ai appears in T , but not Ci (i.e., Ci ∈ Ua(T)).
Suppose Ci ∈ χa(T, ω). If δ is the WAIT decision or δ =
(τ, χc) and tnc(T , ω) ≤ τ , then Ci is executed in O and
condition (3) in the definition of respect is satisfied, since
TAi

+ ωi = tnc(T , ω). Otherwise, Ci is not executed in
O and condition (2) is satisfied, since τ < tnc(T , ω). On
the other hand, if Ci 6∈ χa(T, ω), then Ci will not execute
until after tnc(T , ω). Thus, Ci is not executed in O and
condition (2) is satisfied.
Case 3: AiCi is finished and respected by T . Thus, AiCi

is finished and respected by the outcome, O ⊃ T .

RTED-based Strategy (RTEDS). An RTED-based strat-
egy for an STNU, N , is a mapping, R, from respectful par-
tial schedules to real-time execution decisions. Thus, if T
is a partial schedule that respects at least one situation, then
R(T) is a real-time execution decision for T .

Lemma 6. Let R be an RTEDS, and ω some situation.
Then R and ω determine a unique sequence of schedules∗,

T 0 = {(Z, 0)} ⊂ T 1 ⊂ T 2 ⊂ . . . ⊂ Tα

where for each i < α, T i is partial and respects ω,
T i+1 = O(T i, ω,R(T i)), and µ(T i) < µ(T i+1); and
where Tα is a complete schedule that respects ω.

Proof 6. Given some T i and ω, the outcome T i+1 =
O(T i, ω,R(T i)) deterministically augments T i to include
the execution of at least one more time-point. Thus, the
sequence is unique and terminates in a complete schedule,
Tα. Furthermore, µ(T i) < µ(T i+1). Finally, since T 0

respects all situations, including ω, Lemma 5 inductively
ensures that each T i, including Tα, respects ω.

Lemma 7. Any DES∗ S and situation ω together deter-
mine a unique sequence of schedules∗,

σ0 = {(Z, 0)} ⊂ σ1 ⊂ σ2 ⊂ . . . ⊂ σβ = S(ω)

where µ(σ0) < µ(σ1) < . . . < µ(σβ), and for each i < β,
the time-points that appear in σi+1 − σi are all executed at
the time µ(σi+1). This sequence of schedules∗ is hence-
forth called the signature sequence of schedules∗ for S(ω).
If S(ω) respects ω, then each σi respects ω.

Proof 7. The schedule S(ω) involves |N | execution
events, some of which may occur simultaneously. Let
0 = τ0 < . . . < τβ be the distinct times of those events,
where β ≤ |N |. For each i, let σi+1 = σi ∪ {(t, [S(ω)]t) :
[S(ω)]t = τi+1}. Then µ(σi) = τi for each i ≤ β. If S(ω)
respects ω, then it satisfies condition (3) of respect for each
contingent link, implying that each σi ⊆ S(ω) respects ω.

Reachable schedules. Let S be a respectful DES∗ and ω
a situation. Let σ0 ⊂ . . . ⊂ σβ be the signature sequence of
schedules for S(ω). Each σi is called reachable by S(ω).
R(S(ω)) = {σi : i < β} denotes the set of reachable par-
tial schedules for S(ω). R(S) =

⋃
ω∈ΩR(S, ω) denotes

the set of reachable partial schedules for the strategy S. By
Lemma 7, each σ ∈ R(S) respects at least one situation.

Lemma 8. Let S be a respectful DES∗. If T is reachable
by S(ω′), and T respects ω′′, then T is reachable by S(ω′′).

Proof 8. Let {σ′i} and {σ′′i } be the signature sequences of
schedules∗ for S(ω′) and S(ω′′), respectively. Let j be the
smallest index for which σ′j 6= σ′′j .

Since T is reachable by S(ω′), T = σ′i for some i.
Case 1: T = σ′i for some i < j. But then T = σ′′i and,

hence, is reachable by S(ω′′).

6

Case 2: T = σ′i for some i ≥ j. Thus, σ′j ⊂ T . Since T
respects ω′′, so does σ′j . And σ′′j respects ω′′ by Lemma 7,
since S is respectful. Let µ̂ = min{µ(σ′j), µ(σ′′j)}. By
construction, µ̂ is the first time at which σ′j and σ′′j differ.
Thus, [S(ω′)]<µ̂ = [σ′j]

<µ̂ = [σ′′j]<µ̂ = [S(ω′′)]<µ̂. Since
S is a DES∗, this implies that S(ω′) and S(ω′′) agree about
which executable time-points execute at µ̂. But since both
σ′j and σ′′j respect ω′′, they cannot disagree about the ex-
ecution times for any contingent time-points at µ̂. Thus,
σ′j = σ′′j , which contradicts the choice of j.

Corollary 8.1. Let T ∈ R(S) be a reachable partial
schedule for a respectful DES∗ S. For any ω′, ω′′ ∈ Ω(T),
T is reachable for S(ω′) and S(ω′′). Thus, the signature
sequences for S(ω′) and S(ω′′) are the same up to T , and
hence for each t ∈ Dom(T), [S(ω′)]t = Tt = [S(ω′′)]t.

The sets Ωc(T) and Ωx(T). For each T ∈ R(S), let
Ωc(T) denote the set of situations, ω ∈ Ω(T), such that
the next execution event in S(ω) after µ(T) involves only
contingent time-points; and let Ωx(T) denote the set of sit-
uations, ω ∈ Ω(T), such that the next execution event in
S(ω) after µ(T) involves at least one executable time-point.
Note that Ω(T) = Ωc(T) ∪ Ωx(T).

Lemma 9. Suppose T ∈ R(S) for a respectful DES∗ S.
If ω′, ω′′ ∈ Ωx(T), then the time of the next execution
event after µ(T) is the same for S(ω′) and S(ω′′). Call that
time τx. Also, the sets of executable time-points that ex-
ecute at τx in S(ω′) and S(ω′′) are the same. Finally, if
ωc ∈ Ωc(T), then the time, τ c, of the next contingent exe-
cution after µ(T) according to S(ωc) is less than τx.

Proof 9. Let τ ′ and τ ′′ be the times of the next execution
events after µ(T) in the schedules S(ω′) and S(ω′′), re-
spectively. Suppose τ ′ ≤ τ ′′. By Corollary 8.1, S(ω′) and
S(ω′′) are the same up to the time µ(T). Thus, by construc-
tion, [S(ω′)]<τ ′

= [S(ω′′)]<τ ′
. Thus, by Lemma 3, S(ω′)

and S(ω′′) must agree on all executable time-points that ex-
ecute at τ ′, which implies that τ ′ = τ ′′. Let τx = τ ′ = τ ′′.

Suppose τ c ≥ τx. Then [S(ω′)]<τx

= [S(ωc)]<τx

which, by Lemma 3, implies that S(ω′) and S(ωc) must
agree on all executable time-points that execute at or before
time τx, contradicting the choice of ωc ∈ Ωc(T).

Theorem A. Let S be a respectful DES∗ for N . Then
there exists an RTED-based strategy, R, that is equivalent
to S in the sense that for each situation ω ∈ ΩN , the sig-
nature sequence of schedules∗ for S(ω) is identical to the
unique sequence of outcomes determined by R and ω.

Proof A. Let S be a respectful DES∗. Define a mapping
R from RPSs to RTEDs, as follows. First, if T is reachable
for S (i.e., T ∈ R(S)):

• If Ωx(T) = ∅, then let R(T) = WAIT.

• If Ωx(T) 6= ∅, then let R(T) = (τx, χ), where
τx is the time of the next execution event for any
ω ∈ Ωx(T), and χ is the set of executable time-points
that execute at the time τx in any such ω.

The uniqueness of τx and χ is guaranteed by Lemma 9;
thus, R(T) is well-defined for T ∈ R(S).

For any other respectful partial schedule, T , if Ua(T)
is non-empty, let R(T) = WAIT; otherwise, let R(T) =
(µ(T) + 1, {x}), where x is some time-point in Ux(T).

Finally, for any situation ω, let σ0 ⊂ . . . ⊂ σβ = S(ω)
be the signature sequence of schedules∗ for S(ω); and let
T 0 ⊂ . . . ⊂ Tα be the unique sequence of outcomes de-
termined by R and ω. It suffices to show that α = β and
T i = σi for each i—and hence that Tα = σβ = S(ω).

Base Case: σ0 = {(Z, 0)} = T 0.
Recursive Case: σi = T i for some i < α. Then T i is

reachable for S, and [T i]t = [S(ω)]t for all t ∈ Dom(T i).
Thus, for any Cj ∈ Ua(T i), T i

Aj
+ωj = [S(ω)]Aj +ωj =

[S(ω)]Cj
. If Ωx(T i) = ∅, then R(T i) = WAIT and

ω ∈ Ωc(T i), which implies that Ua(T i) 6= ∅. Thus,
tnc(T i , ω) = min{[S (ω)]Cj : Cj ∈ U a(T i)} equals τ c,
the time of the next contingent execution event in S(ω), and
χa(T i, ω) is the set of contingent time-points executing at
that time in S(ω). Thus, the outcome, T i+1, equals σi+1.

However, if Ωx(T i) 6= ∅, then R(T i) = (τx, χ). If
ω ∈ Ωx(T i), then the outcome includes the execution of
the time-points in χ. Otherwise, ω ∈ Ωc(T i), and τ c < τx

implies that the outcome involves the execution of contin-
gent time-points as in the WAIT case. In either case, the
outcome agrees with S(ω), implying that T i+1 = σi+1.

Theorem B. Each RTEDS is a respectful DES∗.

Proof B. Let R be any RTED-based strategy for N .
Given any ω, define SR(ω) to be the terminal schedule in
the unique sequence of outcomes determined by R and ω
which, by Lemma 6, is guaranteed to respect ω.

Let ω′, ω′′ be a pair of situations for which the DES∗

property fails. Let k be the earliest time of such a fail-
ure. Thus, for some executable x, k = [SR(ω′)]x and
[SR(ω′)]<k = [SR(ω′′)]<k, but [SR(ω′′)]x 6= k.

Let {T j
1 } and {T j

2 } be the sequences of outcomes de-
termined by following R in the situations ω′ and ω′′, re-
spectively. Let T i+1

1 and T i+1
2 be the first pair of outcomes

in these sequences that differ. Thus, T i
1 = T i

2. Hence, the
governing decision at step i was the same: R(T i

1) = R(T i
2).

7

0. Let T = {(Z, 0)} be the initial partial schedule.
1. If U(T) = ∅, then DONE!
2. If Ux(T) = ∅, let δ(T) = WAIT. Go to Step 4.
3. For each x ∈ Ux(T), let [m(x), M(x)] be the current

time-window for x in N . If every contingent link, AiCi,
for which x has a wait, w(Ai, Ci, x), is activated in T ,
let W (x) = max{TAi + w(Ai, Ci, x) : Ci ∈ Ua(T)}; oth-
erwise, let W (x) = ∞. Let floor(x) = max{m(x),W (x)}
and go(x) = min{floor(x),M (x)}. Let δ(T) =
(τx, χ), where τx = min{go(x) : x ∈ U x (T)} and
χ = {x ∈ Ux(T) : τx = go(x)}.

4. If δ(T) = WAIT, then wait until some contingent time-point
executes. Otherwise, δ(T) = (τx, χ). If nothing happens
before time τx, then execute the time-points in χ; otherwise,
observe the contingent time-points executed at some τ c < τx.

5. Update T to include the execution events from Step 4. Update
N to include the corresponding constraints. Go to Step 1.

Figure 3. MMV’s strategy as an RTEDS

Let µ̂ = min{µ(T i
1), µ(T i

2)}. Note that µ̂ is the earliest time
at which SR(ω′) and SR(ω′′) differ.

Case 1: µ̂ < k. Then the DES∗ property holds at µ̂
and [SR(ω′)]<µ̂ = [SR(ω′′)]<µ̂ implies, by Lemma 3, that
SR(ω′) and SR(ω′′) agree about all executable time-points
at µ̂, and all time-points before µ̂. But then [SR(ω′)]<k =
[SR(ω′′)]<k implies that SR(ω′) and SR(ω′′) agree on all
contingent time-points at µ̂, too, contradicting choice of µ̂.

Case 2: k ≤ µ̂. Then SR(ω′) and SR(ω′′) agree about
all time-points before k. Since x is executed at k in SR(ω′),
the decision R(T i

1) = R(T i
2) must have been (k, χ) for

some χ containing x. But then T i+1
2 must be an outcome at

time k, which implies that x ∈ χ is also executed in T i+1
2

at time k, contradicting that [SR(ω′′)]x 6= k.

RTED-based Version of MMV’s Verification Strategy.
To prove that any STNU accepted by their DC-checking al-
gorithm is dynamically controllable, MMV presented not
a mapping from situations to schedules, but a procedure
for incrementally generating a single schedule in response
to the unfolding situation. Space limitations preclude du-
plicating that procedure here. Instead, Fig. 3 presents an
equivalent procedure for generating real-time execution de-
cisions. Although the computations are equivalent, they are
structured around partial schedules and RTEDs.

The procedure in Fig. 3 starts with an initial partial
schedule, T = {(Z, 0)}. It then computes an RTED, δ(T),
in Step 2 or Step 3, as follows. If all executable time-points
have already been executed, then δ(T) = WAIT (Step 2).
Otherwise, δ(T) = (τx, χ) based on the values for τx and
χ computed in Step 3. These values are based on the current
time-windows for the as-yet-unexecuted executable time-
points, which can be computed using an all-pairs, shortest-
path algorithm. (No generation or propagation of waits is

required.) floor(x) is the earliest time x can be executed
without violating its lower bound, m(x), or any of its rel-
evant waits. go(x) is the same except that it enforces the
constraint that x not violate its upper bound, M(x). (MMV,
in effect, prove that a conflict between floor(x) and M(x)
is not possible for an STNU accepted by their algorithm.)

In Step 4, the agent waits to see what the outcome of
the decision δ(T) will be. In Step 5, the agent updates T
and N to reflect that outcome, before returning to Step 1.
Eventually, the procedure terminates when all of the time-
points have been executed.

For any situation, ω, the procedure in Fig. 3 leads the
agent through the characteristic sequence of outcomes de-
scribed in Lemma 6. Thus, it determines an RTED-based
strategy which, by Theorem A, is necessarily a DES∗.
Therefore, the strategy generated by MMV’s procedure is
necessarily a DES∗. Thus, their proof that that strategy is
viable ensures that their DC-checking algorithm is complete
with respect to the definitions of DES∗ and DC∗.

5. Conclusions

This paper fixed a technical flaw in MMV’s seman-
tics for dynamic controllability. It presented an alternative
characterization of strategies based on real-time decisions
and showed that MMV’s existing DC-checking algorithm is
sound and complete with respect to the revised semantics.

References

[1] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–95, 1991.

[2] P. Morris. A structural characterization of temporal dynamic
controllability. In Principles and Practice of Constraint Pro-
gramming (CP 2006), volume 4204 of Lecture Notes in Com-
puter Science, pages 375–389. Springer, 2006.

[3] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of
plans with temporal uncertainty. In 17th Int’l. Joint Conf. on
Artificial Intelligence (IJCAI-01), pages 494–499, 2001.

[4] P. H. Morris and N. Muscettola. Temporal dynamic control-
lability revisited. In 20th National Conference on Artificial
Intelligence (AAAI-2005), pages 1193–1198, 2005.

[5] T. Vidal. A unified dynamic approach for dealing with tem-
poral uncertainty and conditional planning. In Fifth Interna-
tional Conference on Artificial Intelligence Planning Systems
(AIPS-2000), pages 395–402, 2000.

[6] T. Vidal and H. Fargier. Contingent durations in temporal
csps: from consistency to controllabilities. In Proceedings of
the TIME-97 Workshop, 1997.

[7] T. Vidal and H. Fargier. Handling contingency in tempo-
ral constraint networks: from consistency to controllabili-
ties. Journal of Experimental and Theoretical Artificial In-
telligence, 11(1):23–45, 1999.

[8] T. Vidal and M. Ghallab. Temporal constraints in planning:
Free or not free? In CONSTRAINT ’95 Workshop, 1995.

8

