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Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network to in-
clude a new kind of time-point, called an observation time-point. The execution of an observation
time-point generates information in real time, specifically, the truth value of a propositional letter.
In addition, time-points and temporal constraints may be labeled by conjunctions of (positive
or negative) propositional letters. A CSTN is called dynamically consistent (DC) if there exists
a dynamic strategy for executing its time-points such that no matter how the observations turn
out during execution, the time-points whose labels are consistent with those observations have all
been executed, and the constraints whose labels are consistent with those observations have all
been satisfied. The strategy is dynamic in that its execution decisions may react to observations.

The original formulation of CSTNs included propositional labels only on time-points, but the
DC-checking algorithm was impractical because it was based on a conversion of the semantic
constraints into an exponentially-sized Disjunctive Temporal Network. Later work added pro-
positional labels to temporal constraints, and yielded a sound-and-complete propagation-based
DC-checking algorithm, empirically demonstrated to be practical across a variety of CSTNs.

This paper introduces a streamlined version of a CSTN in which propositional labels may
appear on constraints, but not on time-points. This change simplifies the definition of the DC
property, as well as the propagation rules for the DC-checking algorithm. It also simplifies the
proofs of the soundness and completeness of those rules.

This paper provides two translations from traditional CSTNs to streamlined CSTNs. Each
translation preserves the DC property and, for any DC network, ensures that any dynamic
execution strategy for that network can be extended to a strategy for its streamlined counterpart.

Finally, this paper presents an empirical comparison of two versions of the DC-checking
algorithm: the original version and a simplified version for streamlined CSTNs. The comparison
is based on CSTN benchmarks from earlier work. For small-sized CSTNs, the original version
shows the best performance, but the performance difference between the two versions decreases
as the number of time-points in the CSTN increases. We conclude that the simplified algorithm
is a practical alternative for checking the dynamic consistency of CSTNs.
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10:2 A Streamlined Model of Conditional Simple Temporal Networks

1 Introduction

Dechter et al. [9] defined a Simple Temporal Network (STN) as a pair (T , C), where T is set
of real-valued variables, called time-points; and C is a set of binary difference constraints
(a.k.a. temporal constraints) on those time-points. The Simple Temporal Problem (STP) is
that of determining whether any given STN is consistent (i.e., whether there exists a complete
assignment to the time-points in T that satisfies all of the constraints in C). Typically,
an STN includes a special time-point, Z, whose value is fixed at zero. Binary constraints
involving Z correspond to unary constraints since X ≤ δ is equivalent to X − Z ≤ δ; and
X ≥ δ is equivalent to Z −X ≤ −δ. If an STN does not have a Z time-point, one can be
inserted without affecting the consistency of the network [11].

Tsamardinos et al. [18] introduced Conditional Simple Temporal Networks (CSTNs),
augmenting STNs to include propositional letters, observation time-points, and propositional
labels on time-points. Each observation time-point P? has a corresponding propositional
letter p, where the execution of P? non-deterministically generates a truth value for p. In
addition, any time-point—whether observational or not—may be labeled by a conjunction
of (positive or negative) propositional literals, the idea being that only the time-points
whose labels are consistent with the incrementally revealed observations need to be executed;
and only the constraints among those time-points need to be satisfied. A CSTN is called
dynamically consistent (DC) if there exists a dynamic strategy for executing its time-points
such that no matter how the observations turn out during execution, the time-points whose
labels are consistent with those observations have all been executed, and the constraints
among those time-points have all been satisfied. The strategy is dynamic in that its execution
decisions may react to observations in real time. They presented an algorithm for checking the
DC property—called a DC-checking algorithm—but it was not practical due to its conversion
of the semantic constraints into an exponentially-sized Disjunctive Temporal Network.

Hunsberger et al. [15] generalized CSTNs, allowing propositional labels on both time-
points and constraints. They then introduced rules for propagating labeled constraints, which
they used as the basis for a sound-and-complete DC-checking algorithm that was empirically
demonstrated to be practical across a variety of CSTNs. To facilitate proving that their
propagation rules were sound and complete, they also defined several properties associated
with propositional labels (e.g., label honesty and label coherence); and they formalized a set
of well-definedness properties that were implicit in the original formulation of CSTNs.

The motivation for this paper began with the observation that proving the soundness and
completeness properties for the propagation-based DC-checking algorithm was unnecessarily
complicated by the presence of propositional labels on time-points. As this paper shows,
no loss of generality results from streamlining CSTNs by allowing propositional labels on
constraints, but not on time-points. The streamlined definition of a CSTN simplifies: (1) the
definition of the DC property, (2) the definition of the propagation rules, and (3) the
soundness and completeness proofs for those rules. The paper proves the equivalence of
the streamlined CSTN and the prior formulation. It also empirically demonstrates that
the performance of the correspondingly simpler DC-checking algorithm is similar to that of
the original DC-checking algorithm, and that the performance difference between the two
algorithms decreases as the number of time-points increases.

2 Background

This section reviews the definitions needed for the more general version of CSTN and dynamic
consistency presented by Hunsberger et al. [15].
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Time Point Meaning
Z Begin
P? Do Blood Test (gen. value for p)
Q?p Repeat Blood Test (only if p = >;

generate value for q)
Epq Do Treatment (only if p = q = >)
Y End

Figure 1 The graph of a sample CSTN, discussed in the text

I Definition 1 (Labels). Given a set P of propositional letters:
a label is a (possibly empty) conjunction of (positive or negative) literals from P . The
empty label is notated as �.
for any label `, and any p ∈ P , if ` |= p or ` |= ¬p, then we say that p appears in `.
for any labels, `1 and `2, if `1 |= `2 (i.e., if `1 contains all of the literals in `2) then `1 is
said to entail `2. If `1 ∧ `2 is satisfiable, then `1 and `2 are called consistent.
the label universe of P , denoted by P ∗, is the set of all consistent labels whose literals
are drawn from P .

I Definition 2 (CSTN). A Conditional Simple Temporal Network (CSTN) is a tuple,
〈T , C, L,OT ,O, P 〉, where:

P is a finite set of propositional letters (or propositions);
T is a finite set of real-valued variables, called time-points;
C is a set of labeled constraints, each having the form, (Y −X ≤ δ, `), where X,Y ∈ T ,
δ ∈ R, and ` ∈ P ∗;
L : T → P ∗ is a function assigning labels to time-points;
OT ⊆ T is a (finite) set of observation time-points; and
O : P → OT is a bijection between propositional letters and observation time-points.

For convenience, the observation time-point associated with p may be denoted by P ? instead
of the more cumbersome O(p). In a CSTN graph, the time-points serve as the nodes, and
each labeled constraint, (Y −X ≤ δ, `), is represented by an arrow from X to Y annotated
by the labeled value 〈δ, `〉, as follows: X 〈δ, `〉 Y . (If ` = �, then the label and angle brackets
may be omitted, as follows: X δ Y .) For convenience, an interval constraint such as
(Y −X ∈ [a, b], `) may be represented by a single edge from X to Y labeled by 〈[a, b], `〉,
although it corresponds to two constraints in the CSTN definition. Finally, since any time-
points, X and Y , may participate in multiple constraints of the form, (Y −X ≤ δi, `i), each
edge in the graph may have multiple labeled values of the form, 〈δi, `i〉.

Fig. 1 shows the graph of a CSTN for a simple health-care example, originally presented
by Hunsberger et al. [15]. It will be used as a running example. The nodes, Z and Y ,
represent starting and ending time-points, respectively. P? represents the time at which a
particular blood test is performed. If this test generates a positive result, represented by
p = >, then the test must be repeated at time-point Q?, which generates a truth value for q.
Since Q? applies only in scenarios where p = >, it is labeled by p. If both tests generate
positive results, then an emergency treatment is applied at time-point E, whose label is pq.

The edges in this graph use the compact interval notation. For example, the edge from P ?
to Q? labeled by 〈[15, 20], p〉 represents that the difference, Q?− P?, must lie within [15, 20]
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10:4 A Streamlined Model of Conditional Simple Temporal Networks

in scenarios where p is true (i.e., the repeated test must be performed between 15 and 20
minutes after the first test). Similarly, the edges from Q? to E, and from E to Y are labeled
by pq, indicating that those constraints apply only in scenarios where both p and q are >.

2.1 Well-definedness properties for CSTNs
The following definitions specify properties that any well defined CSTN must hold. For
example, without the label coherence property (Defn. 4), it might happen X is labeled by p,
Y is labeled by q, and C contains the constraint, (Y − X ≤ −2, p): Xp

〈−2, p〉
Yq. Then,

in the scenario p¬q, X must be executed and Y must not be executed, but the constraint
(Y −X ≤ −2, p) must hold, which is absurd. Similar examples can be generated for the
other well-definedness properties. In short, CSTNs that are not well defined are of no use.

I Definition 3 (Honest Label). A label ` in a CSTN, whether on a time-point or constraint,
is called honest if for each q that appears in `, ` |= L(Q?) (i.e., ` contains all of the literals
from the label of the observation time-point for q).

I Definition 4 (WD1: Label coherence). A CSTN holds property WD1 (i.e., has coherent
labels) if for each labeled constraint, (Y − X ≤ δ, `), the label ` is satisfiable and entails
L(X) ∧ L(Y ) (i.e., contains all of the literals from L(X) and L(Y )).

I Definition 5 (WD2). A CSTN holds property WD2 if:
(a) for each time-point T ∈ T , its label L(T ) is honest, and
(b) for each p ∈ P that appears in L(T ), C contains a constraint, (P?− T ≤ −ε, L(T )),
for some ε > 0 (i.e., T is constrained to occur after P?).

I Definition 6 (WD3: Constraint Label Honesty). A CSTN holds property WD3 if the label
on each of its constraints is honest.

I Definition 7 (Well defined CSTN). A CSTN is called well defined if it holds properties
WD1, WD2 and WD3.

2.2 Dynamic Consistency for CSTNs
I Definition 8 (Scenario). A scenario over a set P of propositional letters is a function,
s : P → {>,⊥}, that assigns a truth value to each letter in P . Any such function also
provides the truth value for any label ` ∈ P ∗, which is denoted by s(`). The set of all
scenarios over P is denoted by I.

I Definition 9 (Schedule). A schedule for a set of time-points T is a mapping, ψ : T → R,
that assigns a real number to each time-point in T . The set of all schedules for any subset of
T is denoted by Ψ.

I Definition 10 (Projection). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN, and s any scenario
over P . The projection of S onto s—notated Prj(S, s)—is the STN, (T +

s , C
+
s ), where:

T +
s = {T ∈ T | s |= L(T )}; and
C+
s = {(Y −X ≤ δ) | for some `, (Y −X ≤ δ, `) ∈ C and s |= `}.

For convenience, we also define OT +
s = OT ∩ T +

s (i.e., the set of observation time-points
whose labels are entailed by s).

I Definition 11 (Execution Strategy). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN. An ex-
ecution strategy for S is a mapping, σ : I → Ψ, such that for each scenario s ∈ I, the
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domain of the schedule σ(s) is T +
s . If, in addition, for each scenario s, the schedule σ(s) is a

solution to the projection Prj(S, s), then σ is called viable. In any case, the execution time
for the time-point X in the schedule σ(s) is denoted by [σ(s)]X . In addition, |σ| denotes the
maximum value assigned by σ to any time-point in T in any scenario s ∈ I.

I Definition 12 (History). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN, s any scenario, σ any
execution strategy for S, and t any real number. The history of t in the scenario s, for the
strategy σ—notated Hist(t, s, σ)—is the set of observations made before time t according to
the schedule σ(s): Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT +

s and [σ(s)]P? < t}.

I Definition 13 (Dynamic Execution Strategy). An execution strategy σ for a CSTN is called
dynamic if for any scenarios s1 and s2, and any time-point X ∈ T +

s1
:

If Hist(t, s1, σ) = Hist(t, s2, σ), where t = [σ(s1)]X , then X ∈ T +
s2

and [σ(s2)]X = t.

I Definition 14 (Dynamic Consistency). A CSTN is dynamically consistent (DC) if there
exists an execution strategy for it that is both dynamic and viable.

2.3 Motivations for a new definition
The prior definitions of CSTN are convenient for the designer working in some domain. The
designer typically knows the scenarios in which each time-point must be executed and can
directly represent that information in the time-point labels. Furthermore, if the designer
constructs a CSTN that is not well defined, it can be easily remedied by augmenting the
labels on time-points and constraints to make them honest and coherent, and by inserting
any missing constraints needed for property WD2.b. However, the presence of labels on
time-points needlessly complicates the constraint-propagation rules needed for practical
DC checking. For example, Hunsberger et al. [15] introduced a child-of relation among
propositional letters that derives from cases where observation time-points have non-empty
labels. The applicability conditions of their propagation rules are littered with special cases to
handle the children of propositional letters. As a consequence, proving that the propagation
rules are sound requires dealing with these special cases. However, if a CSTN has no labels
on its time-points, then these complexities disappear. Indeed, it is trivial to check that all of
the well-definedness properties become vacuous if there are no labels on any time-points.

These considerations motivated the search for an equivalent formulation of CSTNs that
does not include labels on time-points. This paper presents such a formulation, called
streamlined CSTN, and proves that it is equivalent to the ordinary CSTN presented above.
The paper presents two alternative translations from ordinary to streamlined CSTNs, each
of which preserves the most important properties of a CSTN, including dynamic consistency.

A designer working in some domain may continue to reap the benefits of working with
CSTNs having labels on time-points, leaving it to the DC-checking algorithm to convert the
CSTN into a streamlined version before carrying out any constraint propagation. Thus, the
streamlined CSTN simplifies the theoretical foundations of CSTNs while still allowing users
to work with the earlier version should they find it useful to do so.

3 Streamlined Model of CSTNs

This section presents the definition for a streamlined CSTN, which simply removes the
assignment of labels to time-points. It also specifies the slight modifications to the sequence
of definitions needed for defining the dynamic consistency of CSTNs—namely, that for any
scenario s, T +

s = T and OT +
s = OT , since there are no labels on any time-points.

TIME 2017



10:6 A Streamlined Model of Conditional Simple Temporal Networks

I Definition 15 (CSTN�). A Streamlined Conditional Simple Temporal Network (CSTN�)
is a tuple, 〈T , C,OT ,O, P 〉, where:

P is a finite set of propositional letters (or propositions);
T is a finite set of real-valued variables, called time-points;
C is a set of labeled constraints of the form, (Y −X ≤ δ, `), where X,Y ∈ T , δ ∈ R, ` ∈ P ∗;
OT ⊆ T is a (finite) set of observation time-points; and
O : P → OT is a bijection between propositional letters and observation time-points.

As previously noted, there is no need for any of the well-definedness properties (Defns. 3-6)
for streamlined CSTNs since they become vacuous if there are no labels on time-points. The
existing definitions of scenarios and schedules (Defns. 8 and 9) apply to CSTN� without any
changes, but Defns. 10-13 must be slightly modified for CSTN�, as follows.

Projection (Defn. 10). The same, except that for each scenario s, T +
s = T , since there

are no labels on any time-points (equivalently, since s |= �). Similarly, OT + = OT .
Execution Strategy (Defn. 11). The same, except that for each scenario s, the domain
of σ(s) is T +

s = T .
History (Defn. 12). The same, but replace P? ∈ OT +

s by P? ∈ OT , since OT +
s = OT .

Dynamic Execution Strategy (Defn. 13). The same, but replace X ∈ T +
s1

by X ∈ T ,
since T +

s1
= T , and delete the (now redundant) requirement that X ∈ T +

s2
.

4 Equivalence of the CSTN and CSTN� Models

This section presents two translations from CSTNs to streamlined CSTNs and proves that
each translation preserves the property of dynamic consistency. Furthermore, using either
translation, any dynamic execution strategy for a DC CSTN can be extended to a dynamic
execution strategy for its streamlined counterpart such that for any scenario, the time-points
executed by the strategy for the CSTN are executed at the same times by the corresponding
strategy for the streamlined CSTN. The first translation inserts constraints that, for each
scenario s, require all time-points whose labels are entailed by s to be executed at or before a
fixed horizon h, while all time-points whose labels are inconsistent with s are constrained to
occur after h. The second translation does not add any such constraints and, thus, is much
simpler; however, it is less explicit about the time-points that are executed in the original
CSTN in any given scenario. Both translations are presented here since they illuminate
different aspects of the relationships between the CSTN and CSTN� models.

4.1 The First Translation from CSTN to CSTN�
We begin with some preliminary results.

I Lemma 16 (Upper bound for DC CSTNs). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN.
Let k = |OT | be the number of observation time-points in S;
let n = |T | the number of time-points;
let M = max{|δ| such that some (Y −X ≤ δ, `) ∈ C} be the maximum absolute value of
any bound on any constraint in C; and
let h = Mn(2k) be the horizon.

If S is DC, then there exists a viable and dynamic execution strategy σ for S such that for
every scenario s, and every time-point X, [σ(s)]X ≤ h (i.e., |σ| ≤ h).
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The horizon value (cf. Lemma 17) is:
h = Mn = 15 · 5 = 75.

C′1 = {(Q? ≤ 75, p), (E ≤ 75, pq),
(P? ≤ 75,�), (Y ≤ 75,�)}.

C′2 = {(Q? ≥ 76,¬p), (E ≥ 76,¬p),
(E ≥ 76,¬q)}.

The third and fourth constraints in C′1 are
not shown in the graph since they would
be redundant.

Figure 2 The CSTN� derived from the sample CSTN using the first method of translation

Proof. Comin and Rizzi [7] (their Theorem 6) proved a correspondence between CSTNs
and Hyper Temporal Networks (HyTNs) such that: (1) the corresponding HyTN has at
most (2k)n time-points; and (2) the CSTN is DC if and only if the corresponding HyTN is
consistent. Furthermore, Comin [6] (his Theorem 2.3) showed that an HyTN is consistent
if and only if it has no negative cycles (his Defn. 2.5). Now, a negative cycle in an HyTN
consists of hyperarcs. A finite cyclic path is obtained from a negative cycle by selecting at
most one ordinary arc from each hyperarc such that the selected arcs form a cycle in which
each node appears at most once. A negative cycle in an HyTN is characterized by each finite
cyclic path having negative length. Therefore, if S is a DC CSTN, there can be no negative
cycle in its corresponding HyTN. Furthermore, inserting constraints of the form X ≤ h into
the CSTN for each X could not introduce a negative cycle into the HyTN because: (i) all
such edges emanate from Z, thus only one can appear in any finite cyclic path; (ii) there can
be no more than (2k)n pre-existing edges in each finite cyclic path; and (iii) the absolute
value of each weight on the pre-existing edges can be no more than M . As a result, each finite
cyclic path that includes an edge of length h = Mn(2k) cannot have negative length. J

I Lemma 17 (Tighter upper bound; rational weights). Let S be a DC CSTN with n time-points
and rational weights. If M is the maximum absolute value of any negative edge in S, then
the network obtained by constraining every time-point in S to occur before time Mn is DC.

The proof of Lemma 17 is in the Appendix.

I Definition 18 (Reducing a CSTN to a CSTN�). Let S = 〈T , C, L,OT ,O, P 〉 be a well
defined CSTN. The reduction of S is the CSTN�, S� = 〈T , C ∪ C′1 ∪ C′2,OT ,O, P 〉, where:

some h ≥Mn(2k) serves as the horizon (cf. Lemma 16);∗

C′1 =
⋃
X∈T {(X − Z ≤ h, L(X))} =

⋃
X∈T {(X ≤ h, L(X))};† and

C′2 =
⋃
X∈T ,ρ∈L(X) {(Z −X ≤ −h− 1,¬ρ)} =

⋃
X∈T ,ρ∈L(X) {(X ≥ h+ 1 > h,¬ρ)}.

The constraints in C′1 force each X to be executed at or before h in scenarios that entail X’s
label. And the constraints in C′2 force each X to be executed after h in scenarios that do not
entail X’s label. Fig. 2 shows the streamlined version of the running example from Fig. 1.

The first method of translation generates an equivalent streamlined CSTN, as follows.

∗ If the weights in S are rational, then any h ≥Mn can serve as the horizon.
† In C′2, ρ represents a positive or negative literal, and ¬ρ the literal with the opposite polarity of ρ.
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10:8 A Streamlined Model of Conditional Simple Temporal Networks

I Theorem 19 (Equivalence of CSTN and CSTN� Models). Let S be any well defined CSTN.
Then S� (i.e., the reduction of S to a CSTN�) is equivalent to S in the sense that S is DC
if and only if S� is DC. Furthermore, in the case where S and S� are both DC, if σ is any
viable and dynamic (V & D) strategy for S for which |σ| ≤ h, then there is an equivalent
V & D strategy σ� for S� in the sense that for each scenario s and any X ∈ T :

If X ∈ T +
s , then [σ�(s)]X = [σ(s)]X ≤ h; otherwise, [σ�(s)]X ≥ h+ 1 > h.

Proof. Let S be any well defined CSTN; and let S� be the corresponding CSTN�.

Part 1: S is DC ⇒ S� is DC.

By Lemma 16 there exists a V & D execution strategy σ for S such that |σ| ≤ h. For any
such σ, define σ� : I → Ψ as follows. For any scenario s ∈ I, let σ(s) : T → R be the
schedule that is the same as σ(s) on time-points in T +

s , but that maps time-points not in
T +
s to h+ 1 (i.e., just over the horizon). In other words:
For each X ∈ T +

s , let [σ�(s)]X = [σ(s)]X ≤ h. (1)
For each X ∈ T \T +

s , let [σ�(s)]X = h+ 1. (2)

Note that |σ�| ≤ h+ 1. Next, we show that:
for any t ≤ h+ 1, and any scenario s, Hist(t, s, σ) = Hist�(t, s, σ�). (?)

To see this, let p be any propositional letter. If (p, s(p)) is in Hist�(t, s, σ�), it follows that
[σ�(s)]P? < t ≤ h+1 and, hence, by (1) and (2), that [σ�(s)]P? ≤ h, in which case, P ? ∈ T +

s

and [σ(s)]P? = [σ�(s)]P? < t. Therefore, (p, s(p)) is also in Hist(t, s, σ). On the other hand,
if (p, s(p)) is in Hist(t, s, σ), it follows that P? ∈ T +

s and thus [σ�(s)]P? = [σ(s)]P? < t, in
which case (p, s(p)) also appears in Hist�(t, s, σ�).

Next we aim to show that σ� is a dynamic strategy. Toward that end, let s1 and
s2 be any scenarios, let X be any time-point in T , let t = [σ�(s1)]X , and suppose that
Hist�(t, s1, σ�) = Hist�(t, s2, σ�). We must show that [σ�(s2)]X = t. First, note that since
t ≤ h+ 1 and Hist�(t, s1, σ�) = Hist�(t, s2, σ�), it follows from (?) that:

Hist(t, s1, σ) = Hist�(t, s1, σ�) = Hist�(t, s2, σ�) = Hist(t, s2, σ). (†)

There are two cases to consider.
1. X ∈ T +

s1
.

By (1), t = [σ�(s1)]X = [σ(s1)]X ≤ h. Therefore, (†) together with the dynamicity of σ
implies that X ∈ T +

s2
and [σ(s2)]X = t ≤ h, whence [σ�(s2)]X = [σ(s2)]X = t.

2. X 6∈ T +
s1

.
In this case, it follows from (2) that t = [σ�(s1)]X = h+1. Next, let p be any propositional
letter for which (p, s(p)) is in the histories, Hist�(t, s1, σ�) = Hist�(t, s2, σ�). Then
[σ�(s1)]P? < t = h + 1 which, by (1) and (2) above, implies that [σ�(s1)]P? ≤ h

and P? ∈ T +
s1
. Similarly, [σ�(s2)]P? ≤ h and P? ∈ Ts2 . Furthermore, by (2), any

observation time-point Q? that does not appear in those histories must be executed at
time h + 1, which implies that Q? 6∈ T +

s1
and Q? 6∈ T +

s2
. Thus, those histories contain

exactly the observation time-points in T +
s1
∩ T +

s2
. Since X is not in T +

s1
, it follows that

s1 6|= L(X). Now, if X ∈ T +
s2

(i.e., s2 |= L(X)), then (without loss of generality) there
must be some p ∈ L(X) such that s1 6|= p, but s2 |= p. Since L(X) is honest (by WD2),
L(X) |= L(P ?). Therefore, s2 |= L(X) |= L(P ?) and, hence, P ? ∈ T +

s2
, which implies that

[σ�(s2)]P? = [σ(s2)]P? ≤ h. But then p must appear in Hist�(h+ 1, s2, σ�). However,
since p yields different outcomes in s1 and s2, that contradicts that the histories for s1 and
s2 are the same. Therefore, it must be that X 6∈ T +

s2
, in which case, [σ�(s2)] = h+ 1 = t.
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By cases 1 and 2, it follows that σ� is dynamic. It remains to show that σ� is viable. Toward
that end, let s be any scenario, and let (Y −X ≤ δ, `) be any constraint in S� whose label
` is entailed by s. Now, if this constraint is in S, then by WD1, ` |= L(X) ∧ L(Y ). Hence,
s |= ` |= L(X) ∧ L(Y ), which implies that X,Y ∈ T +

s . Thus, σ and σ� execute X and Y
at the same times in s. And, since s |= `, this constraint is in C+

s ; thus, the viability of σ
ensures that it is satisfied by σ�(s). On the other hand, if this constraint is not in S, then
it must be one of the constraints, (X − Z ≤ h, L(X)) from C′1, or (Z − X ≤ −h − 1,¬ρ)
from C′2, for some ρ ∈ L(X). Now if s |= L(X), then (1) requires that [σ�(s)]X ≤ h, which
implies that the first constraint is satisfied, and s |= L(X) |= ρ implies that the second
constraint is trivially satisfied. On the other hand, if s 6|= L(X), then the first constraint is
trivially satisfied and, by (2), [σ�(s)]X = h+ 1, which implies that the second constraint is
satisfied. Therefore, since the choice of constraint was arbitrary, it follows that σ�(s) must
be a solution to the projection Prj�(S�, s). And since s was arbitrary, σ� must be viable.

Part 2: S� is DC ⇒ S is DC.

Let σ� be any V & D strategy for S�. We will construct a similar V & D strategy σ for S.
First, consider any scenario s, and any time-point X. The viability of σ� ensures that

it satisfies the constraints in C′1 and C′2. Therefore, if X ∈ T +
s (i.e., if s |= L(X)), then

[σ�(s)]X ≤ h; otherwise [σ�(s)]X ≥ h+ 1 > h. In short, [σ�(s)]X ≤ h⇔ s |= L(X).
Next, define the strategy σ for S, as follows. For each scenario s, and each X ∈ T +

s , let
[σ(s)]X = [σ�(s)]X (i.e., σ(s) = σ�(s)|T +

s
). Note that, by the preceding remarks, |σ| ≤ h.

Viability of σ. Let s be any scenario, and Prj(S, s) = (T +
s , C+

s ) the corresponding projection.
By WD1, the constraints in C+

s only involve time-points in T +
s . Thus, the endpoints of each

constraint in C+
s are executed at the same times by σ and σ� in s. Since σ� is viable, it

satisfies each constraint in that projection; hence, so does σ. Thus, σ is viable.

Dynamicity of σ. Let s1 and s2 be any scenarios, let X be any time-point in T +
s1
,

let t = [σ(s1)]X ≤ h, and suppose that Hist(t, s1, σ) = Hist(t, s2, σ). Since X ∈ T +
s1
,

[σ(s1)]X = [σ�(s1)]X . Next, let p be any letter appearing in L(X); and let P? be the
corresponding observation time-point. By WD1, L(X) is honest; hence, L(X) |= L(P?);
whence, s |= L(X) |= L(P?). Therefore, [σ(s1)]P? = [σ�(s1)]P?. Next, by WD2.b, C in-
cludes a constraint of the form (P?−X ≤ −ε, L(X)) and, since σ� is viable, it follows that
[σ�(s1)]P? < [σ�(s1)]P? + ε ≤ [σ�(s1)]X = t. Then, since [σ(s1)]P? = [σ�(s1)]P? < t, it
follows that (p, s1(p)) appears in Hist(t, s1, σ). Since this holds for each p in L(X), it follows
that Hist(t, s1, σ) |= L(X). Since Hist(t, s2, σ) = Hist(t, s1, σ), it follows that Hist(t, s2, σ) |=
L(X) and, hence, that s2 |= L(X) (i.e., X ∈ T +

s2
). Therefore, [σ(s2)]X = [σ�(s2)]X . Now, if

Hist�(t, s1, σ�) 6= Hist(t, s1, σ), there must be some observation time-point P? 6∈ T +
s1

that
σ� executes in scenario s1 at some time before t ≤ h. But the lower-bound constraints in
C′2 ensure that this can only happen if s1 |= L(P?), which contradicts that P? 6∈ T +

s1
. Thus,

Hist�(t, s1, σ�) = Hist(t, s1, σ). Similarly, Hist�(t, s2, σ�) = Hist(t, s2, σ). But then the
dynamicity of σ� ensures that [σ�(s2)]X = t and, hence, that [σ(s2)]X = t. J

4.2 The Second Translation from CSTN to CSTN�
Unlike the first translation from CSTN to CSTN�, the second translation, defined below,
does not insert any extra edges. For convenience, we use the same notation as in the preceding
section (i.e., in this section, CSTN� refers to the following definition).
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I Definition 20 (Reducing a CSTN to a CSTN�). Let S = 〈T , C, L,OT ,O, P 〉 be a well
defined CSTN. The reduction of S is the CSTN�, S� = 〈T , C,OT ,O, P 〉.

For a well defined CSTN, we can define a partial order among propositional letters, as
follows. For any p, q ∈ P , we write p ≺L q if p (or ¬p) appears in L(Q?), where L is the
function that assigns labels to time-points. In addition, if, for each observation time-point
P?, the label L(P?) is honest, then we say that L is honest. Using this notation, it follows
that if L is honest and p ≺L q, then L(Q?) |= L(P ?). In what follows, it is necessary to show
that the ≺L relation is acyclic for well defined CSTNs for which S� is DC.

I Lemma 21. If S is well defined and S� is DC, then ≺L is acyclic.

Proof. Suppose that p1 ≺L · · · ≺L pk = p1 is a cycle in ≺L. By WD2.a, L is honest and,
therefore, L(Pk?) |= L(Pk−1?) |= . . . |= L(P2?) |= L(P1?). Since pk = p1, it follows that
L(P1?) = . . . = L(Pk?). For convenience, let ` = L(P1?) = . . . = L(Pk?). By WD2.b, S (and
hence S�) contains constraints of the form, (Pi+1?− Pi? ≤ −εi, `), for every i = 1, . . . , k− 1,
forming a negative cycle with the consistent label `. Since such a cycle cannot be satisfied in
any scenario s for which s |= `, S� must not be DC, which is a contradiction. J

For a CSTN S, it may be that in some scenarios some propositional variables are not
observed because their corresponding observation time-points are not executed. For example,
in the CSTN from Fig. 1, Q? is not executed in either of the scenarios ¬pq or ¬p¬q because
L(Q?) = p. In general, in such cases, there may be a family of scenarios that are equivalent
in that they differ only in the values they assign to propositional letters that are not observed.
Below, we define a canonical scenario to be a unique representative for such a family of
scenarios. The canonical scenario is the unique scenario from the family that assigns a
value of ⊥ (i.e., false) to each propositional letter that is not observed when executing S in
scenarios from that family. For example, the canonical scenario for {¬pq,¬p¬q} is ¬p¬q.

I Definition 22 (Canonical Scenario). For any scenario s, define the canonical scenario ŝ as
follows. For any p ∈ P , if s |= L(P?), let ŝ(p) = s(p); otherwise, let ŝ(p) = ⊥.

Note that if s and ŝ disagree on some p, then s 6|= L(P ?) (i.e., s and ŝ differ only on variables
that cannot be observed in the scenario s). However, the converse need not hold (i.e., it may
happen that s 6|= L(P?), yet s and ŝ happen to agree on p).

I Lemma 23. If ≺L is acyclic and L is honest, then s |= L(P?) if and only if ŝ |= L(P?).

Proof. There are two cases to consider.
1. ŝ 6|= L(P?)⇒ s 6|= L(P?).

Suppose that ŝ 6|= L(P?), but s |= L(P?). Then s and ŝ disagree on some q ∈ L(P?). By
the honesty of L(P?), it follows that L(P?) |= L(Q?) and, therefore, that s |= L(P?) |=
L(Q?). However, since s and ŝ disagree on q, the definition of ŝ implies that s 6|= L(Q?),
which is a contradiction.

2. ŝ |= L(P?)⇒ s |= L(P?).
Suppose that ŝ |= L(P?), but s 6|= L(P ?), where P ? (and hence p) is chosen minimally with
this property with respect to the ordering ≺L. Let q ∈ L(P ?) be arbitrary. Thus, q ≺L p.
By the honesty of L(P ?), it follows that L(P ?) |= L(Q?). Therefore, ŝ |= L(P ?) |= L(Q?)
and, hence, ŝ |= L(Q?). But, then, by the minimality of p, it follows that s |= L(Q?).
Since q ∈ L(P ?) was chosen arbitrarily, we have that s |= L(P ?), which is a contradiction.

J



M. Cairo, L. Hunsberger, R. Posenato, and R. Rizzi 10:11

The following lemma states that, if a CSTN S is well defined, then any scenario s and its
corresponding canonical scenario ŝ determine the same projection.

I Lemma 24. If S is a CSTN for which ≺L is acyclic and all labels on time-points and
constraints are honest, then for any scenario s and any label `, s and ŝ must assign the same
truth value to `. As a result, Prj(S, s) = Prj(S, ŝ) (i.e., T +

s = T +
ŝ and C+

s = C+
ŝ ).

Proof. Let ` be any label on a time-point or constraint such that s(`) 6= ŝ(`). Then there
exists some p that appears in ` such that s(p) 6= ŝ(p). Then, by the definition of ŝ, s 6|= L(P?).
Therefore, by Lemma 23, ŝ 6|= L(P ?). But the honesty of ` implies that ` |= L(P ?). Therefore,
it follows that s 6|= ` and ŝ 6|= `. But then s(`) = ⊥ = ŝ(`), which is a contradiction. J

It is now possible to apply the obtained results to show the relationship between the
dynamic consistency of a CSTN and that of its corresponding streamlined CSTN�.

I Lemma 25. If S is a well defined CSTN, and S� is DC, then S is DC.

Proof. Let σ� be any viable and dynamic strategy for S�. Let the strategy σ for S be defined
as follows. For any scenario s ∈ I and any time-point X ∈ T +

s , let [σ(s)]X = [σ�(ŝ)]X . We
need only show that σ is viable and dynamic for S.

Viability First, note that the conditions of Lemma 21 hold; therefore, ≺L must be acyclic.
Next, since S is well defined, the labels on all time-points and constraints in S must be
honest; hence, the conditions of Lemma 24 are satisfied. Thus, s and ŝ must agree on the
truth value of each label on any time-point or constraint in S (and hence in S�).

Suppose that σ violates some constraint, (Y −X ≤ δ, `). Then there is some scenario
s such that [σ(s)]Y − [σ(s)]X > δ and s |= `. But then the definition of σ implies that
[σ�(ŝ)]Y − [σ�(ŝ)]X > δ; and Lemma 24 gives that ŝ |= `. Together, these contradict that
σ� is viable.

Dynamicity Suppose that X ∈ T +
s1

(i.e., s1 |= L(X)), t = [σ(s1)]X , and Hist(s1, t, σ) =
Hist(s2, t, σ). We must show that X ∈ T +

s2
(i.e., s2 |= L(X)) and [σ(s2)]X = t.

Toward that end, let p be any letter that appears in L(X). Since L is honest, it follows that
L(X) |= L(P ?). Thus, s1 |= L(P ?) (i.e., P ? ∈ T +

s1
); hence, by Lemma 24, ŝ1 |= L(P ?). Next,

by WD2.b, S (and hence S�) must contain a constraint of the form, (P?−X ≤ −ε, L(X)).
And, since σ� is viable, it follows that [σ(s1)]P? = [σ�(ŝ1)]P? < [σ�(ŝ1)]X = [σ(s1)]X = t.
Since s1 |= L(P?), it must be that p appears in Hist(s1, t, σ) = Hist(s2, t, σ). And, since p was
chosen arbitrarily in L(X), it follows that Hist(s1, t, σ) = Hist(s2, t, σ) |= L(X). Therefore,
s2 |= L(X) (i.e., X ∈ T +

s2
).

Finally, suppose that Hist(ŝ1, t, σ�) 6= Hist(ŝ2, t, σ�). But then there must be some
time t′ < t at which one of the following holds: (1) one of the schedules, σ�(ŝ1) or σ�(ŝ2),
executes some observation time-point Q? at t′, while the other does not; or (2) both schedules
execute some observation time-point Q? at t′, but yield different values for q. Without
loss of generality, choose t′ to be the earliest time at which one of the above conditions
hold. Then (1) is impossible, because Hist(ŝ1, t

′, σ�) = Hist(ŝ2, t
′, σ�) and σ� is dynamic.

To show that property (2) is impossible, first consider the case where q appears in L(X).
Then s1(q) = s2(q), which implies that ŝ1(q) = ŝ2(q), contradicting the choice of Q?. But
if q does not appear in L(X), then ŝ1(q) = ⊥ = ŝ2(q) by definition of ŝ1 and ŝ2, another
contradiction. Therefore, Hist(ŝ1, t, σ�) = Hist(ŝ2, t, σ�) which, by the dynamicity of σ�
implies that [σ�(ŝ2)]X = t, which in turn implies that [σ(s2)]X = t. J

TIME 2017
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Now, it is possible to show the main result of the section.

I Theorem 26. Let S be any well defined CSTN. Then S� (i.e., the reduction of S to a
CSTN�) is equivalent to S, in the sense that S is DC if and only if S� is DC.

Proof. The =⇒ direction is already proven in Theorem 19. Indeed, using the first translation
requires more constraints to be satisfied in S�. The ⇐= direction is given by Lemma 25. J

5 Empirical Evaluation

When applied to Streamlined Conditional Simple Temporal Networks, the constraint-
propagation rules used by the DC-checking algorithm of Hunsberger et al. [15, 12] become
simpler. That algorithm checks whether an input network is DC by exhaustively propagat-
ing labeled constraints and then verifying that the propagated network does not contain a
negative cycle with a consistent label. However, the applicability conditions for the constraint-
propagation rules, and the labels generated by those rules, depend on time-point labels and
the ≺L relation. Therefore, if the input CSTN has no labels on its time-points (i.e., if it is a
CSTN�), then the algorithm can avoid dealing with such complications.

In this section, the original DC-checking algorithm that applies to any CSTN S shall be
called DC_Checker, and the “simplified” algorithm that applies only to a CSTN� shall
be called DC_CheckerWONodeLabels.

This section presents an empirical comparison of the performance of DC_Checker and
DC_CheckerWONodeLabels on instances of the benchmarks proposed in prior work [12]. For
each CSTN S, DC_Checker is run on S, while DC_CheckerWONodeLabels is run on the
streamlined CSTN S�, using the simplified propagation rules. Recall that two translations
from S to S� were introduced in Section 4, one of which involves the auxiliary constraints in
the sets, C′1 and C′2. This section reports results from running DC_CheckerWONodeLabels on
both versions of S�.

First, we briefly recall that the benchmarks contain CSTN instances obtained from random
workflow schemata generated by the ATAPIS toolset [16]. For each N ∈ {10, 20, 30, 40}, a
class of at least 120 workflow graphs were randomly generated by setting the number of
activities to N , the probability for parallel branches to 0.2, the probability for conditional
branches to 0.2, and the maximum duration of activities or delays between activities to 50.
As a result, all edge-weights were at most 104. Then, each workflow graph was translated
into an equivalent CSTN as proposed by Combi et al. [5]. It is worth noting that different
workflow graphs with the same number of activities may translate into CSTNs of different
sizes due to different numbers of connector nodes in the workflows. However, it is not hard
to verify that a workflow with N activities translates into a CSTN having n nodes, where
(2N + 2) ≤ n ≤ (5N + 2). There are 4 benchmarks, each containing at least 60 dynamically
consistent CSTNs and 60 non-dynamically consistent CSTNs, relating to workflow graphs
of the same class. In order to simplify the comparison, for each benchmark, the number
of observation time-points in the network, |P|, has been fixed with respect to the class of
workflows, as follows.

N : 10 20 30 40
|P|: 3 5 7 9

Since non-DC networks were regularly solved one to two orders of magnitude faster than
similarly sized DC networks, the rest of this section focuses on the results for the DC
networks.
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(a) Benchmark N = 10, |P| = 3.
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(b) Benchmark N = 20, |P| = 5.
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(c) Benchmark N = 30, |P| = 7.
For DC_Checker w/o node labels values, the
standard deviation has been omitted to have a
better scale of the diagram.
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(d) Benchmark N = 40, |P| = 9.
For DC_Checker w/o node labels values, the
standard deviation has been omitted to have a
better scale of the diagram.

Figure 3 Execution time vs. number of time-points n

Algorithms and procedures necessary for this evaluation were implemented in Java and
executed on a JVM 8 in a Linux machine with two AMD Opteron 4334 CPUs and 64GB of
RAM. The code is freely available [17].

The results shown in Figure 3 demonstrate that, in general, the original CSTN DC-
checking algorithm DC_Checker has the best performance in almost all instances. Indeed,
taking node labels into account allows the algorithm to avoid the propagation of some
auxiliary values (in the case of streamlined CSTNs with auxiliary constraints from the sets
C′1 and C′2) or non-coherent or non-honest ones (in the case of streamlined CSTNs without
auxiliary constraints).

We have verified that these kinds of values can be quite numerous and that, for some
instances, when they contain the auxiliary constraints from C′1 and C′2, the execution time
of DC_CheckerWONodeLabels can be two or three orders of magnitude greater than the
execution time of DC_Checker on the corresponding CSTNs.

On the other hand, the performance difference between DC_CheckerWONodeLabels and
DC_Checker decreases as the number of nodes increases. We verified that the original
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10:14 A Streamlined Model of Conditional Simple Temporal Networks

algorithm continues to propagate fewer labeled values than the streamlined version, but
such differences become smaller. Therefore, the time required by the original algorithm to
stop non-coherent or non-honest labeled values must become more or less equal to the time
required to propagate them as done by the simpler algorithm.

We have also evaluated a different implementation of the streamlined version for checking if
it was possible to avoid the propagation of useless labeled values. In this new implementation,
part ot the information given by node labels is rebuilt dynamically and exploited to “clean”
some labels. We verified that while the number of useless labeled values can be reduced, the
computation time still remains the same due to the extra time required by the added code.
In other words, the overall performance of that implementation is no better than that of
DC_CheckerWONodeLabels.

6 Related Work

There are many proposals in the literature for ways of extending the expressiveness of the
STN model. Below, we summarize the main results about CSTNs and related models.

Tsamardinos et al. [18] defined the Conditional Simple Temporal Problem (CTP) as that
of determining whether a given CSTN admits a viable and dynamic execution strategy. (The
CSTN acronym was introduced later.) In their work, propositional labels are associated
only with time-points, not constraints. They also informally specified some reasonableness
properties that any CSTN ought to satisfy. Although they showed how to solve the CTP
by encoding it as a meta-level Disjunctive Temporal Problem (DTP) and feeding it to an
off-the-shelf solver, that approach is not practical because the CTP-to-DTP encoding has
exponential size and, on top of that, the DTP solver runs in exponential time. To our
knowledge, this approach has never been implemented or empirically evaluated.

Later, Hunsberger et al. [14, 15] defined CSTNs (separate from the CTP) and formalized
the well-definedness properties for CSTNs. In their work, both time-points (nodes) and
constraints (edges) of a CSTN can have propositional labels that specify the scenarios in which
they are applicable. (Allowing constraints to be labeled was inspired by the work of Conrad
et al. [8], discussed below.) They showed that the labels must satisfy the well-definedness
properties in order to guarantee the existence of a dynamic execution strategy. They also
presented a sound-and-complete DC-checking algorithm for solving the CTP, and empirically
demonstrated its practical performance.

Conrad et al. [8] considered a variant of CSTNs, proposing Drake, a dynamic executive
for temporal plans with choice. In their work, the constraints of a temporal plan are labeled
as in CSTNs, but the values of propositions (choices) are decided by the executive during
run-time, not by the environment.

Cimatti et al. [3, 4] presented a different approach to solving a variety of temporal
problems (CSTNs included) in which a temporal network is first translated into an equivalent
Timed Game Automaton (TGA) and, then, solved by an off-the-shelf TGA solver. Although
this approach is interesting because it shows the relationships between TGAs and a variety of
temporal networks—including CSTNs—it has not yet been shown to be practical for solving
the CTP.

Comin and Rizzi [7] solved the CTP by converting it into a Mean Payoff Game (MPG).
They also introduced a variant of dynamic consistency, called ε-DC, where ε > 0 represents
the minimum reaction time of the executive in response to observations. They presented
(1) a sharp lower-bounding analysis on the critical value of the reaction time where the CSTN
changes from being DC to non-DC, (2) a proof that the CTP is coNP-hard, and (3) the first
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singly-exponential-time algorithm for solving the CTP.
Hunsberger and Posenato [12] showed how their DC-checking algorithm from earlier

work [15] can be extended to check the ε-DC property without incurring any performance
degradation. They also introduced four benchmarks for testing DC-checking algorithms.

Hunsberger and Posenato [13] presented another optimization of the approach presented
by Cimatti et al. in which the CTP is viewed as a two-player game. Its solution is determined
by exploring an abstract game tree to find a “winning” strategy, using Monte Carlo Tree
Search and Limited Discrepancy Search to guide its search. An empirical evaluation shows
that the new algorithm is competitive with the propagation-based algorithm.

Cairo et al. [1] improved the analysis of the ε-DC property. They showed that if ε = 0
(i.e., if the system can react instantaneously), it is necessary to impose a further condition to
avoid a form of instantaneous circularity. In particular, they (1) proposed a new extension
of dynamic consistency, called π-DC, suitable for systems that can react instantaneously,
(2) showed by a counter-example that π-DC is not equivalent to 0-DC, and (3) proposed
a sound-and-complete algorithm for checking the π-DC property having a (pseudo) singly-
exponential time complexity in the number of propositional letters.

Cario and Rizzi [2] showed that the CTP is PSPACE-complete.

7 Conclusions and Future Work

This paper presented a new version of CSTNs, named streamlined Conditional Simple
Temporal Networks, in which propositional labels may appear on constraints, but not on
time-points. This change simplifies the definition of the DC property and the specification of
propagation rules for the DC-checking algorithm. It also makes proving the soundness and
completeness of those rules simpler.

The paper proves that traditional CSTNs can be translated into streamlined CSTNs while
preserving the dynamic consistency property. Two translations from CSTNs to streamlined
CSTNs were presented. The first generates an equivalent streamlined CSTN in which the
information contained in time-point labels is preserved in the form of auxiliary constraints
that force time-points in certain scenarios to be executed either before or after a fixed
horizon, depending on whether they would be executed or not in the original CSTN. The
second translation does not preserve the information in the time-point labels, but provides
a simpler, equivalent streamlined CSTN. The drawback of the second translation is that
some time-points can be executed in the streamlined CSTN even if they would not be in the
original CSTN.

Finally, the paper provided an experimental comparison of two versions of the DC-checking
algorithm due to Hunsberger et al. [15]: the original version and a simplified version for
streamlined CSTNs. For small CSTNs, the original algorithm shows the best performance;
however, the difference in performance between the two versions decreases as the number of
time-points increases. During the tests, we verified that the static information given by the
time-point labels can limit the propagation of non-coherent/non-honest labels in a significant
way making the the DC checking faster. However, that advantage decreases as the number
of nodes increases.

It appears that simple heuristics such as one that tries to rebuild dynamically the
information given by time-point labels would not be successful for improving the performance
of the simplified version of the DC-checking algorithm. Our future work will investigate
other methods for improving the performance of the algorithm for streamlined CSTNs in
order to make it competitive with the original algorithm on small CSTNs, too.
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(LP/qLP) A B Z
〈u, α〉 〈v, β〉

〈u+ v, γ〉

αβ consistent or (u < 0 and v < 0);
γ = (α ? βp)′.

(R0/qR0 ) P? Z
〈w,α〉

〈w, (αp)′〉
w < 0.

(R∗3/qR∗3 ) P? Z C
〈w,α〉 〈v, β〉

〈m, γ〉
w < 0, m = max{w, v}, and γ = (α ? βp)′.

Table 1 Constraint-propgation rules used in the proof of Lemma 17

A Appendix: Proof of Lemma 17

I Lemma 17 (Tighter upper bound; rational weights). Let S be a DC CSTN with n time-points
and rational weights. If M is the maximum absolute value of any negative edge in S, then
the network obtained by constraining every time-point in S to occur before time Mn is DC.

Proof. First, since there are at most (n2)(2k) edge weights, each edge weight can be expressed
as a fraction involving the least common denominator among the edge weights. As a result,
without loss of generality, we may henceforth assume that all edge weights are integers.

Let C∗ be the set of labeled edges obtained by exhaustively applying the sound-and-
complete constraint-propagation rules presented by Hunsberger et al. [15]. Given the
assumptions that (1) all edge weights are integers, and (2) the network is DC, the constraint
propagation must terminate. Hence, C∗ is well defined and contains only finitely many
edges. Furthermore, each edge in C∗ can be derived by a finite number of applications of the
constraint-propagation rules. For convenience, we shall refer to C as the set of original edges,
and C∗ as the set of derived edges.

Fix Z = 0 and let U = T \{Z} be the set of as-yet-unexecuted time-points. Prior
to executing the time-points in U , there have been no observations and, thus, the initial
partial scenario is the empty scenario, represented by �. For each Y ∈ U , its effective
lower bound (ELB) with respect to the empty scenario, defined by Hunsberger et al., is
given by: ELB(Y,�) = max{δ | (Y ≥ δ, `) ∈ C∗}. Let λ = min{ELB(Y,�) | Y ∈ U} be the
minimum ELB of any as-yet-unexecuted time-point. Let X ∈ U be any time-point such that
ELB(X,�) = λ. (It does not matter if there happen to be multiple such time-points.) We
aim to show that λ ≤M . Therefore, we assume that λ > M and seek a contradiction.

By construction, λ ≤ ELB(Y,�) for each Y ∈ U . In addition, the Spreading Lemma
(from Hunsberger et al.) ensures that for each Y ∈ U , there is an edge from Y to Z labeled
by 〈−δY ,�〉, for some δY ≥ λ.

Given the definition of M , the value, ELB(X,�) = λ > M , cannot be due to an original
edge from X to Z of length −λ < −M . Instead, it must be due to an edge that has been
derived by one or more applications of the various constraint-propagation rules. Among all
of the derivations used to generate the edges in C∗, generated in some arbitrary order, let D
be the first derivation that results in an edge from X to Z whose weight equals −λ.

The following argument focuses on the rule applications in the derivation D that involve
the zero time-point Z. (There may be rule applications in D that do not involve Z, but
they will not be relevant to the argument that follows.) In this narrow setting, the six
constraint-propagation rules presented by Hunsberger et al. (LP,R0 ,R∗3 , qLP, qR0 and qR∗3 )
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can be represented by the three rules shown in Table 1.‡
Claim: No finite sequence of rule applications involving any of the six constraint-

propagation rules from Hunsberger et al. can generate a shortest edge from any time-point
Y ∈ U to Z whose weight is less than or equal to −λ.

Proof of Claim. For the base case, we note that the definition of M ensures that no
original edge in C can have weight less than or equal to −λ < −M . For the inductive case,
consider an arbitrary edge from Y to Z whose label is 〈u, α〉. Suppose that this edge is a
shortest edge among all edges from Y to Z whose label is α (or more general than α). Finally,
suppose that all prior edges encountered during the derivation of this edge satisfy the claim.
Note that the final rule application that generates the edge from Y to Z must be one of the
three rules shown in Table 1. We address each in turn.

(LP/qLP). In this case, A in the top row of Table 1 plays the role of Y , and y = u+ v ≤
−λ < −M is the weight of a shortest edge from A to Z among those edges labeled
by γ (or some more general label). First consider the possibility that u ≥ 0. In that
case, the weight v of the edge from B to Z satisfies: v ≤ u + v = −λ < −M . By the
inductive hypothesis, this cannot be a shortest edge from B to Z labeled by β (or some
more general label). But then the same rule application, using a shorter edge from B to
Z, would generate a shorter edge from Y to Z whose label is α (or more general than
α), contradicting that the first edge from Y to Z was shortest. On the other hand, if
u < 0, then −λ = u+ v < v. In that case, the Spreading Lemma ensures that there is
an edge from B to Z labeled by some 〈−δ,�〉, where −δ ≤ −λ. But then the same rule
application, using this stronger edge from B to Z would generate an edge from Y to Z
whose weight is −δ + u ≤ −λ+ u < −λ, another contradiction.
(R0/qR0 ). In this case, P? in the middle row of Table 1 plays the role of Y and
y = w ≤ −λ < −M is the weight of a shortest edge from P? to Z among those labeled
by (αp)′ (or some more general label). By the inductive hypothesis, the edge from P? to
Z labeled by 〈w,α〉, which also has the weight y = w ≤ −λ < −M , cannot be a shortest
edge from P? to Z labeled by α (or some more general label). But then replacing this
edge with a shorter one would generate a shorter edge from P? to Z labeled by (αp)′, a
contradiction.
(R∗3/qR∗3 ). In this case, C in the bottom row of Table 1 plays the role of Y and
y = m = max{w, v} ≤ −λ < −M is the weight of a shortest edge from C to Z among
those labeled by γ or some more general label. There are three cases to consider:
1. w < v. Here, m = max{w, v} = v ≤ −λ < −M . By the inductive hypothesis, the

edge from C to Z labeled by 〈v, β〉 cannot be a shortest such edge. But then replacing
it with a shorter edge, say one labeled by 〈v − ε, β〉, where ε > 0, would cause the
corresponding application of R∗3/qR∗3 to generate a shorter edge from C to Z labeled
by γ (or some more general label), a contradiction. (The weight of the resulting edge
would be v − ε′, where ε′ = min{ε, v − w} > 0.)

2. v < w. Here, m = max{w, v} = w ≤ −λ < −M . By the inductive hypothesis, the
edge from P? to Z labeled by 〈w,α〉 cannot be a shortest such edge. But then replacing

‡ The labels shown in Table 1 do not play a big role in the proof. However, for completeness, they are
shown in full detail. The notation in the table is a slight simplification of that used by Hunsberger
et al. First, for any label `, the label `′ is that obtained by removing from ` any children of any
q-literals that appear in `. Second, for any propositional letter p, and any label `, the label `p is that
obtained by removing any occurrence of p or any of its children from `. Finally, the ? operator is a
commutative operator that extends the conjunction of literals as follows. For any propositional letter p,
p?¬p = p??p = p??¬p = p??p? = p?. The ? operator is then extended to labels by applying it in pairwise
fashion to like literals from each operand. For example, (abcd) ? (a(¬b)(c?)(¬e)) = a(b?)(c?)d(¬e).
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it with a shorter edge, say one labeled by 〈w − ε, α〉, where ε > 0, would cause the
corresponding application of R∗3/qR∗3 to generate a shorter edge from C to Z labeled
by γ (or some more general label), a contradiction. (The weight of the resulting edge
would be w − ε′, where ε′ = min{ε, w − v} > 0.)

3. w = v. Here, m = max{w, v} = w = v ≤ −λ < −M . By the inductive hypothesis,
neither the edge from P? to Z labeled by 〈w,α〉, nor the edge from C to Z labeled
by 〈w, β〉, can be shortest such edges. Thus, each can be replaced by a corresponding
edge with a shorter weight, say, by using the labeled values 〈w− ε1, α〉 and 〈v − ε2, β〉,
respectively. But then the corresponding application of R∗3/qR∗3 would generate an
edge from C to Z whose weight was v − ε < v, where ε = min{ε1, ε2}. That is a
contradiction.

Thus, the claim is proven. From the claim, it follows that no finite sequence of rule applications
can generate an edge from X to Z of length −λ < −M , which contradicts the choice of X.
Therefore, it must be that λ ≤ M . Thus, the earliest-first strategy executes X at time λ.
Equivalently, we may introduce the constraints, X − Z ≤ λ and Z −X ≤ −λ (i.e., X = λ).

At this point, the time-points X and Z form a rigid component [10]. As a result, by
re-orienting all edges involving Z to instead involve X (adjusting the weights accordingly),
Z can be effectively removed from the network. Afterward, rename X as Z and observe that
the resulting network is DC with the same (or smaller) value of M , and one fewer time-point.
By induction we get a network where each successive time-point is executed no more than
M after the previous one, which gives the desired result. J

Note: We conjecture that Lemma 17 also holds for real-valued weights.
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