
Back Propagation Algorithm with Proofs

Luke Hunsberger

This document presents the back propagation algorithm for neural networks along with supporting proofs. The notation
sticks closely to that used by Russell & Norvig in their Artificial Intelligence textbook (3rd edition, chapter 18). The web page
at http://www.speech.sri.com/people/anand/771/html/node37.html provided the general framework for the proofs.

1 Training by Gradient Descent

Think of a feed-forward neural network as implementing a function. In particular, it is a function of however many inputs are
in the input layer to however many outputs are in the output layer. Such functions are called vector functions because the
set of inputs can be collected into an input vector and the set of outputs can be collected into an output vector. The weights
on the edges in the neural network can be thought of as parameters that determine the function implemented by a neural
network. When we change the weights on the edges, the neural network typically implements a different function. Typically,
our goal is to generate a set of weights that will enable the neural network to closely simulate a desired function. Typically, we
don’t know everything about the desired function. Instead, we only have a set of input-output pairs, called training examples.
For example, we might know that a given input vector (a, b, c, d) should generate the output vector (x, y, z). We train the
neural network by feeding the input vector (a, b, c, d) into the neurons in the input layer, seeing what output vector (p, q, r) is
generated by the network in the feed forward phase, comparing the desired output vector (x, y, z) with the generated output
vector (p, q, r), and then adjusting the weights in the network in an attempt to move the generated output vector closer to
the desired output vector. The hope is that making adjustments in this way over a large number of training examples will
result in a neural network whose function resembles the one implied by all of the input-output pairs.

The back-propagation algorithm tells us how to incrementally adjust the weights in response to the difference between
the generated and desired output vectors for each training example. The back-propagation algorithm uses a technique called
gradient descent.

1.1 Gradient Descent

Consider the function, f(x, y) = w1x
2 +w2y, where w1 and w2 are parameters that we can choose. We want to find values of

w1 and w2 that enable this function to simulate our training examples. For simplicity, we start with w1 = w2 = 0.5. Our first
training example says that the input vector (2, 3) should go with the output 9. In the feed-forward phase, we plug-and-chug:

f(2, 3) = 0.5 ∗ 22 + 0.5 ∗ 3 = 2 + 1.5 = 3.5

Well, 3.5 is not very close to our desired value of 9. How should we adjust the weights of our function to get closer to the
desired output value?

In general, we want to minimize the difference between the desired output value D and the generated output value G.
Mathematically, it turns out to be easier to minimize the square of this difference, which leads to the same result. So, we
want to minimize the squared error, E = (D −G)2. For our one training example, we have (D −G)2 = (9− 3.5)2 = 30.25.
That’s a big number. The question is: how should we incrementally adjust the weights, w1 and w2, to nudge our function f
to generate an output closer to the desired output?

Well, calculus to the rescue! We begin by computing the gradient of the squared error, which requires computing the
partial derivatives of E with respect to the parameters w1 and w2. (Computing a partial derivative of E with respect
to w1 is done by treating E as a function of w1, where all other “variables” are treated as constants.) First, ∂E

∂w1
=

∂
∂w1

(D − f(x, y))2 = ∂
∂w1

(D − (w1x
2 +w2y))2 = 2(D − (w1x

2 +w2y))(−x2). Evaluating this partial derivative at x = 2 and
y = 3, and w1 = w2 = 0.5 yields ∂E

∂w1
= 2(9 − (0.5(4) + 0.5(3)))(−4) = 2(9 − 2 − 1.5)(−4) = 2(5.5)(−4) = −44. Similarly,

∂E
∂w2

= ∂
∂w2

(D − f(x, y))2 = ∂
∂w2

(D − (w1x
2 + w2y))2 = 2(D − (w1x

2 + w2y))(−y). Evaluating this partial derivative at
x = 2 and y = 3 yields ∂E

∂w2
= 2(9 − (0.5(4) + 0.5(3)))(−3) = 2(9 − 2 − 1.5)(−3) = 2(5.5)(−3) = −33. Putting these two

partial derivatives together yields the vector (−44,−33)—which is the gradient of E. This vector points in the direction
of maximum instantaneous increase of E. The negative of this vector (i.e., (44, 33)) points in the direction of maximum
instantaneous decrease of E. Since we want to minimize the squared error, E, we want to move the values of w1 and w2 a
tiny bit in the direction of (44, 33). This can be done by adding 0.044 to w1 and 0.033 to w2. (Notice that we have multiplied
each component of the negative gradient by the same fraction, 1

100 . The choice of fraction is arbitrary; but we use a small

1

fraction because we don’t want to let this one example influence the weights overly much.) Okay, so we get our new weights:
w1 = 0.5 + 0.044 = 0.544 and w2 = 0.5 + 0.033 = 0.533.

If you want, you can verify that the output generated using these new weights is slightly closer to the desired output that
is the output generated using the original weights:

Original: f(2, 3) = 0.5(22) + 0.5(3) = 2 + 1.5 = 3.5

New: f(2, 3) = 0.544 ∗ (22) + 0.533(3) = 3.775

Notice that the new value, 3.775, is slightly closer to the desired value, 9. Although it doesn’t seem like we’ve made much
progress; keep in mind that this is only the result of one training example. Also, given that we only moved the values of w1

and w2 a little bit, we got the biggest bang for our buck by moving in the direction of the negative gradient. (For fun, you
might see what happens if you move in the direction of the gradient. In that case, the new value of f will be further from
the desired value.)

Now, if you’re not familiar with derivatives, let alone partial derivatives, this may have seemed pretty complicated. Take
a deep breath. Although a neural network typically involves way more variables; the same basic approach is used to train
the network (i.e., to incrementally adjust the weights to move the generated output closer to the desired output.

2 Neural Network Notation

A neuron, Nj , is as described in Russell & Norvig’s Fig. 18.19.

• N1, . . . , Nn are the neurons that provide inputs to the neuron Nj .

• a1, . . . , an are the outputs of neurons N1, . . . , Nn, which are then fed as inputs to Nj . In addition, a0 = 1 is an input
fixed at the value 1.

• w0,j , . . . , wn,j are the weights corresponding to the inputs, a0, a1, . . . , an. Thus, wi,j is the weight on the link (or directed
edge) from neuron Ni to neuron Nj .

• zj = Σn
i=0wi,jai is the weighted sum of the inputs to neuron Nj . (Russell & Norvig call this inj .)

• g(x) = 1
1−e−x is the sigmoid activation function used by each neuron. In particular, the output of neuron Nj , denoted

by aj , is given by: aj = g(zj) = g(Σn
i=0wi,jai).

Okay, so we are now thinking of our neural network as implementing a vector function: each vector of input values
generates a corresponding vector of output values. We have a bunch of input-output training examples that we want to use
to incrementally adjust the weights in our network so that the function implemented by the network generates output vectors
that are “not that far” from the desired output vectors in our training examples. In particular, we want to minimize the
squared error. And, of course, we’ll use gradient descent.

Okay, let x be a vector of input values, and y be the corresponding vector of output values in our training example. Let
hw be the function implemented by our neural network. Notice that hw is parameterized by the weights. (We can start with
randomly selected values for our weights.) Thus, hw(x) is the output vector generated by our neural network when given
the input vector x. (Note that the values in the output vector correspond to the aj values for the neurons, Nj , in the output
layer.) The squared error, E, is therefore given by: E = (y − hw(x))2. The gradient of E is computed by computing the
partial derivative of E with respect to each weight. (Remember, there is a weight on every single edge in the neural network!)
But that’s okay... we’ll just do it.

3 Deriving the Back Propagation Algorithm

3.1 Base Case: The weights on edges feeding into an output neuron

Suppose Nj is an output neuron (i.e., a neuron in the output layer), and that Ni is some neuron that feeds Nj (i.e., the
output of Ni provides one of the inputs to Nj). Consider the weight wi,j on the edge from Ni to Nj .

∂E
∂wi,j

= ∂E
∂zj

∂zj

∂wi,j
, by the Chain Rule

Now, taking each part separately:

∂E
∂zj

= ∂
∂zj

(yj − aj)2, since the jth component of the squared error, E, is (yj − aj).1

= ∂
∂zj

(y − g(zj))2, since aj = g(zj)

1Only the jth component of the squared error is affected by the weight wi,j ; thus only the jth component appears in the partial derivative, ∂E
∂zj

.

2

= −2(y − g(zj))g′(zj), by the Chain Rule

= −2(y − g(zj))g(zj)(1− g(zj)) since g′(zj) = g(zj)(1− g(zj)) . . . 2

= −2(y − aj)aj(1− aj), since aj = g(zj)

and:
∂zj

∂wi,j
= ∂

∂wi,j
(Σqaqwq,j) = ai, since the only term that involves wi,j is aiwi,j .

Thus, putting things back together:

∂E
∂wi,j

= ∂E
∂zj

∂zj

∂wi,j
= −2(y − aj)aj(1− aj)ai

Now, for convenience, we define ∆j as follows:

∆j = − ∂E
∂zj

= 2(y − aj)aj(1− aj).

Thus, we have:

∂E
∂wi,j

= −∆jai

Recall that the negative of the partial derivative tells us the relative amount by which we want to incrementally adjust the
weight wi,j . Thus, we use the following weight update rule for wi,j :

wi,j += α∆jai, where α is some small value (e.g., 0.01) that regulates the sensitivity of our adjustments to the weights.

3.2 Recursive Case: The weights on edges feeding into a neuron in a hidden layer

Now suppose Nj is a neuron in a hidden layer. As before, let Ni be one of the neurons that provides an input for Nj ; and let
wi,j be the weight on the edge from Ni to Nj . We still want to compute the partial derivative of the squared error, E, with
respect to the weight wi,j . But to do this, we now need to consider the edges leaving Nj on the output side; and consider all
of the neurons Nk for which Nj provides inputs. The weight wi,j only affects the squared error, E, through its effect on the
neurons Nk. Thus, when computing the partial derivative of E with respect to wi,j we can view E as a function of the input
values, zk, of the neurons, Nk. The zk values in turn depend on the output, aj , of Nj . The aj value in turn depends on its
input zj , which in turn depends on wi,j . Thus, according to a very “chainy” use of the Chain Rule, we have:

∂E
∂wi,j

= Σk(∂E
∂zk

∂zk

∂aj

∂aj

∂zj

∂zj

∂wi,j
)

Now, addressing each of these separately:

∂E
∂zk

= −∆k, by definition of ∆k

∂zk

∂aj
= ∂

∂aj
(Σsasws,k) = wj,k, since the only term in the sum that involves aj is ajwj,k

∂aj

∂zj
= ∂

∂zj
g(zj) = g′(zj) = g(zj)(1− g(zj)) = aj(1− aj)

∂zj

∂wi,j
= ai, since the only term in the sum, zj , that involves wi,j is aiwi,j .

Thus, we get:

∂E
∂wi,j

= Σk(−∆kwj,kaj(1− aj)ai)

= −aj(1− aj)Σk(∆kwj,k)ai

= −∆jai, where: ∆j = aj(1− aj)Σk(∆kwj,k)

And, we get the following weight-update rule (following the gradient descent technique):

wi,j += α∆jai, where α is a small numerical value representing the learning rate.

Notice that, given the values ∆k computed in the base case, we can generate the ∆j values needed for the partial
derivatives in the next layer. Similarly, given the ∆j values computed for the first hidden layer, we can generate the ∆i

values needed for the partial derivatives in the second hidden layer (counting right to left). And so on.

2One of the reasons for using the logistic function, g, is that its derivative satisfies the following nice equation: g′(z) = g(z)(1 − g(z)), which
can be verified by direct computation.

3

4 The Back Propagation Algorithm

Given an input-output pair, (x,y). Use the current set of weights in the network to generate the output vector h(x), whose
individual values comprise the ak values for the neurons, Nk, in the output layer. Next, compute the ∆k values for each
neuron, Nk, in the output layer and use those values to update the weights, wj,k, on the incoming edges for those neurons,
using the update rule seen in the base case. Next, for the neurons in the first hidden layer (just behind the output layer),
compute the ∆j values and similarly use those values to update the incoming edges for those neurons. And so on, for each
neuron in the next layer, compute the corresponding ∆ value and use it update the weights on the incoming edges. Eventually,
you will reach the input layer, which has no incoming edges; and hence no weights to update.

Do this for each input-output pair in the training examples.

4

