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Solving Systems of Difference Constraints Incrementally

G. Ramalingam,1 J. Song,1 L. Joskowicz,2 and R. E. Miller3

Abstract. Difference constraints systems consisting of inequalities of the formxi −xj ≤ bi, j occur in many
applications, most notably those involving temporal reasoning. Often, it is necessary to maintain a solution to
such a system as constraints are added, modified, and deleted. Existing algorithms handle modifications by
solving the resulting system anew each time, which is inefficient. The best known algorithm to determine if a
system of difference constraints is feasible (i.e., if it has a solution) and to compute a solution runs in2(mn)
time, wheren is the number of variables andm is the number of constraints.

This paper presents a new efficient incremental algorithm for maintaining a solution to a system of difference
constraints. As constraints are added, modified, or deleted, the algorithm determines if the new system is feasible
and updates its solution. When the system becomes infeasible, the algorithm continues to process changes
until it becomes feasible again, at which point a feasible solution will be produced. The algorithm processes
the addition of a constraint in timeO(m+ n logn) and the removal of a constraint in constant time when the
original system is feasible. More precisely, additions are processed in timeO(‖1‖+|1| log|1|), where|1| is
the number of variables whose values are changed to compute the new feasible solution, and‖1‖ is the number
of constraints involving the variables whose values are changed. When the original system is infeasible, the
algorithm processes any change inO(m+ n logn) amortizedtime. The new algorithm can also be used to
check for the existence of negative cycles in dynamic graphs.

Key Words. Difference constraints, Incremental algorithm, Linear constraints, Shortest-path problem,
Dynamic negative cycle.

1. Introduction. A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bi, j . Such a system is said to be feasible if there exists a solution to the system
of inequalities. Systems of difference constraints occur in many applications involving
temporal reasoning. In AI, Dechter et al. [5], [16] formulate a unifying temporal reasoning
framework, called a temporal constraint network, based on difference constraints. Many
real-time programming languages [12], [17], [15], [27] provide constructs that allow the
specification of temporal relations as difference constraints. Multimedia applications
also use difference constraints to specify temporal behavior [14], [3], [24]. For example,
the play duration and relative ordering of multimedia objects such as audio or video
segments are expressed as difference constraints relating the segment’s time duration
and minimum and maximum bounds.

Often it is necessary to maintain a solution to a difference constraints system as con-
straints are added, modified, and deleted. For example, interactive multimedia systems
let users create difference constraint systems by adding and deleting constraints. As
the system evolves, it is necessary to check for the feasibility of the new system of

1 IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA.
2 Institute of Computer Science, The Hebrew University, Jerusalem 91904, Israel.
3 Department of Computer Science, University of Maryland, College Park, MD 20742, USA.

Received September 25, 1997; revised November 16, 1997. Communicated by F. P. Preparata.



262 G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller

constraints and report inconsistencies, if any, and to provide a solution, if the system is
feasible. Existing algorithms handle modifications by solving the resulting system anew
each time, which is inefficient. The best known algorithm to determine if a system of
difference constraints is feasible and to compute a solution runs in2(mn) time, where
n is the number of variables andm is the number of constraints.

This paper presents a new efficient incremental algorithm for testing the feasibility
of a system of difference constraints and maintaining a solution to it. As constraints are
added, modified, or deleted, the algorithm determines if the new system is feasible and
updates its solution, providing the user with immediate feedback after each operation. If
the system becomes infeasible, the algorithm will maintain the information and continue
to process changes until it becomes feasible again, at which point a feasible solution will
be produced. The algorithm processes the addition of a constraint in timeO(m+n logn)
and the removal of a constraint in constant time when the original system is feasible.
More precisely, additions are processed in timeO(‖1‖ + |1| log|1|), where|1| is the
number of variables whose values are changed to compute the new feasible solution, and
‖1‖ is the number of constraints involving the variables whose values are changed. When
the original system is infeasible, the algorithm processes any change inO(m+ n logn)
amortizedtime.

The rest of the paper is organized as follows. In Section 2 we briefly discuss previous
work in this area. In Section 3 we present background material concerning systems of
difference constraints. In Section 4 we define the problem addressed in this paper. In
Section 5 we present a simple algorithm for the problem, which will help motivate an
improved algorithm presented in Section 6. We assume in Sections 5 and 6 that the
original system is feasible. In Section 7 we show how to handle infeasible systems. In
Section 8 we compare our work with related work. In Section 9 we discuss possible
future work.

2. Previous Work. Various types of constraint systems have been widely studied. Pratt
[19] showed that a system of difference constraints can be represented by a weighted
directed graph such that a system is feasible iff there exists no negative weight cycle in
the graph. He also gave anO(n3) algorithm for solving systems of difference constraints,
which uses the shortest-path algorithm. Shortest paths can also be computed inO(mn)
time.

Shostak [23] generalized Pratt’s ideas to systems of two-variable linear constraints
(constraints of the formax+by≤ c, wherea, b, andc are real constants andx andy are
variables). He showed how such systems could be represented by a constraint graph such
that a system is feasible iff the graph contains no cycle of a special kind. His algorithms
for testing for feasibility, however, have an exponential worst-case behavior. Aspvall and
Shiloach [2] improved Shostak’s algorithm into a polynomial time algorithm. The most
efficient algorithm currently known for this problem is anO(mn2 logm)algorithm due to
Hochbaum and Naor [11]. Pape [18] shows how one can deal with difference constraints
over totally ordered Abelian Groups. Jaffar et al. [13] considered the problem of two
variable constraints of the form,ax+ by≤ c, wherea,b ∈ {−1,0,1}. They present an
algorithm for computing a feasible solution to a system of two variable constraints that
processes the constraints one by one. The algorithm takesO(n2) time per constraint,
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wheren is the number of variables, and takes totallyO(m3) time,4 wherem is the number
of constraints. Their algorithm can be directly used to update the solution inO(n2) time
when a new constraint is added.

As explained above, the problem of computing a feasible solution to a system of
difference constraints can be reduced to that of solving the single-source shortest-path
(SSoSP) problem on a weighted graph (see Theorem 2 in Section 3). Consequently, an
incremental algorithm for maintaining the SSoSP solution can be used to maintain the
solution of a system of difference constraints. Several incremental algorithms [20], [22],
[9], [10] have been developed for the SSoSP problem.

The starting point for our work was the algorithm presented by Ramalingam and
Reps [22], [20] for updating the solution to the SSoSP problem in a graph in the absence
of cycles of length zero. However, maintaining the SSoSP solution, while sufficient,
is unnecessaryfor maintaining a solution to the system of difference constraints. This
observation leads to the more efficient algorithm presented in this paper.

3. Preliminaries. A system of difference constraints〈V,C〉 consists of a setV of
variables and a setC of linear inequalities of the formxi − xj ≤ bi, j , wherexi , xj ∈ V
andbi, j is a constant. A feasible solution for a system of difference constraints is an
assignment of real values to the variables (a function from variables to reals) that satisfies
all the given constraints. A system is said to be feasible iff it has a feasible solution.

A directed, weighted graphG = 〈V, E, length〉 consists of a set of verticesV , a set
of edgesE, and a functionlengthfrom E to reals. We denote an edge from vertexu to
vertexv by u → v. We denote the length of a shortest path fromu to v in a weighted
graphG by distG(u, v).

Pratt [19] has shown how a system of difference constraints〈V,C〉 can be repre-
sented by a directed, weighted graphG = 〈V, E, length〉 whose vertices correspond to
variables, and whose edges correspond to constraints.

DEFINITION 1 (Constraint Graph). The constraint graph of a system of difference con-
straints〈V,C〉 is a directed, weighted graphG = 〈V, E, length〉 where

E = {xj → xi | xi − xj ≤ ai, j ∈ C},

length(xj → xi ) = ai, j iff xi − xj ≤ ai, j ∈ C.

Thus, given a constraint graph,〈V, E, length〉, the corresponding constraint system
is 〈V, {v − u ≤ length(u→ v) | u→ v ∈ E}〉.

Without loss of generality, we assume that a system of constraints contains at most
one inequality per ordered pair of variables. That is, the system cannot include two
constraintsx − y ≤ a andx − y ≤ b, wherea 6= b. If there are multiple constraints on
the same ordered pair of variables, then the constraint graph is a multigraph: multiple
edges may exist between the same pair of vertices. Except for the fact that an edge
is no longer determined by its endpoints, everything discussed in this paper applies

4 We believe the complexity of the algorithm can be more precisely described as beingO(mn2).
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equally well to such multigraphs. Alternatively,length(xj → xi ) may be defined to be
min{c | xi − xj ≤ c ∈ C}. For our incremental algorithm, the length of an edge can
be maintained by storing all the corresponding constraints as a heap (priority queue)
associated with the edge.

While the constraint graph defined above adequately describes the system of con-
straints, it is useful to augment this graph with an extra source vertex for the purpose of
computing a feasible solution:

DEFINITION 2 (Augmented Constraint Graph). The augmented constraint graph of a
systemofdifferenceconstraints〈V,C〉 is adirected,weightedgraphG′ =〈V ′,E′,length′〉
where

V ′ = V ∪ {src} where src 6∈ V,

E′ = { xj → xi | xi − xj ≤ ai, j ∈ C } ∪ {src→ xi |xi ∈ V},
length′(xj → xi ) = ai, j if xi − xj ≤ ai, j ∈ C,

length′(src→ xi ) = 0 for xi ∈ V.

THEOREM1 [19] (see also [4]). A system of difference constraints is consistent if and
only if its augmented constraint graph has no negative cycles if and only if its constraint
graph has no negative cycles.

THEOREM2 [19]. Let G be the augmented constraint graph of a consistent system of
constraints〈V,C〉. Then D is a feasible solution for〈V,C〉, where

D(u) = distG(src,u).

4. The Problem. We are interested in maintaining a feasible solution to a system of
constraints as it undergoes changes. In the first part of the paper we assume that the
original system of constraints is feasible. The possible changes to the system are: the
deletion or addition of a new constraint, the modification of an existing constraint, or the
addition or deletion of a variable.

The addition or deletion of a variable is handled easily. We update the constraint
graph, and, in the case of a new (unconstrained) variable, we initialize its value to be
zero. The system continues to be feasible.

The deletion of a constraint cannot introduce infeasibility, since the system becomes
less constrained. The original solution continues to be a feasible solution of the new
system of constraints as well. Similarly, the relaxation of a constraint, which corresponds
to the increase in the length of the corresponding edge in the constraint graph, does not
affect the solution. Hence, such changes can be processed in constant time: we update
the constraint graph, by removing or changing the length of the appropriate edge, and
leave the values of variables alone.

The change that can affect the feasibility of the system is the addition of a new
constraintxi −xj ≤ b, which corresponds to the insertion of an edge fromxj to xi whose
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length, denoted bylength(xj → xi ), is b. This is the problem that will be considered in
the remaining parts of the paper. (Tightening an existing constraint, which corresponds
to a decrease in the length of an existing edge in the constraint graph, can be handled
similarly.) Theorem 2 suggests that we recompute shortest-path distances fromsrc in
the modified constraint graph and use that as the new feasible solution. The algorithm
presented in Section 5 implements this idea. However, as we see in Section 6, this is
more work than is necessary—it may often be easier to compute a feasible solution that
is not the shortest-paths solution.

5. A Simple O(m + n logn) Algorithm. We first present a simple algorithm that
processes the addition of a new constraint inO(m+ n logn) time. While this algorithm
is already better than the batch algorithm for computing a feasible solution, it is presented
primarily to motivate the improved algorithm described in the next section. The algorithm
determines if the addition of the new constraint makes the system infeasible. If it does
not, it computes a feasible solution to the new set of constraints.

Checking Feasibility. Adding a new constraintv − u ≤ c amounts to inserting a new
edgeu→ v of lengthc to the constraint graph. We denote the original constraint graph
by G and the new constraint graph byG′. From Theorem 1 we know that adding the new
constraint will introduce infeasibility iff there is a negative cycle in the new constraint
graphG′. We know thatG does not have any negative cycle (from the feasibility of the
original constraint system). Hence, ifG′ has any negative cycle, the cycle must involve
the new edgeu→ v. Obviously, there exists a negative cycle in the graph involving edge
u→ v iff distG(v,u)+ c < 0, wheredistG(v,u) is the length of the shortest path from
v to u in the original graphG. Hence, the problem reduces to computingdistG(v,u).

In general, the graphG will contain edges of negative length. Consequently, com-
putingdistG(v,u) using the standard shortest-path algorithms can takeO(mn) time. We
can improve this bound by using the feasible solution for the original set of constraints
by adapting Edmonds and Karp’s technique for transforming the length of every edge to
a nonnegative real without changing the graph’s shortest paths [7], [25].

THEOREM3 [7]. Let G = 〈V, E, length〉 be a directed, weighted graph. Let f be a
real-valued function on V, the set of vertices. Define a new weighted graph Gf , the
graph G scaled by f, as follows: Gf = 〈V, E, lengthf 〉, where lengthf is defined by

lengthf (x, y) = f (x)+ length(x→ y)− f (y).

A path P from x to y is a shortest path in G if and only if it is a shortest path in Gf .
Further, the lengths of the shortest paths under the two weight functions are related by

distGf (x, y) = f (x)+ distG(x, y)− f (y).

Now, consider scaling the original constraint graphG by any feasible solutionD. The
new length of an edgex→ y will be D(x)+length(x→ y)−D(y), which is nonnegative
sinceD is a feasible solution forC. (Recall that the edgex → y corresponds to the
constrainty− x ≤ length(x→ y), which can rewritten asx+ length(x→ y)− y ≥ 0.)
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This implies that we can compute the lengths of shortest paths in graphGD using
Dijkstra’s algorithm inO(m+ n logn) time, from which we can directly compute the
lengths of shortest paths inG using the above theorem. In particular, we can compute
distG(v,u) in O(m+ n logn) time and determine if the new system is feasible.

Computing a Feasible Solution. If we determine that adding the new constraint does
not make the system infeasible, we then need to find a feasible solution to the new set of
constraints. From Theorem 2, we know that the lengths of shortest paths from the source
vertex in the new augmented constraint graph can be used as a feasible solution. We can
also use the technique outlined above to scale edge lengths so that they are nonnegative.
This enables us to use Dijkstra’s algorithm to compute the shortest paths, and, hence, a
feasible solution inO(m+ n logn) time.

Several issues need to be addressed. First, note that we are now computing shortest
paths in the augmented constraint graph. For the transformed edge lengths to be non-
negative for the extra edges from the source vertex, the initial feasible solution must also
satisfy the additional “constraints” implied by these extra edges. As long as the feasible
solution was originally computed using Theorem 2 and subsequentially updated using
the algorithm in this section, these additional constraints will be satisfied. Second, note
that while the scaled length is guaranteed to be nonnegative inGD for every edge that was
in the original graph, this need not hold for the newly inserted edgeu→ v. However, this
is not a problem. Shortest path lengths inG′ can still be computed inO(m+n logn) time
by doing two shortest-paths calculations inG (each of which, in turn, is performed using
a shortest-path calculation on the scaled graphGD and “unscaling” using Theorem 3),
as follows:

distG′(src, x) = min(distG(src, x),distG(src,u)+ length(u→ v)+ distG(v, x)).(1)

The above equation follows by considering both the shortest path fromsrc to x that does
not contain edgeu→ v and the shortest path fromsrc to x that contains edgeu→ v.

6. An Improved Algorithm

A Different Feasible Solution. The algorithm outlined in the previous section does not
fully utilize the original feasible solution in computing the new feasible solution. It uses
the original feasible solution only to transform edge lengths to be nonnegative, and after
that computes shortest-path lengths from scratch. We now show that changing the right-
hand side of (1) lets us use the previous feasible solution more effectively in computing
a new feasible solution.

Let 〈V,C〉 denote the original system of constraints, and letD be a feasible solution
for 〈V,C〉. Let C′ denote the new set of constraintsC ∪ {v − u ≤ c}. Define D′ as
follows:5

D′(x) = min(D(x), D(u)+ length(u→ v)+ distG(v, x)).(2)

5 The motivation to consider this comes from the desire to use an incremental algorithm to update the feasible
solution. Assume, for the moment, that the previous feasible solution is exactly the shortest-path distance from
src; that is,D(x) = distG(src, x). In this case the right-hand side of (1) is equal to the right-hand side of (2),
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We say a vertexx is “affected” if D′(x) 6= D(x).

THEOREM4. 〈V,C′〉 is feasible iff u is not affected.

PROOF. We haveD′(u) = min(D(u), D(u) + length(u → v) + distG(v,u)). Thus
u is affected iff D′(u) 6= D(u) iff D(u) > D(u) + length(u → v) + distG(v,u) iff
length(u → v) + distG(v,u) < 0 iff the new constraint graph has a negative cycle iff
〈V,C′〉 is infeasible.

THEOREM5. If 〈V,C′〉 is feasible, then D′ is a feasible solution for〈V,C′〉.

PROOF. (a) We first show thatD′ satisfies every constraint inC. Assume that the
constraint is represented by the edgex→ y. We consider two cases.

Case1: D′(x) = D(x). Then we have

D′(y) ≤ D(y) (from the definition ofD′)
≤ D(x)+ length(x→ y) (sinceD is feasible)
≤ D′(x)+ length(x→ y) (by assumption).

Case2: D′(x) = D(u)+length(u→ v)+distG(v, x).

D′(y) ≤ D(u)+ length(u→ v)+ distG(v, y) (from the definition ofD′)
≤ D(u)+ length(u→ v)+ distG(v, x)
+ length(x→ y) (distproperty)
≤ D′(x)+ length(x→ y).

(b) We now show thatD′ satisfies the new constraintu→ v. Since〈V,C′〉 is feasible,
we know thatu is unaffected (from Theorem 4). That is,D(u) = D′(u). Now,

D′(v) = min(D(v), D(u)+ length(u→ v)+ distG(v, v))

= min(D(v), D(u)+ length(u→ v))

≤ D(u)+ length(u→ v)

≤ D′(u)+ length(u→ v).

Hence, the new constraintv ≤ u+ length(u→ v) is satisfied.

Theorems 4 and 5 show how we can process the addition of the new constraint. We
can computeD′ and check ifu is affected. Ifu is affected, the new system is infeasible.
If u is not affected, we know that the new system is feasible, and thatD′ is a feasible
solution to the new system. Note that the new feasible solutionD′ may not be the same
feasible solution (distG′(src, x)) computed by our original algorithm. We now show how
D′ can be computed efficiently.

which is easier to compute since it requires the computation of onlydistG(v, x). However, given our strategy
for handling constraint deletions—namely, delete the appropriate edges of the constraint graph but do not
change the feasible solution—the current feasible solution is not, in general, the shortest-path distance from
src. However, it turns out that the right-hand side of (2) can still be used as a feasible solution for the new
system, even though it may not be the shortest path distance fromsrc.
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Computing D′

THEOREM6. Let x be the parent of y in some shortest-path tree rooted atv in the
original graph. If x is unaffected, then y is also unaffected.

PROOF.

D(y) ≤ D(x)+ length(x→ y)

(sinceD is feasible)

≤ D(u)+ length(u→ v)+ distG(v, x)+ length(x→ y)

(sincex is unaffected, and hence

D(x) ≤ D(u)+ length(u→ v)+ distG(v, x))

≤ D(u)+ length(u→ v)+ distG(v, y)

(sincex is y’s parent in the shortest-path tree, and hence

distG(v, y) = distG(v, x)+ length(x→ y)).

Hencey is also unaffected.

We say that an edgex → y is affected iff vertexx is affected. LetH denote the
subgraph ofG consisting only of affected edges. Thus,H = 〈V, Ea, length|Ea〉, where
Ea is the set of affected edges andlength|Ea denotes the restriction oflengthto Ea.

THEOREM7.

D′(x) = min(D(x), D(u)+ length(u→ v)+ distH(v, x)).

PROOF. Obviously,distH(v, x) ≥ distG(v, x). Theorem 6 implies thatdistH(v, x) =
distG(v, x) for all affected verticesx. The result follows.

The algorithm in Figure 1 shows how we can utilize the results presented so far to
identify efficiently if the new system is feasible and, if it is, to compute a new feasible
solutionD′. The algorithm is essentially the application of Dijsktra’s algorithm (see [4],
for example) to the graphH consisting only of affected edges. Our algorithm makes
use of the following heap operations. The operationInsertIntoHeap(H, i, k) inserts an
item i into heapH with a keyk. The operationFindAndDeleteMin(H) returns the item
in heapH that has the minimum key as well as its key and deletes the item from the
heap. The operationAdjustHeap(H, i, k) inserts an itemi into Heapwith key k if i is
not in Heap, and decreases the key of itemi in Heapto k if i is in Heap. The function
KeyOf(H, i ) returns the key of itemi in heapH if i is in H and∞ otherwise.

Lines [4]–[7] and [15]–[20] apply Dijkstra’s algorithm to the graphG with edge
lengths scaled byD. Line [8] excludes edges that are not affected from consideration,
effectively resulting in the algorithm being applied to graphH , with edge lengths scaled
by D. Line [9] checks for feasibility of the new system (using Theorem 4).

We now analyze the complexity of the algorithm in Figure 1. It is straightforward to
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Fig. 1. Algorithm to update a feasible constraint system after the addition of a constraint. Function
AddToFeasible returnsfalse if adding constraintv − u ≤ c to a feasible system〈V, E, length〉 would
introduce infeasibility. Otherwise, it adds the new constraint to the system, updates the solutionD to the system
of constraints, and returnstrue .

implement the mapsD andD′ so that lines [3] and [25] can be implemented in constant
time. Observe that thewhile loop in the algorithm iterates once for every affected
variable, that is, once for every variable whose value is changed in order to compute the
new feasible solution. The innerfor loop processes the constraints involving the affected
variablex. Consequently, the number ofFindAndDeleteMin operations performed is
|1| and the number ofAdjustHeap operations performed is‖1‖. The complexity of
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Fig. 2.Example: augmented constraint graphs and solutions. (a) Graph for the original system. (b) Graph after
deletion ofx3 − x1 ≤ −3 and addition ofx2 − x1 ≤ −1.

the algorithm depends on the type of heap we use. We assume thatPriorityQueue
is implemented as a relaxed heap [6]. Both insertion of an item into a relaxed heap and
decreasing the key of an item in a relaxed heap cost constant time, while finding and
deleting the item with the minimum key costsO(log p) time, wherep is the number of
items in the heap. Thus, eachFindAndDeleteMin operation runs in timeO(log|1|)
and eachAdjustHeap takes constant time. Hence, the algorithm will run inO(‖1‖ +
|1| log|1|) time.

Implementing the priority queue as an AF heap [8] will improve the complexity of
the algorithm toO(‖1‖ + |1| log|1|/log log|1|).

6.1. Example. Consider the following system of constraints:{x1− x2 ≤ 3, x3− x2 ≤
−2, x1− x3 ≤ 3, x3− x1 ≤ −3, x4− x3 ≤ −1, x5− x4 ≤ 4}. The augmented constraint
graph for the system is shown in Figure 2(a). The graph contains no negative cycles and
the system is feasible. Assume that the current feasible solution is(x1, x2, x3, x4, x5) =
(0,0,−3,−4,0), which is the shortest-path solution.

Now, we assume that the constraintx3 − x1 ≤ −3 is deleted. The system remains
feasible and our incremental algorithm does not modify the current feasible solution. At
this point, the current feasible solution is no longer the shortest-path solution.

Now consider the addition of a new constraintx2 − x1 ≤ −1 to the system. The
algorithm initially addsx2 to PriorityQueue with priority 0. Inside the loop,x2 is
determined to be affected, and its value is updated to−1. The successors ofx2, namely,
x1 andx3, are then added toPriorityQueue with priorities 3 and 1, respectively (lines
[15]–[20]). In the subsequent iterations of the loop, it is determined that neitherx3 norx1

is affected, and the algorithm halts with the new feasible solution(x1, x2, x3, x4, x5) =
(0,−1,−3,−4,0). (See Figure 2(b).) Observe that the algorithm does not even examine
variablesx4 orx5 or the constraints involving them. In a much larger system of constraints,
the benefits of using the incremental algorithm can be even better.

However, let us see what happens if instead of adding the constraintx2− x1 ≤ −1 we
add the constraintx2 − x1 ≤ −2. The system will proceed as before initially. However,
this time the system will discover thatx3 is affected, and then discover thatx1 is also
affected. At this point, the system knows that the new system of constraints is infeasible
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and halts (lines [10]–[12]). The addition of the new constraint introduces a negative cycle
(x1, x2, x3, x1).

7. Handling Infeasible Systems. We have so far assumed that the constraint system
being modified is a feasible one. If the constraint being added would result in infeasibility,
the new constraint is rejected. However, it may be useful, in some situations, to allow
the addition of constraints that cause the system to become infeasible. We now discuss
how our algorithm can be adapted to do this. Refer to the algorithms in Figures 3 and 4.

We modify the algorithm so that it maintains a partition of the set of constraints into
two sets: a feasible set of constraints, which is represented by a constraint graph and for
which a feasible solution is maintained, and a set, of the remaining constraints, called
UnProcessed. When the system is feasible,UnProcessedis guaranteed to be empty.
When a new constraint is added to a feasible system, we determine if the addition of
a new constraint introduces infeasibility. If not, we process it as before by adding it to
the system and updating the feasible solution as necessary. If the new constraint causes
infeasibility, we leave the constraint graph and the feasible solution unmodified, and
initialize the setUnProcessedto consist of the new constraint.

Once the systems becomes infeasible, the addition of a new constraint cannot make
the system feasible. Hence, the addition of a new constraint is processed trivially, by just
adding the new constraint to the setUnProcessed. When a constraint is deleted, we check
if it is in the constraint graph or the setUnProcessed. If it is in the setUnProcessed, we
simply remove it from the set; whenUnProcessedbecomes empty, we know that the
system has become feasible. The deletion of a constraint from the constraint graph can no

Fig. 3.Algorithm to update the constraint system after the addition of a constraint.
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Fig. 4.Algorithm to update the constraint system after the deletion of a constraint.

longer be processed trivially: it may cause the infeasible system to become feasible. We
thus first remove the constraint from the constraint graph and then process the constraints
in the setUnProcessedone by one, as if each had been just added, using the algorithm
outlined in Section 6. While processing any one of these constraints, we may discover
that the system continues to be infeasible, in which case we can stop. If we are able to
process all constraints inUnProcessedand satisfy them, we know the new system is
feasible, and we have a solution to the system.

We now consider the complexity of these algorithms. Note that when the constraint
system is infeasible, all the work is done during the deletion of constraints, and the addi-
tion of constraints is trivially processed inO(1) time. In this case it is more convenient
to use amortized analysis [26] to measure the complexity of the update algorithm. It can
be easily verified that the amortized complexity of processing the addition or deletion of
a constraint (in an infeasible constraint system) isO(m+ n logn).

8. Related Work. The starting point for the work described in this paper was the
algorithm presented by Ramalingam and Reps [22], [20], the RR algorithm, for updating
the solution to the SSoSP problem in a graph in the absence of cycles of length zero.
However, the realization that maintaining the SSoSP solution itself was unnecessary
for our problem led to the modified algorithm presented in this paper. The primary
differences between our algorithm and the RR algorithm are:
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1. Our algorithm, unlike the RR algorithm, processes the deletion of an edge (constraint)
in constant time since the solution is not updated.

2. Because the solution is not updated when an edge is deleted, there is no guarantee
that the feasible solution maintained is the shortest-path solution. The RR algorithm
exploits the invariant that the current solution is the shortest-path solution to update
the solution correctly after the insertion of an edge. Our primary contribution is
establishing, through Theorems 4 and 5, thateven if this invariant is not maintained,
the RR algorithm can still be used to update the feasible solution correctly for our
problem.

3. Relaxing the requirement that the SSoSP solution be maintained also means that
cycles of length zero are no longer an issue in our problem, unlike in the case of the
RR algorithm.

Fig. 5.(a) A constraint graph and a feasible solution. (b) The graph after the addition of the constraintv−u ≤ 1,
and the updated solution computed by our algorithm. The values of variablesv, a, b, c, andd are modified.
(c) An alternative solution that involves changing the values of fewer variables (onlyu andv).
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Ramalingam and Reps also measure the complexity of their incremental algorithm in
terms of a parameter‖δ‖ that measures the “size of the change in the input and output”
and describe their incremental algorithm as being aboundedincremental algorithm since
its complexity is bounded by some function of‖δ‖. The parameter‖1‖we use is similar
to, but not the same as, the parameter‖δ‖, and the algorithm presented in this paper
is not a bounded incremental algorithm. Unlike the shortest-path problem, a system of
difference constraints does not have a unique solution. For problems that have multiple
solutions, a generalized parameter‖δ‖ has been defined in terms of the smallest change
to the current solution that produces a correct solution to a modified input instance [1].
The example in Figure 5 shows how the change to the solution produced by our algorithm
may be larger than the minimal change required to produce a feasible solution and the
example can be adapted to show that the algorithm presented in this paper is unbounded.

9. Extensions. Our algorithm does not necessarily identify the smallest change nec-
essary to the current solution to produce a feasible solution. One reason for this is that
our algorithm attempts to propagate the effects of the added constraint forward along
the edges of the constraint graph. Alternatively, we could propagate the effects of the
added constraint along both directions of the edges, as in Alpern et al.’s incremental
algorithm for updating a priority ordering [1]. Another interesting avenue is trying to
adapt the algorithm presented in this paper or other “change-propagation” algorithms
(for example, see Chapter 7 of [20]) to solve more general systems of constraints. See,
for instance, [21] for a generalization of the shortest-path problem and an incremental
algorithm for the generalized problem.

Systems of difference constraints are also useful in modeling scheduling problems.
Scheduling problems, however, also have additional constraints involving certainre-
sources. It would be interesting to see whether such additional resource constraints can
be handled in the context of incremental updating.
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