
Reformulating Temporal Plans For E�cient Execution
Nicola MuscettolaRecom Technologies.NASA Ames Research CenterMo�ett Field, CA 94035mus@ptolemy.arc.nasa.gov Paul MorrisCaelum Research.NASA Ames Research CenterMo�ett Field, CA 94035pmorris@ptolemy.arc.nasa.gov Ioannis TsamardinosIntelligent Systems ProgramUniversity of PittsburghPittsburgh, PA 15260tsamard@cs.pitt.eduAbstractThe Simple Temporal Network formalismpermits signi�cant
exibility in specifying theoccurrence time of events in temporal plans.However, to retain this
exibility during ex-ecution, there is a need to propagate the ac-tual execution times of past events so thatthe occurrence windows of future events areadjusted appropriately. Unfortunately, thismay run afoul of tight real-time control re-quirements that dictate extreme e�ciency.The performance may be improved by re-stricting the propagation. However, a fast,locally propagating, execution controller mayincorrectly execute a consistent plan. To re-solve this dilemma, we identify a class of dis-patchable networks that are guaranteed to ex-ecute correctly under local propagation. Weshow that every consistent temporal plan canbe reformulated as an equivalent dispatch-able network, and we present an algorithmthat constructs such a network. Moreover,the constructed network is shown to have aminimum number of edges among all suchnetworks. This algorithm will be
own on anautonomous spacecraft as part of the DeepSpace 1 Remote Agent experiment.1 IntroductionWhen designing and implementing control systems op-erating in a physical world it is important to correctlydeal with the metric nature of time. For example,deadlines are typically upper bounds on the value ofthe occurrence time of certain events (e.g., end of atask). The control system can guarantee a correct exe-cution only if speci�ed time constraints are satis�ed forany possible execution. We are interested in the class

of high-level control architectures that distinguish be-tween a deliberative layer, or planner, and a reactivelayer, or executive [10, 1, 13, 6, 11, 9, 2].This paper is concerned with the properties that mustbe satis�ed by temporally
exible plans in order to becorrectly executed by a simpli�ed, fast execution algo-rithm. The speed of an execution algorithm is centralto ensuring that a plan can be robustly executed inreal-time, a condition of crucial importance in mis-sion critical applications such as autonomous space-craft operations [10] and avionics control systems [3].Unlike �xed time schedules, temporally
exible plansallow an executive to seamlessly adjust to delays and
uctuations of task durations. However, the cost ofthis
exibility is that the executive must constantlyadjust the plan during execution by performing someamount of constraint propagation. The time spent do-ing this propagation adds to the total time needed tostart or end any task in the plan. The latter time isequivalent to the intrinsic time uncertainty on the ex-act time of occurrence of any event in the plan [7, 8].The more precise we want the execution of a plan tobe, the less propagation an execution algorithm shouldperform. In this paper, we precisely de�ne fast execu-tion by giving a simple controller algorithm and wedescribe dispatchability, a formal property that iden-ti�es whether a plan is amenable to fast execution ornot. We also discuss how a non-dispatchable plan canbe transformed in polynomial time into a dispatchableplan, and we show that the resulting plan has the de-sirable property of being minimal in the number ofedges among all dispatchable plans.2 Dispatching ExecutionsThe type of plan that we are interested in is a tem-poral plan, i.e., a partial order of tasks with metrictime information. We refer to the start and end timesof a task as two separate events or timepoints. A

plan satis�es the following conditions: (1) for eachtask, the start and end events must be separated bya non-negative duration [d;D]; (2) additional separa-tion constraints [s; S] may be speci�ed between thestart and/or the end of any two tasks. A temporalbound-constraint [b; B] (either duration or separation)from an event A to an event B constrains the pos-sible values of the times of occurrence of A and B,TA and TB respectively, such that b � TB � TA �B. We assume that the plan contains no disjunctivebound-constraints between two events, i.e., the graphof events and bound-constraints is a Simple Tempo-ral Network (STN) in the sense of Dechter, Meiri andPearl [5]. Without loss of generality, we also assumethat the STN graph is connected.We concentrate on the process through which the ex-ecutive selects individual events and executes them,i.e., assigns to them a speci�c time of occurrence thatis consistent with the overall plan. It has been estab-lished [5] that �nding the ranges of execution timesfor each event, the event's time bounds, is equivalentto solving two single-source shortest-path problems [4]on a simple transformation of the STN graph. Fur-thermore, if the STN is consistent, then for each eventA it is possible to arbitrarily pick a time TA withinits time bounds and �nd corresponding times for theother events such that the set of occurrence times forall events satis�es the plan constraints. This suggestsa \naive" execution algorithm that iteratively: (1) se-lects an event such that the current time is withinthe event's time bound and the event is enabled, i.e.,all events that must directly precede it in the STNhave been executed; (2) assigns the current time tothe event; and (3) propagates the consequences of \col-lapsing" the event's time bounds to every other timebound. The iteration continues until all events havebeen executed.There are two problems with the naive execution al-gorithm. The �rst is that precisely estimating thepropagation cost for a general STN is di�cult andmay require considering the possible propagations in alarge number of possible execution conditions. With-out such analysis, the best we can do is to give a boundthat depends on the total size of the plan; more pre-cisely the bound corresponds to running the Dijkstraalgorithm1 twice on the graph. The complexity of thispropagation is O(e+n logn), where e is the total num-ber of edges and n the total number of nodes in theSTN. A second, more serious problem is that select-ing events on the sole basis of time bound information1Since the STN is guaranteed to remain consistent, itis possible to avoid using the more costly Bellman-Ford-Moore algorithm.

A

B[0,10]

C

[0,10] D

[1,1]

[2,2]Figure 1: Simple Temporal Network.
A

B
10

0

C

10

0

D

1

-1

2

-2Figure 2: Distance Graph.and precedence enablement may lead to incorrect ex-ecutions. Consider the example network in Figure 1.Intuitively this network corresponds to two tasks BDand CD of �xed durations, respectively 1 and 2 timeunits, that synchronize at the end (event D) and muststart within 10 time units of a time origin (event A).Figure 2 shows the corresponding distance graph [5],suitable for shortest-path propagation. If we assumethat event A always occurs at time 0, events B and Cwill initially obtain time bounds h1; 10i and h0; 9i re-spectively. (Recall from [5] that the lower bound for anode is computed as the negation of the shortest-pathdistance from the node to the time origin, while theupper bound is simply the shortest-path distance fromthe origin to the node.) Suppose now that the currenttime is 5, but tasks BD and CD have not yet started.Since the time bounds of both B and C contain time 5,the naive execution algorithm may very well select forexecution event B only to discover after propagationthat event C should have started at time 4 in order forthe plan to execute consistently. Thus, the naive ap-proach does not guarantee correct execution of a planunder all execution conditions.The problem with the plan in Figure 1 is that thereis an implicit synchronization constraint that requiresC to be executed exactly 1 time unit before B. Whenthe execution reaches B and C, this implicit constraintcan only be detected by increasing the lower bound ofwaiting events to the current time, and propagating,before considering which event to select. Although this�xes the consistency problem, it does not improve thereal-time performance. Indeed, it makes it worse since

TIME DISPATCHING ALGORITHM:1. LetA = {start_time_point}current_time = 0S = {}2. Arbitrarily pick a time point TP in A suchthat current_time belongs to TP's time bound;3. Set TP's execution time to current_time and addTP to S;4. Propagate the time of executionto its IMMEDIATE NEIGHBORS in the distancegraph;5. Put in A all time points TPx such that allnegative edges starting from TPx have adestination that is already in S;6. Wait until current_time has advanced tosome time betweenmin{lower_bound(TP) : TP in A}andmin{upper_bound(TP) : TP in A}7. Go to 2 until every time point is in S.Figure 3: The Dispatching Execution Controller.we may now have to propagate the new lower boundfrom several waiting events rather than from a singleselected event.On the other hand, to �x the performance problem,we would like to restrict the execution algorithm touse a local propagation that, on the basis of the execu-tion time of an event, adjusts only the time bounds ofthe neighboring events. However, this makes the con-sistency problem worse. To see this, note that withthe plan in Figure 1, even if C is executed �rst, localpropagation would allow B to be executed more thanone time unit after C, which also violates the implicitconstraint.Notwithstanding these considerations, there are manynetworks that are successfully executed by using thenaive execution algorithm. This continues to be trueeven when the propagation is restricted to be local. Infact, as we will see, every consistent STN is equivalentto such a network.Figure 3 shows a detailed local propagation algorithmthat we call the dispatching execution controller. Notethat the
exible wait in step 6 provides some room forresponding to unmodeled external contingencies. Thiscan include unexpected events (in contrast to workthat deals with anticipated uncontrollable events [12]).Step 5 is a precise formulation of the enablement re-quirement that prevents execution of a node until allits enabling nodes have �rst been executed. Note thatwith this formulation a deadlock situation cannot oc-cur, since in a consistent distance graph there are nonegative cycles. An execution carried out by the dis-patching execution controller is called a dispatchingexecution. An STN is said to be dispatchable if it is al-ways correctly executed by the dispatching executioncontroller.

The propagation time needed to execute a dispatch-able plan is easy to estimate, and varies directly withb, the maximum number of edges that can enter or exitan event in the associated distance graph.In this paper, it is shown that every consistent STNcan be reformulated as an equivalent dispatchable net-work. This is achieved by (1) constructing the all-pairsshortest path network (which is shown to be dispatch-able), and (2) eliminating unneeded edges to obtain anequivalent dispatchable network of minimum size.3 Finding dispatchable networksWe will use the following notation with respect to dis-tance graphs. Given a timepoint X , the expressionTX denotes its execution time with respect to someschedule or execution. If X and Y are two timepoints,XY denotes an edge from X to Y , and b(X;Y) is itsdistance or length. (The edge XY represents the con-straint TY �TX � b(X;Y).) We write jXY j to denotethe distance along a shortest path from X to Y , or 1if no path exists. (Note that jXY j may be negativein distance graphs.) The proofs of the theorems (andsupporting lemmas) are contained in the Appendix.The �rst result is useful for simplifying the local prop-agation required in a dispatching execution. Recall [5]that in an STN distance graph, the upper bounds oftimepoints are propagated in the forward direction ofedges, whereas lower bounds are transmitted in thereverse direction.Theorem 1 In a dispatching execution, upper-boundpropagations along negative edges, and lower-boundpropagations along non-negative edges, are both inef-fectual, i.e., they do not a�ect the course of the execu-tion.Note that theorem 1 shows that, in a dispatching ex-ecution, the upper and lower-bound propagations canbe con�ned to disjoint sets of edges.In the remainder of the paper, unless stated to thecontrary, it is convenient to use the term execution tomean dispatching execution.We next investigate what is needed to obtain dispatch-able networks. Recall that any STN can be rewrittenas an All-Pairs shortest-path network (called the d-graph in [5]). We have the following.Theorem 2 Every All-Pairs shortest-path network isdispatchable.Although the All-Pairs network is dispatchable, it hassome obvious disadvantages. In particular, the prop-

agation at each node requires time proportional to n,the number of nodes, in every case. Fortunately, wecan do better. Relying on Theorem 2, we will adoptthe following strategy. Given an arbitrary STN, we�rst construct the equivalent All-Pairs network. Thenwe strip out unneeded edges, the goal being to end upwith an equivalent dispatchable network of manage-able size. Although it is possible to construct exam-ples where there are no unneeded edges, experimentsshow that, typically, a minimal dispatchable network isfound that is of size comparable to that of the originalnetwork.To make this work, we need some means of identify-ing unneeded edges. Formally, an edge is unneeded ifits removal does not admit any new executions. In-tuitively, this condition is satis�ed if its propagationsare always superseded by those of some other edge.By Theorem 1, the only cases we need to consider areforward propagations along non-negative edges, whichmay a�ect upper-bounds, and backward propagationsalong negative edges, which may a�ect lower-bounds.Recall that for an edge XY , the expression TX +b(X;Y) constitutes the upper-bound value propagatedforward from X to Y , while TY � b(X;Y) is the lower-bound value propagated backwards from Y to X .This leads to the following de�nition.De�nition 1 (a) Consider two edges AC and BC withthe same destination C, and suppose the lengths of bothare non-negative. We say BC upper-dominates AC ifin every consistent execution, TB + b(B;C) � TA +b(A;C).(b) Consider two edges AC and AB with the samesource A, and suppose the lengths of both are negative.We say AB lower-dominates AC if in every consistentexecution, TB � b(A;B) � TC � b(A;C)(c) Finally, we say an edge E1 dominates an edge E2 ifeither E1 upper-dominates E2 or E1 lower-dominatesE2.The following results pertain to graphs that satisfy thetriangle inequality. Note that these include the All-Pairs graph and subgraphs derived from it by removingedges.The next theorem provides a characterization of thedominance relation that is more easily checked by analgorithm.Theorem 3 (Triangle Rule) Consider a consistentSTN where the associated distance graph satis�es thetriangle inequality.

(1) A non-negative edge AC is upper-dominated byanother non-negative edge BC if and only if jABj +jBCj = jACj.(2) A negative edge AC is lower-dominated by anothernegative edge AB if and only if jABj+ jBCj = jACj.We next consider the removal of edges. We are inter-ested in knowing whether this allows a new executionthat deviates or di�ers from those that were possiblebefore the removal. We will say an edge is unneeded ifits removal does not produce a new dispatching execu-tion. In this case, removing the edge will not introducean incorrect execution that did not exist before.The following result con�rms our interest in the dom-inance relation.Theorem 4 (Filtering Theorem) An edge in adispatchable network that satis�es the triangle inequal-ity is unneeded if and only if it is dominated by someother edge.Theorems 3 and 4 together allow us to remove an edgeAC from the All-Pairs shortest-path network if thereis another node B such that jABj+ jBCj = jACj, andeither both jACj and jABj are negative, or both jACjand jBCj are non-negative. In the former case, ACis lower-dominated by AB, while in the latter, it isupper-dominated by BC.Notice that since the removal of a dominated edgeleaves the set of executions unchanged, it does notinterfere with the dominance relation between otherpairs of edges. This suggests a potential for multipleremovals, where the triangle rule conditions can con-veniently be checked in the �xed All-Pairs network.However, some interaction is still possible where edgesdominate each other; obviously, only one may be re-moved on account of the other (although they mayboth be removed if dominated by a third edge). Tosee how edge removals may be combined, we considerfurther properties of the dominance relation.Theorem 5 The dominance relation is re
exive andtransitive.A binary relation that is re
exive and transitive iscalled a preorder. It is well-known that a preorder� induces an equivalence relation �, de�ned by x � yif x � y and y � x. Moreover, the equivalence classesare partially ordered by the � relation.In the case of the dominance relation, the inducedequivalence classes will be useful in formulating a mul-tiple removal strategy, as discussed in the next section.

DOM1

DOM3

DOM6

DOM5

DOM2

DOM7

DOM4

Figure 4: Domination Partial Order.4 Minimality of �ltered networkFrom the properties of the dominates relations (De�-nition 1) we see that an all-pair shortest path networkcan give rise to a number of \minimal" dispatchablenetworks, where minimality means that the �lterednetwork has a minimal number of edges. (Not to beconfused with the \tightness" minimality property de-�ned in [5].) We now wish to show that all of thesehave the same number of edges.An example of a partial order structure induced bydominates is shown in Figure 4.Each set DOMi corresponds to an equivalence classfor the dominates relation. All links in such a classdominate each other symmetrically. The link from oneequivalence class to another (e.g., from DOM3 andDOM5) represents the fact that any node in the �rstclass dominates all of the nodes in the second class.This property follows straightforwardly from the tran-sitivity of the dominates relation. A minimal numberof globally dominating edges can be obtained by pick-ing one bound per each \source" DOMj equivalenceclass (in the case in Figure 4, DOM1 and DOM2).Since this selection can be done arbitrarily for each\source" DOMi, in general there is a potentially verylarge number of di�erent minimal dispatchable net-works obtainable from an all-pair shortest path net-work. However, from the point of view of the execu-tion controller, all of the networks are equivalent, andthey all have the same number of edges, so generatingany one of them is su�cient.5 Edge �ltering algorithmIn this section we describe an algorithm that gener-ates one of the minimal networks. First we describethe algorithm and then we prove its correctness and

procedure MARK-EDGES-FOR-ELIMINATIONbeginfor each pair of intersecting edgesdo beginif both dominate each otherthenif neither is markedthenPick one arbitrarilyand mark itelseDo nothingelse if one dominates the otherthenMark the dominated edgeendendFigure 5: Minimal dispatch �ltering algorithm.minimality.Input: A consistent all-pair shortest path graph< N; b(:; :) > where N is a set of time points with car-dinality n and b(:; :) is a total function N � N ! <such that b(X;Y) is the length of the shortest pathlink from X to Y .Output: A consistent minimal dispatchable network< N; b0(:; :) >, where b0(:; :) is a restriction of b(:; :) toa subset of N �N .The central routine in the algorithm is shown in �g-ure 5. The routine visits edges in the network, markingsome of them for elimination. A subsequent routinedeletes the marked edges. The dominance relationscan be established by applying the Triangle Rule ofTheorem 3.In the marking algorithm, two edges intersect if theyeither have the same source or the same destination.As a matter of implementation, all the pairs of inter-secting edges can be conveniently visited by iteratingover each set of three vertices or triangle and consid-ering the edges between them.It remains only to show that, with respect to the dom-inance partial order, as depicted in Figure 4, the appli-cation of the marking algorithm will mark all edges inthe \non-source" equivalence classes (ones that have apredecessor class), and will eliminate all but one edgein the \source" equivalence classes.First, consider an edge belonging to a \non-source"equivalence class DOMi. Eventually, it will be testedagainst an edge in an equivalence class DOMj that

precedes DOMi, and at that time it will be markedfor elimination.Next we treat the case of a \source" equivalence classDOMk. Consider the last time that the marking algo-rithm is applied to a pair of edges in DOMk that areboth unmarked. Only one of the two edges will sur-vive. The one that survives will survive until the end,since all other applications of the marking algorithmto pairs of edges in DOMk will necessarily involve atleast one marked edge, which will prevent any addi-tional marking from occurring. Furthermore, theremust be exactly one edge left. Suppose to the con-trary that there are at least two survivors E1 and E2in DOMk. At some point the algorithm would haveconsidered E1 and E2 as a pair, and if both were un-marked, it would have marked one of them. Thus,both could not have survived. It follows that only oneedge per source equivalence class will survive after thetermination of the algorithm.Observe that when two unmarked edges dominate eachother, there is a choice of which to eliminate. Thus,there are many equivalent minimal graphs that couldbe produced by the algorithm. Notice, however, theyall contain exactly one edge from each of the \source"equivalence classes, and so they all have the same num-ber of edges. This shows the algorithm is \best pos-sible," in the sense that it produces a graph with aglobally minimum number of edges.6 Example and Experimental resultsContinuing the example started with Figure 1, Fig-ure 6 represents the fully connected distance graph ob-tained after application of the all-pairs shortest-pathpropagation. (Note that the BA and AC distanceshave decreased from the edge values in the originaldistance graph due to alternate, shorter paths.) Afterthe application of the �ltering algorithm described insection 5 we obtain the minimal dispatchable graph in�gure 7. Notice that the �nal STN contains one lesstime-bound edge than the starting network in �gure 1.The algorithm described in Section 5 already has apractical application. It is being used in the New Mil-lennium Remote Agent [10], a control architecture thatwill operate autonomously the Deep Space 1 (DS1)spacecraft in a 6 day experiment scheduled for October1998. Table 1 summarizes the experimental results onthe three plans that will be nominally generated andexecuted during the experiment.All the results refer to distance graphs like those in �g-ure 2, �gure 6 and �gure 7. The results show that theminimal dispatchable network is signi�cantly smaller

A B10

-1

C

9

0

D

11

-2

-1

1

1

-1

2

-2

Figure 6: All Pairs Graph.
A C

9

0
B

1

-1
D

1

-1Figure 7: Final Filtered Graph.than the all-pairs dispatchable network, having be-tween 5% and 7% the number of edges of the all-pairsnetwork. They also show that the size of the minimaldispatchable network is smaller than the original plansgenerated by the on-board planner, having between40% and 70% the edges of the original plan. Noticethat even if the original plan were dispatchable, theminimal plans improve the real-time guarantee (pro-portional to the maximum number of branching edgesat a node) between 1.5 and 2.2 times with respect tothe original plan.A ProofsLemma 1 Given any consistent schedule for anySTN, there is a dispatching execution that realizes theschedule.Proof: First we show that the enablement restric-tion does not exclude any consistent schedules. Tosee this, note that for any link X ! Y , we haveTY � TX � b(X;Y), and so TY < TX if b(X;Y) isnegative. Second, note that the restriction to localpropagation is actually more lenient in terms of nar-

Table 1: Minimal Dispatchability For DS1 Plansnodes original All-Pair minimal original minimaledges edges edges max. branch max. branchPLAN-1 56 390 3080 156 18 11PLAN-2 39 144 1482 102 14 9PLAN-3 66 424 4290 192 26 12rowing the time bounds, so all consistent choices forexecution time remain. 2In light of lemma 1, we may use the terms \consistentschedule" and \consistent execution" interchangeablyin the subsequent proofs.For the next result, recall that in STN propagation,the upper bounds of timepoints are propagated in theforward direction of edges, whereas lower bounds aretransmitted in the reverse direction.Theorem 1 In a dispatching execution, upper-boundpropagations along negative edges, and lower-boundpropagations along non-negative edges, are both inef-fectual, i.e., they do not a�ect the course of the execu-tion.Proof: First we remark that a propagation to an al-ready executed node is always ine�ectual, since it can-not narrow the bounds further. Note also that sucha propagation cannot generate an inconsistency, sincethe constraint has already been enforced by a priorpropagation in the reverse direction. Now consider anupper-bound propagation along an edge X ! Y thathas a negative length. Because of the enablement con-dition, Y must have been executed before X . Thus,by the remark above, the propagation is ine�ectual.Next consider a lower-bound propagation along a re-verse edge X Y that has non-negative length w. IfY has been executed before X , then we are done bythe earlier remark. Otherwise, Y must occur at or af-ter X . In that case, the edge constraint requires thatTX�TY � w, which can be rewritten as TY � TX�w.Since Y is not occurring before X anyway, this bounddoes not constrain Y , and is subsumed by the actualexecution time of Y . 2In the remainder of the proofs, it is convenient to usethe term execution to mean dispatching execution.Theorem 2 Every All-Pairs shortest-path network isdispatchable.Proof: First we show that a full-propagating execu-tion controller that respects the enablement conditionscannot generate an inconsistency. The theory of Sim-

ple Temporal Networks [5] guarantees that any locallyconsistent assignment can be extended to a global one.This means that (full) propagation during executionwill not reduce any timepoint's bounds to the emptyset. Thus, the only possibility for incorrect executionis if a pending unexecuted timepoint X is forced intothe past by a propagation. For this to happen, theremust be a shortest path of negative distance from somecurrently executing timepoint Y toX . In this case, be-cause of the All-Pairs property, there will be a singleedge from Y to X that has a negative length. But thenthe enablement condition would have forced X to beexecuted before Y , giving a contradiction.Next, we observe that local propagation in theAll-Pairs shortest-path network simulates full-propagation. It follows that the dispatching executioncontroller will not generate an inconsistency. Thusthe All-Pairs network is dispatchable. 2Lemma 2 Let A and B be timepoints in a consistentSTN. Then in all consistent schedules, TB � TA �jABj. Moreover, if jABj is �nite, there is at leastone consistent schedule where TB � TA = jABj. IfjABj is in�nite, there are consistent schedules in whichTB � TA is arbitrarily large.Proof: The �rst part is immediate upon summingthe inequalities for each edge in a shortest path. Tosee the second part, consider adding a link from Bto A with length �jABj. The network must still beconsistent, since the shortest cycle through the edgeBA has length �jABj + jABj = 0. Thus, there isat least one consistent schedule for the new network.This satis�es TA � TB � �jABj Combining this withthe inequality of the �rst part gives TB � TA = jABj.The result then follows, since this is also a consistentschedule for the original network. A similar methodworks for the in�nite case by adding a negative linkwhose absolute value is arbitrarily large. 2Theorem 3 Consider a consistent STN where the as-sociated distance graph satis�es the triangle inequality.(1) A non-negative edge AC is upper-dominated byanother non-negative edge BC if and only if jABj +

jBCj = jACj.(2) A negative edge AC is lower-dominated by anothernegative edge AB if and only if jABj+ jBCj = jACj.Proof: First consider edges AC and BC in (1). Sup-pose jABj+jBCj = jACj. By the �rst part of lemma 2,in any consistent schedule, we have TB � TA � jABj.It follows that TB + jBCj � TA + jABj + jBCj.Thus, TB + jBCj � TA + jACj by our hypothe-sis. We can deduce from the triangle inequality thatjBCj = b(B;C) and jACj = b(A;C), so BC upper-dominates AC. Conversely, suppose that BC upper-dominates AC. Then in every consistent schedule,TB + jBCj � TA + jACj. If jABj + jBCj 6= jACj,the only option allowed by the triangle inequality isjACj < jABj+jBCj. Combining the inequalities yieldsthat TB�TA < jABj in every consistent schedule. Butthis contradicts the second part of lemma 2 if jABjis �nite. In the in�nite case, we can choose some�nite value K such that jACj < K + jBCj. ThenTB � TA < K, which also contradicts lemma 2.Now consider edges AC and AB in (2). Suppose againjABj + jBCj = jACj. The �rst part of lemma 2gives us TC � TB � jBCj. Thus, TC + jABj �TB + jABj + jBCj = TB + jACj. This can be rewrit-ten as TB � jABj � TC � jACj, and the result followsusing the triangle inequality on jABj and jACj. Con-versely, if AB lower-dominates AC, then TB�jABj �TC � jACj in every consistent schedule. SupposejACj < jABj + jBCj. Then TC � TB < C < jBCjfor some C in every consistent schedule, again contra-dicting lemma 2. Thus, jACj = jABj+ jBCj. 2For the following lemma, a trace of an execution orpartial execution is a sequence S0; S1; : : : where Si isthe set of events that are executed at time i. A devia-tion occurs in a partial execution after an edge removalwhen the trace is no longer a pre�x of any of the tracesbefore the edge removal. This may happen either be-cause of the addition or omission of an event in thetrace.Lemma 3 Suppose the removal of an edge AC froma dispatchable network produces a new, deviant exe-cution. If AC is a negative edge, then the earliesttime at which the execution deviates is when A is ex-ecuted. Otherwise it is when C fails to be executedwithin b(A;C) time units after A. In either case, theAC constraint is violated.Proof: The following terminology will be useful. Thebackground state of any time-point during an exe-cution refers to its current time-bounds and enable-ment/execution status.

Consider �rst the case where AC is a negative edge.Then AC is an enablement edge for A. Let T be thetime of �rst deviation in the schedule. Note that Tcannot occur before A is executed, since before thenthe only di�erences in the background states of thetimepoints are in the more lenient enablement statusand lower bound of A, which only allow it to be exe-cuted sooner.Now suppose the AC constraint is not violated. ThenC must have been executed before A, and after C andA are executed, the background state of every time-point will mirror that before the removal of AC. Inthat case, the execution will not deviate at or afterthe execution of A. Thus, the AC constraint mustbe violated. It follows that T cannot occur after Ais executed, and so it must occur precisely when A isexecuted, and either C was not executed before A, orA occurs too soon after C.The case where AC is non-negative is similar. Againlet T be the time of �rst deviation. Note that be-fore A is executed, the background state of every node(including A, since propagations from C to A are inef-fectual) is the same as before the edge removal. Thus,T cannot occur before A is executed. After A is exe-cuted, the only di�erence in the background states isin the upper bound of C, which may be larger thanbefore the edge removal. Again, if the AC constraintis satis�ed, the execution will not deviate. Thus, theAC constraint must be violated, and the deviation oc-curs when C fails to execute within the allotted timeafter A. 2Theorem 4 An edge in a dispatchable network thatsatis�es the triangle inequality is unneeded (in thesense that its removal does not alter the set of exe-cutions) if and only if it is dominated by some otheredge.Proof: Suppose an edge AC is dominated by anotheredge. We will show the set of dispatching executions isunaltered after the dominated edge is removed. Con-sider �rst the easier case where a negative edge AC islower-dominated by another negative edge AB. Sup-pose that after AC is removed, there is a new, de-viant execution. By lemma 3, the deviation �rst occurswhen A is executed. Note that B is still an enablementcondition for A (AB was not removed), so B is exe-cuted before A. Since TB�b(A;B) � TA�b(A;C), thepropagation from B to A subsumes that from C to Aby the time A is executed. This implies the executiontime of A does not deviate, which is a contradiction.Next consider the situation where a non-negative edgeAC is upper-dominated by another non-negative edge

BC. Suppose that after AC is removed, there is a new,deviant execution. By lemma 3, AC is violated in thedeviant execution, so A must be executed before C,and the deviation occurs jACj time units after A whenC fails to be executed. (By the triangle inequalityb(A;C) = jACj.) By theorem 3, jACj = jABj+ jBCj.Since jBCj � 0, it follows that jACj � jABj. Thus, Bmust be executed before the deviation occurs. Thenby the dominance condition, the propagation from Bto C subsumes that from A to C, implying that C doesnot deviate.Conversely, suppose an edge AC is not dominated.Consider �rst the case in which AC is non-negative.By theorem 3, for any node B we have either BCis negative or jABj + jBCj > jACj. In the formercase, any propagation from B to C is ine�ectual bytheorem 1. With respect to the latter cases, con-sider a propagation of distances bounds with A as thesource. The upper bounds for each node will thenform a consistent schedule. This shows that there issome execution in which TB = TA + jABj for everyB such that jABj + jBCj > jACj. It follows thatTB + jBCj > TA + jACj in this execution, for everysuch B. This means that if the edge AC is removed,the execution can be modi�ed to delay the executiontime of C until more than jACj time units after A,which is a deviation. Thus, AC is needed. The proofwhen AC is negative is similar. 2Theorem 5 The dominance relation is re
exive andtransitive.Proof: Re
exivity is immediate from the de�nitions.Transitivity follows from the fact that only dominanceswith edges of the same sign can be chained. 2AcknowledgmentsWe thank Pandu Nayak, David Smith, and the refereesfor suggestions to improve the presentation of theseresults.References[1] R. P. Bonasso, D. Kortenkamp, D. Miller, andM. Slack. Experiences with an architecture forintelligent, reactive agents. JETAI, 9(1), 1997.[2] J. Bresina, M. Drummond, , and S. Kedar. Reac-tive, Integrated Systems Pose New Problems forMachine Learning. Morgan Kaufmann, San Ma-teo, California, 1993.[3] T. Carpenter, K. Driscoll, and K. Carcio�ni J.Hoyme. Arinc 659 scheduling: Problem de�nition.

In Proceedings of 1994 IEEE Real Time SystemSymposium. IEEE, 1994.[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. MIT press, Cam-bridge, MA, 1990.[5] R. Dechter, I Meiri, and J. Pearl. Temporal con-straint networks. Arti�cial Intelligence, 49:61{95,May 1991.[6] Brian Drabble, Austin Tate, and Je� Dalton.O-plan project evaluation experiments and re-sults. Oplan Technical Report ARPA-RL/O-Plan/TR/23 Version 1, AIAI, July 1996.[7] N. Muscettola, P. Morris, B. Pell, and B. Smith.Issues in temporal reasoning for autonomous con-trol systems. In F. Anger, editor, Working Notesfrom the 1997 AAAI workshop on Spatial andTemporal Reasoning, 1997. available at http://ic-www.arc.nasa.gov/ic/projects/Executive/papers/aaai97-temporal.ps.[8] N. Muscettola and B. Pell. Real-time executionof temporal plans. Technical Report in prepa-ration, Computational Sciences Division, NASAAmes Research, 1997.[9] David Musliner, Ed Durfee, and Kang Shin.Circa: A cooperative, intelligent, real-time con-trol architecture. IEEE Transactions on Systems,Man, and Cybernetics, 23(6), 1993.[10] B. Pell, D. E. Bernard, S.A. Chien, E. Gat,N. Muscettola, P. P. Nayak, M.D. Wagner, andB.C. Williams. An autonomous spacecraft agentprototype. Autonomous Robotics, forthcoming,1997.[11] Reid Simmons. An architecture for coordinatingplanning, sensing, and action. In Procs. DARPAWorkshop on Innovative Approaches to Planning,Scheduling and Control, pages 292{297, San Ma-teo, CA, 1990. DARPA, Morgan Kaufmann.[12] T. Vidal and M. Ghallab. Dealing with uncertaindurations in temporal constraint networks ded-icated to planning. In Proc. of 12th EuropeanConference on Arti�cial Intelligence (ECAI-96),pages 48{52, 1996.[13] D. E. Wilkins, K. L. Myers, J. D. Lowrance, andL. P. Wesley. Planning and reacting in uncertainand dynamic environments. JETAI, 7(1):197{227,1995.

