Reformulating Temporal Plans For Efficient Execution

Nicola Muscettola
Recom Technologies.
NASA Ames Research Center
Moffett Field, CA 94035
mus@ptolemy.arc.nasa.gov

Abstract

The Simple Temporal Network formalism
permits significant flexibility in specifying the
occurrence time of events in temporal plans.
However, to retain this flexibility during ex-
ecution, there is a need to propagate the ac-
tual execution times of past events so that
the occurrence windows of future events are
adjusted appropriately. Unfortunately, this
may run afoul of tight real-time control re-
quirements that dictate extreme efficiency.
The performance may be improved by re-
stricting the propagation. However, a fast,
locally propagating, execution controller may
incorrectly execute a consistent plan. To re-
solve this dilemma, we identify a class of dis-
patchable networks that are guaranteed to ex-
ecute correctly under local propagation. We
show that every consistent temporal plan can
be reformulated as an equivalent dispatch-
able network, and we present an algorithm
that constructs such a network. Moreover,
the constructed network is shown to have a
minimum number of edges among all such
networks. This algorithm will be flown on an
autonomous spacecraft as part of the Deep
Space 1 Remote Agent experiment.

1 Introduction

When designing and implementing control systems op-
erating in a physical world it is important to correctly
deal with the metric nature of time. For example,
deadlines are typically upper bounds on the value of
the occurrence time of certain events (e.g., end of a
task). The control system can guarantee a correct exe-
cution only if specified time constraints are satisfied for
any possible execution. We are interested in the class

Paul Morris
Caelum Research.
NASA Ames Research Center
Moffett Field, CA 94035
pmorris@ptolemy.arc.nasa.gov

Ioannis Tsamardinos
Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260
tsamard@cs.pitt.edu

of high-level control architectures that distinguish be-
tween a deliberative layer, or planner, and a reactive
layer, or executive [10, 1, 13, 6, 11, 9, 2].

This paper is concerned with the properties that must
be satisfied by temporally flexible plans in order to be
correctly executed by a simplified, fast execution algo-
rithm. The speed of an execution algorithm is central
to ensuring that a plan can be robustly executed in
real-time, a condition of crucial importance in mis-
sion critical applications such as autonomous space-
craft operations [10] and avionics control systems [3].
Unlike fixed time schedules, temporally flexible plans
allow an executive to seamlessly adjust to delays and
fluctuations of task durations. However, the cost of
this flexibility is that the executive must constantly
adjust the plan during execution by performing some
amount of constraint propagation. The time spent do-
ing this propagation adds to the total time needed to
start or end any task in the plan. The latter time is
equivalent to the intrinsic time uncertainty on the ex-
act time of occurrence of any event in the plan [7, 8].
The more precise we want the execution of a plan to
be, the less propagation an execution algorithm should
perform. In this paper, we precisely define fast execu-
tion by giving a simple controller algorithm and we
describe dispatchability, a formal property that iden-
tifies whether a plan is amenable to fast execution or
not. We also discuss how a non-dispatchable plan can
be transformed in polynomial time into a dispatchable
plan, and we show that the resulting plan has the de-
sirable property of being minimal in the number of
edges among all dispatchable plans.

2 Dispatching Executions

The type of plan that we are interested in is a tem-
poral plan, i.e., a partial order of tasks with metric
time information. We refer to the start and end times
of a task as two separate events or timepoints. A

plan satisfies the following conditions: (1) for each
task, the start and end events must be separated by
a non-negative duration [d, D]; (2) additional separa-
tion constraints [s,S] may be specified between the
start and/or the end of any two tasks. A temporal
bound-constraint [b, B] (either duration or separation)
from an event A to an event B constrains the pos-
sible values of the times of occurrence of A and B,
Ts and T respectively, such that b < Tp — Ty <
B. We assume that the plan contains no disjunctive
bound-constraints between two events, i.e., the graph
of events and bound-constraints is a Simple Tempo-
ral Network (STN) in the sense of Dechter, Meiri and
Pearl [5]. Without loss of generality, we also assume
that the STN graph is connected.

We concentrate on the process through which the ex-
ecutive selects individual events and executes them,
i.e., assigns to them a specific time of occurrence that
is consistent with the overall plan. It has been estab-
lished [5] that finding the ranges of execution times
for each event, the event’s time bounds, is equivalent
to solving two single-source shortest-path problems [4]
on a simple transformation of the STN graph. Fur-
thermore, if the STN is consistent, then for each event
A it is possible to arbitrarily pick a time T4 within
its time bounds and find corresponding times for the
other events such that the set of occurrence times for
all events satisfies the plan constraints. This suggests
a “naive” execution algorithm that iteratively: (1) se-
lects an event such that the current time is within
the event’s time bound and the event is enabled, i.e.,
all events that must directly precede it in the STN
have been executed; (2) assigns the current time to
the event; and (3) propagates the consequences of “col-
lapsing” the event’s time bounds to every other time
bound. The iteration continues until all events have
been executed.

There are two problems with the naive execution al-
gorithm. The first is that precisely estimating the
propagation cost for a general STN is difficult and
may require considering the possible propagations in a
large number of possible execution conditions. With-
out such analysis, the best we can do is to give a bound
that depends on the total size of the plan; more pre-
cisely the bound corresponds to running the Dijkstra
algorithm! twice on the graph. The complexity of this
propagation is O(e+nlogn), where e is the total num-
ber of edges and n the total number of nodes in the
STN. A second, more serious problem is that select-
ing events on the sole basis of time bound information

'Since the STN is guaranteed to remain consistent, it
is possible to avoid using the more costly Bellman-Ford-
Moore algorithm.

Figure 2: Distance Graph.

and precedence enablement may lead to incorrect ex-
ecutions. Consider the example network in Figure 1.
Intuitively this network corresponds to two tasks BD
and CD of fixed durations, respectively 1 and 2 time
units, that synchronize at the end (event D) and must
start within 10 time units of a time origin (event A).
Figure 2 shows the corresponding distance graph [5],
suitable for shortest-path propagation. If we assume
that event A always occurs at time 0, events B and C
will initially obtain time bounds (1, 10) and (0, 9) re-
spectively. (Recall from [5] that the lower bound for a
node is computed as the negation of the shortest-path
distance from the node to the time origin, while the
upper bound is simply the shortest-path distance from
the origin to the node.) Suppose now that the current
time is 5, but tasks BD and C'D have not yet started.
Since the time bounds of both B and C' contain time 5,
the naive execution algorithm may very well select for
execution event B only to discover after propagation
that event C should have started at time 4 in order for
the plan to execute consistently. Thus, the naive ap-
proach does not guarantee correct execution of a plan
under all execution conditions.

The problem with the plan in Figure 1 is that there
is an implicit synchronization constraint that requires
C to be executed exactly 1 time unit before B. When
the execution reaches B and C, this implicit constraint
can only be detected by increasing the lower bound of
waiting events to the current time, and propagating,
before considering which event to select. Although this
fixes the consistency problem, it does not improve the
real-time performance. Indeed, it makes it worse since

TIME DISPATCHING ALGORITHM:
1. Let
A = {start_time_point}
current_time = 0
s = {}

2. Arbitrarily pick a time point TP in A such
that current_time belongs to TP’s time bound;

3. Set TP’s execution time to current_time and add
TP to S;

4. Propagate the time of execution
to its IMMEDIATE NEIGHBORS in the distance
graph;

5. Put in A all time points TPx such that all
negative edges starting from TPx have a
destination that is already in S;

6. Wait until current_time has advanced to
some time between

min{lower_bound(TP)
and
min{upper_bound(TP) : TP in A}
7. Go to 2 until every time point is in S.

: TP in A}

Figure 3: The Dispatching Execution Controller.

we may now have to propagate the new lower bound
from several waiting events rather than from a single
selected event.

On the other hand, to fix the performance problem,
we would like to restrict the execution algorithm to
use a local propagation that, on the basis of the execu-
tion time of an event, adjusts only the time bounds of
the neighboring events. However, this makes the con-
sistency problem worse. To see this, note that with
the plan in Figure 1, even if C' is executed first, local
propagation would allow B to be executed more than
one time unit after C', which also violates the implicit
constraint.

Notwithstanding these considerations, there are many
networks that are successfully executed by using the
naive execution algorithm. This continues to be true
even when the propagation is restricted to be local. In
fact, as we will see, every consistent STN is equivalent
to such a network.

Figure 3 shows a detailed local propagation algorithm
that we call the dispatching execution controller. Note
that the flexible wait in step 6 provides some room for
responding to unmodeled external contingencies. This
can include unexpected events (in contrast to work
that deals with anticipated uncontrollable events [12]).
Step 5 is a precise formulation of the enablement re-
quirement that prevents execution of a node until all
its enabling nodes have first been executed. Note that
with this formulation a deadlock situation cannot oc-
cur, since in a consistent distance graph there are no
negative cycles. An execution carried out by the dis-
patching execution controller is called a dispatching
execution. An STN is said to be dispatchable if it is al-
ways correctly executed by the dispatching execution
controller.

The propagation time needed to execute a dispatch-
able plan is easy to estimate, and varies directly with
b, the maximum number of edges that can enter or exit
an event in the associated distance graph.

In this paper, it is shown that every consistent STN
can be reformulated as an equivalent dispatchable net-
work. This is achieved by (1) constructing the all-pairs
shortest path network (which is shown to be dispatch-
able), and (2) eliminating unneeded edges to obtain an
equivalent dispatchable network of minimum size.

3 Finding dispatchable networks

We will use the following notation with respect to dis-
tance graphs. Given a timepoint X, the expression
T'x denotes its execution time with respect to some
schedule or execution. If X and Y are two timepoints,
XY denotes an edge from X to Y, and b(X,Y) is its
distance or length. (The edge XY represents the con-
straint Ty — Tx < b(X,Y").) We write | XY| to denote
the distance along a shortest path from X to Y, or oo
if no path exists. (Note that |XY| may be negative
in distance graphs.) The proofs of the theorems (and
supporting lemmas) are contained in the Appendix.

The first result is useful for simplifying the local prop-
agation required in a dispatching execution. Recall [5]
that in an STN distance graph, the upper bounds of
timepoints are propagated in the forward direction of
edges, whereas lower bounds are transmitted in the
reverse direction.

Theorem 1 In a dispatching execution, upper-bound
propagations along negative edges, and lower-bound
propagations along non-negative edges, are both inef-
fectual, i.e., they do not affect the course of the execu-
tion.

Note that theorem 1 shows that, in a dispatching ex-
ecution, the upper and lower-bound propagations can
be confined to disjoint sets of edges.

In the remainder of the paper, unless stated to the
contrary, it is convenient to use the term execution to
mean dispatching execution.

We next investigate what is needed to obtain dispatch-
able networks. Recall that any STN can be rewritten
as an All-Pairs shortest-path network (called the d-
graph in [5]). We have the following.

Theorem 2 Every All-Pairs shortest-path network is
dispatchable.

Although the All-Pairs network is dispatchable, it has
some obvious disadvantages. In particular, the prop-

agation at each node requires time proportional to n,
the number of nodes, in every case. Fortunately, we
can do better. Relying on Theorem 2, we will adopt
the following strategy. Given an arbitrary STN, we
first construct the equivalent All-Pairs network. Then
we strip out unneeded edges, the goal being to end up
with an equivalent dispatchable network of manage-
able size. Although it is possible to construct exam-
ples where there are no unneeded edges, experiments
show that, typically, a minimal dispatchable network is
found that is of size comparable to that of the original
network.

To make this work, we need some means of identify-
ing unneeded edges. Formally, an edge is unneeded if
its removal does not admit any new executions. In-
tuitively, this condition is satisfied if its propagations
are always superseded by those of some other edge.
By Theorem 1, the only cases we need to consider are
forward propagations along non-negative edges, which
may affect upper-bounds, and backward propagations
along negative edges, which may affect lower-bounds.

Recall that for an edge XY, the expression T'x +
b(X,Y) constitutes the upper-bound value propagated
forward from X to Y, while Ty — b(X,Y) is the lower-
bound value propagated backwards from Y to X.

This leads to the following definition.

Definition 1 (a) Consider two edges AC and BC with
the same destination C, and suppose the lengths of both
are non-negative. We say BC upper-dominates AC if

in every consistent execution, Tp + b(B,C) < Ty +
b(A,C).

(b) Consider two edges AC and AB with the same
source A, and suppose the lengths of both are negative.
We say AB lower-dominates AC if in every consistent
execution, Tg — b(A, B) > Te — b(A,C)

(¢) Finally, we say an edge E1 dominates an edge E2 if
esther E1 upper-dominates E2 or FE1 lower-dominates
E2.

The following results pertain to graphs that satisfy the
triangle inequality. Note that these include the All-
Pairs graph and subgraphs derived from it by removing
edges.

The next theorem provides a characterization of the
dominance relation that is more easily checked by an
algorithm.

Theorem 3 (Triangle Rule) Consider a consistent
STN where the associated distance graph satisfies the
triangle inequality.

(1) A non-negative edge AC is upper-dominated by
another non-negative edge BC if and only if |AB| +
|BC| = |AC].

(2) A negative edge AC is lower-dominated by another
negative edge AB if and only if |AB| + |BC| = |AC].

We next consider the removal of edges. We are inter-
ested in knowing whether this allows a new execution
that deviates or differs from those that were possible
before the removal. We will say an edge is unneeded if
its removal does not produce a new dispatching execu-
tion. In this case, removing the edge will not introduce
an incorrect execution that did not exist before.

The following result confirms our interest in the dom-
inance relation.

Theorem 4 (Filtering Theorem) An edge in a
dispatchable network that satisfies the triangle inequal-
ity is unneeded if and only if it is dominated by some
other edge.

Theorems 3 and 4 together allow us to remove an edge
AC from the All-Pairs shortest-path network if there
is another node B such that |[AB|+ |BC| = |AC|, and
either both |AC| and |AB]| are negative, or both |AC|
and |BC| are non-negative. In the former case, AC
is lower-dominated by AB, while in the latter, it is
upper-dominated by BC'.

Notice that since the removal of a dominated edge
leaves the set of executions unchanged, it does not
interfere with the dominance relation between other
pairs of edges. This suggests a potential for multiple
removals, where the triangle rule conditions can con-
veniently be checked in the fixed All-Pairs network.
However, some interaction is still possible where edges
dominate each other; obviously, only one may be re-
moved on account of the other (although they may
both be removed if dominated by a third edge). To
see how edge removals may be combined, we consider
further properties of the dominance relation.

Theorem 5 The dominance relation is reflexive and
transitive.

A binary relation that is reflexive and transitive is
called a preorder. It is well-known that a preorder
< induces an equivalence relation =, defined by z =y
if x <y and y < x. Moreover, the equivalence classes
are partially ordered by the < relation.

In the case of the dominance relation, the induced
equivalence classes will be useful in formulating a mul-
tiple removal strategy, as discussed in the next section.

Figure 4: Domination Partial Order.

4 Minimality of filtered network

From the properties of the DOMINATES relations (Defi-
nition 1) we see that an all-pair shortest path network
can give rise to a number of “minimal” dispatchable
networks, where minimality means that the filtered
network has a minimal number of edges. (Not to be
confused with the “tightness” minimality property de-
fined in [5].) We now wish to show that all of these
have the same number of edges.

An example of a partial order structure induced by
DOMINATES is shown in Figure 4.

Each set DOM: corresponds to an equivalence class
for the DOMINATES relation. All links in such a class
dominate each other symmetrically. The link from one
equivalence class to another (e.g., from DOM3 and
DOMS5) represents the fact that any node in the first
class dominates all of the nodes in the second class.
This property follows straightforwardly from the tran-
sitivity of the DOMINATES relation. A minimal number
of globally dominating edges can be obtained by pick-
ing one bound per each “source” DOMj equivalence
class (in the case in Figure 4, DOM1 and DOM?2).
Since this selection can be done arbitrarily for each
“source” DOMji, in general there is a potentially very
large number of different minimal dispatchable net-
works obtainable from an all-pair shortest path net-
work. However, from the point of view of the execu-
tion controller, all of the networks are equivalent, and
they all have the same number of edges, so generating
any one of them is sufficient.

5 Edge filtering algorithm

In this section we describe an algorithm that gener-
ates one of the minimal networks. First we describe
the algorithm and then we prove its correctness and

procedure MARK-EDGES-FOR-ELIMINATION
begin
for each pair of intersecting edges
do begin
if both dominate each other
then
if neither is marked
then
Pick one arbitrarily
and mark it

else
Do nothing
else if one dominates the other
then
Mark the dominated edge
end
end

Figure 5: Minimal dispatch filtering algorithm.

minimality.

Input: A consistent all-pair shortest path graph
< N,b(.,.) > where N is a set of time points with car-
dinality n and b(.,.) is a total function N x N — R
such that b(X,Y) is the length of the shortest path
link from X to Y.

Output: A consistent minimal dispatchable network
< N,b'(.,.) >, where I'(.,.) is a restriction of b(.,.) to
a subset of N x N.

The central routine in the algorithm is shown in fig-
ure 5. The routine visits edges in the network, marking
some of them for elimination. A subsequent routine
deletes the marked edges. The dominance relations
can be established by applying the Triangle Rule of
Theorem 3.

In the marking algorithm, two edges intersect if they
either have the same source or the same destination.
As a matter of implementation, all the pairs of inter-
secting edges can be conveniently visited by iterating
over each set of three vertices or triangle and consid-
ering the edges between them.

It remains only to show that, with respect to the dom-
inance partial order, as depicted in Figure 4, the appli-
cation of the marking algorithm will mark all edges in
the “non-source” equivalence classes (ones that have a
predecessor class), and will eliminate all but one edge
in the “source” equivalence classes.

First, consider an edge belonging to a “non-source”
equivalence class DOMi. Eventually, it will be tested
against an edge in an equivalence class DOMj that

precedes DOM:i, and at that time it will be marked
for elimination.

Next we treat the case of a “source” equivalence class
DOME. Consider the last time that the marking algo-
rithm is applied to a pair of edges in DOME that are
both unmarked. Only one of the two edges will sur-
vive. The one that survives will survive until the end,
since all other applications of the marking algorithm
to pairs of edges in DOME will necessarily involve at
least one marked edge, which will prevent any addi-
tional marking from occurring. Furthermore, there
must be exactly one edge left. Suppose to the con-
trary that there are at least two survivors E1 and E2
in DOME. At some point the algorithm would have
considered E1 and E2 as a pair, and if both were un-
marked, it would have marked one of them. Thus,
both could not have survived. It follows that only one
edge per source equivalence class will survive after the
termination of the algorithm.

Observe that when two unmarked edges dominate each
other, there is a choice of which to eliminate. Thus,
there are many equivalent minimal graphs that could
be produced by the algorithm. Notice, however, they
all contain exactly one edge from each of the “source”
equivalence classes, and so they all have the same num-
ber of edges. This shows the algorithm is “best pos-
sible,” in the sense that it produces a graph with a
globally minimum number of edges.

6 Example and Experimental results

Continuing the example started with Figure 1, Fig-
ure 6 represents the fully connected distance graph ob-
tained after application of the all-pairs shortest-path
propagation. (Note that the BA and AC distances
have decreased from the edge values in the original
distance graph due to alternate, shorter paths.) After
the application of the filtering algorithm described in
section 5 we obtain the minimal dispatchable graph in
figure 7. Notice that the final STN contains one less
time-bound edge than the starting network in figure 1.

The algorithm described in Section 5 already has a
practical application. It is being used in the New Mil-
lennium Remote Agent [10], a control architecture that
will operate autonomously the Deep Space 1 (DS1)
spacecraft in a 6 day experiment scheduled for October
1998. Table 1 summarizes the experimental results on
the three plans that will be nominally generated and
executed during the experiment.

All the results refer to distance graphs like those in fig-
ure 2, figure 6 and figure 7. The results show that the
minimal dispatchable network is significantly smaller

Figure 6: All Pairs Graph.

Figure 7: Final Filtered Graph.

than the all-pairs dispatchable network, having be-
tween 5% and 7% the number of edges of the all-pairs
network. They also show that the size of the minimal
dispatchable network is smaller than the original plans
generated by the on-board planner, having between
40% and 70% the edges of the original plan. Notice
that even if the original plan were dispatchable, the
minimal plans improve the real-time guarantee (pro-
portional to the maximum number of branching edges
at a node) between 1.5 and 2.2 times with respect to
the original plan.

A Proofs

Lemma 1 Given any consistent schedule for any
STN, there is a dispatching execution that realizes the
schedule.

Proof: First we show that the enablement restric-
tion does not exclude any consistent schedules. To
see this, note that for any link X — Y, we have
Ty —Tx < b(X,Y), and so Ty < Tx if b(X,Y) is
negative. Second, note that the restriction to local
propagation is actually more lenient in terms of nar-

Table 1: Minimal Dispatchability For DS1 Plans

nodes | original | All-Pair | minimal original minimal
edges edges edges max. branch | max. branch
PLAN-1 56 390 3080 156 18 11
PLAN-2 39 144 1482 102 14 9
PLAN-3 66 424 4290 192 26 12

rowing the time bounds, so all consistent choices for
execution time remain. O

In light of lemma 1, we may use the terms “consistent
schedule” and “consistent execution” interchangeably
in the subsequent proofs.

For the next result, recall that in STN propagation,
the upper bounds of timepoints are propagated in the
forward direction of edges, whereas lower bounds are
transmitted in the reverse direction.

Theorem 1 In a dispatching execution, upper-bound
propagations along negative edges, and lower-bound
propagations along non-negative edges, are both inef-
fectual, i.e., they do not affect the course of the execu-
tion.

Proof: First we remark that a propagation to an al-
ready executed node is always ineffectual, since it can-
not narrow the bounds further. Note also that such
a propagation cannot generate an inconsistency, since
the constraint has already been enforced by a prior
propagation in the reverse direction. Now consider an
upper-bound propagation along an edge X — Y that
has a negative length. Because of the enablement con-
dition, Y must have been executed before X. Thus,
by the remark above, the propagation is ineffectual.
Next consider a lower-bound propagation along a re-
verse edge X < Y that has non-negative length w. If
Y has been executed before X, then we are done by
the earlier remark. Otherwise, Y must occur at or af-
ter X. In that case, the edge constraint requires that
Tx — Ty < w, which can be rewritten as Ty > T'x —w.
Since Y is not occurring before X anyway, this bound
does not constrain Y, and is subsumed by the actual
execution time of Y. O

In the remainder of the proofs, it is convenient to use
the term ezecution to mean dispatching execution.

Theorem 2 Every All-Pairs shortest-path network is
dispatchable.

Proof: First we show that a full-propagating execu-
tion controller that respects the enablement conditions
cannot generate an inconsistency. The theory of Sim-

ple Temporal Networks [5] guarantees that any locally
consistent assignment can be extended to a global one.
This means that (full) propagation during execution
will not reduce any timepoint’s bounds to the empty
set. Thus, the only possibility for incorrect execution
is if a pending unexecuted timepoint X is forced into
the past by a propagation. For this to happen, there
must be a shortest path of negative distance from some
currently executing timepoint Y to X. In this case, be-
cause of the All-Pairs property, there will be a single
edge from Y to X that has a negative length. But then
the enablement condition would have forced X to be
executed before Y, giving a contradiction.

Next, we observe that local propagation in the
All-Pairs shortest-path network simulates full-
propagation. It follows that the dispatching execution
controller will not generate an inconsistency. Thus
the All-Pairs network is dispatchable. O

Lemma 2 Let A and B be timepoints in a consistent
STN. Then in all consistent schedules, Tg — Ty <
|AB|. Moreover, if |AB| is finite, there is at least
one consistent schedule where Tg — Ty = |AB|. If
|AB)| is infinite, there are consistent schedules in which
T — T4 s arbitrarily large.

Proof: The first part is immediate upon summing
the inequalities for each edge in a shortest path. To
see the second part, consider adding a link from B
to A with length —|AB|. The network must still be
consistent, since the shortest cycle through the edge
BA has length —|AB| + |AB| = 0. Thus, there is
at least one consistent schedule for the new network.
This satisfies T4 — Ty < —|AB| Combining this with
the inequality of the first part gives Ty — T4 = |AB].
The result then follows, since this is also a consistent
schedule for the original network. A similar method
works for the infinite case by adding a negative link
whose absolute value is arbitrarily large. O

Theorem 3 Consider a consistent STN where the as-
sociated distance graph satisfies the triangle inequality.

(1) A non-negative edge AC is upper-dominated by
another non-negative edge BC if and only if |AB| +

IBC| = |AC].

(2) A negative edge AC is lower-dominated by another
negative edge AB if and only if |AB| + |BC| = |AC].

Proof: First consider edges AC and BC in (1). Sup-
pose |AB|+|BC| = |AC|. By the first part of lemma 2,
in any consistent schedule, we have Ty — Ty < |AB].
It follows that Ty + |BC| < Ta + |AB| + |BC|.
Thus, T + |BC| < Ta + |AC| by our hypothe-
sis. We can deduce from the triangle inequality that
|BC| = b(B,C) and |AC| = b(A,C), so BC upper-
dominates AC. Conversely, suppose that BC' upper-
dominates AC. Then in every consistent schedule,
Tp + |BC| < Ty + |AC|. 1If |AB| + |BC| # |AC]|,
the only option allowed by the triangle inequality is
|AC| < |AB|+|BC|. Combining the inequalities yields
that Tp —Ta < |AB]| in every consistent schedule. But
this contradicts the second part of lemma 2 if |AB|
is finite. In the infinite case, we can choose some
finite value K such that |AC| < K + |BC|. Then
Tp — Ty < K, which also contradicts lemma 2.

Now consider edges AC and AB in (2). Suppose again
|AB| + |BC| = |AC|. The first part of lemma 2
gives us T¢ — T < |BC|. Thus, T¢ + |AB| <
Tp + |AB| + |BC| = Tp + |AC|. This can be rewrit-
ten as Tp — |AB| > T — |AC], and the result follows
using the triangle inequality on |AB| and |AC|. Con-
versely, if AB lower-dominates AC, then Ty —|AB| >
Tc — |AC| in every consistent schedule. Suppose
|AC| < |AB| + |BC|. Then T¢ — T < C < |BC|
for some C' in every consistent schedule, again contra-
dicting lemma 2. Thus, |[AC| = |AB| + |BC|. O

For the following lemma, a trace of an execution or
partial execution is a sequence Sg,S7,... where S; is
the set of events that are executed at time i. A devia-
tion occurs in a partial execution after an edge removal
when the trace is no longer a prefix of any of the traces
before the edge removal. This may happen either be-
cause of the addition or omission of an event in the
trace.

Lemma 3 Suppose the removal of an edge AC from
a dispatchable network produces a new, deviant exe-
cution. If AC is a megative edge, then the earliest
time at which the execution deviates is when A is ex-
ecuted. Otherwise it is when C fails to be executed
within b(A, C) time units after A. In either case, the
AC constraint is violated.

Proof: The following terminology will be useful. The
background state of any time-point during an exe-
cution refers to its current time-bounds and enable-
ment /execution status.

Consider first the case where AC' is a negative edge.
Then AC is an enablement edge for A. Let T be the
time of first deviation in the schedule. Note that T
cannot occur before A is executed, since before then
the only differences in the background states of the
timepoints are in the more lenient enablement status
and lower bound of A, which only allow it to be exe-
cuted sooner.

Now suppose the AC' constraint is not violated. Then
C must have been executed before A, and after C and
A are executed, the background state of every time-
point will mirror that before the removal of AC. In
that case, the execution will not deviate at or after
the execution of A. Thus, the AC constraint must
be violated. It follows that 7" cannot occur after A
is executed, and so it must occur precisely when A is
executed, and either C' was not executed before A, or
A occurs too soon after C.

The case where AC is non-negative is similar. Again
let T be the time of first deviation. Note that be-
fore A is executed, the background state of every node
(including A, since propagations from C to A are inef-
fectual) is the same as before the edge removal. Thus,
T cannot occur before A is executed. After A is exe-
cuted, the only difference in the background states is
in the upper bound of C, which may be larger than
before the edge removal. Again, if the AC' constraint
is satisfied, the execution will not deviate. Thus, the
AC constraint must be violated, and the deviation oc-
curs when C fails to execute within the allotted time
after A. O

Theorem 4 An edge in a dispatchable network that
satisfies the triangle inequality is unneeded (in the
sense that its removal does not alter the set of exe-
cutions) if and only if it is dominated by some other
edge.

Proof: Suppose an edge AC is dominated by another
edge. We will show the set of dispatching executions is
unaltered after the dominated edge is removed. Con-
sider first the easier case where a negative edge AC is
lower-dominated by another negative edge AB. Sup-
pose that after AC is removed, there is a new, de-
viant execution. By lemma 3, the deviation first occurs
when A is executed. Note that B is still an enablement
condition for A (AB was not removed), so B is exe-
cuted before A. Since Ty —b(A, B) > T4a—b(A,C), the
propagation from B to A subsumes that from C to A
by the time A is executed. This implies the execution
time of A does not deviate, which is a contradiction.

Next consider the situation where a non-negative edge
AC is upper-dominated by another non-negative edge

BC'. Suppose that after AC' is removed, there is a new,
deviant execution. By lemma 3, AC' is violated in the
deviant execution, so A must be executed before C,
and the deviation occurs |[AC| time units after A when
C fails to be executed. (By the triangle inequality
b(A,C) =|AC|.) By theorem 3, |[AC| = |AB| + |BC|.
Since |BC| > 0, it follows that |AC| > |AB|. Thus, B
must be executed before the deviation occurs. Then
by the dominance condition, the propagation from B
to C subsumes that from A to C, implying that C' does
not deviate.

Conversely, suppose an edge AC is not dominated.
Consider first the case in which AC is non-negative.
By theorem 3, for any node B we have either BC
is negative or |AB| 4+ |BC| > |AC|. In the former
case, any propagation from B to C is ineffectual by
theorem 1. With respect to the latter cases, con-
sider a propagation of distances bounds with A as the
source. The upper bounds for each node will then
form a consistent schedule. This shows that there is
some execution in which T = T4 + |AB| for every
B such that |AB| + |BC| > |AC|. It follows that
Tg + |BC| > Ta + |AC| in this execution, for every
such B. This means that if the edge AC is removed,
the execution can be modified to delay the execution
time of C until more than |AC| time units after A,
which is a deviation. Thus, AC is needed. The proof
when AC is negative is similar. O

Theorem 5 The dominance relation is reflexive and
transitive.

Proof: Reflexivity is immediate from the definitions.
Transitivity follows from the fact that only dominances
with edges of the same sign can be chained. O

Acknowledgments

We thank Pandu Nayak, David Smith, and the referees
for suggestions to improve the presentation of these
results.

References

[1] R. P. Bonasso, D. Kortenkamp, D. Miller, and
M. Slack. Experiences with an architecture for
intelligent, reactive agents. JETAI 9(1), 1997.

[2] J. Bresina, M. Drummond, , and S. Kedar. Reac-
tive, Integrated Systems Pose New Problems for
Machine Learning. Morgan Kaufmann, San Ma-
teo, California, 1993.

[3] T. Carpenter, K. Driscoll, and K. Carciofini J.
Hoyme. Arinc 659 scheduling: Problem definition.

[10]

[13]

In Proceedings of 1994 IEEE Real Time System
Symposium. IEEE, 1994.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest.
Introduction to Algorithms. MIT press, Cam-
bridge, MA, 1990.

R. Dechter, T Meiri, and J. Pearl. Temporal con-
straint networks. Artificial Intelligence, 49:61 95,
May 1991.

Brian Drabble, Austin Tate, and Jeff Dalton.
O-plan project evaluation experiments and re-
sults. Oplan Technical Report ARPA-RL/O-
Plan/TR /23 Version 1, ATAI, July 1996.

N. Muscettola, P. Morris, B. Pell, and B. Smith.
Issues in temporal reasoning for autonomous con-
trol systems. In F. Anger, editor, Working Notes
from the 1997 AAAI workshop on Spatial and
Temporal Reasoning, 1997. available at nttp://ic-
www.arc.nasa.gov/ic/projects/Executive/papers/aaai97-

temporal.ps.

N. Muscettola and B. Pell. Real-time execution
of temporal plans. Technical Report in prepa-
ration, Computational Sciences Division, NASA
Ames Research, 1997.

David Musliner, Ed Durfee, and Kang Shin.
Circa: A cooperative, intelligent, real-time con-
trol architecture. IEEE Transactions on Systems,
Man, and Cybernetics, 23(6), 1993.

B. Pell, D. E. Bernard, S.A. Chien, E. Gat,
N. Muscettola, P. P. Nayak, M.D. Wagner, and
B.C. Williams. An autonomous spacecraft agent

prototype. Autonomous Robotics, forthcoming,
1997.

Reid Simmons. An architecture for coordinating
planning, sensing, and action. In Procs. DARPA
Workshop on Innovative Approaches to Planning,
Scheduling and Control, pages 292 297, San Ma-
teo, CA, 1990. DARPA, Morgan Kaufmann.

T. Vidal and M. Ghallab. Dealing with uncertain
durations in temporal constraint networks ded-
icated to planning. In Proc. of 12th Furopean
Conference on Artificial Intelligence (ECAI-96),
pages 48 52, 1996.

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and
L. P. Wesley. Planning and reacting in uncertain
and dynamic environments. JETAI 7(1):197 227,
1995.

