
OUTLINE OF A MODEL FOR LEXICAL DATABASES*

NANCY IDE 1, JACQUES LE MAITRE 2, JEAN VÉRONIS 1,2

1 Department of Computer Science, Vassar College
Poughkeepsie, New York 12601, U.S.A.

2 Groupe Représentation et Traitement des Connaissances,
Centre National de la Recherche Scientifique,

31, Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France

Abstract -- In this paper we show that previously applied data models are inadequate for

lexical databases. In particular, we show that relational data models, including

unnormalized models which allow the nesting of relations, cannot fully capture the

structural properties of lexical information. We propose an alternative feature-based model

which allows for a full representation of sense nesting and defines a factoring mechanism

that enables the elimination of redundant information. We then demonstrate that feature

structures map readily to an object-oriented data model and show how our model can be

implemented in an object-oriented DBMS.

1. INTRODUCTION

For 25 years or so, computers have been used in the production of dictionaries. Initially,

computers were used primarily for the first step in dictionary-making, that is, the gathering

and accessing of examples of word use (see bibliography and surveys in Kipfer, 1983, and

Landau, 1984). In the early 1980's, the COBUILD dictionary project took this use of

computers to the extreme, by compiling a 20 million word corpus of English, generating

extensive lists of examples from concordances of the corpus, and creating entries based

almost exclusively on these examples (Sinclair, 1987). Computers have also been used

extensively for word-processing and typesetting dictionary entries. However, in the last

decade lexicographers and publishers began to explore more sophisticated computer

involvement in the dictionary-making process, in particular, the use of databases of lexical

information (including, for example, pronunciation, part of speech, definition, etymology,

etc. for each word) for entry-making. The existence of a lexical database provides

*The work described in this paper has been carried out in the context of a joint project of the

Department of Computer Science at Vassar College and the Groupe Représentation et Traitement des
Connaissances of the Centre National de la Recherche Scientifique (CNRS), which is concerned with the
construction and exploitation of a large lexical data base of English and French. An earlier version of this
paper was presented at the conference "Intelligent Text and Image Handling" (RIAO 91) in Barcelona, Spain,
April 1991.

2

enormous potential: it can be used to update and maintain dictionaries and check coherency

within a dictionary or across related dictionaries, as well as enable the exchange and sharing

of information among projects and even the automatic generation of several variant printed

versions of a dictionary (e.g., a full version, a concise version, and a pocket version) from a

common data source. Beyond this, such databases can be used as the basis for electronic

dictionaries on CD-ROM, and for on-line consultation by scholars.

Quite independently, during the 1970's and 80's computational linguists began to

develop computational lexicons for natural language processing programs. Computational

lexicons differ from dictionaries intended for human use in that they must contain much

more explicit and specific linguistic information about words and phrases (for example,

typical subjects and objects for verbs, semantic features for nouns such as inanimate,

human, etc.), and must be encoded in strictly formal structures usable by computer

programs. However, large computational lexicons are extremely difficult to develop from

scratch, and in the early 1980's computational linguists found that the information typically

contained in dictionaries could be exploited in many ways if it were organized in a computer

database (see, for instance, Amsler, 1980; Calzolari, 1984; Markowitz, Ahlswede & Evens,

1986; Byrd et al., 1987; Nakamura & Nagao, 1988; Véronis & Ide, 1990; Klavans,

Chodorow & Wacholder, 1990; Wilks et al., 1990). No publishers' lexical databases

existed at the time, but computational linguists saw that some relatively inexpensive

processing of typesetter's tapes from printed dictionaries provided the means to create them.

Consequently, lexical databases have been created from a number of printed dictionaries,

including the LDOCE,1 Webster's 7th, several Collins bilingual dictionaries, etc.

The goal of this paper is to provide a data model that is suited to lexical databases.

Lexical data, as is obvious in any dictionary entry, is much more complex than the kind of

data (suppliers and parts, employees' records, etc.) that has provided the impetus for most

database research. Therefore, classical data models (e.g., relational) do not apply very well to

lexical data, although several attempts have been made. In section 2, we review previously

applied models and discuss their shortcomings, in an effort to better understand what is

required to represent lexical data. A fundamental problem arises from the fact that

dictionaries--and therefore databases--organize what seems to be the same kind of

1In this paper we will use the following abbreviations for dictionary names:

CED Collins English Dictionary
LDOCE Longman Dictionary of Contemporary English
NPEG The New Penguin English Dictionary
OALD Oxford Advanced Learner's Dictionary
OED Oxford English Dictionary
SOED Shorter Oxford English Dictionary

3

information (orthography, pronunciation, part of speech, etymology, definitions, etc.) in

structurally different ways. A strong requirement for a data model is that it must make

lexical information compatible despite this variability in structure. Compatibility is a

necessary condition for data sharing and interchange, as well as for the development of

general software.

In section 3, we show that a model based on feature structures overcomes most of the

problems inherent in other models, and in particular enables accessing, manipulating, and

merging information structured in multiple ways. The model allows retaining the particular

organization of a given dictionary while at the same time making it transparent to certain

database operations. There exists a well-developed theoretical framework for feature

structures, which are widely used for information representation in linguistics. Their

applicability to lexical databases seems therefore natural, although to our knowledge this has

not yet been implemented. The use of feature structures in lexical databases also opens up

the possibility of compatibility with computational lexicons, which is of considerable

interest for computational linguists. A common representation scheme could create a useful

bridge between lexicographers and computational linguists, and foster cross-fertilization

between the two fields.

To date, feature-based models have not been exploited in commercial database

management systems (DBMS), and therefore no implementation in such a system is

possible. However, we show that feature structures map readily into object-oriented data

models. In section 4 we describe an implementation of our model in the object-oriented

DBMS O2.

2. PREVIOUS WORK

2.1 Text models

Dictionaries were first realized electronically as typesetters' tapes for the purposes of

publishing. As mentioned above, these tapes subsequently became available to the research

community, and several have been processed extensively in order to extract lexical

information. In particular, the information about typographical rendering provided in

typesetter's tapes (e.g., italics, bold, etc.) is replaced by labels which provide an indication of

the content of a field (e.g., headword, pronunciation, etc.), rather than its printed form. In

either case, a dictionary is seen as a strictly linear text stream interspersed with markup or

4

tags, which we refer to as the text model. There have been some efforts to develop means

for information retrieval from dictionaries in this form, since the fundamental textual nature

of dictionaries does not immediately suggest the use of traditional database retrieval

strategies.

2.1.1 Typographical markup. Typographical markup signals a font shift or the presence

of special characters, etc., corresponding to the rendering of the dictionary in printed form

(Fig. 1). Markup of this kind is said to be procedural, because it specifies the procedure

(e.g., shift to italic) to be performed when a tag is encountered in linear processing, rather

than providing an indication of content of the field (see Coombs, Renear & DeRose, 1987).

Although typographic codes are to some extent indicative of field content (for example, part

of speech may always be in italics in a given dictionary), a straightforward, one-to-one

mapping between typographic codes and content clearly does not exist, since other items,

such as semantic field, usage, register, geographical information etc., may be rendered in

italics as well. Positional information can be coupled with typographic tags to determine

content, but a complex analysis of entry format, which may or may not yield a definitive

mapping due to ambiguities, is required. Information retrieval from a dictionary in this form

is obviously costly, if it is possible at all.

*Cgin*E*S1*E (d*3T*3Fn) *Fn. *%brew *5Q*A1. *Ean alcoholic drink obtained
by distillation and rectification of the grain of malted barley, rye, or
maize, flavoured with juniper berries. *%brew *5Q*A2. *Eany of various
grain spirits flavoured with other fruit or aromatic essences: *Fsloe
gin. *%brew *5Q*A3. *Ean alcoholic drink made from any rectified spirit.
*5Q*5HC18: shortened from Dutch *Fgenever *Ejuniper, via Old French form
Latin *Fj=u-niperus*Gjuniper*E*5I<

Fig. 1. Typographical markup (CED)

2.1.2 Descriptive markup. In a descriptive markup scheme, tags provide an indication of

the content of the fields they delimit rather than the printed rendering. For instance, instead

of tags for italics, bold, etc., tags indicate headword, part of speech, pronunciation, etc.

(Fig. 2). The use of descriptive markup enables the retrieval of information by content

category from dictionaries in a linear text format. There have been a number of efforts to

devise descriptive markup schemes for monolingual dictionaries (see, for example, Tompa,

1989) and to translate the procedural markup of typesetter's tapes into descriptive markup

(see, for instance, Boguraev & Neff, in press). More recently, a preliminary common set of

descriptive tags for encoding mono- and bi-lingual dictionaries has been proposed (Amsler

& Tompa, 1988). This work has been incorporated into the international Text Encoding

5

Initiative's guidelines for encoding machine readable textual and linguistic data (Sperberg-

McQueen & Burnard, 1990).

<ent h=gin hn=2><hdw>gin</hdw><pr><ph>dZIn</ph></pr>
<hps ps=n cu=U><hsn><def>colourless alcoholic drink distilled from grain
or malt and flavoured with juniper berries, often drunk with tonic water,
and used in many kinds of cocktail</def></hsn></hps></ent>

Fig. 2. Descriptive markup (OALD)

Sophisticated retrieval software for tagged text exists (for example, PAT; Gonnet, Baeza-

Yates & Snider, 1991), which regards markup as strings of characters embedded in text and

basically performs sophisticated string searches. However, texts manipulated by such

software must be in a static form, and it is very costly to apply it to texts which are often

modified or under development. Further, although such software provides powerful

searching capabilities, it is nonetheless limited for contextual searching. The software has no

knowledge of the structure of the text, and so searches which involve elements whose

relationship is embodied in the structure of the dictionary entry can become prohibitively

complex. For example, part of speech is usually given once at the head of an entry, although

it applies to all senses. Therefore, to find the part of speech for sense 4 of a given word,

information that is physically distant from that sense in the text is required, which in turn

demands analysis of the surrounding text. This is accomplished by specifying several string

searches and applying Boolean operators to the results. Such operations are often

complicated and unintuitive. Therefore, users must typically provide the right combination

of requests by hand, and queries by external software are virtually prohibited.

2.1.3 Grammar-based models. The problems cited above have led to the development

of a more sophisticated model, which superimposes a structure on the text stream by means

of a context-free grammar describing the hierarchical structure of a document (Gonnet &

Tompa, 1987). The text is represented in the form of "parsed strings", that is, the string

itself together with its parse tree according to a given grammar (Fig. 3). This model

overcomes the contextual limitations of purely linear models, since the context is available in

the parse tree. Also, Gonnet and Tompa (1987) show that it is possible to define the

equivalent of many of the operators available in conventional databases with this model.

However, although it has much potential interest, like linear models this model appears to be

limited to fixed texts which cannot be easily modified or updated. Thus, the model may be

6

applicable to publically distributed read-only dictionaries, but at this time seems unable to

meet the requirements for lexical databases used in publishing and research.

sen

qdate
qsource
qtext

quote senbank

qdate
qsource
qtext

quote

sen

qdate
qsource
qtext

quote senbank

hwgp
etym

entry

hwgp
etym entry

dictionary

...

dictionary := entry+;
entry := hwgp etym? senbank* sen*;
senbank := sen+ quote+;
quote := qdate qsource qtext;

Fig. 3. Simplified grammar and a part of a "parsed-string" for the OED (from Gonnet & Tompa, 1987)

2.2 Relational data models

Conventional data models for lexical databases have been proposed, primarily for the

purposes of research in computational linguistics. These data models have been less popular

with publishers and lexicographers, who have traditionally mistrusted such models as too

simplistic and/or rigid to allow the editorial freedom lexicographers desire when creating

dictionaries (Tompa, 1989).

At the present time, the most common data model is the relational model. A relational

database consists of a set of relations between entities. Each role in that relation is called an

attribute. Conceptually, a relation is a table whose columns correspond to attributes, and

each row, or tuple, specifies all the values of attributes for a given entity. Attributes have

only atomic values--that is, values which, from the DBMS's point of view, cannot be

decomposed. In other words, each row-to-column intersection contains one, and only one,

value.

The relational model has been suggested for representing dictionary information (see,

for example, Nakamura & Nagao, 1988). In this scheme, the dictionary is represented by a

7

set of relations, each of which includes attributes such as grammar codes, definitions,

examples, etc. Fig. 4 gives the definition of "abandon" from the LDOCE; Fig. 5, expanded

from Nakamura and Nagao (1988), shows the tabular representation of the same entry.2

a⋅ban⋅don1 /@ 'bænd@n/ v [T1] 1 to leave completely and for ever; desert: The sailors
abandoned the burning ship. 2 to leave (a relation or friend) in a thoughtless or cruel way: He
abandoned his wife and went away with all their money. 3 to give up, esp. without finishing:
The search was abandoned when night came, even though the child had not been found. 4 (to) to
give (oneself) up completely to a feeling, desire, etc.: He abandoned himself to grief |
abandoned behaviour. -- ~ment n [U].

abandon2 n [U] the state when one's feelings and actions are uncontrolled; freedom from
control: The people were so excited that they jumped and shouted with abandon / in gay
abandon.

Fig. 4. Definition of 'abandon' from LDOCE

DEFINITION
HW PS DN DF
abandon v 1 to leave completely and for ever
abandon v 1 desert
abandon v 2 to leave (a relation or friend) in a thoughtless or
 cruel way
abandon v 3 to give up, esp. without finishing
abandon v 4 to give (oneself) up completely to a feeling, desire,
 etc.
abandon n 0 the state when one's feelings and actions are
 uncontrolled
abandon n 0 freedom from control

EXAMPLE
HW PS DN SP
abandon v 1 The sailors abandoned the burning ship
abandon v 2 He abandoned his wife and went away with all their
 money
abandon v 3 The search was abandoned when night came, even though
 the child had not been found
abandon v 4 He abandoned himself to grief
abandon v 4 abandoned behaviour
abandon n 0 The people were so excited that they jumped and
 shouted with abandon/in gay abandon

HW = headword
PS = part of speech
DN = definition number
DF = definition text
SP = example
GC = grammar code
BC = LDOCE "box" code

CODE
HW PS DN GC BC
abandon v 1 T1 ----H----T
abandon v 2 T1 --D-H----H
abandon v 3 T1 ----H----T
abandon v 4 T1 ----H----H
abandon n 0 U ----T-----

Fig. 5. Tables for 'abandon' in LDOCE database

This example is derived from a small, simple learner's dictionary with a straightforward

internal structure (no deep nesting of senses, etc.), and several pieces of information from

2Certain information, such as the LDOCE semantic "box codes", appears only in the machine-readable

version of the dictionary, and it therefore appears in the database even though absent from the printed
version.

8

the entry text (for example, pronunciation, run-ons, cross-references) have been omitted

from the database. However, even this simplified case shows that the relational model poses

several problems for representing dictionary entries.

2.2.1 Fragmentation of data. The most obvious problem arises from the fact that the

number of values for each attribute in dictionary entries varies enormously. For example,

entries may include several different pronunciations, parts of speech, orthographic variants,

definitions, etc., while some other fields, such as examples, synonyms, cross-references,

domain information, geographical information, etc., may be completely absent. To avoid

massive duplication of data, the information must be split across several tables, thus

fragmenting the view of the data. The more complex the data, the more tables are required,

and the more fragmented the view.

This fragmentation in a relational database is real--that is, the different relations

represented in different tables are not explicitly connected, but are only logically connected

by including attributes with the same domains in the different tables (for example, HW, PS,

and DN in Fig. 5). Tuples are connected only if the values for those attributes match. As a

result, queries can become complex and unintuitive. For example, Fig. 6 shows the SQL

query required to extract all examples given for uncountable nouns whose definitions start

with the string "the state...", as for the noun sense of abandon.

SELECT DEFINITION.HW, EXAMPLE.SP
FROM DEFINITION, EXAMPLE, CODE
WHERE
 DEFINITION.PS = "n" AND
 DEFINITION.DF = "the state *" AND
 EXAMPLE.SP <> null AND
 CODE.GC = "U" AND
 DEFINITION.HW = EXAMPLE.HW AND
 EXAMPLE.HW = CODE.HW AND
 DEFINITION.PS = EXAMPLE.PS AND
 EXAMPLE.PS = CODE.PS AND
 DEFINITION.DN = EXAMPLE.DN AND
 EXAMPLE.DN = CODE.DN

 Fig. 6. Sample SQL query

A less fragmented view can be obtained by joining two or more tables, but the resulting

table typically contains an enormous amount of redundant information. Fig. 7 shows the

result of joining the tables from Fig. 5, and although very little of the information in an

actual dictionary entry is represented here, it is already obvious that the resulting view is

cumbersome. Of course, joining makes query construction easier, but the burden is then on

9

the user to appropriately define the most commonly used views, and on the management

system to handle the processing.

HW PS DN GC BC DF SP
abandon v 1 T1 ----H----T to leave completely The sailors abandoned the
 and for ever burning ship
abandon v 1 T1 ----H----T desert The sailors abandoned the

 burning ship
abandon v 2 T1 --D-H----H to leave (a relation He abandoned his wife and
 or friend) in a thought- went away with all their
 less or cruel way money
abandon v 3 T1 ----H----T to give up, esp. The search was abandoned
 without finishing when night came, even though
 the child had not been found
abandon v 4 T1 ----H----T to give (oneself) up He abandoned himself to
 completely to a feeling, grief
 desire, etc.
abandon v 4 T1 ----H----T to give (oneself) up abandoned behaviour
 completely to a feeling,
 desire, etc.
abandon n 0 U ----T----- the state when one's The people were so excited
 feelings and actions are that they jumped and shouted
 uncontrolled with abandon/in gay abandon
abandon n 0 U ----T----- freedom from control The people were so excited
 that they jumped and shouted
 with abandon/in gay abandon

Fig. 7. Joined table from DEFINITION, EXAMPLE and CODE in Fig. 5.

2.2.2 Hierarchical structure. Whether a view is fragmented or joined, there is no

representation in a relational database of the obvious hierarchy within most dictionary

entries--for instance, it is clear that the entry for abandon has two main sub-parts, one for its

verb senses and one for its noun sense, and that the two senses of the verb labeled "1" in

Fig. 5 are in fact two sub-senses of the first sense given in the entry. These two sub-senses

are more closely related to each other than to senses 2, 3, and 4, but the tabular format

obscures this fact. Some dictionaries take the grouping and nesting of senses several levels

deep in order to distinguish finer and finer grains of meaning. The Hachette Zyzomys CD-

ROM dictionary, for instance, distinguishes up to five levels in an entry. Fig. 8 shows that

in this dictionary "valeur" has two fundamental senses: (A) value as merit ; and (B) value as

price. Going deeper, we see that sense A subdivides into two main subcategories: (I) merit

of an individual; and (II) the subjective worth of an object. Sense A.I subdivides further into

two more subcategories: (1) merit of a person based on general qualities; and (2) bravery or

valor, which in turn forms a part of the compound "croix de la valeur militaire", a French

military decoration. Flattening this structure into a tabular form obscures the derivational

relations captured in the nested arrangement.

10

valeur [valœR] n. f. A. I. 1 . Ce par quoi une personne est digne d'estime, ensemble des
qualités qui la recommandent. (V. mérite). Avoir conscience de sa valeur. C'est un homme de
grande valeur. 2 . Vx. Vaillance, bravoure (spécial., au combat). "La valeur n'attend pas le
nombre des années" (Corneille). ◊ Valeur militaire (croix de la): décoration française...
. . .
II. 1. Ce en quoi une chose est digne d'intérêt. Les souvenirs attachés à cet objet font pour moi
sa valeur. 2. Caractère de ce qui est reconnu digne d'intérêt...
. . .
B. I. 1 . Caractère mesurable d'un objet, en tant qu'il est susceptible d'être échangé, désiré,
vendu, etc. (V. prix). Faire estimer la valeur d'un objet d'art...

 Fig. 8. Part of the definition of 'valeur' in Hachette Zyzomys

2.3 Unnormalized relational models

The need to eliminate redundancy by factoring common pieces of information is well

known in database research and has led to the development of unnormalized (also Non

First Normal Form or NF2) relational data models, in which attribute values may have a

composite structure. That is, attribute values may be either atomic, as in the classical

normalized relational model, or they may be nested relations with their own internal

structure. An algebra and calculus have been proposed for these relations (Abiteboul &

Bidoit, 1984; Roth, Korth & Silberschatz, 1988), and a few DBMSs have been developed

using the NF2 model (e.g., VERSO [Bancilhon, 1983] , AIM-P [Pistor & Traunmueller,

1986], DASDBS [Schek, Paul, Scholl & Weikum, 1990]).

Fig. 9 shows how the entry for abandon given in Fig. 4 would be represented in the

NF2 model. The outermost table consists of a relation between a headword and some

number of homographs. In turn, a homograph consists of a part of speech, a grammar code,

and some number of senses; etc. Obviously, this model better captures the hierarchical

structure of information in the dictionary and enables the factoring of attributes. Relations

which were represented only in matched attribute values between tables in the normalized

model are now made explicit, and therefore, complex queries do not require specification of

the table connections.

11

 DF SP
abandon v T1 1 ----H----T to leave completely The sailors abandoned the
 and for ever burning ship
 desert
 2 --D-H----H to leave (a relation He abandoned his wife and
 or friend) in a thought- went away with all their
 less or cruel way money
 3 ----H----T to give up, esp. The search was abandoned
 without finishing when night came, even though
 the child had not been found
 4 ----H----T to give (oneself) up He abandoned himself to
 completely to a feeling, grief
 desire, etc. abandoned behaviour
 n U 0 ----T----- the state when one's The people were so excited
 feelings and actions are that they jumped and shouted
 uncontrolled with abandon/in gay abandon
 freedom from control

HOMOGRAPHHW

PS GC SENSE

DN BC DEFINITION EXAMPLE

Fig. 9. NF2 representation of the entry 'abandon'

Neff, Byrd, and Rizk (1988) describe an organization for a lexical database (the IBM

LDB) (see also Calzolari, Peters & Roventini, 1990) also based on a hierarchy of attributes,

which allows the represention of information in a dictionary entry as a tree (see Fig. 10).

Queries are made by filling templates with the same tree structure as the dictionary entry

and by indicating desired values and conditions for various attributes (Fig. 11). Therefore,

the IBM LDB model is fundamentally an NF2 model, although it does not use an NF2

DBMS but is instead built around an ad hoc implementation.

Although NF2 models clearly improve on other models for representing dictionary

information, a number of problems still remain. These are outlined in the following sub-

sections.

12

entry
+-hdw: abandon
|
+-superhom
| +-word: abandon
| +-print_form: a.ban.don
| +-hom_number: 01
| |
| +-pronunciation
| | +-primary
| | +-pron_string: E"b&ndEn
| |
| +-syncat: v
| +-g_code_field: T1
| |
| +-sense_def
| | +-sense_no: 1
| | +-subj_code:
| | +-box_code:H....T
| | |
| | +-defn
| | | +-def_string: to leave completely and for ever; desert
| | |
| | +-example
| | +-ex_string: The sailors abandoned the burning ship
| |
| +-sense_def
| | +-sense_no: 2
...
...
| +-run_on
| +-sense_link: 01
| +-derivative: abandonment
| +-d_syncat: n
| |
| +-d_code
| +-g_code_field: U
|
+-superhom
 +-word: abandon
 +-print_form: abandon
 +-hom_number: 02
 +-syncat: n
 +-g_code_field: U
 |
 +-sense_def
 +-sense_no: 0
 +-subj_code:
 +-box_code:T.....
 |
 +-defn
 | +-def_string: the state when one's feelings and actions...
 |
 +-example
 +-ex_string: The people were so excited that they jumped...

 Fig. 10. IBM LDB format for 'abandon' in the LDOCE

13

entry� +-------- CONDITION ------+
| �| |
+-hdw: _word | sub ("the state", |
|� | _def) eq 1 |
+-superhom� | _ex ne "" |
 |� | |
 +-syncat: "n"� | |
 +-g_code_field: U� | |
 |� | |
 +-sense_def� +-------------------------+

 |
 +-defn�
 | +-def_string: _def
 |
 +-example
 +-ex_string: _ex

+--- FORMAT ---------+
| _word _ex |
+--+

Fig. 11. IBM LDB -- sample query

2.3.1 Recursive nesting. Fig. 12 shows an attempt to render the entry for valeur from

the Zyzomys dictionary given in Fig. 8 in the IBM LDB format. It is clear that the IBM

LDB model and NF2 models in general can represent the deep hierarchical structure of the

entry. However, NF2 models do not allow the recursive nesting of relations, and Neff, Byrd,

and Rizk (1988) explicitly prohibit recursion in the IBM LDB model. This necessitates the

proliferation of attributes such as sense_def_level_1, sense_def_level_2, etc. to

represent the different levels of sense nesting. This in turn demands that queries take into

account all the possible positions where a given sub-attribute (e.g., usage) could appear. For

example, all the queries in Fig. 13 are required to retrieve all nouns which have an archaic

(Vx = vieux) sense. Since any sense at any level could have this attribute value, it is

necessary to query each level.

14

entry
+-hdw: valeur
|
+-superhom
| +-word: valeur
...
| |
| +-sense_def_level_1:
| | +-sense_no: A
| | +-sense_def_level_2:
| | | +-sense_no: I
| | | +-sense_def_level_3:
| | | | +-sense_no: 1
| | | | +-defn
| | | | | +-def_string: Ce par quoi une personne est digne d'estime...
| | | | |
| | | | +-example
| | | | +-ex_string: Avoir conscience de sa valeur.
| | | | +-ex_string: C'est un homme de grande valeur.
| | | |
| | | +-sense_def_level_3:
| | | | +-sense_no: 2
| | | | +-usage: Vx
| | | | +-defn
| | | | | +-def_string: Vaillance, bravoure (spécial., au combat)
| | | | +-example
| | | | | +-ex_string: "La valeur n'attend pas le nombre des années"
| | | | | +-ex_author: Corneille
| | | | |
| | | | +-sense_def_level_4:
| | | | +-sense_no: a
| | | | +-compound: Valeur militaire (croix de la)
| | | | +-defn
| | | | +-def_string: décoration française...
...

Fig. 12. Attempt to render the entry valeur in the IBM LDB format

entry�
|�
+-hdw: _word�
|�
+-superhom�
 |�
 +-syncat: "n"�
 |�
 +-sense_def_level_1:�
 +-usage: "Vx"�
 �

entry�
|�
+-hdw: _word�
|�
+-superhom�
 |�
 +-syncat: "n"�
 |�
 +-sense_def_level_1:�
 +-sense_def_level_2:
 +-usage: "Vx"�

entry
|
+-hdw: _word
|
+-superhom
 |
 +-syncat: n
 |
 +-sense_def_level_1:
 +-sense_def_level_2:
 +-sense_def_level_3:
 +-usage: Vx

 etc.

Fig. 13. Query problem

2.3.2 Exceptions. Exceptional cases are characteristic of lexical data. For instance (see

Fig. 14):

• Sense 3 of the word "conjure" in the OALD, has a different pronunciation from the

other senses in the entry.

15

• In the same entry, the related entry "conjurer, conjuror", although given at the entry

level, applies only to sense 1.3

• The entry "heave" in both the OALD and CED shows that inflected forms may

apply to individual senses--in this case, the past tense and past participle is "heaved"

for all but the nautical senses, for which it is "hove".4

• The entry for "breath" from the SOED and the entry for "silk" from NPEG each

specify a special etymology for a particular sense within their respective entries.

Allowing the same attribute at different levels, in different nested relations (for example,

allowing a pronunciation attribute at both the homograph and sense levels) would require a

mechanism to "override" an attribute value at an inner level of nesting. NF2 models do not

provide any such mechanism and, in fact, do not allow the same attribute to appear at

different levels. The only way exceptions could be handled in an NF2 model would be by

re-defining the template so that attributes such as pronunciation, inflected forms, etymology,

etc., are associated with senses rather than homographs. However, this would disable the

factoring of this information, which applies to the entire entry in the vast majority of cases.

The result would be an effective return to the normalized model.

con•jure /'k^ndG@(r)/ vt,vi 1 [VP2A,15A] do clever tricks which appear magical...
2 [VP15B] ~ up, cause to appear as if from nothing... 3 /k@n'dGW@(r)/ [VP17] (formal)
appeal solemnly to... con•jurer, con•juror /'k^ndG@r@(r)/ n person who performs
conjuring tricks } 1 above. [OALD]

heave /hi:v/ vt,vi (pt,pp ~d or (6 and 7 below), nautical use, hove /h@Wv/) ... [OALD]

heave (hi:v) vb. heaves, heaving, heaved or (chiefly nautical) hove. ... 5. (past tense
and past participle hove) Nautical. a. to move or cause to move in a specified way ... b. (intr.)
(of a vessel) to pitch or roll. ... [CED]

Breath (breP). [OE. bræP odour, exhalation ... The sense 'air in the lungs or mouth' was taken
over from OE. æPm and anda (ME ethem and ande, onde).] ... [SOED]

silk /silk/ n 1 a fine continous protein fibre ... 3 a King's or Queen's counsel ... [ME, fr OE
seolc ... (3) fr the silk gown worn by a King's or Queen's counsel] [NPED]

Fig. 14. Exceptions in dictionary entries

2.3.3 Variable factoring. Dictionaries obviously differ considerably in their physical

layout. For example, in one dictionary, all senses of a given orthographic form with the

3Note that the dictionary has to rely on a special mechanism ("} 1 above") to make this specification.
4Again, a special rendering mechanism is required to handle this case, since it so grossly violates the

usual entry format.

16

same etymology will be grouped in a single entry, regardless of part of speech; whereas in

another, different entries for the same orthographic form are given if the part of speech is

different. The CED, for instance, has only one entry for abandon, including both the noun

and verb forms, but the LDOCE gives two entries for abandon, one for each part of speech.

As a result of these differences, the IBM LDB template for the LDOCE places the part of

speech (syncat) attribute at the homograph level, whereas in the CED template, part of

speech must be given at the level of sense (or "sense group" if some new attribute were

defined to group senses with the same part of speech within an entry). This means that the

query for part of speech in the LDOCE is completely different from that for the CED.

Further, it means that the merging or comparison of information from different dictionaries

demands complete (and possibly complex) de-structuring and re-structuring of the data.

This makes data sharing and interchange, as well as the development of general software for

the manipulation of lexical data, difficult.

However, differences in dictionary layout are mainly differences in structural

organization, whereas the fundamental elements of lexical information seem to be constant.

In the example above, for instance, the basic information (orthography, pronuncation, part of

speech, etc.) is the same in both the CED and LDOCE, even if its organization is different.

Recognizing this, there have been various efforts to develop a taxomomy of lexical data and

a meta-lexical terminology that can generalize across dictionaries and projects (Brustkern &

Hess, 1982; The DANLEX Group, 1987).

The only way to have directly compatible databases for different dictionaries in the NF2

model, even if one assumes that attributes for the same kind of information (e.g.,

orthography) can have the same name across databases, is to have a common template

across all of them. However, the fixed factoring of attributes in NF2 models prohibits the

creation of a common template, because the template for a given database mirrors the

particular factoring of a single dictionary. Therefore, a more flexible model is needed that

would retain the particular factoring of a given dictionary, and at the same time render that

factoring transparent to certain database operations.

3. A FEATURE-BASED MODEL

In this section we introduce a model for representing information in dictionary entries

based on feature structures. Feature structures have been heavily used in formal and

computational linguistics and natural language processing to encode linguistic information,

especially in various grammar formalisms (see, for instance, Kaplan & Bresnan, 1982; Kay,

17

1985). Their applicability to the information found in dictionaries seems natural and opens

up the possibility of compatibility with computational lexicons, although to our knowledge

feature structures have not yet been used to represent dictionaries. In addition, there exists a

well-developed theoretical framework for the feature structure mechanism which can provide

a basis for the model we develop here.

3.1 Feature structures

In this section, we give a very brief overview of feature structures. For a more detailed

introduction we refer the reader to Shieber (1986). A feature structure is composed of pairs

of attributes (called features) and their values, which can also be seen as partial functions

from features to values. Feature structures are graphically represented as a list of features

separated from their values by colons, enclosed in square brackets (see Fig. 15a). Values

may be atomic or may themselves be feature structures (Fig. 15b and c).

f: a

g: b

(a)

f: a

g: b

h : i: c
 j: d

(b)

f: a

g: [h: b]

(c)

Fig. 15. Feature structure notation

A partial order relation called subsumption is defined for feature structures, which

determines whether one feature structure is more general than another. A feature structure A

is said to subsume another feature structure B (noted A B) if for each feature f of A, there

is a feature f in B and if the two values A(f) and B(f) are atomic then A(f) = B(f), otherwise

A(f) B(f). Thus the feature structure (a) subsumes the feature structure (b) in Fig. 15.

An operation called unification is also defined to enable the combination of information

from feature structures having different, but compatible, information. In formal terms, the

unification of A and B (noted A B) is the greatest lower bound of A and B according to

the subsumption relation--that is, the most general feature structure that is subsumed by

both A and B. The dual operation, which consists of taking the least upper bound--that is,

the most precise feature structure that subsumes both A and B--is called generalization

(noted A B) (Fig. 16).

18

Two feature structures are said to be compatible if they can be unified, that is, if there

exists a feature structure subsumed by both A and B. Otherwise, they are said to be

incompatible. The feature structure (c) in Fig. 15 is incompatible with both (a) and (b).

f: a
g: i: c
j: d

f: a

f: a
g: h: b
 i: c
j: d

f: a
g: h: b

Fig. 16. Unification and generalization

A model based on feature structures can be used to represent simple dictionary entries,

as shown in Fig. 17. Our model is typed in the sense that not all features can appear

anywhere, but instead, must follow a schema that specifies which features are allowable

(although not necessarily present), and where (see, for instance, Pollard & Sag, 1987). The

schema also specifies the domain of values, atomic or complex, allowed for each of these

features. For example, entries are described by the type ENTRY, in which the features

allowed are form, gram, usage, def, etc. The domain of values for form is feature structures

of type FORM, which consists of feature structures whose legal features include orth, hyph,

and pron. Each of these features has, in turn, an atomic value of type STRING, etc.

com•peti•tor /k@m'petIt@(r)/ n person who competes [OALD]

 orth: competitor
form: hyph: com.peti.tor
 pron: k@m'petIt@(r)
gram: pos: n
def: text: person who competes

Fig. 17. Representation of a simple sense

19

3.2 Value disjunction and variants

The basic feature-based formalism is not enough to represent the structure of more

complex dictionary entries. Fortunately, several authors have proposed extensions that solve

many of the remaining problems. Karttunen (1984) shows that value disjunction is a

natural, linguistically motivated extension, which enables the specification a set of alternative

values, atomic or complex, for a given feature. The use of value disjunction enables the

represention of variants, common in dictionary entries, as shown in Fig. 18. We have added

a further extension which enables the specification of either a set (noted {x1, … xn}) or a list

(noted (x1, … xn)) of possible values. This extension enables retaining the order of values,

which is in many cases important in dictionaries. For example, the orthographic form given

first is most likely the most common or preferred form. Other information, such as

grammatical codes, may not be ordered5.

 biryani or biriani (
'
bIrI'A:nI) n. Any of a variety of Indian dishes... [CED]

form: orth: (biryani, biriani)
 pron: ,biri'A:ni
gram: pos: n
def: text: Any of a variety
 of Indian dishes...

Fig. 18. Value disjunction

In many cases, sets or lists of alternatives are not single values but instead groups of

features. This is common in dictionaries; for instance, Fig. 19 shows a typical example

where the alternatives are groups consisting of orthography and pronunciation.

5Since all of our examples are drawn from existing dictionaries, we have chosen to retain the original

ordering rather than make decisions concerning the relevance of the order in which items appear. Therefore,
mainly lists appear in the examples given here.

20

mackle ('mæk@l) or macule ('mækju:l) n. Printing. a double or blurred impression caused by
shifting paper or type. [CED]

form: orth: mackle
 pron: 'm&k@l
 orth: macule
 pron: 'm&kju:l
gram: pos: n
usage: dom: Printing
def: text: a double or blurred impression...

Fig. 19. Value disjunction of non-atomic values

3.3 General disjunction and factoring

Kay (1985) proposes an additional extension, called general disjunction, that provides a

means to specify alternative sub-parts of a feature structure. Again, we have extended the

mechanism to enable the specification of both sets and lists of sub-parts. Therefore, feature

structures can be described as being of the form [φ1, … φn], where each φi is a feature-value

pair f: ψ, a set of feature structures {ψ1, … ψp}, or a list of feature structures (ψ1, … ψp).

Unification can be extended to disjunctive feature structures: if F= {φ1, … φn} and G =

{ψ1, … ψp}, computing F G involve s taking the disjunction of all the φi ψj, and then

discarding all the nonmaximal disjuncts.

General disjunction allows common parts of components to be factored. Fig. 20a shows

that without any disjunction, two different representations for the entry for hospitaller from

the CED are required. The use of value disjunction enables localizing the problem and thus

eliminates some of the redundancy (Fig. 20b), but only general disjunction (Fig. 20c)

captures the obvious factoring and represents the entry cleanly and without redundancy.

21

hospitaller or U.S. hospitaler ('hαspIt@l@) n. a person, esp. a member of certain
religious orders... [CED]

form: pron: 'hQspIt@l@

 orth: hospitaller

 geo: U.S.
 orth: hospitaler

gram: [pos: n]

def: [text: a person...]

(c) factored with general disjunction

form: pron: 'hQspIt@l@
 orth: hospitaller

 pron: 'hQspIt@l@
 geo: U.S.
 orth: hospitaler

gram: [pos: n]

def: [text: a person...]

(b) value disjunction

(a) unfactored

form: pron: 'hQspIt@l@
 orth: hospitaller

gram: [pos: n]

def: [text: a person...]

form: pron: 'hQspIt@l@
 geo: U.S.
 orth: hospitaler

gram: [pos: n]

def: [text: a person...]

Fig. 20. General disjunction

General disjunction provides a means to represent multiple senses, since they can be

seen as alternatives (Fig. 21).6

disproof (dIs'pru:f) n. 1. facts that disprove something. 2. the act of disproving. [CED]

form : orth: disproof
 pron: dIs'pru:f
gram : pos: n

 //sense 1
 def: text: facts that disprove something.

 //sense 2
 def: text: the act of disproving.

Fig. 21. Representation of multiple senses

6Note that in our examples, "//" signals the beginning of a comment which is not part of the feature

structure. We have not included the sense number as a feature in our examples because sense numbers can
be automatically generated.

22

form: orth: abandon
 hyph: a.ban.don
 pron: @"b&nd@n

 //homograph 1
 gram: pos: v
 gramc: T1

 //sense 1
 sem: scode: ----
 boxc: ----H----T
 def: text: to leave completely and for ever
 text: desert
 ex: text: The sailors abandoned the burning ship

 //sense 2
 ...

 ...

 related: orth: abandonment

 //homograph 2
 gram: pos: n
 gramc: U
 sem: scode: ----
 boxc: ----T-----
 def: text: the state when one's feelings and actions...
 ex: text: The people were so excited that they jumped...

Fig. 22. Representation of the entry abandon in LDOCE

Sense nesting is also easily represented using this mechanism. Fig. 22 shows the

representation for abandon given previously. At the outermost level of the feature structure,

there is a disjunction between the two different parts of speech (which appear in two

separate entries in the LDOCE). The disjunction enables the factoring of orthography,

pronunciation, and hyphenation over both homographs.7 Within the first component of the

disjunction, the different senses for the verb comprise an embedded list of disjuncts. Note

that in this model there is no different type of feature structure for entries, homographs, or

senses, since they potentially contain the same kind of information, as the discussion in

7Interestingly, the LDOCE gives a separate entry for each part of speech, but gives information about

hyphenation and pronunciation only in the entry for the first homograph. This shows that entries are an
artifact of printed presentation and do not entirely reflect logical structure. The IBM LDB representation of
the LDOCE entry for abandon loses the information about hyphenation and pronunciation for the second
homograph, since there is no provision for the factoring of information in this scheme. The only solution
in that model would be to repeat the information for the second homograph.

23

section 2.3 demonstrates. This reflects a fundamental property of lexical data which is

obscured by the layout of print dictionaries.

The entry for valeur from the Zyzomys dictionary provides an even more complex

example of sense nesting (Fig. 23).

form: orth: valeur
 pron: valœR
gram: pos: n
 gend: f

 //sense A
 //sense A.I
 //sense A.I.1
 def: text: Ce par quoi une personne est digne d'estime...
 xref: orth: mérite
 ex: text: Avoir conscience de sa valeur.
 text: C'est un homme de grande valeur.

 //sense A.I.2
 time: Vx
 def: text: Vaillance, bravoure (spécial., au combat).
 ex: text: La valeur n'attend pas le nombre des années
 auth: Corneille
 related: orth: croix de la valeur militaire

 ...
 //sense A.II
 //sense A.II.1
 def: text: Ce en quoi une chose est digne d'intérêt.
 ex: text: Les souvenirs attachés à cet objet...

 //sense A.II.2
 def: text: Caractère de ce qui est reconnu digne...

 ...

 //sense B
 //sense B.I
 //sense B.I.1
 def: text: Caractère mesurable d'un objet...
 xref: orth: prix
 ex: text: Faire estimer la valeur d'un objet d'art.
 ...
 ...

Fig. 23. Representation of the entry valeur in Zyzomys

Note that we restrict the form of feature structures in our model to a hierarchical

normal form. That is, in any feature structure F = [φ1, … φn], only one φi, let us say φn =

{ψ1, … ψp}, is a disjunction. This restriction is applied recursively to embedded feature

structures. This scheme enables representing a feature structure as a tree in which factored

information [φ1, … φn-1] at a given level is associated with a node, and branches from that

24

node correspond to the disjuncts ψ1, … ψp. Information associated with a node applies to

the whole sub-tree rooted at that node. For example, the tree in Fig. 24 represents the feature

structure for abandon given in Fig. 22. The representation of information as a tree mirrors

the hierarchical structure and factoring of information in dictionaries.

form: orth: abandon
 hyph: a.ban.don
 pron: @"b&nd@n

...

gram: pos: v
 gramc: T1

//homograph 1

gram: pos: n
 gramc: U
sem: scode: ----
 boxc: ----T-----
def: text: the state...
ex: text: The people...

//homograph 2

sem: scode: ----
 boxc: ----H----T
def: text: to leave...
 text: desert
ex: text: The sailors...

//sense 1

Fig. 24. Hierarchical Normal Form

3.4 Disjunctive normal form and equivalence

It is possible to define an unfactor operator to multiply out the terms of alternatives in a

general disjunction (Fig. 25), assuming that no feature appears at both a higher level and

inside a disjunct.8

f: a
g: b
h: c
f: a
g: d
h: e

f: a
 g:b
 h:c
 g:d
 h:e

Fig. 25. Unfactoring

By applying the unfactor operator recursively, it is possible to eliminate all disjunctions

except at the top level. The resulting (extremely redundant) structure is called the disjunctive

8Value disjunction is not affected by the unfactor process. However, a value disjunction [f: {a, b}] can

be converted to a general disjunction [{[f: a], [f: b]}], and subsequently unfactored.

25

normal form (DNF). We say that two feature structures are DNF-equivalent if they have

the same DNF. The fact that the same DNF may have two or more equivalent factorings

enables the representation of different factorings in dictionaries, while retaining a means to

recognize their equivalence. Fig. 26a shows the factoring for inflected forms of alumnus in

the CED; the same information could have been factored as it appears in Fig. 26b. Note that

we have used sets and not lists in Fig. 26. Strictly speaking, the corresponding feature

structures with lists would not have the same DNFs. However, since it is trivial to convert

lists into sets, it is easy to define a stronger version of DNF-equivalence that disregards

order.

alumnus (@ 'l^mn@s) or (fem.) alumna (@'l^mn@) n., pl. -ni (-naI) or -nae (-ni:) . . .
[CED]

(a)

alumnus (@ 'l^mn@s), pl. -ni (-naI), or (fem.) alumna (@ 'l^mn@)., pl. -nae (-ni:)

(b)

numb: sing

gend: masc
orth: alumnus
pron: @"l^mn@s

gend: masc
orth: alumni
pron: @"l^mnaI

numb: pl

gend: fem
orth: alumna
pron: @"l^mn@

gend: fem
orth: alumnae
pron: @"l^mni:

(a)

form:

gend: masc

numb: sing
orth: alumnus
pron: @"l^mn@s

numb: pl
orth: alumni
pron: @"l^mnaI

gend: fem

numb: sing
orth: alumna
pron: @"l^mn@

numb: pl
orth: alumnae
pron: @"l^mni:

(b)

form:

Fig. 26. Two different factorings of the same information

We can also define a factor operator to apply to a group of disjuncts, in order to factor

out common information. Information can be unfactored and re-factored in a different

format without loss of information, thus enabling various presentations of the same

information, which may, in turn, correspond to different printed renderings or "views" of the

data.

26

3.5 Partial factoring

The type of factoring described above does not handle the example in Fig. 27, where

only a part of the grammatical information is factored (pos and subc, but not gcode). We

can allow a given feature to appear at both the factored level and inside the disjunct, as long

as the two values for that feature are compatible. In that case, unfactoring involves taking

the unification of the factored information and the information in the disjunct (Fig. 28).

ca•reen /k@ 'ri:n/ vt,vi 1 [VP6A] turn (a ship) on one side for cleaning, repairing, etc. 2
[VP6A, 2A] (cause to) tilt, lean over to one side. [OALD]

form: orth: careen
 hyph: ca.reen
 pron: k@'ri:n

gram: pos: v
 subc: (tr, intr)

 //sense 1
 gram: gcode: VP6A
 def: text: turn (a ship)...

 //sense 2
 gram: gcode: (VP6A, VP2A)
 def: text : (cause to) tilt...

Fig. 27. Partial factoring

//sense 1
 form: orth: careen
 hyph: ca.reen
 pron: k@'ri:n
 gram: pos: v
 subc: (tr, intr)
 gcode: VP6A
 def: text: turn (a ship)...

//sense 2
 form: orth: careen
 hyph: ca.reen
 pron: k@'ri:n
 gram: pos: v
 subc: (tr, intr)
 gcode: (VP6A, VP2A)
 def: text : (cause to) tilt...

Fig. 28. Unfactored version of the feature structure in Fig. 27

27

3.6 Exceptions and overriding

We saw in the previous section that compatible information can appear at various levels

in a disjunction. Exceptions in dictionaries will be handled by allowing incompatible

information to appear at different levels. When this is the case, unfactoring will be defined

to retain only the information at the innermost level. In this way, a value specified at the

outer level is overridden by a value specified for the same feature at an inner level. For

example, Fig. 29 shows the factored entry for conjure, in which the pronunciation specified

at the outermost level applies to all senses except sense 3, where it is overriden. Fig. 30

gives the unfactored version of the entry.

con•jure /'k^ndG@(r)/ vt,vi 1 [VP2A,15A] do clever tricks which appear magical...
2 [VP15B] ~ up, cause to appear as if from nothing... 3 /k@n'dGW@(r)/ [VP17] (formal)
appeal solemnly to... [OALD]

 orth: conjure
form: hyph: con.jure
 pron: "kVndZ@(r)

gram: pos: v
 subc: (tr, intr)

 //sense 1
 gram: gcode: (VP2A, VP15A)
 def: text: do clever tricks...

 //sense 2
 gram: gcode: VP15B
 related: orth : conjure up

 //sense 3
 form: pron: k@n"dZU@(r)
 gram: gcode: VP17
 usage: reg: formal
 def: text : appeal solemnly to...

 ...

 Fig. 29. Overriding of values

28

//sense 1
 orth: conjure
 form: hyph: con.jure
 pron: "kVndZ@(r)
 gram: pos: v
 subc: (tr, intr)
 gcode: (VP2A, VP15A)
 def: text: do clever tricks...

//sense 2
 orth: conjure
 form: hyph: con.jure
 pron: "kVndZ@(r)
 gram: pos: v
 subc: (tr, intr)
 gcode: VP15B
 related: orth : conjure up

//sense 3
 orth: conjure
 form: hyph: con.jure
 pron: k@n"dZU@(r)
 gram: pos: v
 subc: (tr, intr)
 gcode: VP17
 usage: reg: formal
 def: text : appeal solemnly to...

 Fig. 30. Unfactored version of the feature structure in Fig. 29

4. IMPLEMENTATION : AN OBJECT-ORIENTED PROTOTYPE

An implementation of the model described above presents difficulties because there exist

no DBMSs based on features structures. The feature-based systems developed so far are

designed for parsing natural language and are not intended to be used as general DBMSs.

Therefore, they typically do not provide even standard database operations. They are

furthermore usually restricted to handle only a few hundred grammar rules, and so even the

largest systems are incapable of dealing with the large amounts of data that would be

required for a dictionary.

We have already seen that existing general DBMSs, including relational and

unnormalized systems, are too limited to handle lexical data.9 However, a new generation of

9Some recently developed NF2 relational models (Schek, et al., 1990) allow recursive nesting of

relations, which could provide a more natural means to represent lexical data in a relational system. We
have not explored this possiblity.

29

DBMSs which are object-oriented may provide the required expressiveness and flexibility.

Object-oriented models allow for highly structured objects by enabling the construction of

new types, and in particular, recursive types, as well as providing complex built-in type

constructors such as lists and sets. The underlying principle of the object-oriented approach

is to eliminate computer-based concepts such as records and fields (the fundamental

concepts in the relational model), and enable the user to deal with higher-level concepts that

correspond more directly to the real world objects the database represents. Objects within

the database, together with all of the attributes associated with them (and even operations

and functions for manipulating these attributes) are considered as wholes, whereas in

relational models, objects do not exist as wholes but are instead split across the various

relations defined in the database.

A number of object-oriented DBMSs are currently operational (for instance, GemStone,

GBASE, ONTOS --see Gardarin & Valduriez, 1990). Our implementation uses the O2

system, which is outlined briefly in section 4.1. Section 4.2 demonstrates how the feature-

based model for dictionaries is mapped into the O2 data model. Section 4.3 describes the

O2 implementation.

4.1 The O2 system and model

O2 is an object-oriented DBMS specifically designed for "new applications" such as

CAD/CAM or editorial information systems and office automation (Deux et al., 1991). The

O2 environment includes:

• an object-oriented "4th generation" programming language (O2C), which is an

extension of C that enables database manipulation and user interface generation;

• a query language (O2Query), which is an extension of SQL that enables handling

complex values and objects. The query language can be used independently and

interactively, or it can be called from O2C;

• a user interface generator (O2Look), based on Motif and XWindows;

• a object-oriented programming environment (debugger, database browser, etc.).

An O2 database (see Lecluse & Richard, 1989) consists of a set of objects, each of

which consists of an identifier-value pair <i,v>. The identifier for any object is unique.

Values may be either null, atomic (integers, reals, strings, and booleans) or complex, in

which case they are defined as follows:

30

• if n1, … np are attributes and x1, … xp are values or identifiers, then

tuple(n1: x1, … np: xp) is a value,

• if x1, … xp are values or identifiers then set(x1, … xp) and list(x1, … xp) are values.

For example, the following are objects:

<o0, tuple(name: "Fred", spouse: o1, children: set(o2, o3))>
<o1, tuple(name: "Mary", spouse: o0, children: set(o2, o3))>
<o2, tuple(name: "John", spouse: null, children: null)>
<o3, tuple(name: "Paul", spouse: null, children: null)>

Objects are grouped in classes, which correspond more or less to the traditional notion

of abstract data types. Each class is defined by its name, the type of the value of its objects,

and a set of methods, that is, the set of operations or functions that can be performed on

objects of that class. Classes are organized in a class hierarchy, where subclasses

automatically inherit methods defined for the superclass. Types for subclasses can be

specialized according to a partial order relation (subtyping) among types.

4.2 Mapping feature structures into the O2 model

The O2 and feature structure models bear certain obvious similarities. Simple feature

structures correspond to tuples in the O2 system; features are analogous to attributes. For

example, the feature structure

f: a
g: b

can be translated into the O2 object

<o1, tuple(f: "a", g: "b")>

Complex feature structures are translated into multiple objects in O2:

f: a
g: h: b
 i: c

becomes the set of O2 objects

<o1, tuple(f: "a", g: o2)>
<o2, tuple(h: "b", i: "c")>

31

Each feature structure type corresponds to an O2 class. Since type schemas for feature

structures specify all possible features that may appear, when implemented in O2, attributes

corresponding to missing features will have null values.

Value disjunction in feature structures is implemented in O2 using sets and lists. For

example,

f: a
g: h: b
 i: c
 h: d

is translated into

<o1, tuple(f: "a", g: set(o2, o3))>
<o2, tuple(h: "b", i: "c")>
<o3, tuple(h: "d", i: null)>

O2 does not provide a built-in mechanism to handle general disjunction. However,

general disjunction can be implemented through recursive types. Close examination of the

feature structure model above shows that every node in the hierarchical normal form tree

(see Fig. 24) has the same type. In O2, this is implemented by introducing an additional

recursive attribute DISJ in tuples. For example, if type T for some feature structure is

f: string
g: string
h: string

the class definition for T in O2 is10

class T
type tuple (f: string,

g: string,
h: string,
DISJ: set (T))

end

10Note that because of the way we implement general disjunction in O2, it is necessary to indicate the

type of disjunction (set or list) for each feature-structure type at the time it is declared. This is not required
in the feature-based model.

32

Then, the feature structure of type T:

f: a
 g:b
 h:c
 g:d
 h:e

is implemented as

<o1, tuple(f: "a", g: null, h: null, DISJ: set(o2, o3))>
<o2, tuple(f: null, g: "b", h: "c", DISJ: null)>
<o3, tuple(f: null, g: "d", h: "e", DISJ: null)>

Note that the unfactor operator has to be programmed as a method, since general disjunction

is not a built-in mechanism in O2. The unification operation on which unfactor relies (see

section 3.5) is also not built-in.

Fig. 31 shows a few simplified class definitions appropriate for a lexical database. Fig.

32 shows in graphic form the O2 implementation for the entry abandon from the LDOCE.

Each box in the figure corresponds to an O2 object.

class Entry

type tuple (form: list (Form),
gram: list (Gram),
def: list (Def),
...
DISJ: list (Entry))

end ;

class Form

type tuple (orth: list (string),
pron: list (string),
hyph: list (string),
geo: list (string),
DISJ: list (Form))

end ;

class Gram
type tuple (pos: list (string),

subc: list (string),
gend: list (string),
numb: list (string),
DISJ: list (Gram))

end ;

...

Fig. 31. O2 class definitions for a lexical database

33

form:
gram:
...
def:
...

DISJ:

entry 'abandon'
orth:"abandon"
hyph:"a.ban.don"
pron:"@""b&nd@n"
 geo:
DISJ:

form

...

...

form:
gram:
...
def:
...

related:
DISJ:

homograph 1

 pos:"v"
gcode:"T1"
 gend:
 ...:
 DISJ:

gram for hom. 1

 pos:"n"
 gcode:"U"
 gend:
 ...:
 DISJ:

text: "the state..."

text: "freedom..."

form:
gram:
...
def:

...
DISJ:

homograph 2 gram for hom. 2

definitions

form:
gram:
...
def:
ex:
...

DISJ:

sense 1
text: "to leave..."

text: "desert..."

definitions

...

...

...

null value

list of values

reference to
another object

Fig. 32. Representation of the entry 'abandon' in O2

4.3 Implementation

We have implemented a lexical database in a prototype version of O2. The different

classes were defined according to the schema described in the preceding section, and the

methods were programmed in O2C.

34

4.3.1. Creation of the lexical database. The dictionary we have used is the Zyzomys,

published by Hachette and distributed on CD-ROM. The Zyzomys is encoded with mixed

markup, including both procedural markup (for example, /IT indicates italicized text, /RO

indicates roman, etc.) and descriptive markup (for example, /DP and /FP delimit the

phonetic transcription, /ME marks the orthographic form) (see sections 2.1.1 and 2.1.2 and

Fig. 33).

g in [dZIn] n. m. Eau-de-vie de grain aromatisée au genièvre, fabriquée notam. en G-B. - Mot
angl. gin, adapt. du neerl. jenever, =genièvre=.

/MDGIN/FD /MEgin /FE /DPdZin/FP /GE/BGn. m./GG438/GB/FG Eau-de-vie de
grain aromatisée au genièvre, fabriquée /BGnotam./GG445/GB en /BGG.-
B./GG262/GB - Mot /BGangl./GG035/GB /ITgin/RO, adapt. du /BGneerl.
/GG433/GB /ITjenever/RO, =genièvre=.

Fig. 33. The entry for 'gin' from the Zyzomys and its original encoding

The first step was to analyze the entire dictionary in order to isolate the different logical

fields composing each entry, and organize them according to the model defined above. The

results of this analysis were encoded in SGML according to a preliminary version of the

guidelines for encoding monolingual dictionaries, which we developed while working within

the Text Encoding Initiative (Ide, Véronis, Warwick-Armstrong & Calzolari, in press).

Each feature of our model (for example, form, gram, etc.) corresponds to an SGML

element (<form>...</form>, <gram>...</gram>, etc.--see Fig. 34), as well as to an O2

class (Form, Gram, etc.).11 The dictionary is translated from its SGML format by means of

a recursive descent procedure: each time a new opening tag (for example, <form>) is

encountered, a method in the corresponding O2 class (for example, Form) is triggered,

which translates the content of the element concerned into an O2 value or object.

A few problems were encountered in the process of creating the database, mainly

because the version of O2 used in the experiments was a prototype. In our model, each entry

in the dictionary is represented by a tree structure consisting of potentially several dozens of

objects. The object manager of our prototype version of O2 could not handle the hundreds

of thousands of objects corresponding to the approximately 50,000 entries of the Zyzomys.

We therefore limited our experiments to 600 entries. This problem is completely resolved in

the commercial version of O2, which is now available.

11Etymology is not included in our database.

35

form: orth: gin
 pron: dZIn
gram: pos: n
 gen: m
def: text: Eau-de-vie de grain aromatisée au
 genièvre, fabriquée notam. en G.-B.

(a) feature structure

<entry>
 <form>
 <orth>gin</orth>
 <pron>dZIn</pron>
 </form>
 <gram>
 <pos>n</pos>
 <gen>m</gen>
 </gram>
 <def>
 <text>Eau-de-vie de grain aromatisée au
 genièvre, fabriquée notam. en G.-B.</text>
 </def>
</entry>

(b) SGML encoding

Fig. 34. Representations of 'gin' from the Zyzomys.

Null values caused a second problem. In both the prototype and commercial versions of

O2, null values are explicitly stored, which, especially for the sparse data in lexical entries, is

very space-consuming. However, it is conceivable that future versions of O2 or other object-

oriented DBMSs could solve this problem by not representing null values internally.

4.3.2 Querying the database. A typical query asks to extract all entries (or parts of

entries) which have certain attribute values (for example, the query for the LDOCE given as

an example in section 2.2.1, intended to extract all examples for countable nouns whose

definitions start with "the state..."--similar queries could be applied to the Zyzomys). When

the user queries the database, he or she does not know a priori how the target definitions

are factored (or even if they are all factored in the same way) and therefore at what level

certain attributes such as gram.pos and def.text appear.

We have programmed a query interface in O2C, which enables the user to formulate

queries in an unfactored, "flat" format and determines that attribute values appear at

appropriate places within the tree. The retrieval process involves two steps. First, an index

for each atomic attribute (gram.pos, gram.gcode, def.text, etc.) enables retrieving all

entries with a given value for that attribute. In the LDOCE example, the indexes will enable

retrieving all entries containing all of the attribute-value pairs in the query (gram.pos : "n",

gram.gcode : "U", def.text : "state"). However, because there is no indication in the

indexes of where the attribute-value pairs appear in the entry trees, this first step will also

36

retrieve, for example, entries in which there exist both a noun and a verb homograph, and

where "state" appears in the definition text for the verb homograph. Similarly, it will retrieve

entries where "n" has been overriden at a lower level and the definition text containing

"state" appears at this lower level. Therefore, a second step is necessary, to recursively

traverse the trees of the entries retrieved in the first step, and retain only those which match

the query exactly.

This solution is not completely satisfactory, since it by-passes the query language and

therefore does not take advantage of its features. Ideally, the database query language

should include an operator enabling the traversal of recursive structures. Because O2Query

does not allow the definition of new operators, we are working on an extension to the query

language LIFOO (developed in part by one of the authors as a functional query language

for O2--see Le Maitre & Boucelma, in press) which is specifically constructed to support

the definition of new operators (Boucelma & Le Maitre, 1991).

5. CONCLUSION

In this paper we show that previously applied data models are inadequate for lexical

databases. In particular, we show that relational data models, including normalized models

which allow the nesting of attributes, cannot capture the structural properties of lexical

information. We propose an alternative feature-based model for lexical databases, which

departs from previously proposed models in significant ways. In particular, it allows for a

full representation of sense nesting and defines an inheritance mechanism that enables the

elimination of redundant information. The model provides flexibility which seems able to

handle the varying structures of different monolingual dictionaries. Our model may

therefore be applicable to a diversity of uses of electronic dictionaries, ranging from

research to publication.

We also show how the feature-based model can be implemented in an object-oriented

DBMS, and demonstrate that feature structures map readily to an object-oriented data

model. Our work suggests that the development of a feature-based DBMS, including built-

in mechanisms for disjunction, unification, generalization, etc., is desirable. Such feature-

based DBMSs could have applications far beyond the representation of lexical data.

A number of open problems remain for fully specifying the structure and elements of

lexical databases. For example, we have not addressed the problems of phrasal elements

(such as discontinuous verb phrases and cross-reference phrases embedded in definition or

37

example text), etymologies (which are themselves complex structured text), etc. Further, it is

necessary to test our model across a wide range of monolingual dictionaries in order to

ascertain, first, its generality and, second, the exact scope and nature of remaining

difficulties.

Acknowledgments -- The present research has been partially funded by the GRECO-PRC Communication
Homme-Machine of the French Ministery of Research and Technology, U.S.-French NSF/CNRS grant
INT-9016554 for collaborative research, and U.S. NSF RUI grant IRI-9108363. The authors would like to
acknowledge the GIP-Altaïr for making available a prototype version of the O2 DBMS (contract GIP-Altaïr
#88-5), and Collins Publishers, Hachette, Longman Group, and Oxford University Press for making their
data available for research within the project. The authors would also like to thank Christine Tribocky,
Régis Voillaume, and Christiane Fantozzo for their work on the implementation, Jean-Michel Ombrouck
for his pre-processing of the Hachette Zyzomys, Mary Neff for providing the IBM LDB example, and Frank
Tompa for his valuable comments on an earlier draft of this paper.

REFERENCES

Abiteboul, S., & Bidoit, N. (1984). Non first normal form relations to represent

hierarchically organized data. Proceedings of the ACM SIGACT/SIGMOD Symposium

on Principles of Database Systems. Waterloo, Ontario, 191-200.

Amsler, R. A. (1980). The structure of the Merriam-Webster Pocket Dictionary. Doctoral

dissertation, University of Texas at Austin.

Amsler, R. A., & Tompa, F. W. (1988). An SGML-based standard for English monolingual

dictionaries. Proceedings of the 4th Annual Conference of the UW Centre for the New

Oxford English Dictionary. Waterloo, Ontario, 61-80.

Bancilhon, F., Fortin, D., Gamersan, S., Laubin, J.-M., Richard, P., Scholl, M., Tusera, D., &

Verroust, A. (1983). VERSO: A relational backend database machine. In D. K. Hsiao

(Ed.), Advanced Database Machine Architecture. Englewood Cliffs: Prentice Hall.

Boguraev, B., & Neff, M. S. (in press). From machine readable dictionaries to lexical

databases. International Journal of Lexicography.

Boucelma, O., & Le Maitre, J. (1991). An extensible functional query language for an

object-oriented database system. In C. Delobel, M. Kifer, Y. Masunaga (Eds.),

Deductive and Object-Oriented Databases. Lecture Notes in Computer Science,

Berlin: Springer Verlag.

Brustkern, J., & Hess K. (1982). The BONNLEX lexicon system. In J. Goetschalckx & L.

Rolling (Eds.), Lexicography in the Electronic Age. Amsterdam: North-Holland.

38

Byrd, R. J., Calzolari, N., Chodorow, M. S., Klavans, J. L., Neff, M. S., & Rizk, O. Tools

and methods for computational linguistics. Computational Linguistics, 13(3/4), 219-

240.

Calzolari, N. (1984). Detecting patterns in a lexical data base. Proceedings of the 10th

International Conference on Computational Linguistics, COLING'84. Stanford,

California, 170-173.

Calzolari, N., Peters, C., & Roventini, A. (1990). Computational Model of the Dictionary

Entry. (ACQUILEX Preliminary Report, Esprit Basic Research Action No. 3030).

Pisa, Italy: Istituto di Linguistica Computazionale.

Coombs, J. H., Renear, A. H., & DeRose, S. J. (1987). Markup systems and the future of

scholarly text processing. Communications of the ACM, 30(11), 933-47.

Deux, O. et al. (1991). The O2 System. Communications of the ACM, 34(10), 34-48.

Gardarin, G., & Valduriez, P. (1990). SGBD Avancés, Bases de Données Objets,

Déductives, Réparties. Paris: Eyrolles.

Gonnet, G., & Tompa, F. W. (1987). Mind your grammar: a new approach to modelling

text. Proceedings of the 13th Conference on Very Large Data Bases, VLDB'87.

Brighton, England, 339-346.

Gonnet, G., Baeza-Yates, R. A., & Snider, T. (1991). Lexicographical indices for text:

Inverted files vs. PAT trees (Technical report OED-91-01). Waterloo, Ontario: UW

Centre for the New Oxford English Dictionary and Text Research.

Ide, N., Véronis, J., Warwick-Armstrong, S., & Calzolari, N. (in press). Principles for

Encoding machine readable dictionaries. Proceedings of the Fifth EURALEX

International Congress, EURALEX'92. Tempere, Finland.

Kaplan, R. and & Bresnan, J. (1982). Lexical-functional grammar: A formal system for

grammatical representation. In J. Bresnan (Ed.), The Mental Representation of

Grammatical Relations. Cambridge, Massachussets: MIT Press.

Karttunen, L. (1984). Features and values. Proceedings of the 10th International

Conference on Computational Linguistics, COLING'84. Stanford, California, 28-33.

Kay, M. (1985). Parsing in functional unification grammar. In D.R. Dowty, L. Karttunen,

& A. M. Zwicky (eds.). Natural Language Parsing. Cambridge: Cambridge

University Press.

Kipfer, B. A. (1983). Computer applications in lexicography: a bibliography. Dictionaries:

Journal of Dictionary Society of North America, 4, 202-237.

Klavans, J., Chodorow, M., & Wacholder, N. (1990). From dictionary to knowledge base

via taxonomy. Proceedings of the 6th Annual Conference of the UW Centre for the

New Oxford English Dictionary. Waterloo, Ontario, 110-132.

39

Landau, S. I. (1984). Dictionaries: The Art and Craft of Lexicography. New York: Scribner

Press.

Le Maitre, J., & Boucelma, O. (in press). LIFOO, un langage fonctionnel de requêtes pour

bases de données avancées. Technique et Science Informatiques.

Lecluse, C., & Richard, P. (1989). The O2 database programming language. Proceedings of

the 15th Conference on Very Large Data Bases, VLDB'87. Amsterdam, 411-422.

Markowitz, J., Ahlswede, T., & Evens, M. (1986). Semantically significant patterns in

dictionary definitions. Proceedings of the 24th Annual Conference of the Association

for Computational Linguistics. New York, 112-119.

Nakamura, J., & Nagao, M. (1988). Extraction of semantic information from an ordinary

English dictionary and its evaluation. Proceedings of the 12th International

Conference on Computational Linguistics, COLING'88. Budapest, Hungary, 459-464.

Neff, M. S., Byrd, R. J., & Rizk, O. A. (1988). Creating and querying lexical databases.

Proceedings of the Association for Computational Linguistics Second Applied

Conference on Natural Language Processing. Austin, Texas, 84-92.

Pistor, P., & Traunmueller, R. (1986). A database language for sets, lists and tables.

Information Systems, 11(4), 323-336.

Pollard, C., & Sag, I. A. (1987). Information-based Syntax and Semantics. CSLI Lecture

Notes Series, Chicago: University of Chicago Press.

Roth, M. A., Korth, H. F., & Silberschatz, A. (1988). Extended algebra and calculus for

nested relational databases. ACM Transactions on Database Systems, 13(4), 389-417.

Schek, H.-J., Paul, H.-B., Scholl, M.H., & Weikum, G. (1990). The DASDBS project:

objectives, experiences, and future prospects. IEEE Transactions on Knowledge and

Data Engineering, 2(1), 25-42.

Shieber, S.M. (1986). An Introduction to Unification-based Approaches to Grammar.

CSLI Lecture Notes Series, Chicago: University of Chicago Press.

Sinclair, J. M. (1987). An Account of the COBUILD Project. London: Collins ELT.

Sperberg-McQueen, M., & Burnard, L. (1990). Guidelines for the encoding and

interchange of machine-readable texts, Draft, Version 0.0. ACH, ACL, and ALLC.

The DANLEX Group (1987). Descriptive tools for electronic processing of dictionary data.

Lexicographica, Series Maior. Tübingen: Niemeyer.

Tompa, F. W. (1989). What is tagged text? Proceedings of the 5th Annual Conference of

the UW Centre for the New Oxford English Dictionary. Oxford, England, 81-93.

Véronis, J., & Ide, N., M. (1990). Word Sense Disambiguation with Very Large Neural

Networks Extracted from Machine Readable Dictionaries. Proceedings of the 13th

40

International Conference on Computational Linguistics, COLING'90. Helsinki,

Finland, 2, 389-394.

Wilks, Y., Fass D., Guo, C., MacDonald, J., Plate, T., & Slator. B. (1990). Providing

Machine Tractable Dictionary Tools. Machine Translation, 5, 99-154.

