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Abstract—Data science is a field that has developed to enable efficient integration and analysis of increasingly large data sets in many
domains. In particular, big data in genetics, neuroimaging, mobile health, and other subfields of biomedical science, promises new
insights, but also poses challenges. To address these challenges, the National Institutes of Health launched the Big Data to Knowledge
(BD2K) initiative, including a Training Coordinating Center (TCC) tasked with developing a resource for personalized data science
training for biomedical researchers. The BD2K TCC web portal is powered by ERuDIte, the Educational Resource Discovery Index,
which collects training resources for data science, including online courses, videos of tutorials and research talks, textbooks, and other
web-based materials. While the availability of so many potential learning resources is exciting, they are highly heterogeneous in quality,
difficulty, format, and topic, making the field intimidating to enter and difficult to navigate. Moreover, data science is rapidly evolving, so
there is a constant influx of new materials and concepts. We leverage data science techniques to build ERuDIte itself, using data
extraction, data integration, machine learning, information retrieval, and natural language processing to automatically collect, integrate,
describe, and organize existing online resources for learning data science.

Index Terms—I.2.6.g Machine learning, I.2.1.d Education, H.2.0.b Database design, modeling and management, H.2.8.c Data and
knowledge visualization, I.2.12.c Ontology design.
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1 INTRODUCTION

THE National Institutes of Health (NIH) launched
the Big Data to Knowledge (BD2K) initiative

(datascience.nih.gov) to fulfill the promise of biomedical
“big data” [2]. The NIH recognized that “The ability to harvest
the wealth of information contained in biomedical Big Data will
advance our understanding of human health and disease; however,
lack of appropriate tools, poor data accessibility, and insufficient
training are major impediments to rapid translational impact.1”
The NIH BD2K program has funded 15 major centers2

to investigate how data science can benefit diverse fields
of biomedical research including genetics, neuroimaging,
precision medicine, and mobile health. Ensuring that the
advances produced by these centers, and other research
efforts, permeate the biomedical research community and
yield the expected benefits for human health requires a
significant increase in the number of biomedical researchers
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trained in data science. To address this need, the NIH has
funded the BD2K Training Coordinating Center (TCC).

Data science demands knowledge from many branches
of mathematics and computer science, notably statistics and
machine learning, and can be applied to multiple fields
of study. Given the field’s interdisciplinary nature and its
growing popularity, many open learning resources have
been published on the Web for anyone interested in learning
about data science. However, these resources vary greatly in
quality, topic coverage, difficulty, and presentation formats,
making entry into the world of data science confusing and
daunting for learners.

To address these challenges, the BD2K Training Coor-
dinating Center is developing a web portal (BigDataU.org)
to provide a dynamic, personalized educational experience
for biomedical researchers interested in learning about data
science. The portal is powered by ERuDIte, the Educational
Resource Discovery Index for Data Science, a curated, richly
described collection of existing web-based training materials
on data science. In order to build ERuDIte, we are develop-
ing novel, automated methods to identify, collect, integrate,
describe, and organize web-based learning resources.

In the collection stage, we have built a web-scraping
framework that allows us to rapidly incorporate new
sources and extract relevant data from them. In the in-
tegration stage, we have designed a unified schema for
learning resources to integrate heterogeneous data into a
single, consistent model. Under this model, the system also
exposes the metadata of learning resources as linked data
[3], [4], so these resources can be easily cross-referenced
by others. In the description stage, ERuDIte uses methods

https://datascience.nih.gov
https://commonfund.nih.gov/bd2k
https://commonfund.nih.gov/bd2k/centers
http://bigdatau.org
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from machine learning, information retrieval, and natural
language processing to tag resources with concepts from a
hierarchical, multi-dimensional ontology designed to pro-
vide an extensible, lightweight description of core aspects
of the field of data science.

In summary, both in its design and in its creation,
ERuDIte uses the concepts and methods of the data science
field that it aims to teach. ERuDIte will enable students and
researchers to make the best use of the diverse data science
learning resources available online.

2 BUILDING ERUDITE

Since ERuDIte is itself a data science project, its construction
reflects some of the key stages in the data science workflow,
namely data collection, integration, modeling, and visual-
ization. In the following sections, we detail our efforts along
these stages in our development of ERuDIte.

2.1 Learning Resource Acquisition

In ERuDIte, learning resources are online resources that
have a pedagogical component for data science concepts
and skills. The quality and relevance of learning resources
are essential to the development and success of ERuDIte,
and, consequently, our initial collection efforts focused on
well-known, high-quality sources, such as leading Massive
Online Open Courses (MOOCs) and talks and tutorials from
scientific conferences. While some sources provide learning
resource data through public APIs (e.g., coursera.org and
udacity.com), most sources require scraping of websites
intended for human navigation. For that purpose, we built
a modular framework using the popular Python packages
BeautifulSoup and Dryscrape to handle both static websites
and dynamic, JavaScript-based pages, which have histori-
cally been problematic.

In this framework, each source website is handled by a
module designed for the site’s structure and idiosyncrasies.
These require some manual authoring, but, once created,
the site-specific module automatically collects resource data.
The scraping framework is packaged as a Docker image, so
it can be used without locally managing its dependencies.
As a result, we were able to increase our resource collection
efforts quickly because team members could simultaneously
build new site-specific modules without disturbing the core
infrastructure of the scraping framework.

To date, we have collected a total of 11,320 learning
resources, which vary in granularity from individual videos
to online courses that include multiple video lectures and
associated training material. Table 1 describes the current
sources, the number of learning resources from each source,
and the types of information extracted, such as resource
descriptions, video transcripts, and supporting slides or
other written materials.

2.1.1 YouTube Classification
To expand our learning resource collection beyond our
manually curated sources, we are developing techniques
to identify high-quality learning resources from large open
collections, such as YouTube. We are applying information
extraction and machine learning techniques to automatically

assess the quality of data science videos on YouTube for
inclusion in ERuDIte.

Searching for “data science” on YouTube yields over
200,000 videos – and over 9,000,000 when not constrained
to the exact phrase. However, the number of these videos
that are both relevant and pedagogically valuable is much
lower. To filter the results, we trained a classifier to assess
quality based on video metadata and content.

To find potentially relevant YouTube videos, we search
for terms related to data science, drawn from the Field di-
mension of the ontology described in Section 2.3.1 (Figure 2).
These queries include the names of disciplines and concepts,
sometimes with additional restrictions, for example: “bioin-
formatics”, (“python” AND “data science”), or (“regression”
AND (“data science” OR “machine learning”)).

We executed 98 such queries and collected metadata
from the videos and playlists appearing in the first 20 pages
of results for each query, yielding a dataset of 122,557 unique
videos. We manually annotated 2,298 videos, sampled from
across different pages of results for the queries. Initially,
these were judged on a scale of 0–4, where 0 is a video
that is completely unhelpful as a resource for learning about
data science and 4 is most helpful. For simpler classifica-
tion, these labels are binarized, with resources labeled 0–
1 considered too low quality to index and 2+ considered
sufficiently good. This annotation effort yielded 1,217 high-
quality videos and 1,081 low-quality ones.

We trained a random forest classifier using a variety of
features from the YouTube videos, including the uploader
ID, upload date, number of views, likes and dislikes, av-
erage rating, duration, tags and categories, and encodings
of the title, description, and transcripts in a 50-dimension
Word2vec vector space. With five-fold cross-validation, the
classifier achieves precision 0.82, recall 0.81, and F1 score of
0.82. This performance is sufficient to select highly promis-
ing videos from YouTube for final human curation. As the
size of our training data improves, we expect the automatic
classification quality to approach human levels of agreement
and minimize human effort.3

2.1.2 Google Books
For pedagogical reasons, we initially focused collection on
video materials, but we have begun to extend our data
collection to scientific written materials. We queried the
open Google Books API4 with a set of 54 queries specific to
data science, similar to our YouTube searches. This yielded
19,666 records, consisting not only of simple metadata for
each book (title, authors, description, publisher, URL), but
also snippets of text from within the book that surrounded
hits of the search terms. To clean the corpus from off-topic
books, we generated a 200-topic latent Dirichlet allocation
(LDA) topic model using the MALLET toolkit [5] and
manually examined the word distributions of each topic
to determine whether the topic is relevant to data science.
We then removed any document that had an irrelevant
topic in any of the top three topics provided by LDA. We

3. Currently, the discovered 122,557 unique videos have been auto-
matically classified. Predicted high quality videos are under review
using our curation interface (cf. Section 2.4.1), so these videos are not
fully included in the YouTube totals in Table 1.

4. https://www.googleapis.com/books/v1/volumes?q=”terms”

https://coursera.org
https://udacity.com
https://www.googleapis.com/books/v1/volumes?q="terms"
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TABLE 1
Currently Indexed Learning Resources

Provider/Source Types Total With Descriptions With Transcripts With Slides or Documents

BD2K Video, Written 681 602 277 72
edX Course, Video 89 88 69 53
Coursera Course, Video 256 256 81 83
Udacity Course, Video 17 17 17 0
Videolectures.net Video 8,577 6,166 7,994 4,699
YouTube Video 988 873 749 0
ELIXIR Course, Written 237 48 0 0
Bioconductor Course, Written 5 2 0 0
Cornell Virtual Workshop Course, Written 38 19 0 0
OHBM Video 78 6 0 51
NIH Video 1 1 0 0
Bioinformatics.ca Course, Video 86 63 0 0
Google Books Written 267 213 0 0

Total 11,320 8,354 9,187 4,958

manually assessed the documents generated by this filtering
and found the relevancy to be acceptable. This procedure
provided a total of 12,379 book records for subsequent
analysis and curatorial review.5

2.2 Resource Integration
To integrate the heterogeneous resource data we collected
under a uniform schema, we designed a metadata standard
to represent learning resources in ERuDIte.

2.2.1 Global Schemas for Learning Resources
To facilitate cross-institution data sharing, we first reviewed
existing standards, including classes and properties from
the Dublin Core,6 Learning Resource Metadata Initiative
(LRMI),7 IEEE’s Learning Object Metadata (LOM),8 eX-
changing Course Related Information (XCRI),9 Metadata
for Learning Opportunities (MLO),10 and Schema.org vo-
cabularies. Our initial model had three classes: LearningRe-
source (with 27 properties), Person (with 8 properties), and
Provider (with 10 properties). However, with the aim of
creating a standard that is more universal, which allows
for greater detection, discovery, and interchangeability, we
updated our model based on our participation in the World
Wide Web Consortium (W3C) Schema Course Extension
Group11 and our collaboration with the ELIXIR consor-
tium,12 which uses the Schema.org-based standard defined
by Bioschemas.org.13

There are a variety of large-scale efforts across the world
developing training resources, including MOOC providers
as well as large research consortia like the BD2K pro-
gram. One effort of particular importance in the biomedical

5. These books are partially included in Table 1. The rest are under
curatorial review, and we expect to add them incrementally as they are
reviewed (Section 2.4.1).

6. http://dublincore.org
7. http://lrmi.dublincore.net
8. https://standards.ieee.org/standard/1484 12 1-2002.html
9. https://shop.bsigroup.com/ProductDetail/?pid=

000000000030259242
10. https://joinup.ec.europa.eu/solution/

metadata-learning-opportunities-mlo-advertising
11. https://www.w3.org/community/schema-course-extend
12. https://www.elixir-europe.org
13. http://bioschemas.org

space is the ELIXIR consortium, which seeks to provide
a distributed infrastructure for life-science across Europe,
in a spirit akin to the NIH BD2K Initiative. The ELIXIR
Programme includes a training component, the Training e-
Support System (TeSS),14 which plays a role analogous to
the BD2K TCC.

We have established a collaboration with ELIXIR TeSS to
develop joint metadata standards for learning resources and
to share data synergistically. As part of this collaboration, we
have redefined our metadata standard to adopt Schema.org
vocabularies, only defining additional properties when crit-
ically needed. Pages with embedded Schema.org markup,
such as the resource pages at BigDataU.org, are preferen-
tially indexed by major search engines, such as Google and
Bing, so by using this vocabulary, we facilitate the discovery
and dissemination of the resources indexed in ERuDIte.

A graphical overview of the ERuDIte metadata standard
appears in Figure 1. The key classes of our standard are Cre-
ativeWork (used for learning resources), Person (for instruc-
tors or material creators), and Organization (for affiliations
and learning resource providers). The schema definition is
also available for download at https://github.com/bioint/
erudite-training-resource-standard under a Creative Com-
mons Attribution-ShareAlike License (version 3.0) license.

2.2.2 Integrated Resource Database

All learning resources collected by ERuDIte are stored in
an integrated relational database, which we refer to as the
Resource Database. This database uses views to map source
tables to our metadata standard, which we have translated
into a relational schema, in order to remain flexible for
any future changes and extensions. The scraping frame-
work outputs source-specific tables, and the views in the
database integrate the source data into a single schema
model. We then use an additional reporting materialized
view that joins relations defined by the schema to form a
composite table that generates the data for resource detail
pages for display and use on the BD2K TCC web portal
(http://BigDataU.org). We also generate an Elasticsearch

14. https://tess.elixir-europe.org

http://dublincore.org
http://lrmi.dublincore.net
https://standards.ieee.org/standard/1484_12_1-2002.html
https://shop.bsigroup.com/ProductDetail/?pid=000000000030259242
https://shop.bsigroup.com/ProductDetail/?pid=000000000030259242
https://joinup.ec.europa.eu/solution/metadata-learning-opportunities-mlo-advertising
https://joinup.ec.europa.eu/solution/metadata-learning-opportunities-mlo-advertising
https://www.w3.org/community/schema-course-extend
https://www.elixir-europe.org
http://bioschemas.org
BigDataU.org
https://github.com/bioint/erudite-training-resource-standard
https://github.com/bioint/erudite-training-resource-standard
http://BigDataU.org
https://tess.elixir-europe.org
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schema:Person

schema:givenName (Text) 
schema:additionalName (Text)  
schema:familyName (Text)
schema:jobTitle (Text)

schema:Thing

schema:identifier (Text)
schema:name (Text) 
schema:alternateName (Text) 
schema:description (Text) 
schema:url (URL) 
schema:sameAs (URL)
schema:image (ImageObject/URL)

schema:CreativeWork

schema:learningResourceType (Text)
schema:license (URL)
schema:datePublished (DateTime)
erudite:dateIndexed (DateTime)
schema:version (Text) 
schema:review (Text) 
schema:thumbnailUrl: (URL) 
schema:timeRequired(Duration)

schema:genre

schema:Offer

schema:price (Number/Text)
schema:priceCurrency (Text)

schema:offers

schema:Language
schema:inLanguage

schema:author

schema:aggregateRating

schema:MediaObject

schema:contentSize (Text)
schema:contentUrl (URL)
schema:encodingFormat (Text)
schema:width (Text)
schema:height (Text) 
schema:duration (Duration)

schema:VideoObject

schema:transcript (Text)
schema:thumbnail (ImageObject)

schema:Course

erudite:syllabus (Text) 
schema:startDate (DateTime) 
schema:endDate (DateTime)

schema:AggregateRating

schema:ratingCount (Integer) 

schema:Audience

schema:audience

schema:EducationalAudience

schema:isPartOf

schema:hasPart

schema:instructor
erudite:Tag

skos:BroaderTransitive
skos:Concept

rdfs:label (Text)

schema:Comment

schema:text (Text)

schema:comment

schema:DigitalDocument

schema:PresentationDigitalDocument

schema:Rating

schema:bestRating (Number/Text)
schema:worstRating (Number/Text)
schema:ratingValue (Number/Text)

schema:Organization

schema:location (Text/PostalAddress/Place) 
schema:logo (ImageObject/URL) 

schema:memberOf schema:member

schema:member

erudite:provides

schema:provider

schema:Intangible

schema:Thing

schema:memberOf

erudite:enables

schema:subtitleLanguage

Fig. 1. ERuDIte metadata standard based on Schema.org vocabularies. Learning resources in ERuDIte are instances of CreativeWork ; the people
who create or teach the learning resources are instances of Person; and, the institutions that provide and/or are affiliated with the people who create
or teach the learning resources are instances of Organization.
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(https://elastic.co) index from a query to this table, and that
index powers the search interface on the web portal.15

2.2.3 Learning Resource Metadata as Linked Data
The linked data movement [3] seeks to make data avail-
able on the Web not only readable to humans, but also to
machines. The JSON-LD format is a popular way to insert
structured data into regular web pages and contribute to the
web of linked data. These structured data snippets can then
be easily extracted by external tools and indexed by search
engines. In particular, Google encourages the use of JSON-
LD over the Schema.org vocabulary for this purpose.16 In
the spirit of open data sharing, we expose all metadata for
each learning resource in the ERuDIte collection as linked
data in the JSON-LD format, both embedded in each of the
learning resource pages on BigDataU.org that are reachable
through our faceted search interface, and as a complete
data file published as a versioned Digital Object Identifier
(DOI) at Zenodo.17 ERuDIte metadata is made available
under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International license.18 Listing 1 shows a
sample JSON-LD markup for a single educational resource.
The JSON-LD data has recently been enhanced with links
to DBpedia for organizations, and to DBpedia [6], DBLP [7],
and ORCID (orcid.org) for instructors [4].

As part of our integration pipeline, we developed
an automated mapping functionality from the Resource
Database’s relational schema into our Schema.org-based
standard (cf. Figure 1) as JSON-LD, using our previous work
on data exchange [8]. Augmenting our published learning
resources with JSON-LD structured data allows current and
future collaborators to easily cross-reference any resource
we collect, increasing data interchangeability across global
efforts for educational resource indexing.

{"@context": {"@vocab": "https://schema.org/",
"bdu-resource":
"http://bigdatau.org/resource/",
"bdu-organization":
"http://bigdatau.org/organization/",
"bdu-person": "http://bigdatau.org/person/",
"dseo": "http://bigdatau.org/dseo#"},

"@id": "bdu-resource:14783120385630643790",
"@type": "CreativeWork",
"author": {"@type": ["Person"],

"@id": "bdu-person:Andrew_Y._Ng"},
"description": "Machine learning is ...",
"genre": ["dseo:image_data", "dseo:introductory",

"dseo:MATLAB_Octave", "dseo:data_analysis",
"dseo:written_documents", "dseo:video",
"dseo:machine_learning" ],

"provider": [{"@type": ["Organization"],
"@id": "bdu-organization:Coursera"},
{"@type": ["Organization"],
"@id": "bdu-organization:

Stanford_University"}],
"name": "Machine Learning",
"url": "https://www.coursera.org/learn/machine-learning"}

Listing 1: JSON-LD markup for http://BigDataU.org/
resource/14783120385630643790

15. For example,
http://BigDataU.org/search?query=machine+learning

16. https://developers.google.com/search/docs/guides/
intro-structured-data

17. https://doi.org/10.5281/zenodo.1214375
18. https://creativecommons.org/licenses/by-nc-sa/4.0

2.3 Resource Description
As an additional layer of description beyond the learning
resources’ collected metadata, we designed a hierarchical,
multi-dimensional ontology known as the Data Science Ed-
ucation Ontology (DSEO), to provide further categorization
of the learning resources in ERuDIte. This ontology provides
learners with concepts that can assist them with resource
exploration and discovery.

2.3.1 Defining the Data Science Education Ontology
To design the Data Science Education Ontology (DSEO),
we combined top-down and bottom-up approaches. First,
we identified relevant concepts based on our knowledge of
the data science domain and organized them hierarchically
along six dimensions. Each dimension represents a facet
that learners would want to use in searching the resource
collection. For example, if the learner is a neuroscientist who
just received a recent set of fMRI data and who needs to
visualize the data using Python, the learner should be able
to filter and target his or her searches with terms from the
ontology to cover these needs. With this top-down structure
in mind, we then collected and reviewed categories used to
describe learning resources in each of the existing sources
(e.g., videolectures.net provides a categorization of its video
collection), and those concepts were used to discover and
fill gaps in our defined ontology.

We then incorporated two semi-automated methods to
refine and extend the ontology further in a bottom-up
manner. As a first semi-automated method, we developed a
system that analyzes the textual information associated with
the learning resources (including titles, descriptions, syllabi,
transcripts, slides, etc.) to automatically generate concepts
from bigrams, trigrams, nouns, and shallow noun phrases19

extracted from sentence trees constructed by the Stanford
Parser [9]. In evaluating these automatically identified con-
cepts, we found that shallow noun phrases from the parser
provided the richest terms. We reviewed the 8,160 automatic
concepts from the parser and eliminated ambiguous and
irrelevant ones. We also added tags related to the depth,
field (i.e. knowledge domain), and format of the course. This
process identified a total of 861 candidate tags.

As a second semi-automated method, we used non-
negative matrix factorization (NMF) [10] to discover topics
in our resources. We analyzed the most significant words
associated with each topic and defined a concept for each
of the topics. Much of this analysis confirmed the concepts
identified earlier, but it also yielded ten additional concepts.
More recently, we have created another ten new concepts
from the topics generated by the LDA model used in
Section 2.1.2 in order to increase DSEO’s coverage for the
written text we have collected through Google Books.

We apply the following criteria for a concept to be
included in the DSEO:

1) Is there enough support for the concept within
our resource collection? (Currently, we require more
than five resources to be relevant to the concept.)

2) Does the proposed concept capture an abstract
phrase that cannot be automatically extracted from

19. We define “shallow noun phrases” as ones constructed with
words at a single node level in the parse tree of resource descriptions.

https://elastic.co
BigDataU.org
orcid.org
http://BigDataU.org/resource/14783120385630643790
http://BigDataU.org/resource/14783120385630643790
http://BigDataU.org/search?query=machine+learning
https://developers.google.com/search/docs/guides/intro-structured-data
https://developers.google.com/search/docs/guides/intro-structured-data
https://doi.org/10.5281/zenodo.1214375
https://creativecommons.org/licenses/by-nc-sa/4.0
videolectures.net
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text (i.e., it would not be easily found by an infor-
mation retrieval search over the resource text)?

3) How does the proposed concept impact a user’s
ability to discover a resource?

4) Does a clear definition for the concept exist?
5) Can the proposed concept be automatically as-

signed using machine learning? (cf. Section 2.4).

Given that the DSEO describes the learning resources in
ERuDIte to enable searching and filtering in the interface
of the TCC Web Portal, well-defined concepts are essential.
Consequently, this set of criteria was used to reduce the
ontology to a total of 126 concepts, which we organized
hierarchically along six dimensions. For clarity, we define
a specific question that every dimension aims to answer for
a learner. These questions are listed below, along with how
many of the 126 concepts fall under each dimension.20

Data Science Process (7)
What stages of the data science process will this
resource help me with?

Field (83)
What field of study does this resource focus on?

Datatype (18)
What types of data does this resource address?

Programming Tool (14)
What programming tool is used in or taught by
this resource?

Resource Format (2)
How is this resource presented?

Resource Depth (2)
How advanced is this resource?

Figure 2 shows all concepts in the DSEO, as seen at http:
//BigDataU.org/explore erudite. We expect the DSEO to be
a living, breathing ontology that can adapt to innovations in
data science. As we discover and assess more resources, we
expect new concepts to emerge.

2.3.2 Publishing the Data Science Education Ontology
DSEO is formally a Simple Knowledge Organization System
(SKOS)21 vocabulary, with the hierarchical relationships en-
coded by the skos:broaderTransitive property. DSEO is pub-
licly available at GitHub22 and at the BioPortal ontology
repository23 (for convenience of visualization in BioPortal,
we also defined a version of DSEO using rdfs:subClassOf ).
Beyond its applications to the web portal at BigDataU.org,
DSEO’s greatest value lies in its concern for the intricacies
and developments of data science. Consequently, by making
DSEO public, we welcome community suggestions and
edits to extend DSEO with any emerging, relevant concepts.

2.4 Automatic Concept Assignment (Tagging)
In order to scale up ERuDIte, we need to develop auto-
mated methods to assign concepts from our ontology to the
collected learning resources, i.e., tagging. Here, the tagging

20. The top-level concept for the Programming Tool dimension can be
assigned to resources, while the top-level names of the other dimen-
sions are only used for organization of concepts.

21. https://www.w3.org/2004/02/skos
22. https://bioint.github.io/DSEO
23. https://bioportal.bioontology.org/ontologies/DSEO

TABLE 2
Training + Cross-Validation and Testing Set Sizes (Total Resources)

Dimension Training/CV Set Size Testing Set Size

Field 7,904 1,885
Resource Depth 1,241 299
Resource Format 7,870 1,989
Data Science Process 1,725 447
Programming Tool 429 109
Datatype 1,866 466

problem is a multi-label one; each learning resource can
have multiple tags from each dimension of the DSEO.

We initially explored both machine learning and infor-
mation retrieval methods using resource text as inputs, and
we found that one-versus-all logistic regression was the
method that yielded the best-performing classifier in five-
fold cross-validation [1]. In order to improve our classifiers
and to assess them further, we expanded our gold standard
dataset. For each dimension, we developed a gold stan-
dard of hand-curated resources (data science courses from
Coursera, Udacity, edX, and Cornell’s Virtual Workshop,
and videos from Videolectures.net and YouTube) labeled
with the appropriate tags from each DSEO dimension. For
each dimension, we left aside approximately 20% of each
gold standard set for testing, and we used the rest for cross-
validation and training. For each dimension’s testing set, we
made sure that every tag in the dimension is represented
by randomly selecting resources on a per tag basis. Table 2
shows the total number of learning resources in each dimen-
sion’s training/cross-validation and testing set.

We take the hierarchy of DSEO into account by also as-
signing parent and ancestor tags to a resource. For example,
if a resource is tagged with “clustering,” we also tag it with
that concept’s parents and ancestors: “unsupervised learn-
ing,” “machine learning,” “artificial intelligence,” “probabil-
ity statistics,” “computer science,” and “mathematics.”

For classifier training, we defined an experimental pro-
cedure that used the same dataset, cross-validation folds,
and performance measurements for every method tested in
order to select the best model. We then created a training
framework using the popular Python machine learning
package scikit-learn [11] to perform grid-searches over con-
figurable parameters, which are defined by configuration
files that handle parameters for data access (e.g., table to
query for source data), document vectorization (e.g., n-gram
range, minimum document frequency threshold, maximum
document frequency threshold), and classifier methods (e.g.,
C value for regularization strength, probability threshold).
The framework takes the source data, which includes re-
sources’ titles, subtitles, descriptions, syllabi, transcripts,
and text from slides and additional written documents,
and combines them to form a single text document for
each resource. It then vectorizes each resource document
as a bag-of-words TF–IDF vector, forming the input feature
matrix to our classifiers. Next, the input features are sent to
classifiers specified by the configuration, and the results of
training and cross-validation are output into a standardized,
reviewable format. The dashed arrow path through steps A,
B, C, D, and E in Figure 3 graphically presents this workflow
of the framework.

http://BigDataU.org/explore_erudite
http://BigDataU.org/explore_erudite
https://www.w3.org/2004/02/skos
https://bioint.github.io/DSEO
https://bioportal.bioontology.org/ontologies/DSEO
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Fig. 2. Data Science Education Ontology (DSEO), as shown at http://BigDataU.org/explore erudite.

http://BigDataU.org/explore_erudite
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In recent exploration, we noticed performance improve-
ments with more support per tag. Thus, to ensure that tags
have an adequate amount of support for each fold, we now
only include tags that have a minimum of five examples of
support 24 and use the multi-label stratified k-fold approach
of [12] to assign fold numbers. We then perform five-
fold cross-validation grid searches over hyperparameters
defined for two classifier types: one-vs-all logistic regres-
sion and one-vs-all random forest. In [1], we found that
one-vs-all logistic regressions using L2 regularization were
the most successful. However, given the increases in our
feature matrices due to the increases in the sizes of our
training/cross-validation sets, we favor one-vs-all logistic
regressions using L1 regularization in order to give weight
to the most discriminative terms. Based on the success of our
YouTube classifier (cf. Section 2.1.1), which similarly uses
text features from learning resource metadata, we also per-
form grid searches using one-vs-all random forest classifiers.
Our performance metric for classifier comparison was the
F1 score, which is the harmonic mean of precision (positive
predictive value) and recall (sensitivity). We calculated the
weighted average F1 score, with the weights equal to the
number of true positives of each tag in the validation fold,
in each fold, to select the best hyperparameter combination
for each classifier. Afterwards, we predicted tags for each
test set we left aside and calculated the weighted F1.

Table 3 shows the performance of the best classifiers
for each dimension on its respective test set. Overall, the
larger training datasets for each dimension help improve
classifier performance. With our continuous curation efforts
(cf. Section 2.4.1), we expect the classifiers to continue to
improve while also easing the burden of curation.

2.4.1 Continuously Improving Tag Assignments
To improve our tagging classifiers beyond their current
performance, we still need more gold standard data, partic-
ularly for under-represented concepts in DSEO. However,
asking curators to manually label every resource from our
collection would require too much time. Consequently, in
order to assess our existing classifiers and to reduce curation
time, we have created a pipeline where tag predictions on
novel learning resources are made by the classifiers and sent
to a curation interface (Figure 4) as recommended tags for
curators to confirm or reject. In the interface, curators can
add tags that were not predicted by the classifiers, and
they can also suggest tags that are relevant, but are not
currently in the DSEO. In addition, here, curators are given
the opportunity to assess the quality of a resource (good,
bad, skip, or remove), and these quality labels can be used to
inform and expand the resource quality classifiers discussed
in Section 2.1.1. As such, this curation process allows us to
continuously update our classifiers with more gold standard
data, as shown by the solid arrow path through steps A, B,
C, E, F, G, and H in Figure 3.

Furthermore, with the curation interface, multiple cu-
rators can provide tags for a resource, which allows us to
assess inter-rater reliability in order to solidify tag assign-
ments. This process will allow us to find any further gaps in

24. This is consistent with the minimum of five relevant resources
required to add a new tag into the DSEO (cf. Section 2.3.1)

the DSEO and to address any ambiguity between concepts
in the ontology. While curation is currently only internal to
the project, we envision later opening it to users of the web
portal or crowdsourced curators, allowing us to re-train and
validate our automated tagging algorithms at scale.

2.5 Resource Visualization

We ran MALLET’s LDA-based topic modeling on an aggre-
gated corpus made up of all available video resources in
the ERuDIte catalog with enough text to analyze, combined
with the records obtained from Google Books (for a total
of 18,458 documents). Having generated topic signatures
across all documents, we then applied t-SNE [13] to these
signatures to project them into a two-dimensional space.
We then used the Bokeh visualization library25 to generate
a two-dimensional scatterplot of available documents that
also permits end users to interact directly with the mapped
data (Figure 5). Within this visualization, each dot repre-
sents a single document and is colored according to the main
topic of that document. Mousing over a dot reveals meta-
data concerning that document and clicking a node navi-
gates to the appropriate page within ERuDIte. This visual-
ization is available at http://BigDataU.org/erudite cluster.
The source code supporting this visualization is also pub-
licly available on GitHub.26

3 ONGOING WORK

The ERuDIte system is under active development. To reach
our vision for ERuDIte as a dynamically updated, per-
sonalized system suited for self-directed learning, we are
pursuing the following research directions.

3.1 Dependencies and Prerequisites

To enable personalized learning plans, we are studying
how to automatically infer what data science concepts are
presented in each resource and what other concepts are
prerequisites for these; e.g., if the learner is interested in a
course on machine learning, but his or her user profile does
not indicate experience in mathematics, ERuDIte should
suggest starting with a resource on probability.

There are many ways to infer the concepts involved in a
set of resources, with topic modeling such as latent Dirichlet
allocation (LDA) being a traditional approach [14]. LDA is
unsupervised and requires no external resources, but the
topics it produces can be unclear. After exploring several
approaches, we chose to use Wikipedia articles as concepts,
since they are well-defined and have broad coverage of
data science concepts. Given a resource, we can infer a
distribution over Wikipedia concepts using explicit semantic
analysis (ESA) [15].

In previous work [16], we created an unsupervised
method for inferring prerequisites based on an informa-
tion theoretic analysis of large corpora of technical text.
We are now pursuing an approach that exploits “naturally
occurring” ordering relations between concepts, such as
textbook tables of contents, course syllabi, and – our current

25. https://bokeh.pydata.org
26. https://github.com/SciKnowEngine/sciknowmap

http://BigDataU.org/erudite_cluster
https://bokeh.pydata.org
https://github.com/SciKnowEngine/sciknowmap
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TABLE 3
Precision, Recall, and F1 Scores on Each Dimension’s Independent Test Set for the Dimension’s Best Classifier, Overall and Over Tags with at

Least a Given Level of Support

Dimension Classifier Type Support ≥5:
P R F1

Support ≥10:
P R F1

Support ≥15:
P R F1

Support ≥20:
P R F1

Field Logistic Regression 0.74 0.88 0.80 0.74 0.88 0.80 0.74 0.88 0.80 0.74 0.88 0.80
Resource Depth Random Forest 0.66 0.91 0.76 0.66 0.91 0.76 0.66 0.91 0.76 0.66 0.91 0.76
Resource Format Logistic Regression 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Data Science Process Logistic Regression 0.69 0.77 0.73 0.69 0.77 0.73 0.69 0.77 0.73 0.69 0.77 0.73
Programming Tool Logistic Regression 0.80 0.71 0.74 0.80 0.71 0.73 0.79 0.70 0.73 0.81 0.76 0.77
Datatype Logistic Regression 0.75 0.86 0.79 0.75 0.86 0.79 0.75 0.87 0.80 0.76 0.87 0.80

Fig. 3. Processing workflow for training (path drawn by dashed arrows) and evaluating and updating (path drawn by solid arrows) automated
tagging classifiers. Circles in steps F and H represent concepts tagged to a resource. Triangles in step H represent quality assessments, with
g=good, b=bad, and s=skip.

Fig. 4. The curation interface for reviewing predicted/recommended tags for a resource. This is the tagging screen, where curators review
recommended tags and add additional tags if needed.
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Fig. 5. Visualizing the structure of Learning Resources using LDA and t-SNE

focus – user navigation on Wikipedia. Using the released
“clickstream” data [17], we find that learners most often
look up the concept they are interested in learning about
and then navigate to more basic concepts, e.g., from “Deep
learning” to “Neural networks.” Based on this insight, we
have trained a classifier to identify prerequisite pairs and
are in the process of evaluating its accuracy against existing
sets of manually judged prerequisites, such as those defined
in the Metacademy27 guide of machine learning concepts.

3.2 Personalization
We plan to explore personalization methods in ERuDIte
through recommendations tailored for an individual learner
via collaborative filtering. To do this, we have instrumented
the web portal to collect user activity data. This will allow
us to benefit from a large, consistently engaged user base to
build our recommendation engine.

4 RELATED WORK

We briefly review work related to ERuDIte. There are
a number of commercial “MOOC aggregators” (such as
Class Central, CourseBuffet, CourseTalk, TubeCourse, etc.),
developed as social web applications, but the techniques

27. https://metacademy.org

for automatic identification, description, and organization
of learning resources we propose in ERuDIte go beyond
what these sites provide. The TechKnAcq project serves as
an example of the possibility of such methods, attempting
to structure the underlying organization of a pedagogical
resource based on analyses of the content of that resource
[16]. The concept hierarchies we use to describe resources
can also be learned from existing resources [18]. For our
visualization approach, we build on our previous work on
the NIHMaps project [19], which provided a navigable map
of all grants issued by the NIH, allowing users to explore the
high-level structure of funded grants across several years.
Other efforts have also used NMF to drive the creation
of visual clusters. The multi-view NMF of [20] shows the
potential to use more resource metadata in the generation
of future resource visualizations. In the BD2K program,
there is a parallel effort, bioCADDIE, to catalog scientific
datasets [21], but it is not focused on learning resources.
ELIXIR-UK Training e-Support System (TeSS), has similar
goals as the BD2K TCC. As discussed in Section 2.2.1, we
are coordinating with ELIXIR TeSS to share resources and
exploit synergies. As part of this collaboration, we are also
working with EDAM [22], a comprehensive ontology for
data, topics, and operations in bioinformatics to connect our
concepts and to collaborate in areas where our respective
ontologies can address each other’s gaps in coverage.

https://metacademy.org
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5 CONCLUSIONS

When looking at ERuDIte as its own data science project,
we have made significant progress on the data collection,
data integration, data exploration, and data analysis steps.
In the development of ERuDIte so far, we have designed
and implemented a flexible scraping framework, a unified
schema, a tagging ontology, a visualization approach for
resource exploration, and a collection of automated tagging
algorithms. We are more than halfway towards completing
the vision of making ERuDIte a platform that aggregates
and organizes relevant resources and provides a person-
alized and engaging experience for the self-directed data
science learner.

Our immediate future plans are to curate several thou-
sand data science videos from YouTube and books from
Google Books and add further high-quality resources to our
collection. A major ongoing effort is to identify prerequisite
relations between learning resources/concepts, e.g., that
linear regression should be learned before logistic regres-
sion. We plan to provide personalized training paths using
our resource descriptions, prerequisite relations, and from
mining user interactions (searches, creation of educational
plans, ratings, etc.) in the BigDataU.org web portal. In future
work, we plan to explore active learning techniques to op-
timize curation and classifier advancement by prioritizing
resources that would address key areas where our classifiers
need to improve.

Although ERuDIte currently focuses on knowledge
about data science, the techniques used in its construction
are general, therefore we expect that the ERuDIte platform
can be applied to other fields. Most careers demand continu-
ous, self-directed learning well outside of degree programs,
and few tools exist to help learners navigate through the het-
erogeneous resources on the Web. Consequently, ERuDIte
has the potential to expand interaction with an important
subset of scholarly data: web-based educational resources.
Historically, when thinking about the web of scholars, we
look at journal publications and citations, but now, in the
age of digital learning, scholars also produce open-access
educational resources, creating a source of data that con-
nects, informs, and educates not only scholars, but also
anyone interested in learning more about a field, concept,
or technique. With this type of educational resource, the
web of scholars can strengthen across disciplines, for under-
standing others’ work is easier through an open educational
resource as compared to a journal article, and can grow
because many more people have access to the materials they
need to learn in order to become scholars themselves.
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