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Abstract

To enable human-level artificial intelligence,machinesmust have access to the same kind

of commonsense knowledge about the world that people have. e best source of such

knowledge is text – learning by reading. Implicit in linguistic discourse is information

about what people assume to be possible or expect to happen. From these references, I

obtain an extensive collection of semantically underspecified ‘factoids’ – simple predic-

ations and conditional rules. Using lexical-semantic resources and corpus frequencies,

these factoids are generalized and partially disambiguated to form a collection of reason-

able commonsense knowledge. Together with lexical axioms from the interpretation of

WordNet, these probabilistic logical inference rules allow a reasoner to draw conclusions

about everyday situations as might be encountered while reading a story or conversing

with a person.
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 Introduction

To think is to forget differences, generalize, make abstractions.

  , ‘Funes the Memorious’, 

Artificial intelligence is concerned with the understanding of intelligence and the cre-

ation of intelligent artifacts, with the study of each informing the other.While impressive

advances have been made at many subproblems of , these efforts oen display a lack

of the commonsense reasoning characteristic of human intelligence. For instance, when

the Watson system competed at Jeopardy, a clue asked for ‘the anatomical oddity of US

gymnast George Eyser’. Watson responded, ‘What is a leg?’ is was good as a shallow

match, but it failed to say that Eyser wasmissing the leg.e project head explained, ‘e

computer wouldn’t know that a missing leg is odder than anything else’ (Hamm, ).

To enable human-level artificial intelligence, it seems machines need access to the

same kind of commonsense knowledge about the world that people have. is know-

ledge acquisition bottleneck is apparent not only in question-answering, but in other hard

problems such as natural language understanding (Allen, ; Schubert, ). An intel-

ligent agent should draw very different conclusions, for instance, when told ‘Sarah had

a pomegranate’ and ‘Sarah had a baby’. e need for accurate language understanding

and commonsense reasoning ranges from mobile phone applications like Siri to coun-

terterrorism intelligence efforts.
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. Commonsense Knowledge

Commonsense knowledge is the most fundamental and general knowledge about the

world, shared by most people. No bright line distinguishes common sense from other

varieties of general world knowledge or even from domain knowledge, making this a

somewhat amorphous goal. Nonetheless, some of the varieties of commonsense know-

ledge an intelligent agent requires have been identified, e.g., by McCarthy ():

Common-sense knowledge includes the basic facts about events (including

actions) and their effects, facts about knowledge and how it is obtained, facts

about beliefs and desires. It also includes the basic facts about material objects

and their properties.

Commonsense knowledge tends to be about kinds (Countries have capital cities)

rather than individuals (Edinburgh is the capital of Scotland). It tends to be enduringly

true (People enjoy listening to music) rather than true at the moment (Barack Obama

is president of the United States). And it tends to be knowledge applicable to daily life

(Students attend classes) rather than less familiar contexts (A cloning vector replicates

within a living cell). As noted by Schubert & Hwang (), commonsense knowledge

includes both predictive knowledge (When an animal sees food, it may want to eat it) and

explanatory knowledge (If an animal wants to eat some food it is probably hungry). And

we are especially interested in acquiring causal knowledge because it is pervasive in the

understanding of narrative texts and a crucial part of our commonsense understanding

of the world, including how people interact.

In this dissertation, I write of artificial agents acquiring or learning knowledge by

reading text. Such claims are problematic philosophically: What basis is there for induct-

ive reasoning, i.e., for our generalization from the specifics being read to broad claims

about the world? If a text is inaccurate or it is misunderstood by the system, can it be

said to have learned or to know anything, even if the item of knowledge is true? If the

result of this reading is inaccurate, is it knowledge? McCarthy & Hayes () noted that
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while it is important for researchers in artificial intelligence to consider these questions,

many philosophical concerns become irrelevant when we undertake to create an agent.

Doing so requires us to make simplifying assumptions, such as the existence of a phys-

ical world, our ability to obtain information about this world, and the correctness of our

commonsense view of it. McCarthy wryly rebutted epistemological objections to  in

the dialogue at the end of ‘Programs with Common Sense’ ():

Whenever we program a computer to learn from experience we build into the

programme a sort of epistemology. It might be argued that this epistemology

should bemade explicit before one writes the programme, but epistemology is

in a foggier state than computer programming even in the present half-baked

state of the latter. I hope that once we have succeeded in making computer

programs reason about the world, we will be able to reformulate epistemology

as a branch of applied mathematics no more mysterious or controversial than

physics.

. Knowledge Representation

Aprecondition to learning and reasoning is a suitableway to represent knowledge.While

we lack easy access – introspective or scientific – to human mental representation, we

have language. Natural language is the universal human means of encoding and commu-

nicating knowledge (as well as other mental contents such as intentions), so it must be

adequate to express our common sense. is section considers directly using language

for knowledge representation and reasoning () and then a spectrum of more formal

representations.

Natural Language as Knowledge Representation Abandoning formalisms and using

natural language () for knowledge representation and reasoning has appealed tomany

researchers. For instance, Singh () argued for the use of  in the Open Mind pro-

ject’s knowledge acquisition (see §.) and presented the Reform system for performing
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forward inference over simple English sentences. Reform abstracted from example sen-

tences to learn inferential patterns that could be applied to shallow syntactic parses to

produce new sentences as conclusions. For instance, from sentences like

(A door) is a portal.

(Bob) opens (the door).

⇒ (Bob) can go through (the door).

Reform generalizes to the syntactic inference rule

( ( ?x) ( is ( ?y)))

( ( ?z) ( opens ( ?x)))

⇒ ( ( ?z) ( can go ( through ( ?x))))

Reform also used paraphrase (i.e., bidirectional entailment) rules to convert between

similar ideas, such as ‘Joseph likes to drink wine’ and ‘If Joseph drinks wine, then he

will enjoy it.’ Other rules handled splitting and merging sentences, taxonomic inference

(‘Cats are mammals’, ‘Mammals are animals’, therefore ‘Cats are animals’), and inference

about effects (‘Pushing a door will open the door’, ‘Bob pushed the door’, therefore ‘Bob

opened the door’). While this is an interesting idea, learning  inference rules in this

way is risky. e example above (his) would allow one to reason:

(A box) is a container.

(Bob) opens (the box).

⇒ (Bob) can go through (the box).

More recently, MacCartney & Manning () presented Natural Logic (NLog),

an approach to reason over syntactically – but not semantically – analysed language

with a focus on the implicative and factive polarity of words. In Natural Logic, negation,

monotonicity, implicatures, and lexical relations are modeled as part of a sentence’s as-

serted content and treated through a projection mechanism. NatLog performs natural

language inference () in five stages: linguistic analysis, alignment, lexical entailment
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classification, entailment projection, and entailment composition. NLogwas augmented

by Clausen & Manning () with the Karttunen () model for lexically triggered

presuppositions, such as the factive verb know in ‘Bush knew that Gore won the election’

presupposes that Gore won the election.

While natural language andNatural Logic can support simple knowledge represent-

ation and reasoning, a reasoner that is adequate for the purposes of artificial intelligence

will need to address the range of phenomena thatmotivate a logical formalism, e.g., quan-

tifier scope, sentence embeddings, polarity, factivity, implicativity and exclusion, tem-

poral and event relations among others. erefore, it is desirable to use a representation

that allows us to treat such phenomena explicitly and consistently. More formal repres-

entations can tolerate – or suffer from – some of the ambiguities of language, such as

different, potentially overlapping senses of words, but in other ways they let us commit

to a more precise meaning.

Logic for Common Sense Commonsense knowledge has been included in discussions

of formal logic since Aristotle, though some philosophers, notablyWittgenstein, have ar-

gued that commonsense knowledge cannot be formalized or that logic is inappropriate

for its representation. Certainly commonsense knowledge poses representational prob-

lems that require more than traditional propositional or first-order logic (). is sec-

tion briefly traces developments in semantics, logic, and artificial intelligence that lead

to the use of Episodic Logic in this dissertation.

e use of logic to express a program’s knowledge and how it should reason was

first proposed by John McCarthy for his advice taker (McCarthy, ). is ambitious

paper led to decades of work on the appropriate use of logic to represent knowledge for

 Wittgenstein () wrote, ‘You say: the point isn’t the word, but itsmeaning, and you think of themeaning

as a thing of the same kind as the word, though also different from the word. Here the word, there the

meaning. e money, and the cow that you can buy with it. (But contrast: money, and its use.)’ ese and

other remarks from Wittgenstein’s later writing have been cited by Christopher Manning in arguing for

Natural Logic rather than a more formal representation.
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reasoning in.Motivated by problems in planning,McCarthy&Hayes () presented

the situation calculus, where a situation is the – real or hypothetical – state of the universe

for a particular instant, incompletely expressed. In this representation, a propositional

fluent like raining(x, s) is a function that maps situations (s) and other arguments such

as the location x to true or false. A situational fluent maps situations to other situations,

e.g., result(p,σ, s) – the result of person p performing action σ in situation s.

In representing knowledge about the realworld (rather than themathematicalworld

or the simple artificial worlds of early planning), it is necessary to express knowledge that

is uncertain. Modal logic was created by Lewis () to distinguish between those pro-

positions that are necessarily true and those that are contingently true – i.e., could be false.

McCarthy&Hayes () suggested the use ofmodal operators normally, consistent, and

probably to deal with uncertain inference. ey warn against attaching numeric probab-

ilities to all logical statements as it is unclear how to do so for quantified statements ‘in

a way that corresponds to the amount of conviction people have’.

Nonomonotonic reasoning () allows a reasoner to draw conclusions that may

be withdrawn in light of new information. For instance, the use of default rules reflects

the human communication convention of expressing knowledge only if a person would

not assume it. (e implications of this idea for knowledge extraction are considered in

Chapter .) For a similar reason, when an agent learns rules about the world, these will

necessarily overgeneralize. Although every object is in some way abnormal, we want to

assume it is otherwise normal, in the absence of other information. As McCarthy ()

wrote:

Both common sense physics and common sense psychology use nonmono-

tonic rules. An object will continue in a straight line if nothing interferes with it.

A personwill eat whenhungryunless something prevents it. Such rules are open

ended about what might prevent the expected behavior, and this is required,

because we are always encountering unexpected phenomena that modify the

operation of our rules. [Emphasis mine.]
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To express knowledge for , McCarthy (, ) presented circumscription.

In this approach, default rules use a single abnormality predicate ab taking as its argu-

ment an abstract entity corresponding to an aspect of the entities involved. Consistent

with McCarthy’s earlier conviction, circumscription is intended to be usable even when

we do not have access to numeric probabilities about our knowledge.e classic example

that ‘birds fly’ would be rendered

∀x . bird(x) ∧ ¬ab(aspect(x))⇒ flies(x)

To avoid claiming that penguins fly, we say they are abnormal in aspect :

∀x . penguin(x)⇒ ab(aspect(x))

Pearl () notes that in nonmonotonic logic, rules ‘are usually interpreted as conver-

sational conventions, as opposed to descriptions of empirical reality…’ We don’t, e.g.,

require any statistical information about how many birds actually fly.

would capture generalizations such as that ‘Most (pet) dogs are friendly’ with a

rule of the type ‘if x is a dog, you can conclude that x is friendly, unless you can prove oth-

erwise’. However, in general this is neither effective (as provability is undecidable even

in ) nor usable as a premise allowing us to infer, say, that many dogs are friendly

(given that there are very many dogs). Nor is it easily adaptable to other nonclassical

quantifiers, such as many or occasionally, e.g., in ‘Occasionally, a tree is struck by light-

ning in a thunderstorm’. Such quantified facts are important in language, commonsense

reasoning, and life – and they are the kind of knowledge sought in §..

Davidsonian Event Semantics A central issue in representing commonsense know-

ledge is the handling of events. Davidson () gave a treatment of action sentences

where the action verb has an event argument that is not explicit in language, e.g.,

Brutus killed Cæsar.

∃e . killed(Brutus, Cæsar, e)
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which can be read ‘ere is an event e such that e is the killing of Cæsar by Brutus’. is

analysis allows the explicit temporal relation of events as in Davidson’s example

Earwicker slept before Shem kicked Shaun.

∃e . slept(Earwicker, e) ∧

∃e . kicked(Shem, Shaun, e) ∧ before(e, e)

A limitation of Davidson’s method of attaching event variables to atomic predicates is

that it cannot represent sentences that describe events with quantifiers or negation, e.g.,

‘Napoleon did not greet every general. is disappointed them.’

Hobbsian Logic Hobbs () proposed a first-order, non-intensional logic where an

English sentence is reduced to a conjunction of atomic predicates, and all variables are

existentially quantified with the widest possible scope. He follows Davidson in giving

predicates an extra event argument, but doesn’t limit this to action predicates. To allow

an event argument for a standard eventless predicate, Hobbs also introduced the nomin-

alization operator ′:

∀x, . . . , xn . p(x, . . . , xn) ≡ ∃e . Rexist(e) ∧ p′(e, x, . . . , xn)

e Rexist predicate indicates that an eventuality exists not just in the Platonic universe

of possible individuals but also in reality. For instance,

Brutus kills Cæsar.

kill(Brutus, Cæsar)

Rexist(E) ∧ kill′(E, Brutus, Cæsar)

Brutus wants to kill Cæsar.

Rexist(E) ∧ want′(E, Brutus, E) ∧ kill′(E, Brutus, Cæsar)

 He writes, ‘Much of the complexity of English syntax, e.g., the division of predicates into nouns, adjectives,

verbs, adverbs, and prepositions reflects a conceptual scheme that is better captured in the axioms than in

the syntax of our formal language…Morphemes introduce predications, and that’s all.’ (Hobbs, )
 Although so-called, it is not really an operator; there are simply two parallel sets of systematically named

predicates (Hobbs, ).
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e second example does not assert that the wanted event (E) actually exists, only the

event of wanting it (E).

For Hobbs, there is no need for functions, predicate modifiers, nested quantifiers,

disjunctions, negations, or modal/intensional operators. Instead, he relies on the nom-

inalization operator and predicates applied to events, with quantified statements (e.g.,

‘Most men work’) taken as claims about typical elements of sets.

Neo-Davidsonian Event Semantics e Davidsonian representation was updated by

Parsons () using semantic roles associatedwith event variables to specify the various

participants and properties of an event. ere’s no consensus in the choice of general

semantic roles, but a possible neo-Davidsonian treatment is:

Brutus stabbed Cæsar with a knife.

∃e . stabbing(e) ∧ before(e, Now) ∧ agent(e, Brutus) ∧ patient(e, Cæsar) ∧

instrument(e, Brutus’s-knife)

e slot-like use of thematic roles makes neo-Davidsonian representations compatible

with frame-based knowledge, discussed later in this section.

Reichenbach Reichenbach () proposed an analysis of sentences and events that

anticipated the later work of situationists like Barwise and Perry. For Reichenbach, func-

tions took physical objects and space-time locations as arguments. He introduced the

[]∗ function to map sentences to such functions, e.g.,

Sherlock met Moriarty at Reichenbach Falls on Tuesday at noon.

(∃v)[meet(Sherlock, Moriarty, Reichenbach-Falls, Tuesday-:)]∗(v)

ismeans that the sentence ‘Sherlock…’ describes the fact v (where facts and events are

conflated). While Davidson’s account was limited to action sentences, Reichenbach’s is

general; his fact function can take compound sentences with quantifiers.

 Sorry.
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Situation Semantics To account for sentences about perception and attitudes, Barwise

& Perry () suggested that sentences refer not to truth values but to situations. ey

took meaning to be a relation between the situation in which a sentence is uttered, a

connective situation, and a described situation. is approach was broadly influential

but later foundered on issues such as the representation of negation.

Frames, Scripts, and Microtheories Work in artificial intelligence has involved the ex-

ploration of representations that provide unified bundles of knowledge rather than col-

lections of knowledge fragments. Notably, Minsky () introduced frames – data struc-

tures for representing stereotyped situations, including both knowledge and procedural

information. Frames are hierarchical – inheriting properties from those that subsume

them– and are intended tomodel expectations through the use of default assignments of

the frame’s terminals (slots). A frame-system could be used to represent actions or cause–

effect relations by including different frames that share the same terminals. Frames have

the advantage of coherently collecting knowledge about an entity and its attributes, parts,

or participants.

Schank () agreed that ‘In order to build a real [natural language] understanding

system it will be necessary to organize the knowledge that facilitates understanding. We

view the process of understanding as the fitting in of new information into a previously

organized view of the world.’ Taking frames as a more general class of representations,

he argued for the necessity of script and plan knowledge for understanding stories and

actions respectively. Schank defined a script as a predetermined causal chain describing

the normal sequence of things for a familiar situation (e.g., eating at a restaurant), from a

particular perspective (e.g., that of a customer, a waiter, or a maître d’). ese scripts can

include essential parts and also alternatives. Plans are not fixed, allowing us to deal with

new situations based on our goals and knowledge of the preconditions and effects of ac-

tions. More recently, the Cyc project (Lenat, ) has organized its knowledge base into

explicit, hierarchical contexts in which the knowledge applies, including situations (e.g.,
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a wedding, an office environment, shopping at a supermarket) reminiscent of Schankian

scripts. (For more on Cyc, see §..)

Organizing knowledge into coherent representations of common situations or se-

quences of actions and events is beyond the scope of this thesis. However, some of this

knowledge is implicit in the knowledge learned about properties of classes and their

generalizations and in extractions giving possible outcomes of actions, which can be

chained. Future work can use clustering techniques to do so automatically along the

lines of Chambers & Jurafsky (), described in §..

. Episodic Logic

Episodic Logic (Schubert & Hwang, , ) is a situational logic designed to meet

the representational requirements of natural language understanding and commonsense

reasoning. Historically, Episodic Logic () is a continuation of the work of Schubert

& Pelletier () to give a first-order logical form for English, inspired by Montague

grammar. As  will be used as the knowledge representation in the work that follows,

in this section I give an overview of its expressivity (with reference to the work discussed

in the previous section) and demonstrate notation.

In Episodic Logic, square brackets signify infix notation, used for most predication,

e.g., [Cæsar born-in Subura]. Round brackets signify prefix notation, used, e.g., for func-

tions and modification: (father-of Cæsar), (angrily (kill Cæsar)). Every infix sentence

can be written equivalently in prefix notation. For instance, for a two-place predicate,

[B stab C] = [B (stab C)] = (stab C B) = ((stab C) B)

From Reichenbach and situation semantics, Episodic Logic adopts the use of sen-

tences to describe episodes, which are limited pieces of reality. While the situation cal-

culus of McCarthy & Hayes () reasons about snapshots of the universe, in  epis-

odes can be temporally extended while their spatial extent and factual content may give

them a more limited scope (Hwang & Schubert, ). Episodic variables are introduced





to make explicit the relationships among episodes – events, situations, circumstances,

eventualities – which, in text, are oen implicit and context-dependent. While David-

sonian episodic variables can only correspond to atomic formulas, in  episodes can

also involve quantification or negation, just as they do in English: ‘Cæsar greeted every

general. is [episode] made him tired.’

To say that a sentence characterizes an episode,  uses the **connective:

(∃e: [e before Now]

[(∀x: [x general.n]

[Cæsar.name greet.v x]) **e])

Here [x general.n] is a quantifier restrictor, which can be read ‘every general’. When the

scope of a quantifier is ambiguous, it can be written with angle brackets: [⟨an emperor.n⟩

greet.v ⟨every general.n⟩]. In linguistically derived knowledge, syntactic suffixes are typ-

ically used, as above, though  does not require it.

A sentence characterizes an episode if it completely describes it, giving all the facts

that are supported by it.  also includes the weaker *, which connects a sentence to an

episode it partially describes, i.e., one inwhich it is true. Any sentence that characterizes

an episode necessarily also partially describes it. Note that episodes are distinct from

actions (or activities), which specify an agent. e sentences

Brutus killed Cæsar (viciously).

Cæsar died (nobly).

can describe the same episode, but they describe different actions,which can be distinctly

modified. us in  an action is a pair of the agent x and the episode e, [x ∣ e]:

(∃e [[[Brutus.name ∣ e] (in-manner vicious.a)] ∧

[[Cæsar.name ∣ e] (in-manner noble.a)]])

 us it is similar to Reichenbach’s [φ]∗(e) or Barwise’s e ⊧ φ.
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Episodic Logic also allows for the reification (i.e., nominalizing) of sentences and

predicates, as in

Cæsar believes that Brutus is loyal.

[Cæsar.name believe.v (that [Brutus.name loyal.a])]

Blood is red.

[(k blood.n) red.a]

Here k is the kind-forming operator for nominals. Aer Carlson (), mass or abstract

nominals and bare plurals in English are understood to refer to kinds. ere is also ke

to form kinds of events and ka to form kinds of actions. Schubert & Hwang () give

the examples:

For Mary to dance was rare.

[(ke [Mary dance]) rare]

To kiss Mary is fun.

[(ka (kiss Mary)) fun]

Another feature of Episodic Logic is the modification of predicates and sentences, e.g.,

Canada is very distant from Australia.

[Canada.name (very λx [x distant-from.a Australia.name])]

where very is a predicate modifier – a function that takes a predicate as its argument

and returns a more restricted predicate. Other predicate modifiers can be formed using

adv-a, which takes a one-place predicate over actions (agent–episode pairs), and adv-m,

for manner adverbials:

[John.name ((adv-a (in-manner polite.a)) (greet.v Mary.name))]

[John.name ((adv-m sound.a) sleep.v)]

To form sentence-modifiers,  provides adv-e for temporal or locative modification of

an episode, and adv-f for a frequency-modifying adverbial:
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((adv-e (during.p _March_.name)) [Brutus.name kill.v Cæsar.name])

((adv-f regular) [Senate.name meet.v])

For the purposes of this thesis, a central feature of Episodic Logic is its support for

uncertainty and genericity, as in these sentences:

Cats meow.

A wolf is usually grey / Most wolves are grey.

If Allen wins an award, he will probably accept it.

Older work on , e.g., Schubert &Hwang () used a ‘parametermechanism’ inspired

by discourse representation theory () to allow episodes to persist between sentences,

resulting in probabilistic general claims of the form:

A wolf is usually grey / Most wolves are grey.

(∃x [x wolf.n])⇒ . [x grey.a]

Here the subscripted numbers are lower bounds on epistemic probabilities. Given the

knowledge [W wolf]., that paper’s Rule Instantiation inference rule would give the con-

clusion [W grey.a]..

In this work, such knowledge is treated either as the predication of a kind-level

property (like ‘extinct’) of a reified kind or as the quantified predication of an instance-

level property (like ‘grey’) over instances. is uses generalized quantifiers including all-

or-most, most, and many that have associated numeric weights to enable probabilistic

inference. (See §. for details.)

In summary, Episodic Logic is designed to echo the expressive devices found in all

human languages, includingmodification, reification, and vague generalized quantifiers.

e use of such a representation is in tune with recent trends in textual inference, such

as the growing use of Natural Logic (e.g., MacCartney & Manning, ) or of logical

forms that are essentially parse trees, perhaps with replacement of some subtrees by vari-

ables (Bar-Haim & Dagan, ). Indeed, the inference engine for , called Epilog, is
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based on NLog-like monotonicity and entailment principles, along with natural deduc-

tion rules that (unlike NLog) allow for inferences based on multiple premises, including

background world knowledge (see Schubert et al., ).

. Overview of theesis

In this thesis, I address the large-scale acquisition of world knowledge from text – learn-

ing by reading. Rather than seek a set of relations about specific individuals or target a

restricted class of general relations, we look for all world knowledge that can be learned

from a text. e result is a collection of symbolic logical formulas, which are automat-

ically verbalized into English, e.g., An article may be published on a website (Chapter ).

Using a variety of filtering techniques, we find that even ‘noisy’ text like that found on

the Web yields factoids that human judges rate comparably to those learned from edited,

informative sources like Wikipedia (Chapter ). As we ‘read’ more sentences – hundreds

of millions of them – the number of unique factoids grows logarithmically with the total

number of factoids extracted.

Yet even in Web-scale text, commonsense knowledge is rarely stated. Consistent

with Grice’s maxim of quantity (Grice, ), the more universally people know some-

thing, the less likely they are to communicate it. us we mine the knowledge that is

implicit in written language, abstracting from simple references (‘John’s brother’: Amale

may have a brother) and from full sentences (‘Germany elected a new president last year’:

A country may elect a president). Even so, it’s a concern that people tend to discuss the un-

usual or unexpected.is reporting bias (Chapter ) ismitigated by focusing on language

indicating disconfirmed expectations (§.): If we read that ‘the bomb was dropped but

didn’t explode’, we learn that – more usually – If a bomb is dropped, it may explode.

While knowledge-extraction systemshave learned quantificationally underspecified

logical forms or simpler outputs such as tuples of normalized strings, these are unsuit-

able for use in a general reasoning engine like Epilog. erefore, I create explicitly quan-

tified, partially disambiguated axioms (§.): While a factoid might claim that A person
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may have a head, this can be ‘sharpened’ to an axiom claiming Every person has a head

as a body part. A person may say something is sharpened to All or most persons at least

occasionally say something. is transformation depends on semantic categories (e.g.,

having a body part vs a possession), semantic properties of predicates (e.g., kind-level,

individual-level, and repeatable or non-repeatable stage-level), and corpus frequencies

(giving the strength of association between a subject and what’s predicated of it). In later

work (§.), I use textual patterns to learn the likely frequencies of regular, repeatable

actions, e.g., a person tends to sleep daily, but if they go to church they tend to do so

weekly.

Chapter  demonstrates inference with the resulting knowledge, with generalized

quantifiers like all-or-most giving probabilistic conclusions that are judged favorably

compared with pseudo-inference performed using unsharpened factoids or the results

of a recent information-extraction system. I close with a summary and some directions

for future study (Chapter ).

Work in knowledge extraction is intended to improve many applications, such as ma-

chine reading, question answering, and intelligent assistants. As a grand goal motivat-

ing this research, consider the creation of a broadly knowledgeable dialogue agent, as

described by Schubert (). Such a system would require a general representation lan-

guagewith the expressiveness of natural language, such as Episodic Logic (§.); a general

reasoner, such as Epilog (Schaeffer et al., ; Morbini & Schubert, ); a semantic

parser to generate appropriate logical representations of natural-language inputs; a dia-

logue manager; and – the focus of this dissertation – a large knowledge base of general

world knowledge to support the processes of language understanding and reasoning.

While such a system is a strong motivation for work in knowledge extraction, it is

not obvious that a dialogue agent, nor most of the other intended applications of com-

monsense knowledge, are necessarily goodmeans of evaluating the knowledge itself. Tra-

ditionally, evaluation of knowledge-extraction systems has involved the authors or other

experts rating a small sample of the output. In Appendix , I demonstrate the use of un-
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trained crowds to provide judgements that are well-correlated with those of experts.is

allows for larger-scale evaluation or a means of human-filtering to create a high-quality

‘core’ knowledge base in the future.

And while this work acquires large amounts of knowledge from mining real-world

text, existing semantic resources are also important as sources of commonsense know-

ledge. In Appendix , I show the creation of lexical axioms, e.g., Gold is a noble metal

or Every document is an amount of written material, derived from WordNet’s hypernym

hierarchy. is work is based on the automated annotation of nominal word senses with

relevant semantic properties, most crucially the mass–count distinction. e resulting

axioms allow inference using knowledge stored at different levels of specificity.
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 Knowledge Acquisition

We can only speculate that we are drawing on some basic human instinct to

pass on our commonsense to our progeny.

 , ‘ePublicAcquisition ofCommonsenseKnowledge’, 

ere is a diversity of goals in knowledge acquisition, ranging from work finding unin-

terpreted text strings that may satisfy a specific relation (e.g., hyponymy, paraphrase)

to open-ended logical interpretation. Consequently, the approaches to acquiring know-

ledge also vary considerably. Although this survey is far from comprehensive, I describe

several representative and interesting approaches before proceeding.

. Knowledge Engineering

e most direct approach to acquiring the knowledge needed for reasoning is for re-

searchers to write it down in the form they require. is work shares its approach with

the traditional construction of resources for human use, such as dictionary and encyc-

lopedia writing. It is distinguished from these endeavours both by its intended use and

by its format; the knowledge in an encyclopedia or dictionary is encoded in natural lan-

guage for use by people, while knowledge engineering produces resources in a directly

machine-readable format.

Knowledge engineering () guarantees high-quality results, but it is prohibitively

slow and expensive. However, manual knowledge-engineering can be the best approach

when knowledge is needed for a small domain or when there are inadequate resources





from which to learn. In many situations,  can be supplemented with automatic ex-

traction. Even when the need for accuracy is paramount, it may be more efficient to use

a hybrid approach combining automatic extraction with manual verification or correc-

tion.

WordNet WordNet (Fellbaum, ) is a lexical-semantic database, which enumerates

senses of nouns, verbs, adjectives, and adverbs, and organizes them into sets of synonyms

(synsets) representing concepts. e synsets are linked by relations includingmeronymy

(part-of) and hypernymy (is-a). WordNet’s nominal hypernym hierarchy is oen used

for natural language understanding tasks or treated as an ontology for reasoning. I re-

port problems of WordNet’s knowledge for reasoning – and my solution to these – in

Appendix . WordNet synsets also include dictionary-style definitional glosses and ex-

amples which have been the target for work on acquiring formal lexical knowledge (e.g.,

Clark et al., b).

 Suchanek et al. () created , a manually constructed ontology augmen-

ted with factual extractions connecting entities. From Wikipedia’s division of articles

into categories such as ‘ deaths’ or ‘Nobel laureates in Physics’, the authors extracted

instances of  predefined relations, e.g., AlbertEinstein hasWonPrize NobelPrize. is

resulted in over five million such facts, expressed in a variant of the Web Ontology Lan-

guage (). By focusing on the manually contributed knowledge expressed in Wiki-

pedia’s non-textual content, they avoid the difficulties of language understanding and

favor precision over greater coverage. e authors estimate the contents of  are 

percent accurate.

FrameNet e FrameNet project (Fillmore & Baker, ) seeks to build a database of

hundreds of frames (§.) with example sentences that support the analyses. FrameNet

enumerates as frame elements common aspects or components of a frame, e.g., for the

Revenge frame, these include the Offender, InjuredParty, Avenger, Offense, and Punish-
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ment. It also includes a list of words that evoke the frame, e.g., avenge, get even (with),

reprisal, revenge, vindictive, quid pro quo, etc.Annotations of example sentences that use

these trigger words show how the frame elements can be presented linguistically. Note

that the individual words that evoke a frame can differ significantly in meaning, as for

the Change of Phase frame, which includes freeze and defrost – these can be thought of

as invoking their own frames that inherit fromChange of Phase but with different before

and aer states. FrameNet has not included knowledge about negation or quantification.

Component Library To enable domain experts to build knowledge basesmore quickly,

Barker et al. () created a hierarchy of manually constructed components – frame-

like representations of common entities and events, with events including actions and

the (relatively) static states produced by them. ese basic components contain axioms

describing how they interact with other components, allowing them to be composed

into new concepts.eComponent Library includes knowledge about the preconditions

and postconditions of actions, such as that before an enter action, the object is in a state

of being outside of an enclosure while aer the enter it is in a state of being inside the

enclosure, and that if the portal the object is passing through has a covering (e.g., a door),

it must be open. Unfortunately, the frame-based knowledge representation used in this

project is not language-like.

CommonsensePsychologicalAxioms Hobbs&Gordon () presentedwork towrite

a collection of axioms about they way people ‘think that they think’ about beliefs, plans,

goal, etc. in Hobbs’s flat  representation (described in §.). is work is a promising

attempt to enumerate some of the most basic knowledge needed for reasoning that may

largely lie outside the scope of what we can hope to learn from text.

Cyc e Cyc project (Lenat, ) is the largest knowledge-engineering effort designed

to support artificial intelligence. Cyc was motivated as an effort to ‘prime the pump’ of

automatic knowledge extraction – and  generally – through the manual enumeration
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of a million logical axioms by dozens of professional knowledge engineers. (As Curtis

et al. () report, Cyc’s  contains more than five million assertions.) From the per-

spective of this dissertation, Cyc is most interesting in its encoding of commonsense

knowledge, including that You have to be awake to eat, You can usually see people’s noses,

but not their hearts, and You cannot remember events that have not happened yet (ex-

amples due to Lenat, ).

Matuszek et al. () describe Cyc’s knowledge base as dividing into an upper onto-

logy for knowledge aboutmathematics andmeta-knowledge about the classes that organ-

ize the lower levels, a middle ontology that stores general world knowledge, and a lower

ontology that stores facts about particular instances, such as the names of politicians

and the locations of events. While Cyc is the most prominent example of knowledge-

engineering, its lower ontology has been expanded with the use of automatic knowledge

extraction, as by Matuszek et al. ().

Cyc is notable for being logically precise about matters that can be very ambiguous

in natural language. E.g., CycL (Matuszek et al., ) includes notation to handle the

use–mention. For a standard predicate likeDog, Dogdenotes the term ‘dog’.is allows

the natural expression of knowledge about the words used as predicates, such as when

a term was coined. Another common ambiguity is that between (the abstract idea of)

an authored work and the specific instantiations of it. E.g., I might ask ‘Have you read

Invisible Cities?’ referring only to the text, but I can also say ‘Invisible Cities is in the

living room’, referring to a particular physical copy. (A similar distinction applies to a

play’s text and its performances.) In Cyc, PropositionalConceptualWork denotes the class

of abstract works that convey propositional content, whereas InformationBearinging

represents the collection of objects and events that might carry this information. is

gives us separate predicates, Book-CW for a book as a conceptual work and BookCopy

for the physical instantiation (Curtis et al., ).

While Cyc knowledge bases have been used, e.g., in the work of Forbus et al. ()

toward learning-by-reading, they have not seenwide deployment in  applications.is
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is attributable in part to a general resistance to logical forms in contemporary  research.

E.g., Havasi et al. () write, ‘To use Cyc for natural language tasks, one must translate

text into CycL through a complex and difficult process, as natural language is ambigu-

ous while CycL is logical and unambiguous.’ In particular, Cyc’s representational com-

mitments mean it is not easily integrated with linguistically derived knowledge: Cyc col-

lapses complex English constructions into atomic logical concepts, so, e.g., the relation

between killing and dying is expressed using lastSubEvents, KillingByOrganism-Unique,

and Dying and requires the higher-order relation relationAllExists.

. Crowdsourced Knowledge Engineering

e Internet has facilitated the distributed construction of knowledge resources – most

notably the user-created encyclopedia Wikipedia. Researchers have also attempted to

acquire knowledge for machine use by forms of crowdsourcing – replacing professional

knowledge engineers with large numbers of non-expert participants coordinated online.

As Singh () wrote, ‘Every ordinary person has the common sense we want to give

our machines’, so why not ask them for it?

Open Mind and ConceptNet While knowledge engineers produce formal representa-

tions, crowdsourcedworkers are generally not capable orwilling to do so. As such, efforts

like the Open Mind Common Sense project (Singh, ) solicit knowledge in natural

language. e project’s response to this limitation has been, first, to argue for natural lan-

guage as an appropriate knowledge representation for reasoning (as discussed in §.)

and, second, to process the natural language responses they solicit into a new represent-

ation, ConceptNet.

ConceptNet (Singh, ; Liu & Singh, ; Havasi et al., ) is a semantic net-

work joining concept nodes by a small set of predefined relations, including temporal,

 Example from Schubert ().
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spatial, and causal ones. It is automatically constructed from the semi-structured sen-

tences in the Open Mind Common Sense corpus by applying a set of rules that identify

short English fragments for predicate relations and arguments. Open Mind has also so-

licited knowledge from users with activities that use template-based input. By asking

users to enter knowledge into narrow fields, they focus contributions on the relations

the researchers are interested in, e.g.,

A hammer is for .

e effect of eating a sandwich is .

e text fragments are turned into nodes by filtering punctuation, stop-words, stop-

parts-of-speech, stemming, and then alphabetizing the results. is kind of normaliza-

tion collapses text fragments with similar meanings, though it does so at the expense

of merging some distinct concepts, e.g., ‘tap water’ and ‘water tap’. Havasi et al. ()

consider this the appropriate granularity for reasoning with language, even when it col-

lapses phrases ‘that are only related by accidents of orthography’. ConceptNet’s nodes

tend to represent verbs only in complete verb phrases like ‘go to the store’ rather than

the bare verb ‘go’. E.g., in ConceptNet,

You may be hurt if you get into an accident.

EffectOf(‘get into accident’, ‘be hurt’)

ese effect relations can be chained to give significantly underspecified script-like know-

ledge. Liu & Singh () give a possible chain connecting two verbal nodes in Concept-

Net:

‘buy food’⇒ ‘have food’⇒ ‘eat food’⇒ ‘feel full’⇒ ‘feel sleepy’⇒ ‘fall asleep’

e Open Mind website also allows participation in the filtering of knowledge by

asking users to rate whether previous statements on a given topic are ‘helpful, correct

 Example due to James Allen.





knowledge’ (Havasi et al., ). Chklovski () also allowed the Open Mind website

to fill in missing but supposed knowledge by asking users to verify analogous claims.

For instance, knowing that newspapers and books share properties such as have pages, if

it is told that a book may be burned, it will ask a user whether a newspaper can also be

burned.

e statements contributed toOpenMind vary significantly in quality, and the user

ratings are an unreliable indicator of which statements contain accurate world know-

ledge. For instance, users sometimes seem to rate a statement based on whether they

agree with its sentiment rather than whether it is appropriate world knowledge, giving

A friend in need is a friend indeed the rather high score of . e users contributing

knowledge can also be imprecise about problems like the strength of assertions, as in

Sometimes having a haircut causes you to have shorter hair, which has a score of . While

this is true, a haircut always results in shorter hair.

Verbosity Another effort with an interesting approach to motivating contributions is

Verbosity, ‘a fun game with the property that common-sense facts are collected as a side

effect of game play’ (von Ahn et al., ). Players are asked to fill in templates such as

‘ is a kind of ’ or ‘ is typically near ’, with game play consisting of one player

trying to guess a word based on the information entered into these templates. Given the

secret word ‘computer’, a player might fill in a template to tell the one who’s guessing that

‘It contains a keyboard’. While it is not clear that all or even most knowledge acquisition

tasks can be readily turned into games with a purpose, when they can it provides a non-

monetary incentive for participation.

 e example is from a snapshot released in June . ere is no fixed range for Open Mind ratings as

they consist of adding  whenever a statement is rated up and subtracting  whenever a statement is rated

down. us a rating of  might indicate a sentence that has never been rated or one that is controversial

and has been rated up and down many times.
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. Automatic Knowledge Extraction

Information extraction is an area of research that has seen considerable interest in recent

years, due to the proliferation of information available in digital form and the demands

of applications such as question-answering systems, which exceed the practical limits

of manual enumeration. Information extraction focuses on the study of algorithms for

automatically acquiring large collections of information with high accuracy. is can be

augmented with a ‘human in the loop’ to maintain some of the benefits of knowledge en-

gineering or crowdsourcing but on a larger scale and with a more systematic connection

to natural language (see, e.g., Hoffman et al., , and Appendix ).

While the goal of this thesis – the acquisition of commonsense knowledge suitable

for reasoning – falls under the heading of information extraction, that term ismost oen

applied to research that focuses on fact extraction. is is the problem of looking for

information about specific individuals and events, such asAlanTuring died in  ore

capital of Bahrain is Manama. I contrast this with the problem of knowledge extraction,

which seeks to acquire more general claims. is will include some knowledge about

specific individuals, but of a more general sort, e.g.,eUnited States Congress may pass

a law or that e Earth orbits the Sun. While fact extraction is immediately useful for

problems like basic question answering, we consider knowledge extraction necessary

for artificial intelligence.

ReadingDictionaries It is natural to consider learning by reading intentionally inform-

ative sources, and much early work looked at the (partial) interpretation of dictionary

definitions (surveyed by Ide & Véronis, ). However, dictionaries are resources for

people who already have commonsense knowledge and are expected to consult defin-

itions either for more obscure words/concepts or to obtain a technical definition of

a concept they’re already familiar with. As such, work in learning from dictionaries

suffered from many problems, including circular definitions or larger conceptual loops

and difficult, obtuse descriptions of common concepts. E.g., the  (Simpson, )
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defines the most common sense of ‘house’ as ‘A building for human habitation, typically

and historically one that is the ordinary place of residence of a family’. Most knowledge-

extraction tools would have more success with the simple claim that ‘A house is a build-

ing that a person lives in’ or ‘People live in houses’.

Hypernym Relations Hearst () presented a method of template-driven extraction

for the automatic extraction of hypernymy (or is-a) relations from text. As in WordNet,

this relation holds between two terms a and b when English speakers accept sentences

such as ‘An a is a (kind of) b’. For instance, ‘cat’ is a hyponym of ‘animal’ and ‘animal’ is

a hypernym of ‘cat’. Hearst manually authored templates to match the expression of this

relation in text, in constructions like ‘such b as a’. (Laterwork, e.g., Pantel&Pennacchiotti

(), has learned these templates based on a number of seed examples.)

Examining the results of this extraction method, Hearst identified issues that ap-

pear inmost work on knowledge extraction, including this dissertation: Knowledgemay

be found at an inappropriate level of specificity (in this case, the hyponym might be

matched with a hypernym that is too high in the hierarchy). In other cases, matches may

be dependent on textual context or a particular point of view rather than generally true.

Causal Extraction Girju () presentedwork on extracting from text causal relations

like Earthquakes cause tidal waves. She focused on event nominalizations linked in the

general form ‘ causal-verb ’, where the causal verb can be a phrase like ‘set in mo-

tion’, and the nominal arguments are restricted to those in ‘causation classes’ identified

in WordNet so that, e.g., ‘the trail leads to…’ does not generate a claim about a trail caus-

ing something. Causal knowledge is a central part of our commonsense understanding

of the world, and the work presented in Chapter  acquires causal knowledge as part of

a more general knowledge extraction process.

Verb–Verb Relations Chklovski & Pantel () used Hearst-like manual lexico-syn-

tactic patterns, sent to an Internet search engine, to find possible relations between verbs,
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e.g., ‘buy’ may happen-before ‘sell’, and ‘fight’ may enable ‘win’. One pattern given for

finding enablement relations is ‘x-ed * by y-ing the’, whichmight be instantiated ‘obtained

money by borrowing from…’ or ‘fixed the computer by plugging the…’ ey used the

resulting co-occurrence counts to measure mutual information between pairs of verbs,

and hence to assess the strengths of the relations. As with the chains of ConceptNet

nodes, these results are underspecified with respect to any arguments. It’s inadequate for

inference to know that Crashes cause injuries without knowing what might be crashing –

e.g., cars, computers, stocks – and who or what it is that might be injured as a result.

Event Chains From news text, Chambers & Jurafsky () induced narrative event

chains. ese similar to Schankian scripts, consisting of a partially ordered sets of events

(predicate–argument pairs) involving a particular individual. Aer parsing and resolv-

ing coreference for a text, they count pairs of verbs that share coreferencing arguments

and compute the pointwisemutual information () between the verb–argument pairs.

Narrative event chains are created by clustering events’ slots using their  scores and

classifying events temporally.While their approach is similar to that of Chklovski & Pan-

tel () in using a distributional scoringmetric, it differs in using references to a single

protagonist as its indicator of relatedness.

Chambers & Jurafsky () extended this work to learn narrative schemas, where

semantic roles are found for the participants in these events, e.g., arrested(Police, Suspect),

with Police defined over specific words like {police, agent, authorities}.eymerge verbs

in distinct narrative chains into a single narrative schema, with the shared arguments

across verbs allowing them to induce semantic roles. (is later work did not include

decisions about the temporal ordering of events.)

Distributional Learning of Rules Zelig Harris’s distributional hypothesis (Harris, )

states that words that occur in similar contexts have similar meanings. is idea was

adapted by Lin & Pantel () to sentence fragments as the extended distributional hy-

pothesis, based on which, they:
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 Gather a large collection of dependency parses of sentences.

 Identify the basic noun phrases in each sentence.

 Collect all paths that connect similar nouns.

is gives an unsupervised method to learn from text semantically similar ideas, in-

cluding rough paraphrases, entailments, and associated possibilities.e result, ,

includes approximately  million rules (with associated confidence values). Szpektor

et al. () give examples of ’s templates, with manual classification of incorrect

rules and the entailment direction for correct rules:

Correct Incorrect

x change y↔ x modify y x change y ≈ x adopt y

x change y← x amend y x change y ≈ x create y

x change y← x revise y x change y ≈ x stick to y

While it has largely been assumed that work like  will learn paraphrases, Szpektor

et al. found that it mostly learned one-directional entailment rules.

Pantel et al. () learned ‘inferential selectional preferences’ (s) that constrain

the arguments of  inference rules to avoid certain implausible conclusions.However,

these can still be too general. Clark&Harrison (a) gives the example rule ‘If x shoots

y then x injures y’, which includes artifact as a preference for y. is allows a system to

conclude that ‘Fred shoots the gun’ implies that ‘Fred injures the gun’.

eKnowItAll Project KnowItAll (Etzioni et al., ) is a system for domain-independent

information extraction. To learn instances of a new property, the developer gives the sys-

tem a set of examples, which it sends as queries to Internet search engines. From these

results, it learns the frequency with which the property is expressed via generic Hearst

 In that paper, Clark & Harrison blocked s that were not supported by the extractions from their Knext-

inspired  tool. is resulted in an improvement at the use of such rules for recognizing textual en-

tailment.
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patterns including ‘ {,} such as ist’ and ‘ is a ’. A naïve Bayes classifier is

trained to judge whether new terms satisfy the property. KnowItAll then sends its stored

contexts as queries in order to classify the terms that fill particular contextual slots in the

returned queries.

is was succeeded by TextRunner (Banko et al., ), which makes a single pass

over a text corpus, extracting all relational tuples it finds, allowing it to avoid KnowIt-

All’s dependence on manually selected relations with examples. As its creators consider

syntactic parsing too slow for a scalable tool, TextRunner only tags words with their part

of speech and identifies noun phrases with an  chunker. It then forms a tuple for each

pair of nearby s, with the intervening text identifying the relation. As a step toward ab-

straction, TextRunner drops adverbial and prepositional modifiers. e resulting tuples

include the same knowledge with various numbers of arguments, e.g., Van Durme &

Schubert () give the example

(the people, use, force)

(the people, use, force, to impose, a government)

(the people, use, force, to impose, a government, on, an economic base)

While TextRunner is primarily a fact extraction tool, this example shows that it can also

identify some kinds of general world knowledge when explicitly stated.

TextRunner uses a Bayesian classifier trained on a small parsed corpus to label ex-

tractions as trustworthy or not, and a redundancy-based assessor assigns a probability

to each of the trustworthy tuples based on a probabilistic model of redundancy in text. It

does not attempt to convert the resulting tuples into a more formal representation. For

the knowledge extraction community, TextRunner was most significant in introducing

an emphasis on scaling extraction to run on large collections of text, as found on the

Web.

While TextRunner collects tuples of information stated explicitly in text, Sherlock

(Schoenmackers et al., ) inferred first-order Horn-clause rules implicit in these res-

ults, e.g.,
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IsHeadquarteredIn(Company, State)⇐ IsBasedIn(Company, City) ∧ IsLo-

catedIn(City, State)

*ReturnTo(Writer, Place)⇐ BornIn(Writer, City) ∧ CapitalOf(City, Place)

e second rule is unsound. A limitation of this approach is that, operating on the ex-

tractions of a factual  system, they only learn rules involving the relations it discovers,

which tend to be about simple attributes like locations or roles rather than consequences

or reasons.

Fader et al. () attacked the problem of incoherent and uninformative TextRun-

ner extractions by introducing syntactic and lexical constraints at the expense of limiting

output to binary relations expressed by verbs. (e possible use of these results for infer-

ence is evaluated in §.. as a baseline for the results of this dissertation.) KrakeN (Ak-

bik & Löser, ) is designed to surpass ReVerb by extracting relations with more than

two arguments. For instance, from the sentence ‘Elvis moved to Memphis in ’, Re-

Verb learns only MovedTo(Elvis,Memphis), while KrakeN would capture the temporal

argument as well. KrakeN has a lower extraction rate than ReVerb, but its output was

evaluated as higher precision, and more extractions were rated as ‘complete’, i.e., having

all necessary arguments.

Banko & Etzioni () considered the problem of building a ‘lifelong learning

agent’, Alice, that takes the output of TextRunner and creates domain theories to more

compactly represent related knowledge, e.g.,

Instance: Orange is an instance of Fruit

Attribute/relation: Fruit is something that Grows

Relationship: GrowIn(Fruit, Location)

General proposition: Provide(Fruit, Vitamin)

ese domain theories are updated with prior learned knowledge guiding the system’s

decision about what to try to learn next. General propositions are found by a process of

abstraction, with the proposition above being deduced from the tuples
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(oranges, provide, vitamin c)

(bananas, provide, a source of B vitamins)

(an avocado, provides, niacin)

is abstraction presents the problem of ensuring that a general proposition is of the

appropriate level of generality, covering all the related instances but not overgeneraliz-

ing. Should fruit provide vitamin or substance? ey try to find the lowest point in their

concept hierarchy that describes a relation, relying on a clustering approach.

 Carlson et al. () presented work on an agent that improves its ability to learn

category instances, e.g., London is a city, and pre-specified semantic relations, e.g., hasOf-

ficeIn(, London), from free-form text and from semi-structured data such as tables

or lists.  begins with – labeled seed instances for each of its categories and five

initial Hearst patterns. It trains a model and then uses that model to label more data –

semi-supervised bootstrap learning. While the varieties of knowledge learned by 

are found by previous systems with high accuracy, its emphasis on bootstrapping is an

important direction for future work in knowledge extraction.

Forbus On the other side of the breadth–depth divide is thework ofKen Forbus and his

group on learning by reading. e Learning Reader system (Forbus et al., ) extracts

knowledge from short stories written in simplified English. It uses a Direct Memory

Access Parsing () model of natural-language understanding as the recognition of

concepts based on the phrasal patterns of their expression in text – in this case using

mappings from , phrasal patterns to Cyc concepts. Learning Reader includes a

model of rumination – asking itself questions in order to assimilate new knowledge, e.g.,

for each event trying to answer the standard ‘who’, ‘what’, ‘when’, ‘where’, and ‘why’ ques-

tions. In an experiment, this was found to boost the system’s ability to answer questions,

increasing coverage from  to  with only a small drop in accuracy.
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. Episodic Logic Interpretation and Abstraction

Previous work is unsatisfactory in several ways, including:

 Many information-extraction efforts only look for a small set of predefined rela-

tions.

 Statistical or pattern-matching techniques oen require great redundancy of in-

formation. Even on the vastness of the Web, important commonsense knowledge

may be stated quite rarely. In fact, the more basic the knowledge, the less likely it is

to be mentioned. (See Chapter .)

 Systems produce simple representations such as tuples of text strings or binary re-

lations between concepts, which cannot represent the variety of knowledge people

know, and are unsuitable for drawing conclusions by inference.

Machines meant for interacting with people using natural language require the abil-

ity to represent and to reason with the full range of complex phenomena seen in natural

language. As presented in § ., Episodic Logic is designed to support these linguistic

phenomena, both as a knowledge representation and as a semantic representation. In

this section, I present a synopsis of previous work in the interpretation of the explicit

content of natural language into Episodic Logic and its abstraction to form collections

of world knowledge.

EarlyEpisodic Logic Interpretation InMontague grammar (omason, ), for every

syntactic composition there is an analogous rule of semantic composition. Inspired by

this idea, Schubert & Pelletier () presented the use of semantic interpretation rules

to generate immediate logical forms – representations that do not attempt to capture the

full meaning of an utterance but permit ambiguity in quantifier scope, the identity of ref-

erents, the sense of predicates, etc.e determination of a ‘deeper’ logical representation

is described as a later, pragmatic stage of interpretation. For instance,

 Corresponding, roughly, with what I call initial logical forms in this dissertation.





All men are mortal.

[⟨all man⟩mortal]

(∀x: [x human] [x mortal])

Note that in the final stage ‘man’ has been disambiguated to the sense ‘human’ rather

than ‘adultmale’. For Episodic Logic, the follow-up to the representationused by Schubert

& Pelletier, Schubert & Hwang () presented a more complete description of the gen-

eration of sentential logical forms from English.

Knext Schubert () presented the approach of looking beneath the explicit asser-

tional content of text to find knowledge about what relationships and properties are pos-

sible in the world. He gives the example that reading ‘He entered the house through

its open door’ suggests that a person – or, at least, a male – may enter a house, a house

may have a door, and a door can be open. Knext is an implementation of this extraction

based on the compositional semantic analysis of text, i.e., aMontague grammar–inspired

semantics along the lines of Schubert & Hwang ().

e stages of Knext extraction are:

 Preprocess text, including removing formatting, marking sentence boundaries, and

splitting corpora for parallel processing.

 Parse each sentence with a Treebank-trained statistical parser, e.g., that of Collins

() or Charniak ().

 Adjust the phrase structure for interpretation, e.g., particularizing  to -, -

-, etc. and replacing  with - or -. Additional syntactic pro-

cessing includes correcting systematic phrase attachment errors, assimilating verb

particles into the verb, etc.

 e name is a loose acronym for Knowledge extraction from text and is pronounced either [nɛkst] or

[kenɛkst].
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 Compute logical forms by applying approximately  interpretative rules – regular

phrase patterns paired with semantic forms – to compute initial logical forms for

the sentence and its constituents in a bottom-up sweep.

 Extract and abstract propositions: Collect phrasal logical forms thatmay yield stand-

alone propositions. e abstraction drops modifiers that are present in the logical

forms for lower levels (e.g., adjectival premodifiers of nominals) when constructing

s for higher levels. Named entities are abstracted as noted below.

 Verbalize: Render the propositions into approximate English.

To abstract to knowledge about classes, Knext uses hand-built gazetteers – lists of

instances for classes such as country, scientist, or male person – as well as a function to

guess the type of a named entity based on patterns such as Duchess * ⇒noblewoman

and * Co. ⇒company. Factoids produced in this way include A philosopher may have

a conviction, A person may say something to a group, and even epistemic claims like A

person may understand an allure of a part of a book. e evaluation of Knext extractions

is discussed in the following chapter in the context of expanding the selection of textual

sources for knowledge extraction.

As a first attempt at producing conditional knowledge for inference from Knext

extractions, Van Durme et al. () looked at abstracting the possible arguments of a

verbal predicate. E.g., given a variety of factoids about things that have wings – eagles,

pigeons, planes, hospitals, etc. – we want to conclude thatMost things that have wings are

birds, planes, or buildings. ese generalizations were made by abstracting up the Word-

Net nominal hierarchy to find the most specific synsets that cover most arguments. is

was done without reference to the frequency with which a factoid is learned, in recog-

nition of the problem of reporting bias (discussed in Chapter ). However, no logical

forms were generated by this initial study, and the feasibility of this abstraction for a

large knowledge base is doubtful without further work: Given a full-size Knext  of

tens of millions of factoids, it is prohibitively expensive to find covering hypernyms for
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every set of factoids, especially when ambiguous predicates like ‘have’ may take many

thousands of distinct arguments.

. Chapter Summary

is chapter has given a selective overview of approaches to knowledge acquisition for ar-

tificial intelligence. ese include the traditional, manual approach of knowledge engin-

eering, crowdsourced approaches that scale knowledge acquisition from small groups

of experts to large numbers of people contributing online, and automated approaches

that exploit the availability of text in electronic form. e latter includes work to learn

specific relations, arbitrary relations expressed explicitly, and – in the case of Knext –

implicit knowledge about what is assumed to be possible in the world. e next chapter

investigates the question of what text is suitable for learning general world knowledge

with such a tool.
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 Text Sources

Rosencrantz: What are you playing at?

Guildenstern: Words, words. ey’re all we have to go on.

 , Rosencrantz and Guildenstern are Dead, 

. Introduction

Knowledge extraction efforts have oenused corpora of heavily editedwriting and sources

written to provide the desired knowledge (e.g., newspapers or textbooks). However, the

ease of publishing online has created an instantly-available, up-to-date, and increasingly

comprehensive store of human knowledge, opinion, and experience.ese same features

that attract human readership also motivate the use of Web text for automated know-

ledge extraction.

Traditional corporawill usually possess domain biases that are undesirable for know-

ledge extraction: Project Gutenberg’s collection of public-domain books may contain

little knowledge about cellphones but plenty about telegrams; US newswire circa 

will have exhaustive knowledge about impeaching a president, but it probably has little

that can be learned about dreaming or owning a cat. Rather than construct ever-larger

balanced collections of text to use with knowledge-acquisition systems like Knext, we

are interested in discovering whether the vast amount of (oen) ungrammatically writ-

ten, unedited, unfocused writing that can be found on the Web can prove an adequate

substitute for more formal text resources.
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e questions being considered are:

 Does the volume of extracted general factoids grow indefinitely as more and more

weblog sentences are processed (up to hundreds of millions), and similarly as Wiki-

pedia sentences are processed?

 To what extent do weblog-derived factoids cover Wikipedia-derived factoids and

vice versa?

 Does factoid quality depend significantly on the two types of sources?

 Can extraction quality be significantly improved using a collection of filtering tech-

niques, such as removal of factoids that fail logical-form parsing, violate verb arity

constraints, or contain many unlexicalized word stems?

We show that the answers to () and () are positive and the answers to () and () are

‘less than might be expected’.

.. Wikipedia

Wikipedia is perhaps the most interesting target for current knowledge-extraction ef-

forts, both because of the great diversity of topics it describes and because of its mix

of writing styles, ranging from high-profile articles with much-edited language to art-

icle stubs consisting of one person’s random scribblings, soon to be deleted. As such, it

represents a middle ground between the formality of many traditional corpora and the

free-for-all nature of weblogs.

Wikipedia articles arewritten for the express purpose of conveying accurate inform-

ation about the world, not opinions, anecdotes, etc.is might seem to make Wikipedia

the obvious best choice for knowledge extraction, but it is a resource for facts stated

explicitly while Knext targets the general world knowledge that is implicit in writing. If

weblogs (and similar unstructured, untargeted text, e.g., forum posts) can be of the same

utility, they would be a more attractive resource since there is a much greater quantity

of such text than Wikipedia articles.
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.. Weblogs

As an experiment, we processed the   Spinnr dataset (Burton et al., ) of

 million postings from August–October  to weblogs and other sites that provide

/Atom syndication feeds, totalling  gigabytes of text.Much of the content included

in this dataset is not in English or does not constitute writing. Rather, it is the result of

people posting pictures, videos, snippets of code, or advertisers’ auto-generated text and

keywords. e English writing included is rarely straightforward, including song lyrics,

sentence fragments littered with emoticons, and unpunctuated train-of-thought. Since

the data originates from syndication feeds, many posts are only excerpts and may be

truncated mid-sentence.

.. Preprocessing

For these experiments, we used a complete snapshot of English Wikipedia as of  July

, which was stripped of Wiki markup, links, and figures using a tool by Antonio

Fuschetto of the University of Pisa.

To prepare the weblog data for parsing, I stripped the  tags marking para-

graphs, formatting text, embedding media, etc., eliding text inside of tags whose content

is unlikely to be understood without special handling, e.g., ⟨table⟩s, ⟨code⟩ fragments, or

⟨pre⟩formatted text. Many non-English posts are included, for which a statistical parser

will blithely generate non-sensical analyses. While much of this was pre-filtered by re-

moving sentences containing frequent words from other languages, it is also dealt with

in a post-processing phase that will be described. Aer this preprocessing, the weblog

dataset was reduced to ,, recognized sentences ( gigabytes of text) – just 

of the original data set. is heavy filtering reflects a strong preference for precision over

recall.

 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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Web text also prompted special handling of s and email addresses, substituting

‘this website’ and ‘this email address’. While these replacements oversimplify the ways

that these addresses can be used in writing, they allow for sensible extractions from sen-

tences like ‘nytimes.com posted an interesting link about…’, from which we learn that A

website may post a link. Additional substitutions correct for common misspellings and

accommodate the casual mode of writing oen found online, e.g., changing ‘u r’ to ‘you

are’. Far from being prescriptivist, this is a necessary step to get a correct syntactic ana-

lysis from parsers trained on newswire and other formal writing.

. Rates of Knowledge Extraction

e total number of factoids produced (that is, the number before any filtering) can be

seen in Table . along with the number of factoids produced per  words – the extrac-

tion density. For comparison, the same results are shown for two more traditional cor-

pora: the Brown corpus and the New York Times portion of the Gigaword corpus (Graff

et al., ). e weblog corpus has a lower extraction density than more formal sources

and a higher rate of duplicates, reflecting the noisy nature of much of the writing en-

countered, including a lack of punctuation and capitalization in many postings, which

leads to apparent run-on sentences that are discarded by the parser. On the other hand,

the very high rate of unique factoids extracted from the Brown corpus is a reflection both

of its topical variation and its very small size.

However, as shown in Figure ., as the number of raw factoids generated increases,

the number of unique factoids generated only falls off slightly. is means that there is

a fairly consistent benefit to reading more text from each source. Since the amount of

weblog text (and other casual, undirected writing on the Web) in existence is vast and

continues to grow, a knowledge extraction system like Knext can continue to learn more

about the world from theWeb almost indefinitely: Any significant fall-off in results won’t

occur until aer many hundreds of millions of sentences are read. While Wikipedia is
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Figure .:egrowth of unique factoids learned fromWikipedia andweblogs asmore
raw factoids are generated. e dashed line is for the weblog corpus; the solid line for
Wikipedia.

also growing, its standards for worthy topics and for providing sources imply that text is

added more slowly; even as new writing is added, other parts are being deleted.

Looking to its anticipated use, we might ask whether a knowledge base that contin-

ues to grow indefinitely is a good thing. e answer is a qualified yes: As we continue

to acquire more knowledge, the knowledge we haven’t seen before is more likely to be

about specific individuals or esoteric attributes. us there is a declining utility to learn-

ing more. However, when we seek to abstract from specific knowledge to more general

truths that are unlikely to be stated in text, processing large volumes of text may result

in better generalizations.

. Knowledge Overlap

To evaluate the potential usefulness and limitations of extracting from sources like the

weblog corpus, we are interested inmeasuring the types of knowledge that can be learned.

For instance, can text that was writtenwithout the explicit goal of conveyingworld know-

ledge cover what we can learn from Wikipedia? Since we are interested in general world

knowledge likeMen have legs rather than specific facts likeDavid Bowie was born in ,

Wikipedia may not have a decisive advantage.
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Factoids Per  wds

Sentences Words Total Uniq. Total Uniq.

Weblogs ,, ,,, ,, ,, . .
Wikipedia ,, ,, ,, ,, . .
NY Times ,, ,, ,, ,, . .
Brown , ,, , , . .

Table .: e number of factoids extracted from Web and traditional corpora. Sen-
tence counts are the number of sentences parsed and then used for knowledge extraction,
which in the case of the weblogs is smaller than the total available corpus.

Knext generally learns a different set of factoids from weblogs than it does from

Wikipedia. Only ,, unique factoids are found in exactly the same form in the

two corpora. is means that just  of what we learn from the weblogs can also be

found in Wikipedia, and . of what we learn from Wikipedia can be found in the

(larger) set of weblogs.

A sign of how distinct these corpora are: If, aer we’ve extracted from  million

weblog sentences, we double the corpus to millionweblog sentences, that gives a 

increase in the number of unique factoids. However, if we instead extract from  mil-

lion Wikipedia sentences, we will have a  increase in the number of unique factoids.

Rather than indicating that Wikipedia is a richer source, this shows that the knowledge

it contains generally hasn’t been encountered in the weblogs.

However, there are two reasons to doubt that the knowledge found in these corpora

is quite this disjoint: () ere are many differences in diction and spelling that can lead

to distinct factoids with nearly identical meanings. For instance, a factoid may be about

a time line or a timeline or a factoid may be about distances rather than a distance. ese

representational differences reflect the close connection of the initial logical forms (fact-

oids) to the source material and may be collapsed into a single sharpened logical form
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Figure .: Coverage of Wikipedia factoids by increasing amounts of the raw extrac-
tions from weblogs.

by Lore. () Much of the non-overlap data consists of overly specific facts (oen about

individuals) and factoids seemingly derived from noisy text.

Figure . shows how many of the Wikipedia factoids can be found in ever larger

chunks of the (raw) weblog output. Counting all of theWikipedia output, we see that the

gains made are quite slow, which is unsurprising given that the raw output includes facts

about many named entities that could not be abstracted by the current set of gazetteers

and are unlikely to receivemuch discussion onweblogs.ere are, e.g., rather fewweblog

posts about Lucius Seneca.

. Text Sources and Knowledge Quality

In their work evaluating knowledge extracted from the Brown corpus, Schubert & Tong

() found substantial differences in judgements of factoid quality depending on the

literary style of the source sentences, comparing ‘straightforward, realistic narratives in

plain, unadorned English’ with ‘philosophical and theological essays employing much

abstract andfigurative language’, with approximately /of the knowledge from the former

being judged reasonable compared with / of the latter. How much worse, then, is the
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writingwe find on theWeb, which is eclectic both in topic andwriting style?What would

it take to produce a collection of good knowledge from such text?

In this section, I introduce a method for filtering the factoids acquired from the

Web to find a core set of high-quality knowledge. I offer an assessment of the quality

of knowledge that can be learned from unstructured, unedited weblog text and from

the more edited, knowledge-oriented writing of Wikipedia – with and without such fil-

tering – and consider whether weblogs could be a worthwhile source for high-quality

knowledge mining compared with Wikipedia.

.. Automatic Filtering

e real challenge of Web data is to recognize the subset of useful general world know-

ledge among the chaff.e factoids wewish to discard include those generated fromnon-

English text remaining in the weblogs, those with multiple uncorrected spelling errors,

and those mistakenly generated from all sorts of non-text that failed to be preprocessed

away.

To remove factoids generated from remaining non-English text and those gener-

ated from sentenceswithmultiple uncorrected spelling errors, we added a post-processing

step of checking factoids verbalizations against a lexicon (the contents of WordNet and

manual additions), discarding those containing less than  known words. Restrict-

ing factoids to only using known vocabulary would result in higher quality output but

with an unacceptable trade-off in coverage. is cut-off reflects that even non-English

sentences may contain words that are also found in English, but we also want to allow

for potentially useful propositions containing neologisms that won’t be found in our

lexicon, e.g., A blogosphere may explode with discussion. An example of a proposition

that is rejected by this filter is All mimsy can be borogroves, learned from a weblog post

containing an excerpt from the poem ‘Jabberwocky’ (Carroll, ).

 In later work, this was changed to allow a maximum of one unknown word per factoid, not counting

named entities.





As with less noisy data, errors in the syntactic parsing of English are a common

source of bad factoids. For instance, incorrect prepositional phrase attachments in parse

trees frequently result in missing arguments, giving incomplete factoids like A person

may feel where what we want to learn is that A person may feel an emotion. To avoid

these incomplete factoids, the filter checks whether a predicate’s usagematches the range

of arities attested in PropBank (Kingsbury & Palmer, ) for the corresponding verb.

is turns out to be a rather weak restriction given the wide range of possible uses for

common verbs,many being uses that Knext is unlikely to output. For instance, PropBank

includes a use of say with no arguments (‘Let’s assume someone, say John, has been

killed’), while Knext typically encounters it as a transitive verb. A hand-authored set of

corrections to these arity ranges limit verbs to their common uses.

Factoids with the vague predicates thing or thing-referred-to are also removed. is

initial study did not include factoids about named entities, and it included a step of check-

ing that output factoids s could be parsed to ensure they were not malformed. For

speed, this filtering step was later replaced by simple tree patterns that detect common

forms of incorrect logical syntax that can result from some unexpected inputs.

As an estimate of the percentage of each corpus that gets removed by these filtering

steps, we ran  randomly selected factoids from each corpus through the filter: 

() of the weblog factoids and  () of the Wikipedia factoids were removed. e

greater number of factoids thrown out from Wikipedia stems from the greater number

of named entities discussed in Wikipedia that could not be abstracted and were thus

removed by the filter as probably being overly specific.

. Evaluation of Knowledge Quality

We are interested not only in what we can learn from different Web corpora but also the

quality of this knowledge: A large but noisy knowledge base will be of little use in reason-

ing. Tomeasure the quality of knowledge, wemust rely on assessments by human judges.
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e statement above is a reasonably clear, entirely plausible,
generic claim and seems neither too specific nor too general
or vague to be useful:

 I agree.
 I lean towards agreement.
 I’m not sure.
 I lean towards disagreement.
 I disagree.

Figure .: Instructions for scaled judging.

We selected  propositions uniformly at random from the unfiltered, non-unique out-

put of Knext on each corpus. ese were shuffled together and their English-like verb-

alizations were displayed to the judges – in this case, two of the authors – along with

the rating instructions of Van Durme et al. (), seen in Figure .. us the judges

did not know which source the factoid they were rating came from nor whether it was

among those that would be filtered away.

Some characteristic examples of factoids that were given each rating (agreed on by

both judges) are:

 A person may have a head.

[⟨det person.n⟩ have.v ⟨det head.n⟩]

 A thing can be readable.

[⟨det thing.n⟩ (be.be readable.a)]

 A male may have a call.

[⟨det male.n⟩ have.v ⟨det call.n⟩]

 Currents can be with some surface electrodes.

[(k (plur current.n)) with.p ⟨some-number-of (nn surface.n (plur electrode.n))⟩]

 Non-unique output was used to favor more frequently generated propositions. No duplicates were selec-

ted.
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Figure .: Frequency of ratings assigned to unfiltered factoids from both corpora.
Lower scores are better; see Figure ..

 A  may undergo a deflation.

[⟨det .n⟩ undergo.v ⟨det deflation.n⟩]

While the highest rated factoid is always true and is at a good level of generality

(person rather than, say, male or child), the factoid rated as a  is true (some things are

readable) but is underspecified: What kind of thing is readable?  is hard to judge: A

person may have a calling or may receive a call, but is the factoid saying either of these?

e factoid rated  seems a bit too specific (surface electrodes) and also a bit vague (with

them?).e factoid rated we cannot imagine using as knowledge even thoughwemight

read ameaning into it: If we take the percent sign to be an adequate stand-in for ‘percent’,

we still don’t know what it is a percent of. Factoids at each of these ratings can exhibit

different problems, but Van Durme et al. () found in the past that judges are less

likely to agreewhat it is that’s wrongwith a factoid than how good one is.e distribution

of factoid ratings across both corpora can be seen in Figure ..

e assessments Table . indicate an improvement in the quality of factoids aer

filtering when compared with the evaluations of the entire, unfiltered set. (For compar-

ison, we estimate that the judgements of Knext’s output on the Brown corpus, converted

to our current rating scale, would have an average rating of around .. is high rating

can largely be ascribed to the accuracy of hand-parses vs machine parses.) e evalu-
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Filtered Only All

Judge  Judge  Corr. Judge  Judge  Corr. MTurk

Weblog . . . . . . .
Wikipedia . . . . . . .
Both . . . . . . .

Table .:Average quality of filtered factoids fromWeb sources. Lower scores are better;
see Figure ..e last columnpresents crowdsourced evaluation usingMechanical Turk;
see Appendix .

ations give no indication that the factoids from one Web corpus are of higher general

quality than those from the other, with the judges giving roughly the same average rat-

ing to each source. A larger sample of  factoids from each source was evaluated by

non-expert judges on Amazon Mechanical Turk. ey rated Wikipedia factoids a bit

better, and overall assessed quality as higher than the expert judges. For details on this

evaluation method, see Appendix .

Beyond this filtering, we can also consider only including factoids that are found

more than once. Van Durme et al. () found that propositions that were extracted at

least twice were, on average, judged to better than those extracted only once. However,

as extraction frequency continued to increase, the level of judged acceptability did not.

We found that for the  factoids that were rated, those extracted only once were rated

. on average, while those rated twice or more oen were rated . on average. is is

slightly less effective than the other filtering techniques alone. Combining the two, we

get a filtered subset of factoids with an average rating of . vs . overall.

. Chapter Summary

When extracting general world knowledge, does it matter whatmachines read?Our find-

ings are that:
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 e intuition that casually written material on the Web may be less useful for gen-

eral knowledge mining than more formal sources like Wikipedia is to some extent

confirmed by the lower extraction rates we achieved using Knext on weblogs.

 For both sources, the volume of unique extracted general factoids grows indefin-

itely, with little sign of leveling off on a logarithmic scale, even aer processing of

hundreds of millions of weblog sentences.

 Wikipedia-derived general factoids cover only a small fraction of weblog-derived

facts and the converse holds also, though the coverage of Wikipedia-derived fact-

oids by weblog-derived factoids appears to grow indefinitely.

 Despite the different writing quality in weblogs and Wikipedia, the quality of ex-

tracted propositions from those sources are rated about the same by human judges

 e use of multiple filtering techniques, such as removal of propositions that fail

logical-form parsing, or violate verb arity constraints, or contain many unlexical-

ized word stems, significantly improves the quality of extracted propositions.

Our results suggest that general knowledge extraction from Web-scale text, supplemen-

ted with automatic filtering, has the potential to produce large, symbolic knowledge

bases of good quality, as judged by people. e next chapter questions standard assump-

tions about the use of text and textual frequencies to acquire knowledge that is repres-

entative of the world.
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 Reporting Bias

e aspects of things that are most important for us are hidden because of

their simplicity and familiarity.

 , Philosophical Investigations, 

Much work in knowledge extraction from text tacitly assumes that the frequency with

which people write about actions, outcomes, or properties is a reflection of real-world

frequencies or the degree to which a property is characteristic of a class of individuals. In

this chapter, I question this idea, examining the phenomenon of reporting bias and the

challenge it poses for knowledge extraction. I conclude with discussion of approaches to

learning commonsense knowledge from text despite this distortion.

. Introduction

A system can look for explicit assertions of general knowledge or knowledge implicit in

recurrent patterns of predication andmodification, or it can abstract general claims from

collections of specific instances. Regardless of the modus operandi, it is necessary to dis-

tinguish knowledge about what normally holds in the world from the atypical or claims

that are simply not true. For instance, the Knext (Schubert, ) system for knowledge

extraction from text (described in §.) learns both e Earth may revolve around the

Sun ande Sunmay revolve around the Earth. Mistaken claims like the latter may indic-

ate a failure to correctly learn from text (e.g., if a source said ‘It is not the case that the
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Earth revolves around the Sun’), or itmay result from reading an inaccurate or fantastical

text.

To identify good claims, it is typical to take an inductive view, with textual refer-

ences serving as evidence: e more oen we read something, the more likely it is to

reflect what is true in the real world. is is intuitively reasonable, and, over a large col-

lection of texts, Knext learns the heliocentric claim  times, while the geocentric claim

is only learned  times. However, the frequency with which situations of a certain type

are described in text does not always correspond to their relative likelihood in the world,

or even the subjective frequency captured in human beliefs. For instance, from the same

texts, Knext learns almost a million times that A person may have eyes, but fewer than

, times that A person may have a spleen. While eyes are discussed frequently, many

other body parts are not – but this doesn’t mean they’re any less common in people.

We will refer to this potential discrepancy between reality and its description in text as

reporting bias.

For knowledge extraction (), we are interested in reporting bias as it relates to

the frequency with which events or actions occur, the likelihood of specific outcomes,

and the prevalence of properties. If our textual examples are not representative of reality,

then claims induced from them are likely to be inaccurate. For instance, according to

Douglas Lenat, at one point Cyc ‘concluded that everyone born before  was famous,

because all the people that it knew about and who lived in earlier times were famous

people.’ (Moody, )

While the focus of this discussion is on how reporting bias affects the acquisition of

general knowledge, many of the phenomenawe discuss also apply to factual information

extraction (). E.g., frequently reading claims that Barack Obama was born in Kenya

does not make it a reliable extraction. However, for a factual  system, other extraction

properties may be more salient than textual frequency. For instance, the great frequency

of statements that George Bush is the president of the United States should not lead us

to believe this is currently true, given the greater recency of sentences indicating Obama
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is president. e trustworthiness of text sources can also be of greater importance for

factual  than for general knowledge extraction, which can abstract claims even from

realistic fiction.

§. presents evidence of reporting bias by contrasting frequencies found in text

and in theworld. §. proposes an explanation of reporting bias as a systematic distortion

of reality. §. looks at how reporting bias affects some existing knowledge-extraction

systems and at attempts to correct for it. §. suggests approaches for future work.

. Measuring Reporting Bias

To demonstrate the reality of reporting bias and motivate our discussion in the next

section, we will give several examples where the frequencies of textual references and

extractions differ significantly from what we know to be the case in the world. Giving

a full, accurate model of reporting bias or establishing how widespread the problem is

would require the availability of real-world frequencies across the range of types of prop-

erties that we are interested in learning from text. Instead, we simply demonstrate the

existence of significant reporting bias for actions or events, outcomes, and properties.

We present textual frequencies based on the Google Web  n-gram data (Brants &

Franz, ), which is derived from approximately a trillion words of Web text. We sup-

port this, where possible, with the number of times Knext learns a relevant claim about

the world. ese results are taken from a knowledge base of  million unique factoids

learned from sources including the Brown Corpus (Kučera & Francis, ), the British

National Corpus ( Consortium, ), Gigaword (Napoles et al., ), electronic

books from Project Gutenberg, Wikipedia, and the   weblog corpus (Burton

et al., ).

In the introduction, we used the example of how oen we are told a person has

spleen vs having eyes. In Table ., we see the significant variation with which body parts

are mentioned in writing, though they are near universally present in individuals. While

this type of knowledge is readily available from manually created sources such as Word-
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Body Part Teraword Knext

Head ,, ,,
Eye(s) ,, ,
Arm(s) ,, ,
Ear(s) ,, ,
Brain ,, ,

Body Part Teraword Knext

Liver , ,
Kidney(s) , ,
Spleen , ,
Pancreas , ,
Gallbladder , 

Table .: Textual support for body-part extractions. N-gram frequencies are for
(his∣her∣my∣your) ⟨body part⟩ and the number of times Knext learns A ⟨body part⟩may
pertain to a person. Plurals are included when appropriate.

City Population Google Ref./Pop.

New Delhi ,, ,, .
Beijing ,, ,, .
 ,, ,, .
London ,, ,, .
Toronto ,, ,, .
Detroit , ,, .

Table .: Textual support for extractions about city populations.Google results are for
‘lives in ⟨city⟩’. For ‘’, we count ‘New York City’ or ‘’, but not more specific terms.
Population figures are Wikipedia’s report of appropriate census results from .

Net (Fellbaum, ) or Cyc (Lenat, ), the fact that even such simple extractions

exhibit significant reporting bias bodes ill for the long tail of more subtle knowledge that

we are less likely to be able to enumerate.

For instance,  systemsmay try to learn from text the typical frequency of an event

or how characteristic an action is of a class of individuals, to produce generic claims such

as Generally people sleep orMost people sleep daily, while only Some people play the viola.

However, in Table ., we see that murder is mentioned in text many more times than

more quotidian actions like hugging or constant activities like breathing, and we find

people are late much more than they are on time. e Knext extraction frequencies can

be seen as a further distortion of the textual frequencies, due, at least in part, to the filter-
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Word Teraword Knext

spoke ,, ,
laughed ,, ,
murdered ,, ,
inhaled , ,
breathed , ,

Word Teraword Knext

hugged , ,
blinked , ,
was late , ,
exhaled , ,
was on time , 

Table .: Textual support for extractions about verbal events. N-gram frequencies are
for the verb alone. Knext counts are the number of times it learns that A person may ⟨x⟩,
including appropriate arguments, e.g., A person may hug a person.

ing of potential claims. For instance, factoids about murder are automatically discarded

if they lack the complement (i.e., you need to murder someone). Additionally, the 

parser systematically misparsed ‘murdered’ as a passive () rather than simple past

tense, even in simple sentences like ‘Brutus murdered Cæsar’.

Another important kind of knowledge is the expected outcomeof an action or event,

e.g., If a person drops a glass, it may break. As this knowledge relies on larger patterns of

predication, oen involving more than one sentence, it is not easily measured on a large

scale. However, in Table . we see that, per mile travelled, a person is more likely to

experience a crash on a motorcycle than in a car or in an airplane. However, in text

motorcycle crashes are only mentioned half as frequently as plane crashes.

For a simpler example, we know that for most races (whether foot races, political

contests, etc.) the number of winners is less than or equal to the number of losers, yet we

find far more reports of a person winning a race than losing it: In the n-grams, won the

race occurs more than six times as oen as lost the race (, vs ,). e number of

matches for (participated in∣ran in∣took part in∣entered) the race, which lack the stigma of

‘losing’, is still quite low (,). Even for the Academy Awards, where ‘it’s an honor just

to be nominated’, people are much more likely to write about a win than a nomination.

We find won the academy award , times vs , for nominated for the academy
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Phrase Teraword

won the academy award ,
nominated for the academy award ,
academy award winning ,
academy award nominated ,
academy award winner ,
academy award nominee ,

Table .: Textual support for winning an Academy Award vs being nominated.While
more actors and films are nominated for academy awards than win them, text is more
likely to mention wins.

Type Miles Travelled Crashes Miles/Crash Teraword

Car ,, million ,, , ,,
Motorcycle , million , , ,
Airplane , million  ,, ,

Table .: Textual references to vehicular accidents. Miles Travelled, Crashes, and
Miles/Crash are for travel in the United States in  (US Department of Transporta-
tion, ). A plane crash is considered any event in which the plane was damaged. Ter-
aword results are for the patterns car (crash ∣accident), motorcycle (crash ∣accident), and
(airplane∣plane) (crash∣accident).

award (and the same is true for a number of variations, such as academy award winner

and academy award winning) – see Table ..

In Table ., we show that the number of times we read that a person lives in a city

is quite disproportionate to the number of people who actually live in the city.is effect

is strongest for cities in non-English-speaking countries, where we see fewer references

than residents. (e lower reporting for New York City than for London, Toronto, and

Detroit may be due to the tendency to indicate a specific borough (‘Brooklyn’) or neigh-

borhood (‘SoHo’) when talking about  or to refer to it simply as ‘New York’, which

is ambiguous without context.)
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. Discussion

We believe these discrepancies between reality and textual frequency indicate a pervas-

ive distortion. Reporting bias results from our responsibility as communicators to be

maximally informative in what we convey to other people, who share our general world

knowledge, and to convey information in which they are likely to be interested.

e first of these imperatives was postulated by Paul Grice (Grice, ) as his con-

versational maxim of quantity. is states that communication should be as informative

as necessary – but no more, leaving unstated information that can be expected to be

known or can be inferred fromwhat is said using commonsense knowledge. Clark ()

observed that while Gricean implicatures are linguistic – are part of an intendedmessage

– they draw not just on linguistic knowledge but on knowledge of objects and events in

the world. Havasi et al. () previously connected knowledge acquisition from text to

Gricean principles, noting that ‘people tend not to provide information which is obvi-

ous or extraneous’ and, therefore, ‘it is difficult to automatically extract common-sense

statements from text, and the results tend to be unreliable’.e second imperative – to be

interesting – is less a linguistic principle than a psychological or social one: Some topics

are intrinsically interesting to people, regardless of their prevalence, and we will tend to

discuss these, biasing what information is available in text.

To elaborate and clarify this discussion, we offer these hypotheses about reporting

bias with corresponding examples:

 emore expected something, the less likely people are to convey it as the primary intent

of an utterance.

People are unlikely to tell you about ‘themanwith two legs’ or ‘a yellow pencil’. Rather, we

state exceptional properties: ‘a man with one leg’, ‘a blue pencil’. Similarly, we don’t say ‘I

paid for the book and then I owned it’ or ‘A suicide bomber blew himself up yesterday.He

died.’ as these are assured consequences.Wemight, however, say, ‘I crashedmy car. It was

totalled.’ as the degree of damage is not certain otherwise. While expected information
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is unlikely to be the primary purpose of an utterance, it can appear in presuppositions;

see §..

 e more value people attach to something, the more likely they are to give information

about it, even if the information is unsurprising.

For instance, in a report of forest fires sweeping parts of California, we care about homes

destroyed, and people killed or injured, but most care less about the number of chip-

munks or deer killed. Further, the destruction of thousands of acres of forest will oen

matter and will be mentioned, as would the loss of members of a rare animal species. If

we describe a person we met, we may well say he has brown hair even though this ex-

tremely common. However, we are even more likely to mention a person’s hair color if

it’s unusual: While textual references to brown hair are more frequent than red (,

to , in the Google n-grams), the latter’s representation is quite disproportionate

to its occurrence in the population.

 Conversely, even unusual facts are unlikely to be mentioned if they are trivial.

E.g., having a scratch on the le bicepmay be less common than an interesting, important

property like a woman being pregnant, but it usually matters too little to be reported.

 Reporting bias varies by literary genre.

ere will be considerable differences in the frequency of reporting events in an en-

cyclopedia vs in fiction or even, e.g., among different newspapers. While sports pages

will ‘over-report’ sporting events compared to crimes, celebrity shenanigans, or business

news, the National Inquirer or the Wall Street Journal might over-report other types of

events.

 ere are fundamental kinds of lexical and world knowledge that are needed for under-

standing and inference that don’t get stated in text.

is can be because they are innate or are learned before language is acquired, by phys-

ical interaction in the world. E.g., physical objects can’t be in different places at the same
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time; solid objects tend to persist (in shape, color and other properties) over time; if A

causes B and B causes C then it’s usually fair to say that A causes C; people do and say

things for reasons – to get food or possessions or pleasure, to avoid suffering or loss, to

provide or solicit information, etc.; you can’t grab something that’s out of reach; you can

see things in daytime that are nearby and are not occluded; people can’t fly like birds or

walk up or through walls; etc.

ere are also the lexical entailments and presuppositions that we learn as part of

language and hardly ever say: ‘above’ and ‘below’, ‘bigger’ and ‘smaller’, ‘contained in’

and ‘contains’, ‘good’ and ‘bad’, etc., are incompatible; dying entails becoming dead; going

somewhere entails a change in location; walking entails moving one’s legs, etc.

. Previous Approaches

In looking at how systems have dealt (or not dealt) with reporting bias, we want to

contrast three lines of work: information extraction systems (Cowie & Lehnert, ;

Sarawagi, ), which learn explicitly stated material; knowledge extraction systems

(e.g., Schubert, ), which abstract individual instances to the general knowledge that’s

implicit in them; and systems that learn general rules implicit in a collection of specific

extractions (e.g., Raghavan&Mooney, ; VanDurme et al., ; Carlson et al., ).

We only provide a few examples; for a more thorough overview, see Chapter .

TextRunner TextRunner (Banko et al., ) is a tool for extracting explicitly stated

information as tuples of normalized text fragments. Its output includes both information

about specific individuals and generic claims. Based on the number of distinct sentences

from which a tuple was extracted, it is assigned a probability of being a correct instance

of the relation. TextRunner’s authors view the probabilities assigned to these claims not

as representing the real-world frequency of an action or the likelihood the relation holds

for an instance of a generic subject, but simply as the probability that the tuple is ‘a correct

instance of the relation’. It’s not clear what this means for their ‘abstract tuples’, which are
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 of the output on average, per relation, and include claims such as (Einstein, derived,

theory) or (executive, hired by, company). Is this a correct instance if Einstein at any point

derived a theory? What if any executive was at some point hired by a company? Or is an

abstract tuple only a correct instance of the relation if it is a good generic statement, e.g.,

Executives are (generally) hired by companies?

Knext Knext (Schubert, ;VanDurme&Schubert, ), under development since

before , is a tool for extracting general world knowledge from large collections of

text by syntactically parsing each sentence with a Treebank-trained parser (e.g., Char-

niak, ) and compositionally applying interpretive rules to compute logical forms

in a bottom-up sweep, abstracting those that serve as stand-alone propositions.e res-

ults are quantificationally underspecified Episodic Logic formulas, which are verbalized

in English as possibilistic claims, e.g., Persons may want to be rid of a dictator. Knext

treats all discovered formulas as possible general world knowledge. In an evaluation of

 propositions, Van Durme & Schubert () observed that propositions found at

least twice were judged more acceptable than those extracted only once. However, as

the support increased above this point, the average assessment stayed roughly the same.

at is, frequency of extraction was not found to be a reliable indication of quality.

Urns TextRunner’s probabilities use the Urns model of Downey et al. (, ),

which is based on the belief that an extraction is more likely to be true if it is obtained

from multiple documents, adjusting for how oen a type of reference occurs. E.g., Urns

should assign a lower probability to ‘countries such as Washington’ ( hits on the Web)

than it does to ‘throwable objects such as bean bags’ ( hits) given the far greater number

of extractions for countries than for throwable objects (example due to Doug Downey).

However, Urns is meant to establish the truth of ground facts (e.g., Einstein was born

in ), not the probability of a generic claim applying (e.g., People eat food). Indeed, a

great deal of the commonsense knowledge we want to learn is only discovered a handful
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of times, even over Web-scale text, while Urns requires a fairly large sample size for each

relation.

LearningRules fromExtractedFacts A line ofwork atOregon StateUniversity (Sorower

et al., ; Doppa et al., ) learns domain-particular rules based on specific facts ex-

tracted from text.ey address a subproblemof the general reporting-bias phenomenon,

namely the conditional bias of our Hypothesis . If attribute A(x) = a of some entity is

reported, and A(x) = a tends to imply B(x) = b, then B(x) = b tends not to be reported.

(E.g., if someone is stated to be a Canadian citizen, then we are less likely to also state

that they were born in Canada.) But if, in fact, B(x) = b′, then we are likely to say so.

(E.g., we would say ‘an Egyptian-born Canadian’.)

Along similar lines, Raghavan & Mooney () learn commonsense knowledge

in the form of probabilistic first-order rules from the incomplete, noisy output of an

information-extraction system. eir rules have a body containing relations that are of-

ten stated explicitly, while the head uses a relation that is mentioned less oen as it’s

easily inferred. ey produce rules like hasBirthPlace(x,y) ∧ person(x) ∧ nationState(y)

⇒ hasCitizenship(x, y). An interesting aspect of their approach is the use of WordNet

similarity to weight rules, based on the idea that more accurate rules usually have pre-

dicates that are closely related in meaning.

. Addressing Reporting Bias

We’ve shown that reporting bias’s distortion of real-world frequency in text makes it

doubtful thatwe can interpret the number of textual references or explicit statements sup-

porting a general claim as directly conveying real-world prevalence or reliability. While

there seems to be no silver bullet, there are some approaches to learn what normally

holds in the world, several of which are explored in more detail in Chapter . For in-

stance, we can focus extraction on more informative constructions:
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 Presuppositions. Commonsense knowledge that is rarely stated explicitly can non-

etheless appear in sentences as presuppositions – beliefs the speaker expects others

to share:

Both my legs hurt.

⇒ A person normally has two legs.

I forgot the money to buy groceries.

⇒ A person may use money to buy things.

 Disconfirmed expectations. Gordon & Schubert () learned commonsense infer-

ence rules from constructions that indicate a speaker’s expectation about the world

was not met, e.g.,

Sally crashed her car into a tree but wasn’t hurt.

⇒ If a person crashes her car, she may be hurt.

I dropped the glass, but it didn’t break.

⇒ If a person drops a glass, it oen will break.

Other sentences suggest that an action or event has not taken place with the normal

temporal frequency (Gordon & Schubert, ):

I hadn’t slept in days.

⇒ A person normally sleeps at least daily.

(ese claims are implicitly conditioned on whether the agent does the action at all,

e.g., If a person writes a book at all, he probably does so every few years.)

 Implicit denials. Explicit statements, pragmatically required to be informative, con-

tain implicit denials that what they’re saying is usually the case, e.g.,

e tree had no branches.

⇒ Trees usually have branches.

However, these vary in how easily they can be transformed into general claims, e.g.,
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Molly handed me a blue pencil.

⇒ Probably pencils are not always blue.

 Reference to individuals. Expected properties can be expressed when identifying a

particular individual, e.g.,

…the man I met yesterday.

⇒ A person may meet a man.

Claims frequently learned from such constructions may be more usual than those

learned from more explicit assertions, though there are still many more references

to a ‘plane that crashed’ than a ‘plane that landed’.

More correlation might be seen between frequency and extraction quality if we

only count the frequency of distinct textual references. E.g., repeated mentions of the

film True Lies, misparsed as a common noun phrase, lead Knext to learn Lies may be

true. Even if text is analyzed correctly for its surface meaning, it can lead to bad know-

ledge, e.g., the idiom ‘when pigs fly’ gives us Pigs may fly. A related problem is frequently

repeated text, such as song lyrics on the Web. To account for this textual bias – exact

repetition – we might give more weight to knowledge learned from different extraction

methods or just from distinct constructions.

Another possibility is to use a hybrid approach to knowledge extraction, along the

lines of Snow et al. () or Hoffman et al. (). For instance, we might combine text

mining with a crowdsourced rating (Appendix ) or filtering stage to assign an approx-

imate real-world frequency to the knowledge found most frequently in text. Work in

the emerging ‘grounded language’ movement may also be important. If one were to say

‘John entered the room’, they are unlikely to follow it up with ‘He blinked. He breathed.’

However, many mundane actions and activities might be recognized, e.g., by sampling

video and be incorporated into our knowledge.

It is also important to recognize that for some problems, frequencies for the distor-

ted world described in text are more useful than real-world frequencies. For instance, a
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parser is concerned with how frequently ‘cat’ is the subject of ‘meow’, rather than how

frequently cats actually meow. With the bias for the interesting or unusual, textual fre-

quencies may also be useful for guiding inference for conclusions that are most likely

to be important or useful: If we are told ‘John is a person’, we don’t want to reason that

he has skin cells (although this is certainly true) but rather that he probably has a job of

some kind, that he lives somewhere, etc.

. Chapter Summary

We have argued that researchers need to be aware that the frequency of occurrence of

particular types of events or relations in text can represent significant distortions of real-

world frequencies and that much of our general knowledge is never alluded to in natural

discourse. We provided a brief pragmatic argument for why reporting bias exists, which

led to suggestions on howwemight, partially, work around it, which are explored further

in the next chapter.

Our examples and discussion are meant to provoke further study. If reporting bias

is not a real problem for knowledge acquisition, it remains for the community to show

this to be the case. Otherwise, more work is called for to determine if, and how, we can

correct for it. At worst, reporting bias may prove an upper bound on the extent to which

human knowledge can be learned from text and may provoke further work on hybrid

approaches to knowledge acquisition.





 Lore: Learning& Sharpening Implicit Knowledge

Howmuch dowe know at any time?Muchmore, or so I believe, than we know

we know!

 , eMoving Finger, 

is chapter presents work to acquire commonsense knowledge from text. We abstract

from particular references to general possibilities and from normative constructions

such as disconfirmed expectations to the underlying presumptions and expectations.

e resulting knowledge undergoes a process of sharpening by lexical-semantic patterns

to produce appropriately strong, partially disambiguated probabilistic inference rules.

is knowledge-extraction system is Lore. A shamelessly selective excerpt from the

Oxford English Dictionary (Simpson, ) suggests the appropriateness of the name:

lore, n.
 e act of teaching; the condition of being taught; instruction, tuition, educa-

tion. In particularized use: A piece of teaching or instruction; a lesson…

 …Something that is spoken; information; story; language.

 a. at which is learned …Also, in recent use, …the body of traditional facts,

anecdotes, or beliefs relating to some particular subject…

b. A body of knowledge, a science.

 ‘Lore’ is also familiar to fans of Star Trek:e Next Generation as the evil twin brother of the android Data.
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In the following sections, I describe inmore detail the linguistic constructions from

which Lore extracts knowledge and theways inwhich it refines these extractions, but first

give an overview of the entire knowledge-extraction process:

Phase : Syntactic Analysis A text is syntactically parsed using a standard statistical

parser. eTreebank-style parse trees are processedwith tree transduction rules written

in  (Purtee & Schubert, ) to repair common parse errors and to simplify later

interpretation.

Phase : Form Factoids from Text Semantically underspecified initial logical forms

(s) are formed by two applications of interpretation and abstraction rules: First, a

bottom-up application of compositional rules builds potential predications for each con-

stituent up to the sentence level. (is is an augmented version of the traditional Knext

(Schubert, ) extraction.) Second, application of tree-wide interpretation rulesmatch

patterns of predication that are lexicalized or cross constituent boundaries (described in

§.). Each sentence may generate several s, which express self-contained pieces of

knowledge implicit in the sentence. s are filtered to remove those that are missing re-

quired arguments or are otherwise malformed (along the lines described and evaluated

in §..).

Phase : Form Axioms from Factoids Low-frequency factoids (s) are discarded,

with the frequency cut-off weighted by the subjective trustworthiness of the source text.

Based on semantic categories (e.g., agent,movable object, location), lexico-semantic prop-

erties (e.g., individual- vs stage-level predicates), and extraction frequencies, the remain-

ing factoids are transformed into explicitly quantified, partially disambiguated, probab-

ilistic axioms (§.).

 At present this is the Charniak ()  parser with the self-trained model of McClosky et al. (),

but there is no strong commitment to this choice.
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Beneath the assertional content of a sentence are presumptions about the kinds of prop-

erties, relationships and events that commonly occur in the world. For instance, describ-

ing someone as ‘ready to bolt like a frightened rabbit at the first sign of condemnation’

includes the presumption that rabbits can be frightened. (A reader would balk at compar-

ing someone to a ‘frightenedwall’ since we don’t share the presumption that a wall can be

frightened.) Generally speaking, a presumption is anything where, in conversation, the

listener could object, ‘Wait aminute – I didn’t know that ϕ!’ Schubert () introduced

an approach to abstracting presumptive knowledge from text, which was implemented

as Knext, the source of extractions in previous chapters. Knext applies rules for com-

positional semantic interpretation and abstraction, forming general factoids from that

syntactic tree. For instance,

[⟨det rabbit.n⟩ frightened.a]

where the angle brackets denote unscoped quantification. Knext automatically verbal-

izes these factoids into English, expressing the weak, possibilistic meaning of the state-

ment, e.g., ‘A rabbit can be frightened’.We first consider augmentations of this extraction

method to learn more possibilistic commonsense knowledge from text and then turn to

the problem of making this usable for inference.

Named Entities & Abstraction To abstract named entities to classes of individuals,

Knext used  gazetteers (as well as lists of common given names). In Lore this was re-

placed with the set of unambiguous class instances (Miller & Hristea, ) in WordNet

– i.e., all lemmas that only exist as an instance-of one or more classes. If a name is an

instance of multiple classes, all possible abstractions are generated, so a sentence about

Sartre will produce potential claims about a dramatist and an existentialist. If a word

is ambiguous between multiple senses but they are all instances of the same synset, it

 Example from the   Spinnr weblog corpus (Burton et al., ).
 A test employed by von Fintel () – adapted from Shannon () – for a broadened notion of presup-

position, applied to knowledge extraction by Van Durme ().
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is also included in Lore’s abstractions. E.g., ‘battle of Ypres’ is ambiguous among three

distinct battles of World War I, but in each case the correct abstraction is to pitched

battle. In future, these abstractions could easily be expanded further based on Free-

base or any number of automated instance-extraction systems. However, the current set

of over , abstraction classes is subjectively judged sufficient for broad coverage.

In addition to abstracting from claims about named entities to their known classes,

Lore preserves the specific claim. While most commonsense knowledge is about classes,

there is good general knowledge that is about individuals, e.g., Saturn has rings or Delhi

is crowded.

Learning PresumedNumbers Commonsense knowledge that is rarely stated explicitly

can nonetheless appear in sentences as presuppositions – beliefs the speaker expects

others to share. For instance, while from the sentence ‘Both my legs hurt’ or the phrase

‘my other leg’, Lore learns that A person may have two legs (which, based on repetition

of such forms, is strengthened to the claim that All or most people have two legs as body

parts). From a construction like ‘all his friends’, Lore learns that ree or more friends

may pertain to a male.

. Conditional Knowledge from Text

Reasoning about ordinary human situations and activities requires the availability of di-

verse types of knowledge, including expectations about the probable results of actions

and the lexical entailments for many predicates. is section describes work to acquire

such a collection of conditional (if–then) knowledge by exploiting presumptive discourse

patterns (such as ones involving ‘but’, ‘yet’, and ‘hoping to’) and abstracting the matched

material into general rules.
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.. Introduction

We are interested, ultimately, in enabling an inference system to reason forward from

facts as well as backward from goals, using lexical knowledge together with world know-

ledge. Creating appropriate collections of general world knowledge to support reasoning

has long been a goal of researchers inArtificial Intelligence. Efforts in information extrac-

tion, e.g., Banko et al. (), have focused on learning base facts about specific entities

(such as that Barack Obama is president), and work in knowledge extraction, e.g., Knext,

has found generalizations (such as that a president may make a speech). However, even

when the meaning of such claims is sharpened to support inference (as in §.), these re-

sources don’t provide a basis for saying what we might expect to happen if, for instance,

someone crashes their car.

at the driver in a car crash might be injured and the car damaged is a matter of

common sense, and, as such, is rarely stated directly. However, it can be found in sen-

tences where this expectation is disconfirmed: ‘Sally crashed her car into a tree, but she

wasn’t hurt.’ We have been exploring the use of lexico-syntactic discourse patterns in-

dicating disconfirmed expectations, as well as people’s goals (‘Joe apologized repeatedly,

hoping to be forgiven’). e resulting rules are a step toward obtaining classes of general

conditional knowledge typically not obtained by other methods.

.. Method

In an initial study, Gordon & Schubert (), parse trees were matched using hand-

authored lexico-syntactic rules for TGrep (Rohde, ), centered around pragmatic-

ally significant cue words such as ‘hoping to’ or ‘but didn’t’. In the current version of Lore,

these patterns have been converted to  (Purtee & Schubert, ) rules that output

initial logical forms, with constituents such as noun and verb phrases being passed to

Knext’s compositional interpretation and abstraction methods. is section describes

the initial study of these patterns and their assessment.
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Disconfirmed Expectations ese are sentences where ‘but’ or ‘yet’ is used to indicate

that the expected inference people would make does not hold. In such cases, we want to

flip the polarity of the conclusion (adding or removing ‘not’ from the output) so that the

expectation is confirmed. For instance, from

e ship weighed anchor and ran out her big guns, but did not fire a shot.

we get that the normal case is the opposite:

If a ship weighs anchor and runs out her big guns, then it may fire a shot.

Or for two adjectives, ‘She was poor but proud’:

If a female is poor, then she may not be proud.

Contrasting Good and Bad A different use of ‘but’ and ‘yet’ is to contrast something

considered good with something considered bad, as in ‘He is very clever but eccentric’:

If a male is very clever, then he may be eccentric.

If we were to treat this as a case of disconfirmed expectation as above, we would have

claimed that ‘If amale is very clever, then hemay not be eccentric’. To identify this special

use of ‘but’, we consult a lexicon of sentiment annotations, SentiWordNet (Baccianella

et al., ). Finding that ‘clever’ is positive while ‘eccentric’ is negative, we retain the

surface polarity in this case.

For sentences with full sentential complements for ‘but’, recognizing good and bad

items is quite difficult, more oen depending on pragmatic information. For instance, in

Central government knew this would happen but did not want to admit to it

in its plans.

knowing something is generally good while being unwilling to admit something is bad.

At present, we don’t deal with these cases.
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Expected Outcomes Other sentences give us a participant’s intent, and we just want to

abstract sufficiently to form a general rule:

He stood before her in the doorway, evidently expecting to be invited in.

If a male stands before a female in the doorway, then he may expect to be in-

vited in.

Elisabeth smiled, hoping to lighten the conversational tone and distract the

Colonel from his purpose.

If a female smiles, then she may hope to lighten the conversational tone.

While most general rules about ‘a male’ or ‘a female’ could instead be about ‘a person’,

there are ones that can’t, such as those about giving birth. e raising of terms is le for

later work, discussed in §..

.. Evaluation

Initial development of these rules was based on examples from the (hand-parsed) Brown

Corpus and the (machine-parsed) British National Corpus. ese corpora were chosen

for their broad coverage of everyday situations and editedwriting. As the examples in the

preceding subsections indicate, rules extracted by our method oen describe complex

consequences or reasons, and subtle relations among adjectival attributes, that appear to

be quite different from the kinds of rules targeted in previous work (e.g., that discussed

by Sekine, ).

For evaluation, we used a corpus of personal stories fromweblogs (Gordon& Swan-

son, ). We sampled  output rules and rated them on a scale of – ( being best)

based on the criteria in Figure .. To decide if a rule meets the criteria, it is helpful to

imagine a dialogue with a computer agent. Told an instantiated form of the antecedent,

the agent asks for confirmation of a potential conclusion. E.g., for

If attacks are brief, then they may not be intense,
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Judge  Judge  Correlation
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Table .: Average ratings and Pearson correlation for rules. Lower ratings are better;
see Figure ..
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Figure .: Counts for how many rules were assigned each rating by judges. Lower rat-
ings are better; see Figure ..

the dialogue would go:

—e attacks (on Baghdad) were brief.

—So I suppose they weren’t intense, were they?

If this is a reasonable follow-up, then the rule is probably good, although we disprefer

especially unlikely antecedents – rules that are vacuously true.

As the results in Table . and Figure . indicate, the overall quality of the rules

learned is good but there is room for improvement. We also see a rather low correlation

between the ratings of the two judges, indicating the difficulty of evaluating the quality of

the rules, especially since, for the initial experiment, their expression in natural language

() makes it tempting to ‘fill in the blanks’ of what we understand them to mean. e

difficulties of judging inferential rules in isolation – even when they are expressed in

English – motivates the evaluation of simple inferences made with them in Chapter .

Rules that both judges rated favorably () include:

If a pain is great, it may not be manageable.
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If a person texts a male, then he-or-she may get a reply.

If a male looks around, then he may hope to see someone.

If a person doesn’t like some particular store, then he-or-she may not keep go-

ing to it.

While some bad rules come from parsing or processing mistakes, these are less of a

problem than the heavy tail of difficult constructions. For instance, there are idioms that

we want to filter out (e.g., ‘I’m embarrassed but…’) and, as in the early work of Hearst

(), other bad outputs show context-dependent rather than general relations:

If a girl sits down in a common room, then she may hope to avoid some point-

less conversations.

e sitting-down may not have been because she wanted to avoid conversation but be-

cause of something prior.

It’s difficult to compare our results to other systems because of the differences of rep-

resentation, types of rules, and evaluation methods. e best performing method from

 (Pantel et al., ), ., achieves . specificity (defined as a filter’s probability

of rejecting incorrect inferences) and . accuracy. While describing their Sherlock sys-

tem, Schoenmackers et al. () argue that ‘the notion of “rule quality” is vague except

in the context of an application’ and thus they evaluate the Horn clauses they learn in

the context of the Holmes inference-based  system, finding that at precision . their

rules allow the system to find twice as many correct facts.

.. Conclusions

Enabling an inference system to reason about common situations and activities requires

more types of general world knowledge and lexical knowledge than are currently avail-

able or have been targeted by previous work. We’ve suggested an initial approach to ac-

quiring rules describing complex consequences or reasons and subtle relations among
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adjectival attributes: We find possible rules by looking at interesting discourse patterns

and rewriting them as conditional expressions based on semantic patterns.

A natural question is why we don’t use the machine-learning/bootstrapping tech-

niques that are common in other work on acquiring rules. ese techniques are partic-

ularly successful when (a) they are aimed at finding fixed types of relationships, such as

hyponymy, near-synonymy, part-of, or causal relations between pairs of lexical items (of-

ten nominals or verbs); and (b) the fixed type of relationship between the lexical items is

hinted at sufficiently oen either by their co-occurrence in certain local lexico-syntactic

patterns, or by their occurrences in similar sentential environments (distributional sim-

ilarity). But in our case, (a) we are looking for a broad range of (more or less strong) con-

sequence relationships, and (b) the relationships are between entire clauses, not lexical

items. We are simply not likely to find multiple occurrences of the same pair of clauses

in a variety of syntactic configurations, all indicating a consequence relation – you’re

unlikely to find multiple redundant patterns relating clauses, as in ‘Went up to the door

but didn’t knock on it’.

. Sharpening to Appropriate Form

Lore produces a large volume of factoids from text that express possibilistic general

claims such as A person may have a head or People may say something. is section

presents a rule-based method to sharpen certain classes of factoids (s) into stronger,

quantified claims such asAll or most persons have a head orAll or most persons at least oc-

casionally say something – statements strong enough to be used for inference. e judge-

ment of whether and how to sharpen a factoid depends on the semantic categories of

the terms involved, and the strength of the quantifier depends on how strongly the sub-

ject is associated with what is what is predicated of it. is section concludes with an

initial assessment of the quality of this automatic strengthening of knowledge and the

next chapter demonstrates and evaluates the use of sharpened formulas for inference.
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.. FromWeak Knowledge to Strong Knowledge

Human-level artificial intelligence, as required for problems like natural language un-

derstanding, seems to depend on the ability to perform commonsense reasoning. is

in turn requires the availability of considerable general world knowledge in a form suit-

able for inference. ere are several approaches to acquiring such knowledge, including

directly interpreting general statements such as glosses in dictionaries (e.g., Clark et al.,

a), abstracting from clusters of propositions (VanDurme et al., ), and the hand-

authoring of rules, as in Cyc (Lenat, ). Hand-coding is apt to be haphazard in its rela-

tionship to language as it depends on the cerebration of numerous knowledge engineers

with differing intuitions and no particular commitment to consistency with language or

across domains. e volume of hand-coded knowledge produced so far is also probably

a couple orders of magnitude short of what is needed.

e approach of this section is to begin with the large volume of weak, general fact-

oids discovered by Lore, select factoids that lend themselves to logical strengthening, and

then sharpen these into quantified general statements that can be used in combination

with other facts to generate new conclusions by forward inference.

For example, the following is a factoid and its automatic English verbalization:

[⟨det elm_tree.n⟩ have.v ⟨det branch.n⟩]

An elm tree may have a branch

In this case, the factoid was extracted from text that referred to a ‘branch of an elm tree’.

A text occurrence like this presumes that at least sometimes an elm tree has a branch, so

this is how we understand and verbalize the formula.

However, this claim is not as strong as we would like it to be: It can be strengthened

to say that all – or at least most – elm trees have a (i.e., at least one) branch and that

having this branch is an episode that is generally permanent with respect to the tree’s

existence. Using quantifier restrictors, we represent this as
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(all-or-most x: [x elm_tree.n]

(some e: [[x ∣e] permanent]

(some y: [y branch.n]

[[x have-as-part.v y] **e])))

As the predicate have is used in many ways, we have disambiguated it here to have-as-

part. Other senses of have, such as give-birth-to or possess, and other kinds of predicates

will require different quantification.

In this section, we present a general, rule-based method of doing such quantifica-

tional sharpening using existing lexical semantic categories and corpus frequencies. We

change unscoped quantifiers to scoped ones and estimate the frequency of events/times

and subjects for which each factoid is likely to hold.We then show some simple examples

of commonsense reasoning using multiple sharpened premises.

.. Strengthening Factoids

For much of Knext’s output, the weak formulation is as much as we want to assert.

So when sharpening, we want to focus on those factoids that are likely targets to be

strengthened. e method for doing so is to write rules that match large sets of factoids

to patterns using semantic predicates. A simplified example of a rule is

(/ ((det? animal?) have.v (det? animal-part?))

(all-or-most x (x animal?)

(some e ((pair x e) enduring)

(some y (y animal-part?)

((x have-as-part.v y) ** e)))))

e first argument to / is the pattern to be matched, using functional predicates ending

in question marks to check elements. If the input matches, the output form is instan-

tiated with the matching parts of the  bound to the name of each predicate. More
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complicated rules allow for repetition of arguments, alternatives, functional attachment

in the output form, etc.

Without sharpening, Knext learns thatA person may have a head, but we know that

having a head isn’t optional: it’s a crucial part of being a (living) person. Even for body

parts that can be lost, it’s reasonable to conclude that most people have them, so this is

what the rule asserts. (ere are also ephemeral parts, such as a leaf on a tree, in which

case it is inappropriate to say that having the part is permanent with respect to the tree’s

existence. Such cases are few and can be hand enumerated.) To identify an animal-part

above, we make use of the nominal hierarchy from WordNet (Fellbaum, ), which

classifies most of these as hyponyms of body part. Similar rules are used to match plants

and artifacts with their respective parts.

Note that the part-of relations expressed in sharpened factoids needn’t be in Word-

Net. For example, in a factoid of type [⟨det contraption.n⟩ have.v ⟨det button.n⟩], we

would interpret this as a have-as-part.v sentence as long as WordNet treats some sense

of ‘button’ as part of something, such as a shirt, doorbell, cellphone, etc. e same is

true for factoids like [⟨det chicken.n⟩ have.v ⟨det feather.n⟩] or [⟨det rose-bush.n⟩ have.v

⟨det flower.n⟩].

e quantifiers used in sharpening are all (∀), all-or-most, most, most-or-many,

many, many-or-some, and some (∃). Much is substituted for many for mass predicates

like ‘oil’. Temporal quantification can be over frequent or occasional episodes or just some

possible episode. (is is refined further in §..) Quantifier strength is decided by a com-

bination of semantic rules and corpus statistics. Non-repeatable predicates such as being

born or dying are usually true of all individuals of a class as is having a body part, supra.

On the other hand, few repeatable actions are universal; most are done by a smaller num-

ber of individuals. Breathing and eating food are some obvious exceptions, though even

eating isn’t universal when it takes an argument: All people eat, but howmany eat babka?
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.. Quantificational Disambiguation

e choice of quantifier scopes in sharpening is not as hard as the general scoping prob-

lem: Lore’s abstraction does not produce strongly quantified factoids like ‘A doctor may

live in every city’, only ones containing weak indefinites. So, unlike the empirical quan-

tifier scope disambiguation of Srinivasan & Yates (), our approach can rely simple

semantic patterns to produce scoped quantifier configurations.

.. Lexical Disambiguation

emost frequent relation inKnext-extracted factoids is ‘have’, so disambiguation of this

‘light’ predicate, to the extent necessary for inference, is of particular interest. However,

it is not clear that all word senses need to be disambiguated. We claim that verbal predic-

ates aren’t nearly as ambiguous as has generally been assumed; they’re just semantically

general.

As the criterion for whether disambiguation is necessary, we ask whether or not

the entailments follow from the argument types. For example, it’s not strictly necessary

to disambiguate ‘have’ in ‘have an accident’ since the only possible entailments of this

phrase in actual use are those for the experience sense. By contrast, it is important for

us to be able to narrow the sense of ‘have’ to eat in A person may have a lobster if that

(rather than a possessive sense) is the intended meaning. So the appropriate sharpening

would be as follows (where e is the eating episode characterized by the sentence, with

the characterization relation indicated by the episodic operator ‘** ’):

[⟨det person.n⟩ have.v ⟨det lobster.n⟩]

(many x: [x person.n]

(some e (some y: [y lobster.n]

[[x eat.v y] **e])))

Note that have oen simply serves as a kind of particle binding a relational noun to

the subject, as when we say ‘John has a sister’ or ‘John has a (certain) weight’. It seems
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pointless to invent separate meanings of have for all these cases, such as have-as-relative

or have-as-weight; these meanings are already inherent in the nominals themselves:

[⟨det male.n⟩ have.v ⟨det sister.n⟩]

(many x: [x male.n]

(some e (some y: [y female.n]

[[x (have-as sister.n) y] **e])))

[⟨det male.n⟩ have.v ⟨det weight.n⟩]

(many x: [x male.n]

(some e: [[x ∣e] permanent]

(some y [[y weight-of.n x] **e])))

ese relational uses of ‘have’ are identified based on the semantic categories of the

subject (e.g., a causal agent or social group) and the object (e.g., a hyponym of relative,

leader, or professional) while most features like ‘weight’ are hyponyms of attribute.

In some cases, disambiguation is necessary but is difficult enough that we choose

not to sharpen the factoid rather than risk doing so incorrectly. A particularly difficult

class of factoids to sharpen are those involving prepositions, where we need to at least

implicitly disambiguate different uses, e.g., ‘a man with one arm’ vs ‘a man with a cake’.

To avoid bad sharpened output, we also need to check for nouns that don’t mean much

when standing alone, e.g., ‘front’, ‘thing’, or ‘issue’. We want to avoid sharpening factoids

involving such terms, at least when they occur as the subject of sentences with no object.

.. Sharpening with Stage-Level Predicates

A key distinction for sharpening is between individual-level and stage-level predicates

(Carlson, a). Individual-level predicates endure over most of the existence of the in-

dividual they’re predicated of while stage-level predicates describe dynamic goings-on or

transient situations. While we want to quantify stage-level predicates over individuals
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and episodes (a stage being a temporal slice of an individual), an individual-level predic-

ate is just quantified over individuals.

We assume that if an entity has a capacity, it is exercised at least occasionally. us

we sharpen factoids about abilities to stage-level quantification over episodes of perform-

ing them. Some factoids Lore learns explicitly state that an individual may be able to do

something:

[⟨det female.n⟩ able.a (ka speak.v)]

A female may be able to speak

(e ka operator indicates a kind of action.) Factoids like this can indicate abilities that

are specific to a few individuals – say, being able to ride a horse – rather than generally

true as in the example above. But they can also indicate basic abilities: We rarely state

that someone is ‘able to’ do a basic action like walking. Yet, if someone breaks their leg,

we might say that they are ‘able to walk (again)’ and can produce an appropriate factoid.

Sharpened factoids about abilities are also formed from factoids about actionswithout

able.a, such as [⟨det female.n⟩ swim.v]. As a stage-level predicate, swimwill lead to quan-

tification over episodes:

(many x: [x female.n]

(occasional e [[x swim.v] **e]))

What we aim to get are formal versions of habitual sentences like

Most people occasionally use a cellphone.

Most companies occasionally announce a product.

rendered in the following manner:

(most x: [x person.n]

(occasional e (some y: [y cellphone.n]

[[x use.v y] **e])))
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(most x: [x company.n]

(occasional e (some y: [y product.n]

[[x announce.v y] **e])))

Stage-level adjectives also get quantified over episodes:

[⟨det male.n⟩ hungry.a]

(all-or-most x: [x male.n]

(occasional e [[x hungry.a] **e]))

Some ‘have’ propositions represent temporally quantified occurrences, e.g., ‘All or

most persons occasionally have a thought/cold/shock/party…’ We recognize such a use

by a subject who is a causal agent and an object that is a psychological feature, event, or

state.

[⟨det male.n⟩ have.v ⟨det thought.n⟩]

(all-or-most x: [x male.n]

(occasional e (some y: [y thought.n]

[[x experience.v y] **e])))

It would be distressing if we gave a similar quantification for the stage-level verb die.

For this reason, stage-level predicates are divided into repeatable and non-repeatable

ones. e latter includes strict once-per-existence predicates like die and also ‘pivotal’

ones likemarry.Whilemarriage is repeatable, we don’t want to claim it’s a frequent action

for an individual, no matter how heavily reported marriages are in text. It is also neces-

sary to distinguish those predicates that are nonrepeatable with respect to their objects,

e.g., while one can kill multiple times, one can only be killed once. Nonrepeatable pre-

dicates generally fall into a small number of VerbNet (Kipper-Schuler, ) categories,

which we supplement with the other terms from the corresponding WordNet synsets.
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.. Sharpening with Individual-Level Predicates

One class of factoids that should be strengthened to individual-level quantification are

nouns predicated of noun phrases, such as [⟨det person.n⟩ fighter.n]. For these, the pre-

dicate in object position is most likely true of the individual’s whole existence, e.g.,

(many-or-some x: [x person.n]

(some e: [[x ∣ e] permanent]

[[x fighter.n] **e]))

We avoid quantifying strongly when the complement is a role noun, such as those found

in WordNet as hyponyms of person and ones like weapon: While it is true that a person

can be a doctor, we don’t want to conclude most people are doctors. And while a cane

can be weapon (when it’s used as such), we don’t want to assert that most canes are

(enduringly) weapons.

Most stative verbs are individual-level, but there are exceptions such as own or con-

tain.is can depend on the subject: Books contain information for the duration of their

existence, but a jug only contains water at specific times. Many people at some time own

a house, but it is not necessary that they own them for their entire lives. Note that many

verbs have both stative and dynamic senses, e.g., think is stative in ‘I think she’s tired’ but

not in ‘ink about the problem’. In sharpening factoids we don’t generally attempt to

distinguish between such uses – we allow a verb to be strengthened as a stative (and thus

probably individual-level) if it has any stative sense.

We assume that a factoid expresses possession if the verb is have or own, there is an

animate subject (such as a person or organization – hyponyms of causal agent), and the

object is an artifact or a domesticated animal:

[⟨det person.n⟩ have.v ⟨det dog.n⟩]

(many x: [x person.n]

(some e (some y: [y dog.n]

[[x possess.v y] **e])))
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Individual-level adjectives can be found by looking at the hypernyms of the deriv-

ationally related form in WordNet, so for fond we get fondness, which has attribute as a

hypernym. is, tendency, and quality are good indicators of an individual-level prop-

erty, e.g.,

[(k (plur cat.n)) fond.a (of.p (k milk.n))]

(most x: [x cat.n]

[x fond.a (of.p (k milk.n))])

.. Sharpening with Kind-Level Predicates

e above is a factoid about kinds (indicated by the k operator), which we sharpen to be

about individuals of the kind. An additional type of factoid we haven’t dealt with here is

the type involving kind-level predicates, which are predicated not of individuals but of

a whole genus, e.g.,

[(k (plur cow.n)) widespread.a]

A problem here concerns the level of abstraction: If we view this factoid as a statement

about an individual, viz., the kind cows (much as in ‘e Milky Way is widespread’),

we should not read it possibilistically as ‘Cows may be widespread’, but simply as ‘Cows

are widespread’. But when we abstract from the particular kind to species, we want to

conclude that some species are widespread.

.. Sharpening with Events

Another special case are factoids with event nominal (e.g., a war or a party) subjects,

for which neither stage-level nor individual-level predicates should result in quantifica-

tion over episodes. We identify these event nominals by using the verbalizations in the

Nomlex nominalization lexicon and those words categorized as hyponyms of event and

related synsets in WordNet.
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It’s worth noting that while we use WordNet as our primary resource for semantic-

ally categorizing predicates in the process of sharpening, our factoids express informa-

tion beyond what’s in : While it tells us that writing is a human activity, it does not

tell us that people write letters and so on. It is only the combination of Knext factoids

with WordNet, VerbNet, and other resources of lexical semantic features that provides

the bulk of the sharpened output.

.. Frequencies and Quantifier Strength

We want to conclude that most men have shoes, but few men have a yacht. General

sharpening rules are nudged to stronger or weaker quantification based on the strength

of the association between the subject of the factoid and what is predicated of it – the

normalized pointwise mutual information () computed over the entire  of factoids

being sharpened. Taking our formulas as formal generic statements, this approach re-

flects the inductive view of generalizations: Aer we observe enough people possessing

dogs (from textual references), we take it to be likely. And while Lore may learn only a

few factoids about, say, Komodo dragons, if there’s a high  between Komodo dragon

and eat carrion, then it will be quantified as being true of most Komodo dragons. For

discussion of whether generic statements (such as the commonsense knowledge we are

trying to abstract from possibilistic factoids) should be understood inductively or from

a rules-and-regulations view not dependent on real-world activity, see Carlson ().

.. Evaluation of Sharpening

As an initial evaluation of our sharpening methods, we first took a set of propositions

extracted from the British National Corpus that were previously evaluated by crowd-

 Mutual information measures have been used by others in knowledge-extraction, e.g., Clark & Harrison

(a) assign the strength – or plausibility – of ’s Knext-like extractions based on how mutual

information to reflect how much the observed frequency reflects a true association between elements in

a tuple.
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sourcing on Mechanical Turk (see Appendix ). Non-experts were shown the English

verbalizations of factoids (e.g., A man may have a head) and asked to rate how well they

conveyed accurate commonsense knowledge. Out of  randomly sampled  fact-

oids,  of them could be sharpened. e smaller size of this set represents a preference

for precision over recall and the large number of factoids that don’t seem to merit a

stronger form, even among those that were judged to hold in when stated weakly. (Non-

etheless, later work has increased the coverage of factoids that are sharpened.)

Here we want to judge whether the sharpened forms express reasonable general

claims andhave been strengthened sufficiently.e authors therefore judged  sharpened

factoids on the same scale of – (with  being best) based on their agreement with the

following primary and secondary statements:

Statement . e factoid is a reasonable general claim about the world even if

– perhaps – it isn’t as strongly quantified as it might be.

If so (that is, if the judge rates the factoid  or ), they then judged

Statement . e quantifiers seem sufficiently strong.

So, for instance,

(some x: [x male.n]

(some e: [[x ∣ e] permanent]

(some y: [y head.n y]

[[x have-as-part.v y] **e])))

would not be rated very well for Statement . It is true, but the claim should be quantified

more strongly: All men have heads.

Since it is quite hard to produce a good sharpened statement from a bad factoid,

we are interested not just in the overall performance of the sharpening but also in how it

does on a subset of good factoids. For this, we took those factoids with an average Turker-

assigned rating between  and . Such a rating means that, in its weak, possibilistic form,

the factoid is probably a reasonable claim about the world.
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Figure .: Sharpened formula quality. Agreement with Statement  for formulas
sharpened from factoids rated – (le) and from all factoids (right). e vertical axis
shows the number of factoids that were given each rating, counting both judges’ re-
sponses. Lower ratings are better.

Stmt  Avg. Stmt  Avg.

Judge  . .
Judge  . .

Correlation . .

Table .:Ratings of sharpened factoids. Includes those produced from all unsharpened
factoids, not just the highly rated subset.

As seen in Figure . (le), these favorably judged weak factoids yield favorably

judged strengthened factoids (when they yield any at all) more oen than they yield am-

bivalent or negative judgements. While  of the ratings of factoids sharpened from

the good unsharpened factoids (those with an average rating between  and ) are rated

a , only  of the complete set were so rated. As can be seen from the right histogram,

judgements of sharpened factoids are considerably worse if the unsharpened factoids in-

clude everything generated.erefore it is crucial to pre-filter unsharpened factoids, per-

haps using crowdsourcing (as was done here) or by improved automatic methods. is

can also include improvements in the initial knowledge extraction and in the technology

it relies on. Incorrect syntactic parses, including improbable parts-of-speech, were evid-

ent in the judged results: Any improvements in parsing are likely to also improve our

knowledge extraction.
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Figure .: Sharpened formula quantifier strength. Agreement with Statement  for for-
mulas sharpened from factoids rated – (le) and from all factoids (right). e vertical
axis shows the number of factoids that were given each rating, counting both judges’
responses. Lower ratings are better.

.. Conclusions

In this section we have suggested that we can sharpen classes of factoids expressing com-

monsense knowledge from weak, possibilistic claims to stronger, quantified claims. To

do this we made use of semantic categories for disambiguating predicates and recogniz-

ing factoids that express characterizing properties that deserve strengthening. We also

made use of the frequency with which we extract claims from text to induce the strength

of that quantification. Initial evaluation suggests that the resulting strengthened factoids

are of good quality, though improvement is needed for them to be suitable for inference.

. Learning Expected Event Frequencies

Commonsense reasoning requires knowledge about the frequency with which ordinary

events and activities occur: How oen do people eat a sandwich, go to sleep, write a book,

or get married? is section presents work to acquire a knowledge base pairing factoids

about such events with frequency categories learned from simple textual patterns. A col-

lection of factoids with the resulting event frequencies are evaluated for accuracy, and

I demonstrate the application of the results to the problem of knowledge refinement as

discussed in the previous section.
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e previous section used sharpening rules that distinguished only three types of

temporal predications:

 those that hold for the existence of the subject (individual-level), e.g., a house being

big;

 those that hold at a specific moment in time (non-repeatable stage-level), e.g., a per-

son dying; and

 those that hold at multiple moments in time (repeatable stage-level), e.g., a person

drinking a cup of coffee, which are quantified as ‘frequent’ or ‘occasional’ events

based on the association between subject and predication

However, repeatable stage-level predications vary from those done with great frequency,

such as a person saying something, to those done quite infrequently, such as a woman

giving birth. is section describes a simple method to learn rough frequencies of such

events from text.

Our focus is on the commonsense knowledge needed for many  applications,

rather than more specific domain knowledge, so we look for the frequency of everyday

events – such as going to work – that might be mentioned in ordinary text like newspa-

per articles, rather than big events – like earthquakes devastating a city, which tend to

be rare and unpredictable – or small events – like atoms decaying, which would typically

escape our notice.

.. Previous Work

We are unaware of any previous work aimed at systematically learning the expected or

normal frequency of events in the world. However, our basic approach to this problem

aligns with a long-running line of work using textual references to learn specific kinds

of world knowledge, which has been popular at least since Hearst () used lexico-
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syntactic patterns like ‘ such as {, , …, (and∣or)} n’ to learn hyponym rela-

tions, e.g., ‘Bambara ndang is a bow lute’ from large text corpora.

In addressing the problem of quantificational disambiguation, Srinivasan & Yates

() learn the expected sizes of sets of entities that participate in a relation; e.g., how

many capitals a country has or how many cities a person tends to live in. ey do this

by using buckets of numeric phrases in hand-craed extraction patterns like ‘(I∣he∣she)

⟨word⟩+ ⟨numeric⟩ ⟨noun⟩’, which would match ‘she visited four countries’. ey apply

these patterns to Google’s Web  n-gram Corpus.

Gusev et al. () presented a similar approach to learning event durations using

query patterns sent to a Web search engine, e.g., ‘⟨eventpast for * ⟨bucket⟩’, where the

bucket is a category in [seconds, minutes, hours, …, decades] for classifying the event’s

expected duration. Both of these papers are notable for gaining wide coverage by indir-

ectly using Web-scale text. However, they are limited by the brevity of patterns in n-

grams and by the coarse matching abilities of Web queries, respectively. §.. discusses

these trade-offs and our approach, focusing on large offline corpora.

e contribution of this section is the application of a traditional technique to a new

problem. Temporal frequencies are of key importance to improving the quality of auto-

matically learned knowledge for commonsense reasoning. Additionally, we hope that

providing a knowledge base of expected frequencies for factoids about everyday events

will serve as a new resource for other work in knowledge extraction and reasoning.

.. Textual Patterns of Frequency

e most direct linguistic expression of temporal frequency comes from frequency ad-

verbs: words like usually and always, distinct in their meaning from other adverbs of

quantification like twice. Sentences that contain a frequency adverb are referred to as

frequency statements, e.g., ‘John sometimes jogs in the park.’ Frequency statements are

 is example has probably provided more press for the bambara ndang in information-extraction than in

all of musicology or anthropology.
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interesting because their truth depends not just on the existence of some past events that

support them but on a regular distribution of events in time. at is, saying that John

‘sometimes jogs’ means that it is a habitual rather than incidental activity.

As Cohen () observes, much of our knowledge about the world is expressed

through frequency statements, but it’s not entirely clearwhat these sentencesmean. From

the perspective of knowledge extraction, they can seem quite opaque as their meaning

seems to rely on our pre-existing ideas of what a normal temporal frequency for the

event would be. For instance, to say that ‘Mary snacks constantly’ (or ‘frequently’ or

‘occasionally’) only makes sense if you already have in mind some range of frequencies

that would be normal or unremarkable.

More absolute frequency adverbials, such as daily,weekly, or every other week avoid

the problem of depending on a person’s expectations for their meaning. However, these

tend to occur with extraordinary rather than ordinary claims. For instance, in the British

National Corpus we find

Clashes between security forces and students had occurred almost daily.

New [viruses] are discovered every week.

Both of these are expressing surprising, unexpected information.

Following the example of §. in considering ‘disconfirmed expectations’, we look

for textual expressions that indicate a person’s frequency expectation has not been met

and, looking at these in aggregate, we conclude what the original, implicit expectation is

likely to have been. An example of such a disconfirmed expectation is

Bob hasn’t slept in two days.

e production of sentences like this suggests that this is an unusually long gap between

sleep periods for most people. We are unlikely to find many sentences saying, e.g., ‘Bob

hasn’t slept in two hours’ as this would not defy our expectation. (And while we will find

exaggerations, such as ‘I hadn’t slept in weeks’, the classification technique we describe

will favor the smaller interval unless the counts for a longer interval are quite high.)
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In this initial approach, we make use of two other patterns indicating temporal fre-

quency. An additional indication of an upper-bound on how infrequent an event tends

to be is a reference to the last time it was completed, or the next time it’s anticipated, e.g.,

‘He walked the dog yesterday’ or ‘She’ll go to the dentist next month’.

e other pattern is the use of hourly, daily, every week, etc. While frequency state-

ments with such adverbs can be communicating a frequency that’s much higher or lower

than expected, they serve as an important source of information when we don’t find

matches for the defied expectations. ey also occur as prenominal modifiers: For a fact-

oid likeA person may eat bread, we want to match references to ‘his daily bread’. is use

is presumptive and, as such, indicates a usual or expected frequency, as in ‘our weekly

meeting’ or ‘the annual conference’.

.. Method

Rather than relying on query-based retrieval from theWeb, or on the use of n-gram data-

bases, we have chosen to process a selection of large text corpora including the Brown

Corpus (Kučera & Francis, ), the British National Corpus ( Consortium, ),

the Penn TreeBank (Marcus et al., ), Gigaword (Graff et al., ), a snapshot of Eng-

lish Wikipedia (Wikipedia, ), a collection of weblog entries (Burton et al., ),

and Project Gutenberg e-books (Hart & volunteers, ).

emotivation for doing so is the larger context offered and the flexibility of match-

ing. Search engine queries for patterns are limited to quoted strings, possibly containing

wildcards: ere’s no reasonable mechanism to prevent matching patterns nested in a

sentence in an unintended way. For instance, searching for ‘I hadn’t eaten for months’

can easilymatch not just the expected hyperbole but also sentences like ‘I felt like I hadn’t

eaten for months’. Sets of n-grams pose the problem of limiting pattern length. While it’s

possible to chain n-grams for longer matches, this forfeits the guarantee of any actual

sentence containing the match.
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As a set of appropriate, everyday events abstracted away from specific instances, we

used a corpus of factoids (s) learned most frequently by Lore. We heavily filtered the

knowledge base both for quality (e.g., by limiting predicate names to known words) and

to focus on those factoids describing the sort of action to which we want to assign a

frequency. is included removing passives (‘A person may be attacked’) and subjects

that aren’t causal agents (according to WordNet). We abstracted multiple subjects to low

common hypernyms for compactness and to focus on classes of related individuals, such

as ‘a parent’, ‘an executive’, or ‘a scholar’.

A good indication that a factoid can be annotated with a frequency is telicity: Telic

verb phrases describe events rather than continuous actions or states. To check if the

predication in a factoid is possibly telic, we look in the Google n-gram data set for short

patterns. For each factoid of form (x y z*) and each set of indicators s,

(quickly ∣ immediately ∣promptly)

(suddenly ∣abruptly ∣unexpectedly)

(inadvertently ∣unintentionally ∣deliberately ∣unwittingly ∣purposely ∣accident-

ally)

(repeatedly ∣ frequently)

we look for: ‘s x yed z*’, ‘x yed z* s’, and ‘x s yed z*’ where x is the subject, yed is the past

tense of the verb, and z consists of any arguments. Any factoid with non-zero counts

for more than one set of indicators was considered possibly telic. For each possibly telic

factoid, we first determine whether it describes a regular event or not. A regular event

doesn’t need to be a rigid, scheduled appointment, just something done fairly consist-

ently. ‘Brush your teeth’ is regular, while ‘Overcome adversity’ is not; it depends on some

scenario arising. Regularity can be indicated explicitly:

ys/yed regularly/habitually

ys/yed invariably/inveterately/unvaryingly

ys/yed like clockwork





ys/yed at regular intervals

It can also be suggested by a stated interval:

ys/yed hourly/daily/weekly/monthly/yearly/annually

ys/yed every hour/day/week/month/year

every hour/day/week/month/year x ys/yed

If we don’t match enough of these patterns, we don’t consider the factoid to be regular; It

may be an occasional or existence-level predication, or we may just lack sufficient data

to determine that it’s regular.

For each regular-frequency factoid, we then check the corpora for matches in our

three categories of patterns:

Explicit FrequencyMatches ese indicate the exact frequency butmay be hyperbolic.

e ‘hourly’ and ‘every hour’ style patterns used for checking regularity are explicit fre-

quency indicators. In addition, if the factoid contains ‘may have a z’, we search for the

prenominal modifiers:

’s/his/her/my/your/our hourly/daily/weekly/monthly/yearly/annual x

Disconfirmed Expectation Matches ese indicate that people expect the activity to

be done ‘at least bucket oen’. ese include many small variations along these lines:

Hourly/multiple times a day:

Has x yed this morning/aernoon/evening?

Didn’t x y this/last/yesterday morning/aernoon/evening?

Hasn’t yed for/in over an hour

Has not yed for the whole/entire day

Daily/multiple times a week:

Have x not yed today?

Did x not y today/yesterday?
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Had not yed for/in more than n days

Haven’t yed for the whole/entire week

Weekly/multiple times a month:

Haven’t x yed this week?

Didn’t x y this/last week?

Hadn’t yed for more than a week

Had not yed for the whole/entire month

Monthly/multiple times a year:

Hasn’t x yed this month?

Did x y this/last month?

Hadn’t yed for over n months

Hadn’t yed for the whole/entire year

Yearly/multiple times a decade:

Have x yed this year?

Didn’t x y this/last year?

Haven’t yed for/in over a year

Hadn’t yed for an entire decade

Last ReportedMatches ese are statements of the last time the predication is reported

as being done or when it’s expected to happen next. ese are useful, as you wouldn’t say

‘I took a shower last year’ if you take one daily. ey indicate that the event happens ‘at

most bucket oen’.

Hourly/multiple times a day:

yed an hour ago

yed earlier today

’ll/will y later today
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Daily/multiple times a week:

yed today/yesterday

yed on Sunday/…/Saturday

’ll/will y tomorrow/Sunday/…/Saturday

’ll/will y on Sunday/…/Saturday

Weekly/multiple times a month:

yed this/last week(end)

’ll/will y next week(end)

Monthly/multiple times a year:

yed this/last month

’ll/will x next month

Yearly/multiple times a decade:

yed this/last year/season/spring/…/winter/January/…/December

’ll/will y next year/season/spring/…/winter/January/…/December

Decision For each of the three categories of patterns, we select the frequency bucket

that it most strongly supports: We iterate through them from hourly to yearly, moving

to the next bucket if its count is at least / that of the current one. For the ‘last reported’

matches, we go in the opposite direction: yearly to hourly.

From the three choices, the two buckets with the highest supporting counts are

selected. If the range of these buckets is wide (that is, there is more than one intervening

bucket), the bucket for a more frequent reading is chosen; otherwise, the less frequent

one is chosen. is choice compensates for some hyperbole: If people claim they haven’t

slept for days and for years, we choose days. However, if we find that people haven’t

showered for hours or days, we choose days as a reasonable lower bound.
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.. Evaluation

To evaluate how accurately this method assigns an expected frequency to a factoid, we

sample  factoids that were classified as describing a regular occurrence. Each of these

is verbalized as a conditional, e.g.,

If a person drives taxis regularly, he or she is apt to do so daily or multiple

times a week.

If a male plays (video games) regularly, he is apt to do so daily or multiple times

a week.

Note that we do not take the factoid to apply to all possible subjects, but for those it

applies to, we’re indicating our expected frequency. Arguments are taken to be narrow-

scope, e.g., for ‘a person may greet a friend’, it can be a different friend for each greeting

event rather than the same friend every time.

For each of the sampled factoids, two judges evaluated the statement ‘is is a reas-

onable and appropriately strong frequency claim (at least on some plausible understand-

ing of it, if ambiguous)’ on this scale:

 Agree

 Lean towards agreement

 Unsure

 Lean towards disagreement

 Disagree

e average rating for Judge  was ., the average rating for Judge  was ., and

the Pearson correlation was ..

A simple baseline for comparison is to assign the most common frequency (‘daily’)

to every factoid. However, for this to be a fair baseline, this needs to be done at least

for the entire possibly-telic , not just the factoids identified as being regular, as that

classification part of the method being evaluated. is baseline was evaluated for 
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factoids, with an average ratings of . and . (correl. .) – worse than ‘unsure’. is

result would be even lower if we applied this frequency to all factoids rather than just

the telic ones: We would claim, for instance, that a person has a head daily.

e authors also judged a random sample of  of the factoids that were marked

as not being regular actions. ese were verbalized as denials of regularity:

Even if a person files lawsuits at all, he or she doesn’t do so regularly.

Of these, on average the judges indicated that  could reasonably be thought to be reg-

ular events that we would like to assign a frequency to.

ese annotations serve as a guide in the sharpening of Lore factoids into full Epis-

odic Logic forms. For instance, from the factoid A person may eat lunch, we can now

select the correct episodic quantifier daily:

(all-or-most x: [x person.n]

(daily e

(some y: [y lunch.n]

[[x eat.v y] ** e])))

at is, for all ormost persons, there is a daily episode that is characterized by the person

eating some lunch.

.. Conclusions & Future Work

e acquisition of temporal frequency information for everyday actions and events is

a key problem for improving automatically extracted commonsense knowledge for use

in reasoning. We argue that this information is readily available in text by looking at

patterns expressing that a specific instance is at odds with the expected frequency, those

that report frequencies explicitly, and those stating the last time such an event occurred.

We find that a simple approach assigns event frequencies with good accuracy, allowing

us to improve the temporal quantification of knowledge learned by Lore.
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ere is room to improve the frequency labeling, for instance, usingmachine-learning

techniques to combat sparsity issues by discovering new textual patterns for event fre-

quencies. It would also be interesting to see how performance could be improved by

automatically weighting the different patterns we’ve discussed as classification features.

. Chapter Summary

is chapter presented Lore, a system for learning commonsense knowledge from text.

While previous work on Knext has found a great volume and variety of possibilistic gen-

eral world knowledge, this lacks much of what we consider common sense, such as the

expected outcome of actions. Lore expands Knext’s extractions, focusing on patterns

such as ‘disconfirmed expectations’ that reveal what people expect to normally be true –

an approach to overcoming the reporting bias of text discussed in Chapter . To provide

appropriately strong, partially disambiguated knowledge that can be used for inference,

Lore sharpens the initial logical forms learned from text, using lexico-syntactic rules and

corpus frequencies. A variety of text patterns were demonstrated to find the expected fre-

quencies of events to allow more specific temporal quantification in sharpening. In the

next chapter we demonstrate and evaluate the use of Lore’s output for inference.
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 Making& Evaluating Inferences with
Commonsense Rules

Most of their remarkswere the sort it would not be easy to disagreewith: ‘What

I always say is, when a chap’s hungry, he likes some victuals,’ or ‘Getting dark

now; always does at night,’ or even, ‘Ah, you’ve come over the water. Powerful

wet stuff, ain’t it?’

. . , e Voyage of the Dawn Treader, 

Human-level artificial intelligence requires the ability to reason about the sorts of every-

day situations and individuals that people write about. Consistent with the view that

language is a mirror of mind, in this dissertation we acquire general commonsense fact-

oids from predication and modification structures in text. en, using existing lexico-

semantic resources and textual frequencies, we sharpen that knowledge into quantified

axioms, expressed in a natural language–like logic. is chapter demonstrates uncertain

inference with these rules and evaluates the reasonableness of the conclusions, com-

paring their quality to that of conclusions drawn from large knowledge bases without

sharpening.

. Evaluating Knowledge Extraction

ere are many ways of evaluating a collection of knowledge. An important measure is

quantity:emore knowledge available for reasoning, themore useful a knowledge base

may be. However, not all accurate knowledge is equally informative. While it is true that

Sparrows have feathers,Nightingales have feathers, and Ravens have feathers, and so on, a
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knowledge base containing all of these facts is arguably less useful than one that simply

contains the knowledge that Birds have feathers (and that members of these species are

birds).at is, knowledge that is entailed by a smaller  is superfluous.However, storing

knowledge at a greater generality than is justified will lead to inaccurate conclusions.

It is difficult to apply a notion of recall to general knowledge extraction since it is

difficult to know how much – let alone, what – good knowledge you have not learned

from a particular source. A labor-intensive approximation would have multiple experts

read a set of documents and enumerate all the knowledge suggested in each document.

en you could measure how much of the knowledge identified by multiple readers is

found by a  system. Any knowledge found from these texts at an incorrect level of

generality or not listed by the experts would then count against precision.e creation of

such a data set has not been attempted, due to the effort, cost, and difficulty of agreement.

An even harder question in evaluating a knowledge acquisition effort is its cover-

age of the notional collection of all commonsense knowledge that would be useful for

generally intelligent reasoners. While the core of commonsense knowledge is largely un-

changing, there is an amorphous boundary between common sense and useful general

world knowledge, which changes and grows over time. No approach has been suggested

that would estimate how close we are to this ambiguous goal.

. Knowledge for Reasoning

Many of the hardest problems of artificial intelligence seem to require commonsense

knowledge and the ability to use it to reason about specific situations. For instance, cre-

ating an agent that can converse about everyday topics seriously (rather than with the

superficiality of a ‘chatbot’) requires knowing about the things people talk about: other

people, work, pets, politics, andmuchmore.When someonementions ‘my friendMolly’,

you recognize ‘Molly’ as a female name, and you have a variety of expectations about

friends. An intelligent agent needs similar knowledge, and the ability to draw common-

sensical conclusions is an important evaluation of a collection of inferential knowledge.
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Quantifier Weight

All-or-most .
Most .
Most-or-many .
Many .
Many-or-some .

Table .: Quantifier conclusion weights.

McCarthy () wrote, ‘A program has common sense if it automatically deduces for

itself a sufficiently wide class of immediate consequences of anything it is told and what

it already knows.’

e inference engine for Episodic Logic is Epilog (Schaeffer et al., ), recently re-

implemented as Epilog .  and Epilog have proved their versatility and effectiveness

in experimental applications ranging from processing aircra maintenance reports to

reasoning about fairy-tales. While these applications have been on a small scale, Epilog

has also been shown to hold its own against state-of-the-art systems in the area of shal-

low theorem-proving over significantly large first-order knowledge bases (Morbini &

Schubert, ), despite the fact that it handles a much richer representation than .

Epilog supports input-driven forward inference, generating conclusions by combin-

ing newly obtained facts with existing knowledge, and goal-driven backward inference,

working backwards from consequent to antecedent to check if there is evidence to sup-

port a specified conclusion. To enable inference with the generalized quantifiers used in

this dissertation, we use specialized modus ponens–like axiom schemas, e.g., for ‘many’,

(∀pred p, q (∀term b [[[b p] and (many x: [x p] [x q])]

⇒ ((adv-s (with-certainty .)) [b q]))))

With this rule, if we know that [John.name male.n] and (many x: [x male.n] [x man.n]),

we can draw the very natural conclusion that
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Certainty Verbalization

. Almost certainly
. Very probably
. Probably
. Quite possibly
. Possibly

Table .:Verbalizations of certainty values associatedwith statements.Certainties can
be assigned either as the result of inference or by a default axiom.

((adv-s (with-certainty .)) [John.name man.n])

John is quite possibly a man.

e correspondence between numeric certainties of formulas and their verbalizations is

given in Table ..

Note that this rule could be stronger –mostmales aremen (taking ‘male’ in the sense

of male human and ‘man’ in the sense of male adult). However, it’s important that the

commonsense knowledge we learn from text not be too strongly quantified as we want

explicitly stated facts – user input or assertions from a text being read – to outweigh it.

To give default weights to explicitly stated knowledge, we introduce a meta-axiom that

all well-formed formulas ϕ that don’t begin with a certaintymodifier imply ((adv-s (with-

certainty .)) ϕ). en, to resolve possibly conflicting conclusions, we can compare the

certainty scores for ϕ and ¬ϕ.

To see why this is necessary, consider the statement ‘John is a nurse’. is is inter-

preted as [John.name nurse.n] and also, by the name matching a gazetteer, [John.name

male.n]. From other text, we may have learned the unreliable rule that Most nurses are

female. When we query the conclusion that [John.name female.n], Epilog will prove that

 In future, this certainty value could be varied depending on the credibility of the source of the knowledge.
 Gazetteers – lists abstracting names to classes of individuals – are used, both in knowledge acquisition

and in interpretation of sentences. ese include US presidents, cities, rock stars, corporations, tycoons,

and more.
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he is with a certainty of .. However, when we query (not [John.name female.n]), Epilog

will prove that he is not female with a certainty of ., making that the favored conclusion.

e additional necessary axioms that (all x: [x male.n] (not [x female.n])) and vice

versa are generated from the antonym relations from WordNet (Fellbaum, ). Al-

though these don’t cover all contradictory conclusions, e.g., that a cat cannot also be

a dog, they provide a number of important lexical relations.

.. Uncertain Quantifier Chaining

Furthermore,wewant to sanction some rough-and-ready inferences involving quantifier

chaining. For instance, if we know the rules

(all-or-most x: [x lion.n]

[x predator.n])

All or most lions are predators.

(many x: [x predator.n]

(some e: [[x ∣e] enduring]

[[x violent.a] ** e]))

Many predators are violent.

en we can multiply their quantifier weights (Table .) and form the rule thatMany or

some lions are violent. is is expected to hold in the absence of further information, i.e.,

when we have no reason to suppose that lions are exceptional as predators with respect

to the ‘violent’ property. So, any given lion is quite possibly violent.

Note that in such inferences, the quantifier in the conclusion will in general be

weaker than the quantifiers in the premises (except that allmaintains the full strength of

whatever the other quantifier expresses). We make the slightly unusual assumption that

quantifiers like all-or-most, all, and most have ‘existential import’. at is, unlike in ,

the quantifiers imply some. We evenmake the stronger assumption that these quantifiers
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imply many. For example, if we are given that All or most elm trees have branches, we’ll

conclude that Many elm trees have branches. (is simply is an assumption that all the

types that occur in our formulas have numerous instances, whether they be people, dogs,

times, legs, etc.)

Note that these are being interpreted as proportional quantifiers, not absolute ones.

e quantifier all of course is also proportional, and means . Some is not treated

as proportional; it just means ‘at least one’. Temporal quantifiers such as occasional are

not proportional either, but are stronger than some. For example, if Kevin occasionally

smokes, and when he smokes he occasionally coughs, then he occasionally (not just at

least once!) coughs, even though it will be at a lower frequency than he smokes.

. Inferential Evaluation

In evaluating the inferences that are enabled by a , it is natural to consider a task-based

evaluation such as demonstrating improvement at question answering. However, Kaplan

& Schubert () observed that

…the task-based approach to evaluation…would mean giving up on one of

the main attractions of the symbolic approach to , namely the idea that a

system’s internal representations can be interpretable by a human.

Even as more appropriately commonsense-oriented tasks have been presented, such as

the Choice of Plausible Alternatives (Roemmele et al., ), task-based evaluations con-

tinue to require a significant investment of time into system-building, which can be pre-

mature given the work yet to do on knowledge acquisition. It can also be quite difficult

to measure the impact of a  as performance on an end task oen depends on multiple

factors within the overall system.

For instance, in recent years, inferential knowledge has been applied to recognizing

textual entailment (). is is the task of judging for pairs of sentences whether the

first (t) entails the second (h), where entailment is a semantic relation that holds only if
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h is true in every possible world where t is true (Chierchia & McConnell-Ginet, ).

A somewhat logical–inferential approach to  has been pursed by Clark & Harrison

(b) among others. However, even given appropriate knowledge, using inference to

improve  is currently limited by our ability to accurately interpret arbitrary premise

sentences to trigger inference. Such open-ended semantic interpretation is an important

and difficult area of research that requires more work, which is outside the practical

scope of this dissertation.

Considering the evaluation of entailment rules (a subset of inference rules), Szpek-

tor et al. () argued:

While measuring the impact of learned rules on applications is highly im-

portant, it cannot serve as the primary approach for evaluating acquisition al-

gorithms for several reasons. First, developers of acquisition algorithms oen

do not have access to the different applications that will later use the learned

rules as generic modules. Second, the learned rules may affect individual sys-

tems differently, thus making observations that are based on different systems

incomparable. ird, within a complex system it is difficult to assess the exact

quality of entailment rules independently of effects of other system compon-

ents.

In this work we continue in the dominant evaluation strategy for knowledge extrac-

tion work of relying on human judgement (e.g., Lin & Pantel, ; Barzilay & Lee, ;

Sekine, ; Akbik & Löser, ). As observed in §., judging inferential knowledge

out of context can result in low inter-annotator agreement. is problem was previously

identified by Szpektor et al. () for the evaluation of entailment rules, leading them

to propose instance-based evaluation. ey presented judges with an entailment rule

and a sample of sentences that match its antecedent for which they are asked whether

the consequent holds. For samples of output from  (Lin & Pantel, ) and 

(Szpektor et al., ), they found this approach gave an improvement in agreement.
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We want to judge the ‘reasonableness’ and the appropriate strength of uncertain

conclusions in order to evaluate the quality of the axioms that have been extracted and

the benefit that the sharpening of formulas gives to our ability to make commonsense

inferences. To this end, we introduce fictional, named individuals of a variety of classes

(US presidents, scientists, writers, cars, singers, artists, world cities, rivers, dictators, and

countries) and – in the absence of other, specific information – we draw conclusions

about them. For evaluation we rely on fictional instances rather than known individuals

to avoid spurious ratings based on idiosyncrasies. For instance, it is a good common-

sense claim that US presidents are elected to that office, but this would be an incorrect

conclusion about Gerald Ford.

.. Evaluating Factoids and Sharpened Formulas

In addition to applying the sharpened rules, we want to draw conclusions based on un-

sharpened factoids to serve as a baseline. While the quantificational structure of the

sharpened rules determines which can be applied, in selecting factoids to be used for

pseudo-inference, we match only those with the predicate of interest in the lemost un-

scoped quantifier. For instance, for ‘us-president’, we select A US president may have an

administration, but not A person may vote for a US president. While the latter is perfectly

reasonable, and we know that Barack Obama being president means that people voted

for him, the second position is oen predicative as in A person may be a US president,

which should not lead us to conclude that A person may be Barack Obama.

For the inferences being made, we lack a temporal frame of reference. While this is

less important for fictional individuals than for recognizable historical figures, it’s neces-

sary for understanding claims like Possibly a US president accepts a nomination, where

the nomination happens before being elected president. us we rewrite the verbaliza-

tions to include both present and past tense readings: Possibly a US president accepts (or

accepted) a nomination.
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Cooper is a US president.
Possibly Cooper has (or had) an administration.
Emery is a scientist.
Possibly Emery finds (or has found) that something-is-the-case.
Williams is a writer.
Possibly Williams is (or was) successful.
Alex’s car is a car.
It possibly has (or had) a seat.
Angel is a singer.
Possibly Angel is (or was) male.
Dolkhov is a dictator.
Possibly Dolkhov comes (or came) to power.
Gatanaia is a country.
Possibly it undergoes (or has undergone) an invasion.

Figure .: Selected examples from inference with unsharpened factoids.

Beresford is a US president.
Probably Beresford raises (or raised) a tax.
Rene is a scientist.
Quite possibly Rene occasionally performs (or performed) a test.
Fournier is a writer.
Quite possibly Fournier occasionally undergoes (or underwent) translation.
Tremblay is a singer.
Quite possibly Tremblay occasionally performs (or performed) a song.
Patel’s car is a car.
Probably it has (or had) a window as a part.
Lia is a river.
Quite possibly it occasionally overflows (or overflowed) a bank.
Avery is a dictator.
Quite possibly Avery occasionally invades (or invaded) a country.

Figure .: Selected examples from inference with sharpened factoids.
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Judge  Judge  Correlation

Unsharp  . . .
Unsharp  . . .

Sharp  . . .
Sharp  . . .

Table .: Average ratings of inferences from factoids and sharpened axioms.  rates
reasonableness from – with  being best.  rates strength from () too weak to () too
strong.
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Figure .: Frequency of strength ratings for inferences with factoids and sharpened
knowledge.  is best.
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For each of the ten classes of individuals used in the evaluation, the ten most fre-

quently learned rules about that class were used for simple, one-step inferences. en

for each pair of a premise (e.g., ‘Emery is a scientist’) and a conclusion drawn about the

(gender-ambiguous) individual, two judges were asked first to rate whether the infer-

ence was reasonable and non-vacuous on a scale of –, with  being full agreement and

 being full disagreement. ey then rated whether the strength of the conclusion was

() much too weak () somewhat too weak () about right () somewhat too strong or ()

much too strong. e average ratings given by each judge are in Table , and histograms

of the strength ratings are in Figure .

While the assessment of the reasonableness of the inferences made with the un-

sharpened factoids is quite favorable, it improves for the inferencesmade from sharpened

axioms. is confirms that the sharpening process, which only produces axioms when a

semantic rulematches the factoid, acts as an additional quality filter on the knowledge ex-

traction. Looking at the histograms for the second question, rating whether the strength

of the factoid is appropriate, we see a move toward ‘about right’ from ‘much too weak’.

However, there is still a general tendency to strengthen less than would be judged appro-

priate. For examples of inferences from both classes of knowledge, see Tables  and .

.. Evaluating an Alternative Baseline

While performing rough-and-ready inference with unsharpened factoids gives a weak

baseline for evaluating the contribution of sharpening, we’re also interested in how the

entire knowledge extraction pipeline described compares with what is learned by other

methods.

A prominent line of research in large-scale knowledge extraction looks for phrases

identifying relations in text, using simple part-of-speech tagging and noun chunking

rather than full syntactic parsing, and relying on the variety of ways that knowledge is

expressed on the Web to find instances. e most notable tool in this vein is TextRunner

(Banko et al., ), which was compared with Knext by Van Durme & Schubert ().
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More recently, Fader et al. () introduced ReVerb, which attacks the problems of inco-

herent anduninformative extractions through the use of syntactic and lexical constraints.

We use the publicly released ReVerb ClueWeb Extractions . data set, consisting of ap-

proximately  million binary assertions, as an alternative baseline.

As ReVerb is designed as an open information extraction system rather than an

open knowledge extraction system like Lore, it discovers and stores many relations in-

volving specific individuals, which are inappropriate as inferential knowledge. We pre-

filtered the ReVerb knowledge base to named entities and other, unknown lexical items.

en, as with the selection of factoids for inference, we chose the most frequent ReVerb

formulas where the first position (arg) is (a loose match of) the individual’s class predic-

ate. For a small comparison set, we used five of the predicate classes used for evaluating

Lore and apply the ten most frequent rules per class.

e resulting inferences were not judged on their strength but merely on how reas-

onable they were. Selected examples of the inferences are shown in Figure .. e av-

erage ratings of inferences performed with ReVerb rules are . and . – significantly

lower then for the inferences made with unsharpened factoids – with a . Pearson

correlation between judges. While there is good knowledge, there are many extractions

in the collection that apply only to a specific individual or scenario rather than more

generally to the class, making for unlikely and confusing inferences.

.. Discussion

Our evaluation indicates that implicit knowledge learned from text, abstracted from

statements about individuals, provides a more appropriate basis for simple, common-

sense inferences than does the explicitly stated relations found by open information ex-

traction systems like ReVerb. Furthermore, using lexico-syntactic rules to sharpen this

 While ReVerb associates a confidence value with its extractions, the released collection all have confidence

> .. It wasn’t a strong indicator of quality, but nor was frequency, which was noticeably skewed by copied

spam text and boilerplate language from the Web corpus.
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Rory is a US president.
Rory is the head of the US Armed Forces.
Rory is a US president.
Rory has visited Brazil.
Jessie is a scientist.
Jessie is working on a vaccine.
Devyn’s car is a car.
It runs on water.
Smith is an artist.
Smith must be at least  years of age.
Griffiths is a dictator.
Griffiths cannot be good for English cricket.
Griffiths is a dictator.
Griffiths is a ruler with complete control.

Figure .: Selected examples of inferences with ReVerb extractions.

knowledge into full logical forms allows for systematic improvements in the reasonable-

ness of the conclusions drawn as well as the strength with which they are asserted.

It is important to note that we do not claim that thismethod is appropriate for learn-

ing all manner of useful commonsense knowledge. Much commonsense knowledge,

such as script information or the usual outcomes of actions is best found from larger,

intersentential patterns. Other knowledge, such as hyponymy is quite efficiently found

through the application of simple patterns to large sources of text such as the Web.

e importance of the method described is in getting at implicit knowledge that

is not readily found in other resources or by other techniques. And while we’ve evalu-

ated only simple inferences here, where we see usefulness in this work is in the eventual

use of commonsense knowledge in chaining and in combination with specific, domain

knowledge.
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. Chapter Summary

We’ve described a pipeline for acquiring knowledge from patterns of predication in text

and sharpening it to a form that is suitable for reasoning. e types of rules we obtain

show a great deal of variety in the types of predicates they involve, as a result of the

fact that even a single sentence can (and oen does) yield one or more general quanti-

fied rules. Reasoning with sharpened knowledge rates favorably in human judgements

of reasonableness and appropriate strength when compared with baseline inferences us-

ing unsharpened factoids or binary relations learned by ReVerb. Furthermore, we have

shown at least in a preliminary way that the rules obtained are usable for inference and

can provide probabilistically qualified conclusions.
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 Conclusions

‘You know, when I was a lad they called it . Artificial Intelligence.’

Hackworth allowed himself a tight, narrow, and brief smile. ‘Well, there’s some-

thing to be said for cheekiness, I suppose.’

 , e Diamond Age, 

. Summary

In Artificial Intelligence, it seems that the human-like understanding and reasoning re-

quired for problems such as question-answering, recognizing textual entailment, and

planning depends on access to a large amount of knowledge.We have considered the rep-

resentational requirements of that knowledge and the developments in logic, semantics,

and  that lead to us to the use of Episodic Logic, an expressive, natural language–like

formalism.

Work in knowledge acquisition has ranged from the manual work of knowledge

engineers to fully automated tools running over Web-scale text. For the learning of com-

monsense knowledge, not limited to predefined relations or individuals, we find that

with filtering even the ‘noisy’ text that can be found on theWeb is a good target for extrac-

tion. However, even over large volumes of text, much of the commonsense knowledge

we seek is rarely expressed, at least as the explicit content of sentences. is problem of

reporting bias motivates a focus on implicit knowledge and patterns of ‘disconfirmed

expectations’ that let us learn what people presume to be true or expect to happen.





is approach to knowledge extraction is implemented in Lore, a tool that finds ini-

tial logical forms expressing what is possible in the world and then uses lexical-semantic

rules and corpus frequencies to sharpen this knowledge into appropriately strong, par-

tially disambiguated formulas that can be used for inference. e resulting knowledge

uses generalized quantifiers like most people, which allow us to draw uncertain conclu-

sions of varying strengths. e resulting inferences are rated better than a baseline per-

forming pseudo-inference with unsharpened factoids or the results of a state-of-the-art

information extraction system.

e appendices that follow present two lines of work that are alluded to in this

dissertation: the use of crowdsourcing for the evaluation of knowledge bases and the

interpretation of WordNet to acquire lexical axioms that complement what is learned

from text.

. Knowledge for Text Understanding

In this dissertation I have argued that better text understanding yields better collections

of knowledge, and I trust that better knowledge will, in turn, enable better text under-

standing. When we understand a text, we make bridging inferences to connect consecut-

ive sentences. Or, to frame the process more generally, we connect the contents of each

sentence we read with what we already know. As Clark & Harrison () put it, ‘Prior

knowledge should guide interpretation of new text, and new interpretations should aug-

ment that prior knowledge.’ese inferences depend both onwhat has already been read

and understood in that text and on our store of commonsense knowledge. For instance,

Schank () gives the sinister example:

John wanted to become chief supervisor at the plant. He decided to go and

get some arsenic.

People have no difficulty recognizing the intention that underlies the second sen-

tence given the first, but when we try to enable a machine to do so, we find it requires
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considerable knowledge. As discussed in §., Schank suggests the core of this knowledge

should be in the form of standard scripts and generic plans. But, regardless of represent-

ation, it seems we need to know, at the least, that:

 ‘Chief supervisor’ is a kind of position.

 If a person dies, any position he or she holds becomes vacant.

 A vacant position can be filled.

 Arsenic is a poison.

 If a person consumes poison, he or she may die.

 If a person ‘goes to get’ something, he or she comes into possession of it.

 If a person is in possession of something, he or she can use it.

 Feeding someone something is using it.

 If a person wants something, he or she will oen take actions to make it happen.

While some of these are attainable by the methods presented in this dissertation (e.g.,

Arsenic is a poison and If a person consumes a poison, he or she may die), others are so

basic they are unlikely to be learned in this way.

Even without goals of ‘deep’ natural language understanding, simply resolving pro-

nouns requires chains of reasoning. For instance, Minsky () gives an example of an

elementary school story about Jane considering buying a kite for Jack. Her friend Penny

tells her, ‘He already has a Kite. He will make you take it back.’ Here, ‘it’ doesn’t refer

to the most recently mentioned thing (the kite Jack already has) but to the new kite

Jane might buy him. Similarly, Lenat () contrasted the referent of ‘they’ in ‘e po-

lice arrested the demonstrators because they feared violence’ vs ‘e police arrested the

demonstrators because they advocated violence’. It is our knowledge of how police be-

have that guides our interpretation of the sentence. As Singh () observes, ‘people

seem to need a tremendous amount of knowledge of a very diverse variety to understand

even the simplest children’s story.’
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. FutureWork

We can only see a short distance ahead, but we can see plenty there that needs

to be done.

 , ‘Computing Machinery and Intelligence’, 

In this section, I briefly describe some steps toward better commonsense knowledge to

support text understanding and .

Abstracting knowledge to appropriate generality Is a claim specific to an individual

or a generic claim about a class? How broad should the class be? Knowledge base ab-

straction helps ensure that we store knowledge at the level where it is most interesting

for inference. For instance, if I tell you that John is a painter, there’s no cognitive or

practical reason to think of his aorta. Additionally, idiosyncratic properties of a single

– possibly frequently mentioned – instance should not be allowed to dominate what we

know about a class. E.g., it’s fine to learn that Bill Clinton may occasionally play a saxo-

phone, but it is unhelpful to abstract this to a claim about US presidents generally. To this

end, we can compute the mutual information between the predication and ‘Bill Clinton’

vs ‘US president’.

Identifying alternatives It is possible for Lore to learn contradictory knowledge, e.g.,

Most house cats are black and Most house cats are calicos. Contradictory claims can be

minimized by recognizing which nominal and adjectival predicates are mutually exclus-

ive alternatives. However, as Minsky () wrote, ‘the preoccupation with Consistency,

so valuable for Mathematical Logic, has been incredibly destructive to those working on

models of mind.’ e possibility of deriving contradictory conclusions with some uncer-

tainty should not dissuade us from learning what we can from text.

Learning from intersentential discourse While my work has focused on knowledge

implicit in individual sentences, there is an abundance of knowledge – especially about
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the results of actions – that can be found in sequential sentences, e.g., ‘I dropped the plate.

ere were shards everywhere.’ Contrast, however, ‘I dropped the plate. e doorbell

rang’, where the implicit intersentential relationship is temporal, not causal. A related

issue is the introduction of coreference/anaphora resolution, which has the potential to

lead to more specific claims – rather than abstract ‘she’ to a female, we might be able to

abstract to a singer, an empress, etc.

Interpretation of generic sentences Commonsense knowledge can be learned by ab-

stracting from direct experience with the world or, in this thesis, the world of text. It

can also be learned from the explicit statement of generalizations. ese can be found

in intentionally informative sources like encyclopedias or in the data of the Open Mind

project, which solicited statements like ‘Books are used to learn things’. is knowledge

tends to be expressed as generic sentences, which, as Kria et al. () describe, abstract

away from particular objects to genera or kinds and from particular events and facts to

regularities about groups of episodes, events, or states of affairs.While a generic sentence

can superficially be identical to a particular sentence (e.g., ‘Lions stalk their prey’), Reiter

& Frank () present promising work on identifying generics.

As in sharpening factoids, a key issue when forming axioms from generic sentences

is radical underspecification:What, for instance, do you dowith a book in order to learn?

When we say that ‘A bird lays eggs’, what is the domain restrictor? It is at most female

birds. Many generic sentences specify a relation between an antecedent situation and a

consequent situation. E.g., we interpret ‘Hurrying causes accidents’ to mean that in the

situations in which one is performing some task, an accident will occur more oen in

those where one is hurrying than in those where one is not.

is situational analysis becomes more complicated if we consider the meaning of

a statement like ‘Smoking kills people’, where the consequent is not required to happen

in immediate temporal connection with the antecedent: One can smoke for years, stop

smoking, live twenty years, and then die of side-effects of smoking. Here, the antecedent

is a habitual. We also find causal sentences like ‘kittens cause happiness’. is could be
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understood as underspecification meaning something like ‘being in a situation where

there is a kitten causes happiness’. e same analysis could be made for ‘Joe caused the

fire’: We understand the sentence to mean that Joe is the agent of some particular action

that caused the fire, e.g., ‘Joe kicking over the lamp caused the fire’.

Enumerating fundamental abstract knowledge Improving performance at these prob-

lems will also highlight knowledge less readily discovered from text, including some of

the most basic psychological, causal, and spatiotemporal rules, such as those listed in

§.. Manually engineering these is a practical alternative to building Turing’s ‘child ma-

chine’ – a robot with human-like perceptual and motor abilities that could learn these

basic notions in a ‘situated’ way through interaction with the world.

. Final Remarks

ework described in this dissertation is an effort to create the knowledge infrastructure

needed for natural language understanding and commonsense reasoning. By looking for

the knowledge and expectations presumed in textual discourse and by applying semantic

criteria to large collections of shallow knowledge, I produce collections of high-quality

knowledge, appropriate for reasoning. Yet there is much more a machine needs to know

to enable human-like natural language understanding and commonsense reasoning,mo-

tivating future work on learning by reading.
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 Crowdsourced Evaluation& Filtering

. Introduction

While it is expected that knowledge extraction systems will eventually produce suffi-

ciently clean knowledge bases in order for inferences to be made about everyday things

and events, currently the average quality of automatically acquired knowledge is not

good enough to be used in traditional reasoning systems. An obstacle for knowledge

extraction is the lack of an easy method for evaluating – and thus improving – the qual-

ity of results.

Evaluation in acquisition systems is typically done by human judging of random

samples of output, usually by the reporting authors themselves (Lin & Pantel, ;

Schubert & Tong, ; Banko et al., ).is is time-consuming, and it has the poten-

tial for bias: it would be preferable to have people other than  researchers label whether

an output is commonsense knowledge or not. is chapter explores the use of Amazon’s

Mechanical Turk service, an online labor market, as a means of acquiring many non-

expert judgements for little cost.

Previously, Snow et al. () compared the quality of labels produced by non-

expert Turkers against those made by experts for a variety of  tasks and found that

they required only four responses per item to emulate expert annotations. Kittur et al.

() describe the use and necessity of verifiable questions in acquiring accurate rat-

ings of Wikipedia articles from Mechanical Turk users. ese results contribute to our

methods below. While previous evaluations of Knext output have tried to judge the re-
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lative quality of knowledge learned from different sources and by different techniques

(Chapter ), here the goal is simply to see whether the means of evaluation can be made

to work reasonably, including at what scale it can be done for limited cost.

. Experiments

A uniform random sample of factoids induced from the British National Corpus (

Consortium, ) was split into sets of . While obviously malformed results were

removed, the more stringent filtering presented in Chapter  was omitted in order to

ensure significant variation in the quality of the factoids to be rated.

e first evaluation followed the format of previous, offline ratings. For each factoid,

Turkers were given the instructions and choices in Figure ., rating on a scale of – with

 being best. To help Turkers make such judgements, they were given a brief background

statement:

We’re gathering the sort of everyday, commonsense knowledge an intelligent

computer system should know. You’re asked to rate several possible statements

based on how well you think they meet this goal.

Mason & Watts () suggest that while money may increase the number and speed

of responses, other motivations, such as wanting to help with something worthwhile

or interesting, are more likely to lead to high-quality responses. Participants were then

shown the examples and explanations in Figure .. Note that while they are told some

categories that bad factoids can fall into, the Turkers are not asked to make such classific-

ations themselves, as this is a task where even experts have low agreement (Van Durme

& Schubert, ).

Round  required participants to have a high () approval rate. Under these con-

ditions, out of s, were completed by participantswhose  addresses indicated

 Human Intelligence Tasks – Mechanical Turk assignments. In this case, each  was a set of twenty

factoids to be rated.
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Examples of good statements:

 A song can be popular.
 A person may have a head.
 Maneuvers may be hold -ed in secret.

It’s fine if verb conjugations are not attached or are a bit
unnatural, e.g., ‘hold -ed’ instead of ‘held’.

Examples of bad statements:

 A thing may seek a way.
is is too vague. What sort of thing? A way for/to what?

 A cocktail party can be at Scotch Plains Country Club.
is is too specific. We want to know that a cocktail party
can be at a country club, not at this particular one. e
underscores are not a problem.

 A pig may fly.
is is not literally true even though it happens to be an
expression.

 A word may mean.
is is missing information. What might a word mean?

Figure .: e provided examples of good and bad factoids.
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they were in India,  from the United States, and  from Australia. e average Pearson

correlation between the ratings of different Indian Turkers answering the same questions

was a very weak ., and between the Indian responders and those from the US and

Australia was .. On the other hand, the average correlation among non-Indian Turk-

ers was . – close to the .–. range of correlations previously observed between

experts, which can be taken as an upper bound on agreement for the task.

Given the sometimes subtle judgements of meaning required, being a native Eng-

lish speaker has previously been assumed to be a prerequisite. is difference in raters’

agreements may thus be due to levels of language understanding, or perhaps to differ-

ent levels of attentiveness to the task. However, it does not seem to be the case that the

Indian respondents rushed: ey took a median time of . seconds (. avg. with

a high standard deviation of . s – some took more than a minute per factoid). e

non-Indian responders took a median time of just . s (. avg., . std dev.).

Regardless of the cause, given these results, we restricted the availability of sub-

sequent experiments toTurkers in theUS. Ideallywewould include other English-speaking

countries, but there is no straightforward way to set multiple permitted countries on

Mechanical Turk. Alternatively, a test of English comprehension could be posted with a

satisfactory score as a prerequisite for participating in rating tasks, but this would signific-

antly limit the number who would attempt the task. Even adding a location requirement

significantly reduced the number of responses, with a sharp fall-off leading us to re-list

the task with a higher pay-rate of  for  factoids vs  originally (Round ).

To avoid inaccurate ratings, we rejected submissions that were unreasonably quick

or were strongly uncorrelated with other Turkers’ responses. For each set of factoids

(), we collected five Turkers’ ratings, and for each persons’ set of responses computed

the average of their three highest correlations with others’ responses. We then rejected if

the correlations were so low as to indicate random responses. e scores serve a second

purpose of identifying a more trustworthy subset of the responses. (A cut-off score of

 Rounds have been re-numbered from the original presentation of these results in Gordon et al. (a).
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All High Corr. (> .)

Round Avg. Std. Dev. Avg. Std. Dev.

 . . . . 
 . . . . , US-only
 . . . . , simplified question
 . . . . Weblogs, same format
 . . . . Wikipedia, same format
 . . . . , coherent factoids only

Table .: Average ratings fromMechanical Turk. Lower numbers are more positive

. was chosen based on hand-examination.) Table . shows that these more strongly

correlated responses rate factoids as slightly worse overall, possibly because those who

are either casual or uncertain are more likely to judge favorably on the assumption that

this is what the task authors would prefer. Or they may simply be more likely to select

the top-most option, which was ‘I agree’.

An example of a factoid that was labeled incorrectly by one of the filtered-out users

is A person may look at some thing-referred-to of press releases, for which a Turker from

Madras in Round  selected ‘I agree’. Factoids containing the vague thing-referred-to are

normally filtered out automatically, but leaving them in provided some obviously bad

inputs for checking Turkers’ responses. Another (US) Turker chose ‘I agree’ when told

Tes may have es but ‘I disagree’ when shown A trip can be to a supermarket.

We are interested not only in whether there is a general consensus to be found

among the Turkers but also how that consensus correlates with the judgements of 

researchers. To this end, one of the authors rated five sets ( factoids) presented in

Round .e average correlation between all the Turkers and the authorwas ., rising

slightly to . if we only count thoseTurkers considered ‘highly correlated’ as described

above.

As another test of agreement, for ten of the sets in Round , two factoids were des-

ignated as fix-points – the single best and worst factoid in the set, assigned ratings  and
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Figure .: Frequency of ratings in the highly correlated results of Round .

 respectively. From the Turkers who rated these factoids,  of the  ratings matched

the researchers’ designations and  were within one point of the chosen rating. (If we

only look at the highly correlated responses, this increases slightly to  exact match,

 within one point.)

A few of the Turkers who participated had strong negative correlations to the other

Turkers, suggesting that they misunderstood the task and were rating backwards. Fur-

thermore, one Turker commented that she was unsure whether the statement she was

being asked to agree with (Figure .) ‘was a positive or negative’. To see how it would

affect the results, we ran (as Round ) twenty sets of factoids, asking simplified question

‘Do you agree this is a good statement of general knowledge?’ e choices were also re-

versed in order, running from ‘I disagree’ to ‘I agree’ and color-coded, with agree being

green and disagree red. is corresponded to the coloring of the good and bad examples

at the top of the page, which the Turkers were told to reread when they were halfway

through the . e average correlation for responses in Round  was ., which is an

improvement over the . avg. correlation of Round .

 is was true for one Turker who completed many s, a problem that might be prevented by accept-

ing/rejecting s as soon as all scores for that set of factoids were available rather than waiting for the

entire experiment to finish.
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Using the same format as Round , we ran factoids from twoother corpora. Round 

consisted of  random factoids taken from runningKnext onweblog data andRound 

 random factoids taken from running Knext on Wikipedia. e average ratings for

factoids from these sources are lower than for the , reflecting the noisy nature of

much writing on weblogs and the many overly specific or esoteric factoids learned from

Wikipedia.

e results achieved can be quite sensitive to the display of the task. For instance,

the frequency of ratings in Figure . shows that Turkers tended toward the extremes:

‘I agree’ and ‘I disagree’ but rarely ‘I’m not sure’. is option might have a negative con-

notation (‘Waffling is undesirable’) that another phrasing would not. As an alternative

presentation of the task (Round ), for  factoids, we asked Turkers to first decide

whether a factoid was ‘incoherent (not understandable)’ and, otherwise, whether it was

‘bad’, ‘not very good’, ‘so-so’, ‘not so bad’, or ‘good’ commonsense knowledge. Turkers

indicated factoids were incoherent  of the time, with a corresponding reduction in

the number rated as ‘bad’, but no real increase in middle ratings. e average ratings for

the ‘coherent’ factoids are in Table ..

. Conclusions

ese initial experiments have shown that untrained Turkers evaluating the natural-

language verbalizations of an open knowledge extraction system will generally give rat-

ings that correlate strongly with those of  researchers. Some simple methods were de-

scribed to find those responses that are likely to be accurate. is work shows prom-

ise for cheap and quick means of measuring the quality of automatically constructed

knowledge bases and thus improving the tools that create them. Beyond exploring the

potential of Mechanical Turk as a mechanism for evaluating the output of Knext and

other open knowledge extraction systems, these experiments also suggest the possibility

of using crowdsourcing as a manual – but large-scale – filtering stage in the knowledge

extraction process.
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 Learning Lexical Axioms

WordNet provides a semantic hierarchy with broad lexical coverage, which has proved

sufficiently precise to boost performance at many tasks involving natural language. How-

ever, it has not yet been formalized for use in a general reasoning system. In this chapter,

we present such a formalization, designed to support inferencewith the knowledge learned

from text in this dissertation. We use a semi-automatic annotation of WordNet with

lexical features – most notably the mass–count distinction – to recognize inferentially

different relations between concepts. e result is a collection of , lexical-semantic

axioms, which are being released for general use. We evaluate a sample of the axioms for

core concepts, showing their quality to be significantly better than a baseline interpreta-

tion of WordNet.

. Introduction

We are interested in the creation of large knowledge bases to support language under-

standing and commonsense problem-solving. An important component of such a know-

ledge base is a large collection of lexical-semantic axioms relatingmore specific nominal

concepts to more general ones. For example, axioms might assert that every rifle is a

firearm, or that all malpractice is wrongful conduct. e most comprehensive, machine-

readable source of this type of knowledge is WordNet (Fellbaum, ), which attempts

to exhaustively enumerate and define the senses of each word. WordNet groups word

senses considered synonymous into synsets, such as {firearm, piece, small-arm} or

{wrongdoing, wrongful_conduct, misconduct, actus_reus}. ese synsets are
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linked by hierarchy relations: upward to a more general hypernym and downward to a

more specific hyponym.

ese relations have been used to improve performance in natural language pro-

cessing tasks such as information retrieval, document clustering, rule discovery, and

text-based question-answering.ese incremental improvements have not required that

the knowledge used be sufficiently precise to support genuine language understanding,

let alone commonsense reasoning. For these ‘deep’ problems, the knowledge needs to

be regimented into some more precise, more reliable form. At the same time, it is desir-

able to keep a close connection between concepts referred to in ordinary language and

their formalized versions. is way, the mapping from natural language to formalized

representations (and vice versa) will be as direct and straightforward as possible in such

applications as text-understanding and human–computer dialogue.

As such, it is natural to ask whether WordNet senses of nouns can be used directly

as predicates in a formalized knowledge base, with hierarchy relations (in the upward

direction) corresponding to universally quantified conditional (i.e., if–then) formulas.

For example, can we make the formal claim that, for appropriate senses, every rifle is a

firearm, or that all malpractice is wrongful conduct, as in the following?

∀x . rifle.n(x)⇒ firearm.n(x),

∀x .malpractice.n(x)⇒ wrongful_conduct.n(x)

For people to judge these claims, we want to verbalize them as corresponding Eng-

lish statements:

Every rifle is a firearm.

Every amount of malpractice is an amount of wrongful conduct.

 WordNet also includes antonymy, part–whole, and membership relations among others. In this section I

focus on nominal hypernyms, WordNet’s most extensive and most used component.
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e difference in these phrasings reflects a difference in the meaning of the terms in-

volved: Rifles are distinct, individuable entities; malpractice is less discrete. More gener-

ally, while mass terms are cumulative, count terms are not (Pelletier & Schubert, ).

A test phrasing highlights the difference:

Some malpractice and some more malpractice constitute an amount of mal-

practice.

*Some rifle and some more rifle constitute an amount of rifle.

Consistent with the close semantic connection betweenmass terms and plurals (Nicolas,

), if we change ‘rifle’ to ‘rifles’, the claim becomes true, even if speakers disprefer the

phrasing ‘amount of ’ applied to a plural.

For other hyponym–hypernym pairs, different relations are appropriate. For in-

stance, the count noun ‘plank’ and the mass noun ‘lumber’ are related as Every plank

is an amount of lumber. When a hyponym denotes an individual or a generic kind, the

appropriate relation is not subsumption but instantiation, e.g., Gold is a noble metal. We

sort out this ambiguity by looking at logical test phrasings and considering the criteria

for detecting these meanings, most notably the mass–count distinction. In §., we enu-

merate the relations we find between synset members in WordNet’s hypernym hierarchy

and the conditions under which they hold, but we first consider whether some alternat-

ive lexical and ontological resources would be less problematic and whether previous

work in refining WordNet could help.

. PreviousWork

One of the most noteworthy efforts in knowledge engineering for artificial intelligence

is the Cyc project (Lenat, ), which has created a collection of world knowledge in

the CycL logical form, including a manually constructed core ontology of over ,

terms. However, Cyc lacks the systematic link to language we find in WordNet, as seen
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in constructed predicates like CoexistingWithSomethingElse or OrganismByTaxonomic-

Kingdom-Biology-Topic.

Another significant resource is  (Niles & Pease, ), a formal ontology con-

sisting of around , axioms, including information about classes and their mean-

ings. Álvez et al. () translated most of its ,-term upper ontology into first-order

logic () and demonstrated its use for commonsense inference. However, while the

logical formulation of axioms in  is appealing for reasoning, it does not meet our

goals of lexical and conceptual coverage.  maps WordNet synsets to its own formal

terms for broader coverage, but these mappings are coarse and lose the specific meaning

of the synset. For instance, in WordNet, stage dancing (e.g., ballet) has the hypernyms

dancing (the act) and performing arts (the discipline). In , ‘stage dancing’ ismapped

to the class Dancing, but there is no sense for this as a discipline or an art, only as Body-

Motion.

Pustejovsky () presents the alternative approach of a ‘generative lexicon’, recog-

nizing that in different contexts a word will express different meanings, making it infeas-

ible to try (as WordNet does) to enumerate them independently of context. Rather, he

argues, a lexical entry should provide the information necessary to derive the sense the

word will take on in a given context. Resulting work on the Brandeis Semantic Onto-

logy (Pustejovsky et al., ) may eventually provide a more consistent basis for lexical

axioms, but no resource has yet been released.

ForWordNet, Kaplan& Schubert () previously looked at the accuracy of taking

the noun hierarchy as a simple subsumption taxonomy. ey identified a number of the

problems we address in this chapter, including the conflation of individuals, predicates,

and kinds and the mixing of mass and count uses of terms. More recently, Verdezoto &

Vieu () presented promising work to automatically identify problematic relations in

WordNet based on conflicts between meronyms and hyponyms. However, neither effort

attempted to produce a corrected formal resource as we do here.
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Several lines of previous work have sought to address ‘is-a’ ambiguity by making

WordNet a formal ontology, manually separating or removing non-subsumptive hyper-

nym relations and restructuring the upper, most abstract levels of the hierarchy to fit

different ontological principles. Most notable is the work of Nicola Guarino and his col-

laborators (e.g., Guarino &Welty, ) on distinctions and design principles for produ-

cing cleaner ontologies. is resulted in the construction of the  upper-level onto-

logy and the alignment ofWordNet (.) subtrees to it, tomakeOntoWordNet (Gangemi

et al., ).

In contrast with these lines of work, we are less concerned with ontological hy-

giene thanwith inferential efficacy for intuitively plausible reasoning and understanding.

Rather than restrict the content of WordNet to its subsumptive relations, we automatic-

ally produce lexical axioms that formalize a variety of logical relations between synset

members. To the best of our knowledge, this is the first such attempt.

. Acquiring Axioms

No work has yet provided a large-scale set of reasonably reliable lexical axioms that are

closely integratedwith language. To address this problem, we studied random samples of

WordNet hypernym relations, formulated appropriate logical axioms, and then formed

hypotheses about what features indicate that a relationship holds. In this section, we

present the types of relations we find inWordNet, the method of generating axioms, and

the criteria we use.

.. Distinguishing Relations

In Table ., we give the frequency of axioms resulting from the following schemata, both

inWordNet as a whole and in the ‘core’ axioms used for evaluation (see §.).e axiom

schemata are presented in conceptual groups, which are used to balance the evaluation

sample.
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Group : Count Nominals

 Every ϕ is a ψ.

(∀x: [x ϕ.n] [x ψ.n])

ϕ and ψ are singular count nominals. e hypernym relation holds for each indi-

vidual, e.g.,

Every cat is a feline.

(∀x: [x cat.n] [x feline.n])

Group : Mass Nominals and Plurals

 Every amount of ϕ is an amount of ψ.

(∀x: [x ϕ.n] [x ψ.n])

ϕ and ψ are either mass terms (‘water’) or lexical plurals (‘cattle’). E.g.,

Every amount of red wine is an amount of wine.

(∀x: [x red_wine.n] [x wine.n])

is shares the logical form of Schema  but differs in its verbalization. As discussed

in the introduction, this is an indication that singular count nouns are inferentially

distinct from plurals andmass terms with respect to cumulativity. See the inference

example in §..

Group : Kinds and Individuals

 (e) ϕ is/are a ψ.

[ϕ.name ψ.n]

ϕ is an individual – either an individual name (‘Belgium’) or a name-like designa-

tion (‘Homo sapiens’) for a generic kind (Carlson, a,b). ψ is a singular count

nominal. E.g.,

 is an immunodeficiency.

[.name immunodeficiency.n]
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 (e) ϕ is/are a ψ.

[(k ϕ.n) ψ.n]

ϕ is a mass nominal (‘oil’) or a count nominal known to function as a natural kind

(‘tiger’). ψ is a singular count nominal that is a kind-level predicate (‘species’). is

schema gives claims about generic kinds, formed with ’s kind reification operator

‘k’. E.g.,

Gold is a noble metal.

[(k gold.n) noble_metal.n]

 Every ϕ is an item of ψ.

(∀x: [x ϕ.n] [x item-of.n (k ψ.n)])

ϕ is a singular count nominal. ψ is an atomic ensemble, a mass term that cannot be

arbitrarily subdivided (‘furniture’, not ‘water’); see §... Equivalently, ψ can be a

plural; the atomic ensembles denoted by plurals are in no way logically distinguish-

able from atomic ensembles denoted by mass terms. E.g.,

Every bomb is an item of weaponry.

(∀x: [x bomb.n] [x item-of.n (k weaponry.n)])

 (e) ϕ is/are a branch of (the) ψ.

[(k ϕ.n) branch-of.n (k ψ.n)]

ϕ and ψ are fields of study. ese are hyponym descendants of discipline, exclud-

ing kind-level predicates like humanistic_discipline. E.g.,

Astronomy is a branch of physics.

[(k astronomy.n) branch-of.n (k physics.n)]

Group : Transitional

 Every ϕ is an amount of ψ.

(∀x: [x ϕ.n] [x ψ.n])

ϕ is a singular count nominal and ψ is a plural or a mass noun. E.g.,
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Every document is an amount of written material.

(∀x: [x document.n] [x written_material.n])

 Every amount of ϕ is a ψ.

(∀x: [x ϕ.n] [x ψ.n])

ϕ is a mass term or a plural that is a hyponym of group or measure. ψ is a

singular count nominal. E.g.,

Every amount of people is a group.

(∀x: [x people.n] [x group.n])

 Every amount of ϕ is an amount of ψs.

(∀x: [x ϕ.n] [x (plur ψ.n)])

ϕ is amass termor a plural count nominal, andψ is a singular, object-level predicate.

E.g.,
Every amount of baggage is an amount of cases.

(∀x: [x baggage.n] [x (plur case.n)])

Group : Events

 Every ϕ is a ψ.

(∀x: [x (plur ϕ-c.n)] [x (plur ψ-c.n)])

ϕ and ψ are events that have both a mass and a count sense. Here the ‘plur’ oper-

ator is ‘massifying’ the count (discrete-only) sense of an event predicate to match

possible iteration. E.g.,

Every restoration is a repair.

(∀x: [x (plur restoration-c.n)] [x (plur repair-c.n)])

 Every ϕ is a ψ.

(∀x: [x (plur ϕ-c.n)] [x ψ.n])

ϕ andψ are events. ϕ is ambiguous betweenmass and count senses, whileψ is count.

E.g.,
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Every sinning is a transgression.

(∀x: [x (plur sinning-c.n)] [x transgression.n])

 Every ϕ is a ψ.

(∀x: [x ϕ.n] [x (plur ψ-c.n)])

ϕ is count and ψ is ambiguous between mass and count senses. E.g.,

Every dance step is a locomotion.

(∀x: [x dance_step.n] [x locomotion-c.n])

.. Method

While the members of each synset are closely related, we found they are not always inter-

changeable as predicates. Many synsets contain a mix of mass and count, singular and

plural, e.g., {cutlery, eating_utensil}. An eating utensil is an item of cutlery. us,

in relating the synset to its hypernym, tableware, we form separate axioms for both

of these predicates. However, making an axiom for every combination of word senses

in a pair of synsets would lead to an unnecessary explosion in the number of axioms.

Instead, those members that share logically equivalent properties (mass terms, atomic

ensembles & lexical plurals, singular count nouns, individual names) can be stated to be

synonymous and an axiom can use a single representative predicate.

us, ourmethod is: For each hyponym–hypernym pair, select the synset members

with distinct properties forwhichwewill form axioms.en for theCartesian product of

the selection sets, check each pair of word senses against the restrictions for each schema

and output an axiom when they match – see Figure ..

.. Determining the Mass–Count Distinction and Other Significant Features

Mass–Count Annotating WordNet with mass and count information requires not just

determining if a word is usually mass or count but, for many ambiguous words, whether
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S , the set of nominal synsets in WordNet
H, the set of all hyponym–hypernym synset pairs
C, the set of all annotation categories.

-(H):
for synset pair ⟨P,Q⟩ ∈ H:

L ← -(P)
L′← -(Q)
for lemma pair ⟨ϕ,ψ⟩ ∈ L × L′:

for each schema s:
if ⟨ϕ,ψ⟩matches the argument restrictions of s:

Instantiate s with ⟨ϕ,ψ⟩

-(s ∈ S):
R← {}
for lemma l ∈ s:

for category c ∈ C:
if l is annotated as c:

f← False
for r ∈ R:

if r is annotated as c:
if l has a lower sense number than r:

Replace r with l in R
f← True
break

if not f:
R← R ∪ {l}

return R

Figure .: Algorithm for axiomatizing WordNet’s hypernym hierarchy.
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Group Schema All Axioms Core Axioms

  , ,
  , 
  , 

 , 
  
  

  , 
  
 , 

  , 
 , 
 , 

All , ,

Table .:Axiom counts forWordNet as a whole and ‘core’ synsets.e schemata are de-
scribed in §... e ‘core axioms’ are those from which the evaluation set was sampled,
described in §..
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a particular word sense is. While sometimes WordNet splits a word into different syn-

sets for its mass and count senses, in other cases it coerces a single synset’s meaning

through multiple hypernym links. For instance, coffee is both a liquid (mass) and a

beverage (count), reflecting different uses:

‘How much coffee did you drink?’

‘I’ll have a coffee.’

Oen we consider one form to be basic and the other derived. While coffee is primar-

ily mass, we understand a count use to mean a standard portion of it, i.e., a cup. (See

comments in §..)

Various past studies have been aimed at classifying lexemes as mass, count, or both,

(e.g., Bond&Vatikiotis-Bateson, ; Baldwin&Bond, ;O’Hara et al., ; Lapata

& Keller, , ). Typically these have usedmultiple sources of information, such as

morphology, corpus occurrence environments, the Cyc knowledge base, and seemingly

similar lexemes in WordNet. While Álvez et al. () semi-automatically annotated

WordNet . with EuroWordNet’s Top Concept ontology semantic features, including

Substance andObject – rough analogues ofmass and count – we found these annotations

too noisy, e.g., labeling cytostome (a cell mouth) a substance. Most recently, Kiss et al.

() conducted the manual annotation of WordNet senses with more fine-grained dis-

tinctions based on test sentence phrasings. E.g., they annotate fruitcake as a dual life

noun where the same WordNet sense allows both count readings and mass readings but

whiskey is taken as uncountable with sorter/packager plurals meaning that it is inher-

ently mass but allows the specific count use for ‘a [glass of] whiskey’, while seawater is

fully uncountable. ese results were not available when our axiomatization was done

but may be used to improve future classification.

For this work, we first annotate each general noun sense in WordNet . as a plural

or singular count term, an atomic ensemble, or a non-atomic mass term. To do so, we

use two sources of information: syntactic patterns and existing dictionaries. For each

noun, we search the Google n-grams data set (Brants & Franz, ) for occurrences in
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mass and count syntactic patterns based on those given by Bunt (). E.g., ‘many’, ‘few’,

‘fewer’, ‘fewest’, ‘several’, or ‘numerous’ xs are indicative of a count use of x while ‘much’

or ‘little bit of ‘ x are indicative of a mass use. e n-gram data allows broader lexical

coverage than matching against traditional text corpora, but it provides less context and

the patterns yield only moderate accuracy. E.g., while ‘a x’ typically indicates that x has

a count sense, the pattern can erroneously match references such as ‘grade A milk’. We

supplement this classification by looking up each lemmaonline in theOxfordDictionary

(http://oxforddictionaries.com) and Wiktionary (http://wiktionary.org) and counting

the number of senses marked as being count or mass (uncountable).

When, based on this information, a lemma is ambiguous between mass and count

readings, the lemma is labeled by a decision tree that checks features of the lemma and

the synset, including:

 lemmaname andmorphology:E.g., beginningwith ‘period of ’ or ‘piece of ’, (count);

ending in ‘powder’, ‘oil’, ‘-ness’, or ‘-ity’ (mass).

 gloss: E.g., beginning with ‘material’ (mass).

 hypernym ancestors: E.g., artifact (count); chemical element (mass).

 hyponymglosses:E.g., a hyponymof x is defined as ‘a/an x that…’ (count); a hyponym

of x is defined as ‘an amount/quantity/portion of x (mass).

 example sentences: E.g., an example including ‘a/an x’ (count).

If the word is ambiguous but the other members of the synset are all known to be mass

or to be count, then the lemma is labeled the same.

Atomic Ensembles In axiom schema , we also need to recognize those mass predic-

ates that apply to atomic ensembles (also called aggregate terms). Unless we’re thinking

scientifically, some mass nouns can be divided arbitrarily into more of the same: All air

has proper parts that are also air, allmeat has proper parts that are also meat, etc. On the

other hand, it is not the case that all poultry, furniture, foliage, cutlery, or dinnerware has

proper parts that are also poultry, furniture, etc. respectively. Rather, these mass terms

http://oxforddictionaries.com
http://wiktionary.org
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denote entities that have atomic parts. E.g., a chair is furniture, but it has no proper

parts that are also furniture. We are not aware of any attempt to enumerate atomic en-

sembles in English or to automatically find them in text. For this work, we annotated

 WordNet lemmas as atomic ensembles with reference to the linguistic literature. An

additional  lemmas are identified (based on dictionary entries) as lexical plurals. As

we noted for axiom schema , plurals also denote atomic ensembles, which are logically

indistinguishable from mass ones.

Individuals It is also important for us to distinguish individuals (e.g., ‘Nikola Tesla’)

from common nouns. Following the criticism of ontologists like Aldo Gangemi, Word-

Net . began tomove instances fromhyponymrelations to instantiation relations (Miller

& Hristea, ). In WordNet ., there are , such word senses. ese give us a

source for formulas aboutmany important events, people, states, and other kinds of indi-

viduals. Identifying individuals also lets us avoid nonsensical quantification over ‘Every

Nikola Tesla’. However, we find that many individuals are still mingled with classes as

hyponyms, e.g., ‘e Industrial Workers of the World’ (a specific union) or ‘St Polycarp’

(a specificmartyr).We identified , additional individuals by checkingwhetherWiktion-

ary only lists a lemma only as a proper noun and by manually inspecting synsets where

all lemmas are capitalized.

. Evaluation

Like many efforts in knowledge acquisition and reasoning, the creation of lexical se-

mantic axioms is motivated by a variety of applications, but it is not easily evaluated

through them. Instead, it is traditional to rely on human judgements – oen those of the

authors – to determine the accuracy and appropriateness of the results (as in Friedland

& Allen, ; Banko et al., ; Van Durme & Schubert, ; Carlson et al., ).

While it is natural for us to judge a random sample of the resulting axioms, this

would not accurately reflect their value for tasks requiring commonsense reasoning. Due
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toWordNet’s broad lexical coverage, most of the words it includes are rare, including, for

instance, specialized scientific andmedical terminology.erefore, as our evaluation set,

we took the axioms where both predicates are from a set of ‘core’ synsets. ese are the

union of two standard lists: Boyd-Graber et al.’s Core WordNet () and Izquierdo

et al.’s Base Concepts (). To get a balanced sample of different relations, we ran-

domly selected  axioms for each of the five schemata groups presented in §.. For

rating, these axioms were shuffled with a baseline interpretation of the same hyponym–

hypernym pairs, corresponding to Schema , the most common. A random selection of

the English verbalizations of our output and baseline output from the evaluation set is

presented in Figure . and Figure ..

Judges were asked to evaluate each axiom’s English verbalization based on whether

it is a reasonable claimwith respect to the general word senses indicated by the definition

and examples for the synset. ey were instructed that whenever an axiom says ‘amount

of ’ they should apply the cumulativity test described in the introduction: Does ‘some x

and some more x’ constitute ‘an amount of x’? ey were asked to apply the same test

to ‘a(n)’ and ‘every’ phrasings; while ‘amount of ’ applied to plurals should be tolerated,

‘every’ or ‘a(n)’ applied to mass terms should not.

Each axiom was rated on a scale of  (best) to  (worst). e authors each rated

the full evaluation set of  axioms. e  axioms of system output had an average

rating of ., while the  baseline axioms had an average rating of .. A Pearson

correlation of . reflects a high level of agreement.

For greater objectivity, it is desirable to also have judges unaffiliated with the work

rate the axioms. However, we found it difficult to train judges to be sufficiently sensitive

to the property of cumulativity and to resist type-ifying the claims to allow non-basic

readings such as ‘a wine is a liquid’. One judge’s ratings for  axioms ( systemoutput,

 baseline) were well-correlated with the authors (.), giving our output an average

rating of . and the baseline .. A second judge’s ratings were less well-correlated





Schemata Groups
Rating      All Baseline

Best        
       
       
       

Worst        

Average . . . . . . .

Table .:Distribution of ratings forWordNet axioms.e evaluation set is  axioms
of system output and  of the baseline, each rated by three judges. Ratings of system
output are broken down by the schemata groups from §...

(.), indicating difficulty in understanding the criteria or in assessing them, but still

rated our system’s output better on average (.) than the baseline (.).

e distribution of ratings for all three judges ( sys. ratings by each of the au-

thors,  by each of the other judges; likewise for the baseline) can be seen in Table .,

including a breakdown of the ratings by the axiom schemata groups, showing their rel-

ative reliability.

. Reasoning withWordNet Axioms

e need for knowledge about entailment relations between entity types has been re-

cognized since the early days of  (e.g., Amsler & White, ; Chodorow et al., ;

Wilensky, ). Tomake commonsense inferences, it is especially important to have the

sort of taxonomic knowledge contained in WordNet’s hypernym hierarchy. For example,

if we are told ‘Merry is a cat’, a basic reasoning chain is: Every cat is a feline, every feline is

a carnivore,…, every chordate is an animal. erefore, Merry is an animal. is process

of generalization allows us to apply world knowledge known at a higher level of gener-

ality. For instance, if we know Every animal needs food to live, we can conclude Merry





Every amount of reparation is an amount of compensation.
(∀x: [x reparation.n] [x compensation.n])
— reparation: compensation (given or received) for an insult or injury
— compensation: something (such as money) given or received as payment or repara-
tion (as for a service or loss or injury)

Curiosity is a cognitive state.
[(k curiosity.n) cognitive_state.n]
—curiosity: a state in which you want to learn more about something
—cognitive_state: the state of a person’s cognitive processes

Every cathedral is a church building.
(∀x: [x cathedral.n] [x church_building.n])
—cathedral: any large and important church
—church_building: a place for public (especially Christian) worship

Every abandonment is a rejection.
(∀x: [x (plur abandonment-c.n)] [x (plur rejection-c.n)])
—abandonment: the act of giving something up
— rejection: the act of rejecting something

Every assembly is a gathering.
(∀x: [x assembly.n] [x gathering.n])
—assembly: a group of persons who are gathered together for a common purpose
—gathering: a group of persons together in one place

Every counting is an investigation.
(∀x: [x counting.n] [x (plur investigating-c.n)])
—counting: the act of counting; reciting numbers in ascending order
— investigation: the work of inquiring into something thoroughly and systematically

Computer science is a branch of applied science.
[(k computer_science.n) branch-of.n (k applied_science.n)]
— computer_science: the branch of engineering science that studies (with the aid of
computers) computable processes and structures
—applied_science: the discipline dealing with the art or science of applying scientific
knowledge to practical problems

Figure .: System output from the evaluation set.
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Every restoration is a repair.
(∀x: [x restoration.n] [x repair.n])
— restoration: the act of restoring something or someone to a satisfactory state
— repair: the act of putting something in working order again

Every physics is a natural science.
(∀x: [x physics.n] [x natural_science.n])
—physics: the science of matter and energy and their interactions
— natural_science: the sciences involved in the study of the physical world and its
phenomena

Every pretending is a dissimulation.
(∀x: [x pretending.n] [x dissimulation.n])
—pretending: the act of giving a false appearance
—dissimulation: the act of deceiving

Every sameness is a quality.
(∀x: [x sameness.n] [x quality.n])
— sameness: the quality of being alike
—quality: an essential and distinguishing attribute of something or someone

Every solid is a matter.
(∀x: [x solid.n] [x matter.n])
— solid: matter that is solid at room temperature and pressure
—matter: that which has mass and occupies space

Every encroachment is an influence.
(∀x: [x encroachment.n] [x influence.n])
—encroachment: influencing strongly
— influence: causing something without any direct or apparent effort

Every sand is a dirt.
(∀x: [x sand.n] [x dirt.n])
— sand: a loose material consisting of grains of rock or coral
—dirt: the part of the earth’s surface consisting of humus and disintegrated rock

Figure .: Baseline output from the evaluation set.
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needs food to live, and an intelligent agent might, accordingly, form the goal of feeding

her.

A slightly more complex line of reasoning demonstrates the inferential importance

of the semantic distinctions we have explored in this chapter:

All gold dust is gold.

(∀x: [x gold_dust.n] [x gold.n])

Gold is a noble metal.

[(k gold.n) noble_metal.n]

A meta-axiom over mass predicates gives the logical equivalence of our ‘amount of ’

verbalizations:

All p is an amount of the kind p (for mass predicate p).

(∀pred p: [’p mass-pred]

(all x [[x p]⇔ [x amount-of (k p)]]))

And, from our annotation of WordNet, we know

Gold_dust.n and gold.n are mass predicates.

[’gold_dust.n mass-pred], [’gold.n mass-pred]

erefore,

Every amount of gold dust is an amount of a (certain)

noble metal.

(∃y: [y noble_metal.n]

(∀x: [x amount-of (k gold_dust.n)]

[x amount-of y]))

(Rather thanAll gold dust is noblemetal orEvery gold dust is a noblemetal!) So if, ignoring

tense, we learn





John found some gold dust.

(∃x: [x gold_dust.n] [John.name find.v x])

We can conclude

John found some amount of a noble metal.

(∃y: [y noble_metal.n]

(∃x: [x amount-of y]

[John.name find.v x]))

. Conclusions

We have seen that WordNet’s hypernym hierarchy represents a variety of semantically

distinct relations. To create lexical axioms suitable for use in a general reasoner, we must

identify and formalize these relations. In this chapter, we’ve shown that we can use the

mass–count distinction to obtain a large number of such axioms, which are judged sig-

nificantly better than a subsumptive count-noun baseline.

. Discussion and FutureWork

Our results show that we can significantly improve the reliability of hierarchy axioms ex-

tracted from WordNet by attending to the mass–count distinctions among word senses

(and some other subtle properties). But our research undertaking has also revealed some

systematic difficulties in making logical sense of WordNet hierarchy relations, and these

point to interesting possibilities for future work.

Consider this hyponym–hypernym pair:

watching: the act of observing; taking a patient look

looking_at: the act of directing the eyes toward something and perceiving

it visually
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Both glosses characterize the word senses in terms of acts, and since ‘act’ is a count noun

(both syntactically and conceptually – there can be single acts or multiple, distinct acts),

one would expect favorable judgements for an axiom expressing Every watching is a

looking-at. However, the oddity of the paraphrase All watchings are lookings-at makes

the count readings of these nouns rather suspect. In fact, natural occurrences like ‘his

watching you while you sleep’ (a gerund) or ‘his watching of ’ (a deverbal noun) sug-

gest that watching is basically an activity rather than an act. However, this is an elusive

intuition as we can easily conceive of bounded episodes of any activity, which have the

character of acts. Indeed, we can assume that there is a class of ‘countifying’ operators

that map activity/process predicates to action/event predicates; for example, adverbials

such as ‘for three hours’ accomplish such a transformation (seeHwang& Schubert, ),

which systematically treats the semantics of durative and many other types of adverbi-

als; the analysis is for verb phrase adjuncts, but many of the observations carry over to

deverbal nouns.)

e relationship between the above two word senses is further obscured by the

fact that the synset for ‘watching’ also contains the word sense ‘observation’, for

which the definition as an act seems to fit better: We can naturally speak in the plural of

‘Penn’s observations of the nightly newscasts from Vietnam’, and since the newscasts are

bounded events, so are the observations.

is is just one example of the type-shiing (countability-shiing, and, for deverbal

nouns, aspectual-category-shiing) transformations that many nouns are susceptible to,

and how this shiing potential can confound intuitive judgements of the validity of hier-

archy axioms derived from WordNet synsets. Here are some more shiing operations:

 Iteration: e.g., the event predicate ‘sneeze’ becomes a predicate true of the activity

of ‘sneezing’ through iteration; WordNet places ‘sneeze’ and ‘sneezing’ in the

same synset.

 Grinding: e.g., while in nature we find ‘potatoes’, when eating we may have some

amount of [mashed] potato.is reading of ‘x stuff ’ iswhat Pelletier () called the
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universal grinder. WordNet distinguishes potato, the edible root, from potato,

the entire plant (i.e., a potato vine). However, that leaves both count and mass read-

ings of the first sense. It is a long-standing question whether these readings result

from coercion of a single sense or are distinct senses.

 Raising to a kind-level predicate: e.g., the predicate, ‘wine’, true of quantities of stuff

becomes a kind ofwine (true, for example, ofMerlot or Riesling);WordNet does not

have an entry for the latter sense; on the other hand, WordNet’s entry ‘medicine’

is grouped into the same synset with ‘drug’ – clearly a kind of medicine. (is is

what Bunt () called the universal sorter – the ‘kind of x’ reading.)

 Conventional portions: ‘a wine’ or ‘a beer’ can refer to a serving of either stuff, per-

haps derivable from the basic predicate by a ‘conventional-portion-of ’ or ‘serving-

of ’ operator. (is is what Jackendoff () called the universal packager.) Word-

Net does not distinguish these senses, but its second entry for ‘tissue’, the synset

{tissue, tissue_paper}, is accompanied by a gloss that is compatible with either

a predicate true of any amount of tissue paper, of certain standard portions (‘Please

hand me a tissue’), or of certain kinds of paper. Similarly, the gloss for ‘physical ex-

ercise’ describes this as activity (thus mass), but the synset also contains ‘workout’,

which clearly refers to a conventional bout of exercise.

ese observations suggest that future work should look into systematic generation

of meaning variants from certain ‘basic’ meanings of nouns. WordNet synsets would

then be analyzed (as far as possible automatically) to identify and relate meaning vari-

ants within synsets, generated by type-shiing operators of the above types. (e total

number of such operators appears to be quite small.) Such a project would fit well with

Pustejovsky’s Generative Lexicon project (Pustejovsky, ), and would enable a more

complete and accurate axiomatization of WordNet hierarchy relations. Of course, com-

plete reliability is unattainable, if only because WordNet is not error-free. For example,

WordNet relates ‘identity’ to hypernym ‘recognition’, but the former is defined in

terms of individual characteristics and the latter as a process, and there is no way in





which characteristics can be construed as a process. But these examples seem to be rel-

atively rare (based on informal observation, perhaps a few out of ), so there remains

considerable scope for extracting relatively reliable, more refined formalized knowledge

from WordNet.
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