

Abstract— The development of distributed applications has not

progressed as rapidly as its enabling technologies. In part, this is
due to the difficulty of reasoning about such complex systems.
One reason for the added complexity is the need for
communication within modern computing systems. In contrast to
sequential systems, parallel systems give rise to parallel events
(communications), and the resulting uncertainty of the observed
order of these events. Loosely coupled distributed systems
complicate this even further by introducing the element of
multiple imperfect observers of these parallel events. To address
these challenges, we introduce view-centric reasoning, an
approach to thinking about modern computing systems that
directly supports multiple, inconsistent and imperfect views of
computation. While view-centric reasoning is general enough to
apply to any communication model, the focus of this paper is on
computing systems that employ generative communication, a
middleware-based distributed shared memory manipulated by a
coordination (communication) language. In particular, we apply
view-centric reasoning to tuple space based systems and the
Linda coordination language. View-centric reasoning helps us
resolve a potential ambiguity in the semantics of Linda predicate
operations found in commercial implementations of tuple space,
such as Sun's JavaSpaces and IBM's T Spaces.

Index Terms— history, imperfect observation, parallel events,
reasoning, views.

I. INTRODUCTION
The greatest problem with communication is the illusion it

has been accomplished - George Bernard Shaw

One way to think about parallel and distributed computing

is as a special case of concurrent divide and conquer. We are
accustomed to thinking about divide and conquer in terms of
algorithm design, or system decomposition, but in its purest
sense, divide and conquer does not impose any sequential
restrictions. In sequential divide and conquer, communication
and coordination are typically implicit. One consequence of
dividing a problem into concurrently computing sub-
problems, no matter what the approach, is the need for more

Marc L. Smith is with the Computer Science Department, Colby College,
5853 Mayflower Hill, Waterville, Maine, 04901-8858, USA. (phone: 207-
872-3672; fax: 207-872-3801; e-mail: mlsmith@colby.edu).

Rebecca J. Parsons is with ThoughtWorks, Inc., Chicago, Illinois, 60661,
USA. (e-mail: parsonrj@bp.com).

Charles E. Hughes is with the School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando, Florida 32816-
2362, USA. (e-mail: ceh@cs.ucf.edu).

explicit communication and coordination among the
corresponding sub-processes. In such an environment, what is
observable are the communications between sub-processes.
Moreover, in a concurrent computing environment, it is
possible for multiple observable events to occur at the same
time. If we consider each process participating in a
computation to also be an observer of the computation, then
we must distinguish a computation's history (what really
happened) from the multiple, possibly imperfect, views of
computation (what appeared to happen).

There are three main parts to view-centric reasoning. The
first part is the ability to represent what might happen during a
computation, or nondeterminism. A parameterized
operational semantics provides this capability, but is not the
focus of this paper (for more information, see Smith [1]). The
ability to represent, and thus distinguish, what really happened
from what appeared to happen during a computation are the
final two parts of view-centric reasoning.

To further motivate our research, and make the point that a
computation's history and views are not just of academic
interest, we refer the reader to Figure 1, which contains an
excerpt from Sun Microsystems' JavaSpaces Service
Specification. JavaSpaces is a service of Sun's Jini
Architecture, based on the Linda / Tuple Space coordination
model pioneered by David Gelernter in the early 1980's.

In short, the specification states that "operations on a
[Java]space are unordered", and that "the only view of
operation order can be a thread's view of the order of the
operations it performs." Before we can fully understand the
meaning of these words, and ponder the implications, we must
first describe Linda and Tuple Space.

II. LINDA AND TUPLE SPACE
The tuple space model and Linda language are due to

Gelernter and Carriero [2, 3, 4]. Linda is distinct from pure
message passing-based models (e.g., Actors [5]). Unlike
message passing models, tuple space exhibits what Gelernter
called communication orthogonality, referring to interprocess
communications decoupled in destination, space, and time.
The tuple space model is especially relevant to discussion of
concurrency due to the current popularity of commercial tuple

View-Centric Reasoning in
Modern Computing Systems

Marc L. Smith, Rebecca J. Parsons, and Charles E. Hughes

space implementations, such as Sun's JavaSpaces [6] and
IBM's T Spaces [7].

Linda is not a complete programming language; it is a
communication and coordination language. Linda is intended
to augment existing computational languages with its
coordination primitives to form comprehensive parallel and
distributed programming languages. The Linda coordination
primitives are rd(), in(), out(), and eval(). The idea
is that multiple Linda processes share a common space, called
a tuple space, through which the processes are able to
communicate and coordinate using Linda primitives.

A tuple space may be viewed as a container of tuples,
where a tuple is simply an ordered group of values. A tuple is
considered active if one or more of its values is currently
being computed, and passive if all of its values have been
computed. A Linda primitive manipulates tuple space
according to the template specified in its argument. Templates
represent tuples in a Linda program. A template extends the
notion of tuple by distinguishing its passive values as either
formal or actual, where formal values, or formals, represent
typed wildcards for matching. Primitives rd() and in()
are synchronous, or blocking operations; out() and
eval() are asynchronous.

The rd() and in() primitives attempt to find a tuple in
tuple space that matches their template. If successful, these
primitives return a copy of the matching tuple by replacing
any formals with actuals in their template. In addition, the
in() primitive, in the case of a match, removes the
matching tuple from tuple space. In the case of multiple
matching tuples, a nondeterministic choice determines which
tuple the rd() or in() operation returns. If no match is
found, these operations block until such time as a match is
found. The out() operation places a tuple in tuple space.
This tuple is a copy of the operation's template. Primitives
rd(), in(), and out() all operate on passive tuples.

All Linda processes reside as value-yielding computations
within the active tuples in tuple space. Any Linda process can
create new Linda processes through the eval() primitive.
Execution of the eval() operation places an active tuple in
tuple space, copied from the template. When a process

completes, it replaces itself within its respective tuple with the
value resulting from its computation. When all processes
within a tuple replace themselves with values, the formerly
active tuple becomes passive. Only passive tuples are visible
for matching by the rd() and in() primitives; thus active
tuples are invisible.

III. THE INSPIRATION
The inspiration for view-centric reasoning derives from

Hoare's [8] seminal work in models of concurrency,
Communicating Sequential Processes (CSP). CSP views
concurrency, as its name implies, in terms of communicating
sequential processes. A computational process, in its simplest
form, is described by a sequence of observable events. The
history of a computation is recorded by an observer in the
form of a sequential trace of events. Events in CSP are said to
be offered by the environment of a computation; therefore,
they occur when a process accepts an event at the same time
the event is offered by the environment. Thus, reasoning
about a system's trace is equivalent to reasoning about its
computation.

When two or more processes compute concurrently within
an observer's environment, the possibility exists for events to
occur simultaneously. CSP has two approaches to express
event simultaneity in a trace, synchronization and interleaving.
Synchronization occurs when an event e is offered by the
environment of a computation, and event e is ready to be
accepted by two or more processes in the environment. When
the observer records event e in the trace of computation, the
interpretation is that all those processes eligible to accept
participate in the event.

The other form of event simultaneity, where two or more
distinct events occur simultaneously, is recorded by the
observer in the event trace via arbitrary interleaving. For
example, if events e1 and e2 are offered by the environment,
and two respective processes in the environment are ready to
accept e1 and e2 at the same time, the observer may record
either e1 followed by e2, or e2 followed by e1. In this case,
from the trace alone, we can not distinguish whether events e1

Operations on a space are unordered. The only view of operation order can be a thread's view
of the order of the operations it performs. A view of inter-thread order can be imposed only by
cooperating threads that use an application-specific protocol to prevent two or more operations
being in progress at a single time on a single JavaSpaces service. Such means are outside the
purview of this specification.

For example, given two threads T and U, if T performs a write operation and U performs a read
with a template that would match the written entry, the read may not find the written entry even if
the write returns before the read. Only if T and U cooperate to ensure that the write returns before
the read commences would the read be ensured the opportunity to find the entry written by T
(although it still might not do so because of an intervening take from a third entity).

Figure 1. JavaSpaces (TM) Service Specification, version 1.2, Section JS.2.8, Operation Ordering

and e2 occurred in sequence or simultaneously. CSP's
contention, since the observer must record e1 and e2 in some
order, is that this distinction is not important.

IV. PROPERTIES OF CONCURRENT COMPUTATION
The questions we ask when we reason about computation

concern properties of computation. A property of a program
is an attribute that is true of every possible history of that
program, and hence of all executions of the program [9].
Many interesting program properties fall under the categories
of safety, liveness, or some combination of both safety and
liveness. A safety property of a program is one in which the
program never enters a bad state; nothing bad happens during
computation (e.g., partial correctness). A liveness property of
a program is one in which the program eventually enters a
good state; something good eventually happens (e.g.,
termination).

Questions arise when reasoning about concurrency that do
not otherwise arise in sequential computation. Sequential
computation has no notion of critical sections, since a process
need not worry about competing for resources with other
processes within a given environment. Since critical sections
do not exist in sequential computation, there is no need for
mutual exclusion, nor any concern for race conditions,
deadlock, or infinite postponement. Two properties that
pertain solely to concurrent systems are mutual exclusion
(safety) and finite postponement (liveness).

V. WHY VIEW-CENTRIC REASONING?
With all the benefits that CSP provides for reasoning about

concurrency, it does not directly represent event simultaneity
(i.e., event aggregation). Two exceptions are synchronized
events common to two or more interleaved processes, or
abstracting a new event to represent the simultaneous
occurrence of two or more designated atomic events. Since
CSP represents concurrency through an arbitrary interleaving
of events, it provides no support for multiple simultaneous
views of an instance of computation. For other motivations,
including imperfect observation, see Smith [1].

View-centric reasoning raises CSP's level of abstraction
with the notion of parallel events. Parallel event traces don't
require interleaving to represent concurrency. Also, view-
centric reasoning replaces CSP's idealized observer with the
notion of multiple, possibly imperfect observers. Multiple
observers inspire the existence of views of computation.
Thus, we distinguish a computation's history -- its trace --
from the multiple possible views of a computation. For other
extensions or differences, see Smith [1].

VI. BASICS OF VIEW-CENTRIC REASONING
The primitive element of view-centric reasoning is the

observable event, or just event. An event is a discrete instance
of observable behavior at a desired level of abstraction. A set
of events occurring at the same time, where equality of time is
based on a chosen granularity, is a parallel event. A list of
parallel events is a trace. A list of events selected from a
parallel event is a ROPE (randomly-ordered parallel event). A
list of ROPEs is a view. Each element of a view of
computation, a ROPE, corresponds positionally to a parallel
event in that computation's trace. Thus, for a given parallel
event, it is possible to derive many corresponding ROPEs, and
for a given trace (history), in general, multiple views of
computation are possible. In the end, a view is a
sequentialized partial ordering of an instance of concurrent
computation, the structure of which is a list of lists of
observable events. The choice of events in view-centric
reasoning does not change the definition of parallel event,
ROPE, trace, or view.

Parallel events, ROPEs, and the distinction of a
computation's history from its views are abstractions that
permit reasoning about computational histories that cannot, in
general, be represented by sequential interleavings. To see
this, assume perfect observation, and assume different
instances of the same event are indistinguishable. Given these
two assumptions, it is not possible to reconstruct the parallel
event trace of a computation, even if one is given all possible
sequential interleavings of that computation. Thus, while it is
easy to generate all possible views from a parallel event trace,
the reverse mapping is not, in general, possible. For example,
consider the sequential interleaving <A,A,A,A>, and assume
this trace represents all possible interleavings of some
system's computational history. It is not possible to determine
from this trace alone whether the parallel event trace of the
same computation is <{A,A,A},A> or <{A,A},{A,A}>, or
some other possible parallel event trace.

There are two categories of events in view-centric
reasoning: successful and unsuccessful. By default, we refer to
successful events as events, and unsuccessful events as un-
events. An un-event is an attempted computation or
communication activity, associated with an event, that fails to
succeed. The possibility of empty parallel events (due to
imperfect observation) and observable un-events, provides
view-centric reasoning with notions of divergences and
failures, as found in CSP. The ability to observe successful
and unsuccessful events within the context of parallel events
and views permits us to reason directly about nondeterminism
and its consequences. Parallel events that include un-events
allow us to reason not only about what happened, but also
about what might have happened.

The purpose of view-centric reasoning is to provide an
overall higher level of abstraction for reasoning about
distributed computation, a model that more closely
approximates the reality of concurrency. Our approach differs
in two significant ways from CSP: its traces preserve the
concurrency inherent in the history of computation, and its
semantics are operational rather than algebraic. CSP imposes
the restriction that an idealized observer record arbitrary,
sequential total orderings of simultaneously occurring events,
and in so doing, does not preserve event simultaneity. These
differences impact reasoning about properties of computation
in important ways, as will be demonstrated in the next section.

VII. AN EXAMPLE
In addition to the four primitives rd(), in(), out(), and

eval(), the Linda definition once included predicate
versions of rd() and in(). Unlike the rd() and in()
primitives, predicate operations rdp() and inp() were
nonblocking primitives. The goal was to provide tuple
matching capabilities without the possibility of blocking. The
Linda predicate operations seemed like a useful idea, but their
meaning proved to be semantically ambiguous, and they were
subsequently removed from the formal Linda definition.

First, we demonstrate the ambiguity of the Linda predicate
operations when our means of reasoning is restricted to
interleaved traces. The ambiguity is subtle and, in general, not
well understood. Next, we demonstrate how applying view-
centric reasoning to the same computation disambiguates the
meaning of the Linda predicate operations -- which is
important, since commercial tuple space implementations
include such predicate operations.

Predicate operations rdp() and inp() attempt to match
tuples for copy or removal from tuple space. A successful
operation returns the value one (1) and the matched tuple in
the form of a template. A failure, rather than blocking, returns

the value zero (0) with no changes to the template. When a
match is successful, no ambiguity exists. It is not clear,
however, what it means when a predicate operation returns a
zero.

The ambiguity of the Linda predicate operations is a
consequence of modeling concurrency through an arbitrary
interleaving of tuple space interactions (communication
events). Jensen noted that when a predicate operation returns
zero, "only if every existing process is captured in an
interaction point does the operation make sense” [10].
Suppose three Linda processes, T, U, and V, are executing
concurrently in tuple space. Further suppose that each of
these processes simultaneously issues a Linda primitive as
depicted in Figure 2. Finally, we point out that the example of
Figure 2 is the equivalent Linda version of the example given
in the JavaSpaces Specification from Figure 1 (processes T
and U correspond in both figures, and V in Figure 2
corresponds to the "third entity" from Figure 1). What is often
missed when reasoning about JavaSpaces applications is that
the read and take operations are non-blocking.

Assume no tuples in tuple space exist that match template
t', except for the tuple t being placed in tuple space by
process T. Together, processes T, U, and V constitute an
interaction point, as referred to by Jensen. There are several
examples of ambiguity, but discussing one possibility will
suffice. First consider that events are instantaneous, even
though time is continuous. The outcome of the predicate
operations is nondeterministic; either or both of the rdp()
and inp() primitives may succeed or fail as they occur
instantaneously with the out() primitive.

For this case study, let the observable events be the Linda
primitive operations themselves (i.e., the communications).
For example, out(t) is itself an event, representing a tuple
placed in tuple space. The predicate operations require
additional decoration to convey success or failure. Let the
negation symbol (¬) denote failure for a predicate operation.

rdp(t’).U inp(t’).V out(t).T

 ? ?

Tuple Space

t:

Figure 2. Case study for Linda predicate ambiguity: an interaction point in tuple space
involving three processes.

For example, inp(t') represents the event of a successful
predicate, returning value 1, in addition to the values of the
tuple successfully matched and removed from tuple space;
¬rdp(t') represents the event of a failed predicate,
returning value 0.

The events of this interaction point occur in parallel, and an
idealized observer keeping a trace of these events must record
them in some arbitrary order. Assuming perfect observation,
there are six possible correct orderings. Reasoning about the
computation from any one of these traces, what can we say
about the state of the system after a predicate operation fails?
The unfortunate answer is "nothing." More specifically, upon
failure of a predicate operation, does a tuple exist in tuple
space that matches the predicate operation's template? The
answer is, it may or it may not.

This case study involves two distinct levels of
nondeterminism, one dependent upon the other. Since what
happens is nondeterministic, then the representation of what
happened is nondeterministic. The first level concerns
computational history; the second level concerns the arbitrary
interleaving of events. Once we fix the outcome of the first
level of nondeterminism, that is, determine the events that
actually occurred, we may proceed to choose one possible
interleaving of those events for the idealized observer to
record in the event trace. The choice of interleaving is the
second level of nondeterminism.

Suppose in the interaction point of our case study, process
U and V's predicate operations fail. In this case, the six
possible orderings an idealized observer can record are
depicted in Figure 3.

1. ¬rdp(t'), ¬inp(t'), out(t)
2. ¬rdp(t'), out(t), ¬inp(t')
3. ¬inp(t'), ¬rdp(t'), out(t)
4. ¬inp(t'), out(t), ¬rdp(t')
5. out(t), ¬rdp(t'), ¬inp(t')
6. out(t), ¬inp(t'), ¬rdp(t')

Figure 3. An idealized observer's six possible choices

The idealized observer may choose to record any one of the
six possible interleavings from Figure 3 in the trace. Once
recorded, all but the first and the third interleavings make no
sense when reasoning about the trace of computation.
Depending on the context of the trace, the first and third
interleavings could also lead to ambiguous meanings of failed
predicate operations. In cases 2, 4, 5, and 6, an out(t)
operation occurs just before one or both predicate operations,
yet the events corresponding to the outcome of those
predicates indicate failure. It is natural to ask the question:
"This predicate just failed, but is there a tuple in tuple space
that matches the predicate's template?" According to these
interleavings, a matching tuple t existed in tuple space; the
predicates shouldn't have failed according to the definition of
a failed predicate operation. The meaning of a failed predicate

operation breaks down in the presence of concurrency
expressed as an arbitrary interleaving of atomic events. This
breakdown in meaning is due to the restriction of representing
the history of a computation as a total ordering of atomic
events. More specifically, within the context of a sequential
event trace, one cannot distinguish the intermediate points
between concurrent interleavings from those of events
recorded sequentially. Reasoning about computation with a
sequential event trace leads to ambiguity for failed Linda
predicate operations rdp(t') and inp(t').

Recording a parallel event sequentially does not preserve
information regarding event simultaneity. With no semantic
information about event simultaneity, the meaning of a failed
predicate operation is ambiguous. The transformation from a
parallel event to a total ordering of that parallel event is one-
way. Given an interleaved trace – that is, a total ordering of
events, some of which may have occurred simultaneously –
we cannot in general recover the concurrent events from
which that interleaved trace was generated.

By interleaving concurrent events to form a sequential
event trace, we lose concurrency information about the
computation. Interleaving results in a total ordering of the
events of a concurrent computation, an overspecification of
the order in which events actually occurred. Concurrent
models of computation that proceed in this fashion accept this
loss of information. This loss is not always a bad thing; CSP
has certainly demonstrated its utility for reasoning about
concurrency for a long time. But loss of concurrency
information does limit reasoning about certain computational
properties, and leads to problems such as the ambiguity of the
Linda predicate operations in our case study.

Distinguishing between, while relating, the trace of a
computation (its history) and the multiple views of that
computation's history reflects a tenet of view-centric
reasoning. Furthermore, views differ from sequential trace
interleavings in two important ways. First, we distinguish a
computation's history from its views, and directly support
reasoning about multiple views of the same computation.
Second, a view is a list of ROPEs, not a list of interleaved
atomic events. The observer corresponding to a view of
computation understands implicitly that an event within a
ROPE occurred concurrently with the other events of that
ROPE (within the bounds of the time granularity), after any
events in a preceding ROPE, and before any events in a
successive ROPE.

Parallel events make it possible to reason about predicate
tuple copy and removal operations found in commercial tuple
space systems. A parallel event is capable of capturing the
corresponding events of every process involved in an
interaction point in tuple space. This capability disambiguates
the meaning of a failed predicate operation, which makes it
possible to reintroduce predicate operations to the Linda
definition without recreating the semantic conflicts that led to
their removal.

Consider, once again, the six possible interleavings shown
in Figure 3, but this time, as recorded by six concurrent (and
in this case, perfect) observers, as shown in Figure 4. The
additional structure (i.e., context) within a view of
computation, compared to that of an interleaved trace, permits
an unambiguous answer to the question raised earlier in this
section: "This predicate just failed, but is there a tuple in tuple
space that matches the predicate's template?" By considering
all the events within the ROPE of the failed predicate
operation, we can answer "yes," without ambiguity or
apparent contradiction. In our case study from Figure 2, given
both predicate operations nondeterministically failed within a
ROPE containing the out(t) and no other events, we know
that tuple t exists in tuple space. The transition to the next
state doesn't occur between each event, it occurs from one
parallel event to the next. For this purpose, order of events
within a ROPE doesn't matter; it is the scope of concurrency
that is important.

VIII. CONCLUSIONS
We pointed out the difficulties associated with reasoning
directly about event simultaneity using interleaved traces. We
then presented view-centric reasoning, which preserves event
simultaneity information with parallel events and ROPEs.
View-centric reasoning is a new framework for reasoning
about properties of modern computing systems. We
demonstrated the usefulness of view-centric reasoning by
disambiguating the meaning of Linda predicate operations.
Finally, we pointed out the relevance of Linda predicate
operations, variations of which exist in commercial tuple
space implementations by Sun, IBM, and others. Tuple space
systems are an important basis for modern computing systems,
and view-centric reasoning can help us better reason about the
properties of such systems.

REFERENCES
[1] Smith, M. L. (2000). View-centric Reasoning about

Parallel and Distributed Computation. Ph.D. thesis,
University of Central Florida, Orlando, Florida 32816-
2362.

[2] Gelernter, D. (1985). Generative Communication in
Linda. ACM Transactions on Programming Languages
and Systems, 7(1).

[3] Carriero, N. and Gelernter, D. Coordination Languages
and their Significance, Communications of the ACM, 35
(2), February 1992, pp. 97-107.

[4] Carriero, N. and Gelernter, D. A Computational Model
of Everything. Communications of the ACM, 44 (11),
November 2001, pp. 77-81.

[5] Agha, G. A. (1986). ACTORS: A Model of Concurrent
Computation in Distributed Systems. The MIT Press
Series in Artificial Intelligence. The MIT Press,
Cambridge, Massachusetts.

[6] Freeman, E., Hupfer, S., and Arnold, K. (1999).
JavaSpaces: Principles, Patterns, and Practice. The Jini
Technology Series. Addison Wesley.

[7] Wyckoff, P., McLaughry, S.W., Lehman, T.J., and Ford,
D.A. (1998). T Spaces. IBM Systems Journal,
37(3):454-474.

[8] Hoare, C. (1985). Communicating Sequential Processes.
Prentice hall International Series in Computer Science.
Prentice-Hall International, UK, Ltd., UK.

[9] Andrews, G. R. (2000). Foundations of Multithreaded,
Parallel, and Distributed Programming. Addison Wesley.

[10] Jensen, K. K. (1994). Towards a Multiple Tuple Space
Model. PhD thesis, Aalborg University.
http://www.cs.auc.dk/research/FS/teaching/PhD/mts.abstr
act.html.

1. …[previous ROPE], [¬rdp(t'), ¬inp(t'), out(t)], [next ROPE]…
2. …[previous ROPE], [¬rdp(t'), out(t), ¬inp(t')], [next ROPE]…
3. …[previous ROPE], [¬inp(t'), ¬rdp(t'), out(t)], [next ROPE]…
4. …[previous ROPE], [¬inp(t'), out(t), ¬rdp(t')], [next ROPE]…
5. …[previous ROPE], [out(t), ¬rdp(t'), ¬inp(t')], [next ROPE]…
6. …[previous ROPE], [out(t), ¬inp(t'), ¬rdp(t')], [next ROPE]…

Figure 4. Six views of the same interaction point in tuple space.

