
 

  
Abstract— The development of distributed applications has not 

progressed as rapidly as its enabling technologies. In part, this is 
due to the difficulty of reasoning about such complex systems. 
One reason for the added complexity is the need for 
communication within modern computing systems. In contrast to 
sequential systems, parallel systems give rise to parallel events 
(communications), and the resulting uncertainty of the observed 
order of these events. Loosely coupled distributed systems 
complicate this even further by introducing the element of 
multiple imperfect observers of these parallel events. To address 
these challenges, we introduce view-centric reasoning, an 
approach to thinking about modern computing systems that 
directly supports multiple, inconsistent and imperfect views of 
computation.  While view-centric reasoning is general enough to 
apply to any communication model, the focus of this paper is on 
computing systems that employ generative communication, a 
middleware-based distributed shared memory manipulated by a 
coordination (communication) language. In particular, we apply 
view-centric reasoning to tuple space based systems and the 
Linda coordination language.  View-centric reasoning helps us 
resolve a potential ambiguity in the semantics of Linda predicate 
operations found in commercial implementations of tuple space, 
such as Sun's JavaSpaces and IBM's T Spaces. 
 

Index Terms— history, imperfect observation, parallel events, 
reasoning, views. 
 

I. INTRODUCTION 
The greatest problem with communication is the illusion it 

has been accomplished - George Bernard Shaw 
 
One way to think about parallel and distributed computing 

is as a special case of concurrent divide and conquer. We are 
accustomed to thinking about divide and conquer in terms of 
algorithm design, or system decomposition, but in its purest 
sense, divide and conquer does not impose any sequential 
restrictions. In sequential divide and conquer, communication 
and coordination are typically implicit. One consequence of 
dividing a problem into concurrently computing sub-
problems, no matter what the approach, is the need for more 
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explicit communication and coordination among the 
corresponding sub-processes. In such an environment, what is 
observable are the communications between sub-processes.  
Moreover, in a concurrent computing environment, it is 
possible for multiple observable events to occur at the same 
time.  If we consider each process participating in a 
computation to also be an observer of the computation, then 
we must distinguish a computation's history (what really 
happened) from the multiple, possibly imperfect, views of 
computation (what appeared to happen). 

There are three main parts to view-centric reasoning.  The 
first part is the ability to represent what might happen during a 
computation, or nondeterminism.  A parameterized 
operational semantics provides this capability, but is not the 
focus of this paper (for more information, see Smith [1]).  The 
ability to represent, and thus distinguish, what really happened 
from what appeared to happen during a computation are the 
final two parts of view-centric reasoning. 

To further motivate our research, and make the point that a 
computation's history and views are not just of academic 
interest, we refer the reader to Figure 1, which contains an 
excerpt from Sun Microsystems' JavaSpaces Service 
Specification.  JavaSpaces is a service of Sun's Jini 
Architecture, based on the Linda / Tuple Space coordination 
model pioneered by David Gelernter in the early 1980's.  

In short, the specification states that "operations on a 
[Java]space are unordered", and that "the only view of 
operation order can be a thread's view of the order of the 
operations it performs."  Before we can fully understand the 
meaning of these words, and ponder the implications, we must 
first describe Linda and Tuple Space. 

 

II. LINDA AND TUPLE SPACE 
The tuple space model and Linda language are due to 

Gelernter and Carriero [2, 3, 4].  Linda is distinct from pure 
message passing-based models (e.g., Actors [5]). Unlike 
message passing models, tuple space exhibits what Gelernter 
called communication orthogonality, referring to interprocess 
communications decoupled in destination, space, and time. 
The tuple space model is especially relevant to discussion of 
concurrency due to the current popularity of commercial tuple  
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space implementations, such as Sun's JavaSpaces [6] and 
IBM's T Spaces [7]. 

Linda is not a complete programming language; it is a 
communication and coordination language.  Linda is intended 
to augment existing computational languages with its 
coordination primitives to form comprehensive parallel and 
distributed programming languages.  The Linda coordination 
primitives are rd(), in(), out(), and eval().  The idea 
is that multiple Linda processes share a common space, called 
a tuple space, through which the processes are able to 
communicate and coordinate using Linda primitives. 

A tuple space may be viewed as a container of tuples, 
where a tuple is simply an ordered group of values.  A tuple is 
considered active if one or more of its values is currently 
being computed, and passive if all of its values have been 
computed.  A Linda primitive manipulates tuple space 
according to the template specified in its argument.  Templates 
represent tuples in a Linda program. A template extends the 
notion of tuple by distinguishing its passive values as either 
formal or actual, where formal values, or formals, represent 
typed wildcards for matching.  Primitives rd() and in() 
are synchronous, or blocking operations; out() and 
eval() are asynchronous. 

The rd() and in() primitives attempt to find a tuple in 
tuple space that matches their template.  If successful, these 
primitives return a copy of the matching tuple by replacing 
any formals with actuals in their template. In addition, the 
in() primitive, in the case of a match, removes the 
matching tuple from tuple space.  In the case of multiple 
matching tuples, a nondeterministic choice determines which 
tuple the rd() or in() operation returns.  If no match is 
found, these operations block until such time as a match is 
found.  The out() operation places a tuple in tuple space.  
This tuple is a copy of the operation's template.  Primitives 
rd(), in(), and out() all operate on passive tuples. 

All Linda processes reside as value-yielding computations 
within the active tuples in tuple space.  Any Linda process can 
create new Linda processes through the eval() primitive.  
Execution of the eval() operation places an active tuple in 
tuple space, copied from the template.  When a process 

completes, it replaces itself within its respective tuple with the 
value resulting from its computation. When all processes 
within a tuple replace themselves with values, the formerly 
active tuple becomes passive.  Only passive tuples are visible 
for matching by the rd() and in() primitives; thus active 
tuples are invisible. 

 

III. THE INSPIRATION 
The inspiration for view-centric reasoning derives from 

Hoare's [8] seminal work in models of concurrency, 
Communicating Sequential Processes (CSP).  CSP views 
concurrency, as its name implies, in terms of communicating 
sequential processes.  A computational process, in its simplest 
form, is described by a sequence of observable events.  The 
history of a computation is recorded by an observer in the 
form of a sequential trace of events.  Events in CSP are said to 
be offered by the environment of a computation; therefore, 
they occur when a process accepts an event at the same time 
the event is offered by the environment.  Thus, reasoning 
about a system's trace is equivalent to reasoning about its 
computation. 

When two or more processes compute concurrently within 
an observer's environment, the possibility exists for events to 
occur simultaneously.  CSP has two approaches to express 
event simultaneity in a trace, synchronization and interleaving.  
Synchronization occurs when an event e is offered by the 
environment of a computation, and event e is ready to be 
accepted by two or more processes in the environment.  When 
the observer records event e in the trace of computation, the 
interpretation is that all those processes eligible to accept 
participate in the event. 

The other form of event simultaneity, where two or more 
distinct events occur simultaneously, is recorded by the 
observer in the event trace via arbitrary interleaving.  For 
example, if events e1 and e2 are offered by the environment, 
and two respective processes in the environment are ready to 
accept e1 and e2 at the same time, the observer may record 
either e1 followed by e2, or e2 followed by e1.  In this case, 
from the trace alone, we can not distinguish whether events e1 

Operations on a space are unordered. The only view of operation order can be a thread's view 
of the order of the operations it performs. A view of inter-thread order can be imposed only by 
cooperating threads that use an application-specific protocol to prevent two or more operations 
being in progress at a single time on a single JavaSpaces service. Such means are outside the 
purview of this specification. 
 

For example, given two threads T and U, if T performs a write operation and U performs a read 
with a template that would match the written entry, the read may not find the written entry even if 
the write returns before the read. Only if T and U cooperate to ensure that the write returns before 
the read commences would the read be ensured the opportunity to find the entry written by T 
(although it still might not do so because of an intervening take from a third entity). 

Figure 1. JavaSpaces (TM) Service Specification, version 1.2, Section JS.2.8, Operation Ordering 



 

and e2 occurred in sequence or simultaneously.  CSP's 
contention, since the observer must record e1 and e2 in some 
order, is that this distinction is not important. 

 

IV. PROPERTIES OF CONCURRENT COMPUTATION 
The questions we ask when we reason about computation 

concern properties of computation.  A property of a program 
is an attribute that is true of every possible history of that 
program, and hence of all executions of the program [9].  
Many interesting program properties fall under the categories 
of safety, liveness, or some combination of both safety and 
liveness.  A safety property of a program is one in which the 
program never enters a bad state; nothing bad happens during 
computation (e.g., partial correctness).  A liveness property of 
a program is one in which the program eventually enters a 
good state; something good eventually happens (e.g., 
termination). 

Questions arise when reasoning about concurrency that do 
not otherwise arise in sequential computation.  Sequential 
computation has no notion of critical sections, since a process 
need not worry about competing for resources with other 
processes within a given environment.  Since critical sections 
do not exist in sequential computation, there is no need for 
mutual exclusion, nor any concern for race conditions, 
deadlock, or infinite postponement.  Two properties that 
pertain solely to concurrent systems are mutual exclusion 
(safety) and finite postponement (liveness). 

V. WHY VIEW-CENTRIC REASONING? 
With all the benefits that CSP provides for reasoning about 

concurrency, it does not directly represent event simultaneity 
(i.e., event aggregation).  Two exceptions are synchronized 
events common to two or more interleaved processes, or 
abstracting a new event to represent the simultaneous 
occurrence of two or more designated atomic events.  Since 
CSP represents concurrency through an arbitrary interleaving 
of events, it provides no support for multiple simultaneous 
views of an instance of computation.  For other motivations, 
including imperfect observation, see Smith [1]. 

View-centric reasoning raises CSP's level of abstraction 
with the notion of parallel events.  Parallel event traces don't 
require interleaving to represent concurrency.  Also, view-
centric reasoning replaces CSP's idealized observer with the 
notion of multiple, possibly imperfect observers.  Multiple 
observers inspire the existence of views of computation.  
Thus, we distinguish a computation's history -- its trace -- 
from the multiple possible views of a computation.  For other 
extensions or differences, see Smith [1]. 

 

VI. BASICS OF VIEW-CENTRIC REASONING 
The primitive element of view-centric reasoning is the 

observable event, or just event.  An event is a discrete instance 
of observable behavior at a desired level of abstraction.  A set 
of events occurring at the same time, where equality of time is 
based on a chosen granularity, is a parallel event.  A list of 
parallel events is a trace.  A list of events selected from a 
parallel event is a ROPE (randomly-ordered parallel event).  A 
list of ROPEs is a view. Each element of a view of 
computation, a ROPE, corresponds positionally to a parallel 
event in that computation's trace.  Thus, for a given parallel 
event, it is possible to derive many corresponding ROPEs, and 
for a given trace (history), in general, multiple views of 
computation are possible.  In the end, a view is a 
sequentialized partial ordering of an instance of concurrent 
computation, the structure of which is a list of lists of 
observable events. The choice of events in view-centric 
reasoning does not change the definition of parallel event, 
ROPE, trace, or view. 

Parallel events, ROPEs, and the distinction of a 
computation's history from its views are abstractions that 
permit reasoning about computational histories that cannot, in 
general, be represented by sequential interleavings.  To see 
this, assume perfect observation, and assume different 
instances of the same event are indistinguishable.  Given these 
two assumptions, it is not possible to reconstruct the parallel 
event trace of a computation, even if one is given all possible 
sequential interleavings of that computation.  Thus, while it is 
easy to generate all possible views from a parallel event trace, 
the reverse mapping is not, in general, possible.  For example, 
consider the sequential interleaving <A,A,A,A>, and assume 
this trace represents all possible interleavings of some 
system's computational history.  It is not possible to determine 
from this trace alone whether the parallel event trace of the 
same computation is <{A,A,A},A> or <{A,A},{A,A}>, or 
some other possible parallel event trace. 

There are two categories of events in view-centric 
reasoning: successful and unsuccessful. By default, we refer to 
successful events as events, and unsuccessful events as un-
events.  An un-event is an attempted computation or 
communication activity, associated with an event, that fails to 
succeed.  The possibility of empty parallel events (due to 
imperfect observation) and observable un-events, provides 
view-centric reasoning with notions of divergences and 
failures, as found in CSP.  The ability to observe successful 
and unsuccessful events within the context of parallel events 
and views permits us to reason directly about nondeterminism 
and its consequences. Parallel events that include un-events 
allow us to reason not only about what happened, but also 
about what might have happened. 



 

The purpose of view-centric reasoning is to provide an 
overall higher level of abstraction for reasoning about 
distributed computation, a model that more closely 
approximates the reality of concurrency. Our approach differs 
in two significant ways from CSP: its traces preserve the 
concurrency inherent in the history of computation, and its 
semantics are operational rather than algebraic. CSP imposes 
the restriction that an idealized observer record arbitrary, 
sequential total orderings of simultaneously occurring events, 
and in so doing, does not preserve event simultaneity. These 
differences impact reasoning about properties of computation 
in important ways, as will be demonstrated in the next section. 
 

VII. AN EXAMPLE 
In addition to the four primitives rd(), in(), out(), and 

eval(), the Linda definition once included predicate 
versions of rd() and in().  Unlike the rd() and in() 
primitives, predicate operations rdp() and inp() were 
nonblocking primitives.  The goal was to provide tuple 
matching capabilities without the possibility of blocking.  The 
Linda predicate operations seemed like a useful idea, but their 
meaning proved to be semantically ambiguous, and they were 
subsequently removed from the formal Linda definition. 

First, we demonstrate the ambiguity of the Linda predicate 
operations when our means of reasoning is restricted to 
interleaved traces.  The ambiguity is subtle and, in general, not 
well understood.  Next, we demonstrate how applying view-
centric reasoning to the same computation disambiguates the 
meaning of the Linda predicate operations -- which is 
important, since commercial tuple space implementations 
include such predicate operations. 

Predicate operations rdp() and inp() attempt to match 
tuples for copy or removal from tuple space.  A successful 
operation returns the value one (1) and the matched tuple in 
the form of a template.  A failure, rather than blocking, returns 

the value zero (0) with no changes to the template.  When a 
match is successful, no ambiguity exists.  It is not clear, 
however, what it means when a predicate operation returns a 
zero. 

The ambiguity of the Linda predicate operations is a 
consequence of modeling concurrency through an arbitrary 
interleaving of tuple space interactions (communication 
events).  Jensen noted that when a predicate operation returns 
zero, "only if every existing process is captured in an 
interaction point does the operation make sense” [10].  
Suppose three Linda processes, T, U, and V, are executing 
concurrently in tuple space.  Further suppose that each of 
these processes simultaneously issues a Linda primitive as 
depicted in Figure 2.  Finally, we point out that the example of 
Figure 2 is the equivalent Linda version of the example given 
in the JavaSpaces Specification from Figure 1 (processes T 
and U correspond in both figures, and V in Figure 2 
corresponds to the "third entity" from Figure 1).  What is often 
missed when reasoning about JavaSpaces applications is that 
the read and take operations are non-blocking. 

Assume no tuples in tuple space exist that match template 
t', except for the tuple t being placed in tuple space by 
process T.  Together, processes T, U, and V constitute an 
interaction point, as referred to by Jensen.  There are several 
examples of ambiguity, but discussing one possibility will 
suffice.  First consider that events are instantaneous, even 
though time is continuous.  The outcome of the predicate 
operations is nondeterministic; either or both of the rdp() 
and inp() primitives may succeed or fail as they occur 
instantaneously with the out() primitive. 

For this case study, let the observable events be the Linda 
primitive operations themselves (i.e., the communications).  
For example, out(t) is itself an event, representing a tuple 
placed in tuple space.  The predicate operations require 
additional decoration to convey success or failure.  Let the 
negation symbol (¬) denote failure for a predicate operation.  

rdp(t’).U inp(t’).V out(t).T 

 ? ? 

Tuple Space 

t: 

 
Figure 2. Case study for Linda predicate ambiguity: an interaction point in tuple space 
involving three processes. 

 



 

For example, inp(t') represents the event of a successful 
predicate, returning value 1, in addition to the values of the 
tuple successfully matched and removed from tuple space; 
¬rdp(t') represents the event of a failed predicate, 
returning value 0. 

The events of this interaction point occur in parallel, and an 
idealized observer keeping a trace of these events must record 
them in some arbitrary order.  Assuming perfect observation, 
there are six possible correct orderings.  Reasoning about the 
computation from any one of these traces, what can we say 
about the state of the system after a predicate operation fails? 
The unfortunate answer is "nothing."  More specifically, upon 
failure of a predicate operation, does a tuple exist in tuple 
space that matches the predicate operation's template?  The 
answer is, it may or it may not. 

This case study involves two distinct levels of 
nondeterminism, one dependent upon the other.  Since what 
happens is nondeterministic, then the representation of what 
happened is nondeterministic.  The first level concerns 
computational history; the second level concerns the arbitrary 
interleaving of events.  Once we fix the outcome of the first 
level of nondeterminism, that is, determine the events that 
actually occurred, we may proceed to choose one possible 
interleaving of those events for the idealized observer to 
record in the event trace.  The choice of interleaving is the 
second level of nondeterminism. 

Suppose in the interaction point of our case study, process 
U and V's predicate operations fail.  In this case, the six 
possible orderings an idealized observer can record are 
depicted in Figure 3.   
 

1. ¬rdp(t'), ¬inp(t'),  out(t) 
2. ¬rdp(t'),  out(t),  ¬inp(t') 
3. ¬inp(t'), ¬rdp(t'),  out(t) 
4. ¬inp(t'),  out(t),  ¬rdp(t') 
5.  out(t), ¬rdp(t'), ¬inp(t') 
6.  out(t), ¬inp(t'), ¬rdp(t') 

Figure 3. An idealized observer's six possible choices 
 

The idealized observer may choose to record any one of the 
six possible interleavings from Figure 3 in the trace.  Once 
recorded, all but the first and the third interleavings make no 
sense when reasoning about the trace of computation.  
Depending on the context of the trace, the first and third 
interleavings could also lead to ambiguous meanings of failed 
predicate operations.  In cases 2, 4, 5, and 6, an out(t) 
operation occurs just before one or both predicate operations, 
yet the events corresponding to the outcome of those 
predicates indicate failure.  It is natural to ask the question: 
"This predicate just failed, but is there a tuple in tuple space 
that matches the predicate's template?"  According to these 
interleavings, a matching tuple t existed in tuple space; the 
predicates shouldn't have failed according to the definition of 
a failed predicate operation.  The meaning of a failed predicate 

operation breaks down in the presence of concurrency 
expressed as an arbitrary interleaving of atomic events.  This 
breakdown in meaning is due to the restriction of representing 
the history of a computation as a total ordering of atomic 
events.  More specifically, within the context of a sequential 
event trace, one cannot distinguish the intermediate points 
between concurrent interleavings from those of events 
recorded sequentially. Reasoning about computation with a 
sequential event trace leads to ambiguity for failed Linda 
predicate operations rdp(t') and inp(t'). 

Recording a parallel event sequentially does not preserve 
information regarding event simultaneity. With no semantic 
information about event simultaneity, the meaning of a failed 
predicate operation is ambiguous.  The transformation from a 
parallel event to a total ordering of that parallel event is one-
way. Given an interleaved trace – that is, a total ordering of 
events, some of which may have occurred simultaneously – 
we cannot in general recover the concurrent events from 
which that interleaved trace was generated. 

By interleaving concurrent events to form a sequential 
event trace, we lose concurrency information about the 
computation.  Interleaving results in a total ordering of the 
events of a concurrent computation, an overspecification of 
the order in which events actually occurred.  Concurrent 
models of computation that proceed in this fashion accept this 
loss of information.  This loss is not always a bad thing; CSP 
has certainly demonstrated its utility for reasoning about 
concurrency for a long time.  But loss of concurrency 
information does limit reasoning about certain computational 
properties, and leads to problems such as the ambiguity of the 
Linda predicate operations in our case study. 

Distinguishing between, while relating, the trace of a 
computation (its history) and the multiple views of that 
computation's history reflects a tenet of view-centric 
reasoning.  Furthermore, views differ from sequential trace 
interleavings in two important ways.  First, we distinguish a 
computation's history from its views, and directly support 
reasoning about multiple views of the same computation.  
Second, a view is a list of ROPEs, not a list of interleaved 
atomic events.  The observer corresponding to a view of 
computation understands implicitly that an event within a 
ROPE occurred concurrently with the other events of that 
ROPE (within the bounds of the time granularity), after any 
events in a preceding ROPE, and before any events in a 
successive ROPE. 

Parallel events make it possible to reason about predicate 
tuple copy and removal operations found in commercial tuple 
space systems.  A parallel event is capable of capturing the 
corresponding events of every process involved in an 
interaction point in tuple space.  This capability disambiguates 
the meaning of a failed predicate operation, which makes it 
possible to reintroduce predicate operations to the Linda 
definition without recreating the semantic conflicts that led to 
their removal. 



 

Consider, once again, the six possible interleavings shown 
in Figure 3, but this time, as recorded by six concurrent (and 
in this case, perfect) observers, as shown in Figure 4.  The 
additional structure (i.e., context) within a view of 
computation, compared to that of an interleaved trace, permits 
an unambiguous answer to the question raised earlier in this 
section: "This predicate just failed, but is there a tuple in tuple 
space that matches the predicate's template?"  By considering 
all the events within the ROPE of the failed predicate 
operation, we can answer "yes," without ambiguity or 
apparent contradiction.  In our case study from Figure 2, given 
both predicate operations nondeterministically failed within a 
ROPE containing the out(t) and no other events, we know 
that tuple t exists in tuple space.  The transition to the next 
state doesn't occur between each event, it occurs from one 
parallel event to the next.  For this purpose, order of events 
within a ROPE doesn't matter; it is the scope of concurrency 
that is important. 

 

VIII. CONCLUSIONS 
We pointed out the difficulties associated with reasoning 
directly about event simultaneity using interleaved traces.  We 
then presented view-centric reasoning, which preserves event 
simultaneity information with parallel events and ROPEs.  
View-centric reasoning is a new framework for reasoning 
about properties of modern computing systems.  We 
demonstrated the usefulness of view-centric reasoning by 
disambiguating the meaning of Linda predicate operations.  
Finally, we pointed out the relevance of Linda predicate 
operations, variations of which exist in commercial tuple 
space implementations by Sun, IBM, and others.  Tuple space 
systems are an important basis for modern computing systems, 
and view-centric reasoning can help us better reason about the 
properties of such systems. 
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1. …[previous ROPE], [¬rdp(t'), ¬inp(t'),  out(t) ], [next ROPE]… 
2. …[previous ROPE], [¬rdp(t'),  out(t),  ¬inp(t')], [next ROPE]… 
3. …[previous ROPE], [¬inp(t'), ¬rdp(t'),  out(t) ], [next ROPE]… 
4. …[previous ROPE], [¬inp(t'),  out(t),  ¬rdp(t')], [next ROPE]… 
5. …[previous ROPE], [ out(t),  ¬rdp(t'), ¬inp(t')], [next ROPE]… 
6. …[previous ROPE], [ out(t),  ¬inp(t'), ¬rdp(t')], [next ROPE]… 

Figure 4. Six views of the same interaction point in tuple space. 

 


