Generative Recursion

21 February 2024
Where are we?
data List:
| empty
| link(first :: Any, rest :: List)
end

Self-reference
Recursive data
data **List**:
| empty
| link(first :: Any, rest :: List)
end

fun **list-fun**(lst :: List) -> ...

cases (List) lst:
| empty => ...
| link(f, r) =>
 ... f ...
 ... list-fun(r) ...
end
end
The same idea holds for lists, binary trees, trinary trees, n-ary trees, and all kinds of other recursive data types: *The structure of the function follows the structure of the data.*
The recursive functions we’ve written have used *structural* (or *natural*) recursion.

In structural recursion, each recursive call takes some sub-piece of the data.

 Going through a list, we keep taking the *rest* of the list.
 Going through a tree, we keep looking at the sub-trees.
Generative recursion
In *generative recursion*, the recursive cases are generated based on the problem to be solved.

Generative recursion can be harder because neither the base nor recursive cases follow from a data definition.
Template for generative recursion

```kotlin
fun problem-solver(d) -> ...
if is-trivial(d):
    # Base case: The computation is in some way trivial.
    ... d ...
else:
    # Recursive case: Transform the data d to generate new problems.
    combiner(
        ...d...,
        problem-solver(transform(d)),
    )
end
end
```
When you write a function with generative recursion you need to be careful about termination – how do you know you’ll ever reach the base case?
Fractals
“A fractal is a way of seeing infinity.”

Benoit Mandelbrot
Let’s design a function that consumes a number and produces a *Sierpiński triangle* of that size:

Start with an equilateral triangle with side length s:

Inside that triangle are three more Sierpiński triangles:

And inside of each of those … and so on.

Producing something that looks like this:
How small a shape can get before we stop drawing smaller ones

$CUTOFF = 10$

```haskell
fun s-tri(s :: Number) -> Image:
  doc: "Produce a Sierpiński triangle of the given size by generating one for s/2 and placing one copy above two copies"
  if s <= CUTOFF:
    triangle(s, "outline", "red")
  else:
    sub = s-tri(s / 2)
    above(sub, beside(sub, sub))
  end
end
```
How do we know that this function won’t run forever?

Three-part termination argument:

Base case: \(s \leq \text{CUTOFF} \)

Reduction step: \(s / 2 \)

Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is \(> 0 \) and \(s \) starts \(\geq 0 \), repeated division by 2 will eventually be less than the cutoff.
Exercise

Design a function \texttt{s-carpet} to produce a Sierpiński carpet of size \textit{s}:
Exercise

Design a function \texttt{s-carpet} to produce a Sierpiński carpet of size \texttt{s}:

There are eight copies of the recursive call positioned around a blank square
fun s-carpet(s :: Number) -> Image:
 doc: "Draw a Sierpiński carpet of size s-by-s by generating an s/3 carpet and positioning it on every side of an empty s/3 square"
 if s <= CUTOFF:
 square(s, "outline", "red")
 else:
 sub = s-carpet(s / 3)
 blk = square(s / 3, "solid", "white")
 above3(
 beside3(sub, sub, sub),
 beside3(sub, blk, sub),
 beside3(sub, sub, sub))
 end
end
How do we know that this function won’t run forever?

Three-part termination argument:

Base case: \(s \leq \text{CUTOFF} \)

Reduction step: \(s \div 3 \)

Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is \(> 0 \) and \(s \) starts \(\geq 0 \), repeated division by 3 will eventually be less than the cutoff.
Animation
What if we want to see the progression of the fractal becoming more complex?
```python
>>> map(s-tri, [list: 10, 20, 40, 80])

[ list: △, △, △△, △△△ ]
```
It might be more fun to see this change over time rather than flattened into a list.
Pyret has a mechanism for supporting interactive visual programs, called a **reactor**.

To use it, first write

```
include reactors
```
reactor:
 init: initial-state,
 to-draw: draw-function,
 event-type: event-function,
end
Class code:

http://tinyurl.com/2pxy2h7j
Acknowledgments

This lecture incorporates material from:

Gregor Kiczales, University of British Columbia
Marc Smith, Vassar College