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Abstract

Vehicles increasingly need to connect to external networking infrastructure, to support applications such as over-
the-air updates, edge computing, and even autonomous driving. The ubiquity of IEEE 802.11 Wi-Fi makes it ideal
for opportunistic vehicular access. However, that ubiquity also creates a problem of choice. In a heterogeneous Wi-Fi
environment, where different networks coexist, it becomes important for vehicles to be able to pick the best-performing
one. Focusing on delay-insensitive traffic, we equate network performance with throughput. To inform network selection
we aim to first estimate current throughput, and then forecast its evolution through time. In order to avoid introducing
load onto the network, we estimate throughput using only passively observable variables such as signal strength. We
used Symbolic Regression (SR) and an Unscented Kalman Filter (UKF) to develop a computationally inexpensive
estimation model — UKF-SR. We trained and tested this model using experimental data featuring 802.11n, ac, and
ad networks. UKF-SR proved competitive against more expensive models such as shallow neural networks. To predict
future throughput, we explored both general time-series forecasting models such as Autoregressive Integrated Moving
Average (ARIMA), and domain-specific ones based on mobility information. The latter clusters historical throughput
according to attributes such as vehicle position and direction of movement, using the cluster’s average as the forecast. An
evaluation using experimental data showed the mobility-based models to meaningfully outperform general forecasting.
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1. Introduction

Vehicle-to-Infrastructure (V2I) communication is in-
creasingly important. It enables myriad applications that
promote road safety, efficiency, and entertainment. For
example, Tesla vehicles upload information they collect
to the cloud to help develop autonomous driving algo-
rithms [1]. And they also download media for streaming,
traffic information, and software updates for the vehicles’
subsystems.

Such traffic is typically sent over a cellular connection.
But, with ever increasing capacity demands — Cisco re-
ports compound annual traffic growth rates between 7 and
30% [2] — there is a need for alternatives. The availabil-
ity of IEEE 802.11 Wi-Fi Access Points (APs) usable from
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roadways, particularly in urban environments, makes them
a compelling proposition. A large scale wardriving study
conducted in the city of Porto, Portugal [3] found over 80
thousand APs visible from roads. Roughly 28% of them
were open, i.e., unsecured, and thus good candidates for
data offloading. The large majority (∼90%) of open APs
required post-connection authentication, e.g., through a
captive portal. However, they were all controlled by a very
small number of providers, such as Fon Wi-Fi [4], that
many consumers already subscribe to. Additionally, au-
thentication could be automated, and carried over across
APs of the same provider.

The abundance of Wi-Fi networks poses an opportu-
nity but also a challenge, as vehicles must choose which
one to use at any given moment. First, different networks
may use different IEEE 802.11 standards, which strike dif-
ferent balances between bandwidth and coverage range.
Second, the high degree of mobility associated with vehic-
ular environments limits the amount of time during which
each network can be used.

One reasonable goal, particularly for delay-insensitive
traffic, is to pick the network that maximizes the amount
of data that can be offloaded [5, 6], which equates to cumu-
lative throughput over time. Determining this for a given
network can be decomposed into two subproblems:
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1. Estimate the throughput that the network can cur-
rently provide.

2. Forecast how said throughput will evolve in the
near future, given the current throughput estimate
and other variables of interest.

Throughput estimation is often done by actively inject-
ing probe traffic into the network [6, 7], requiring an active
connection and introducing unwanted congestion. In con-
trast, we explore the possibility of leveraging passively-
observable variables such as distance to the AP and re-
ceived signal strength. Moreover, we aim to create an
easily-explainable model that is also computationally in-
expensive and thus suitable for embedded devices.

With these goals in mind our approach was to take
realistic experimental Wi-Fi V2I communication perfor-
mance data, and apply Symbolic Regression (SR) offline
to obtain a simple throughput estimation model. We then
refined the model by incorporating an Unscented Kalman
Filter (UKF), yielding a variant we call UKF-SR.

To assess its generalization capabilities we evaluated
SR-UKF against standard machine learning (ML) models
such as Decision Trees (DT) and Shallow Neural Networks
(SNN), on a separate testing dataset. Despite its simplic-
ity, SR-UKF outperformed the competition.

Switching Wi-Fi networks involves a certain amount of
downtime. Therefore, once current throughput has been
estimated, it’s important to forecast how it will evolve over
time. This will help determine whether it is worth switch-
ing to a different network.

The simplest way to do this is to consider historical
throughput estimates as a time series and apply a standard
forecasting algorithm such as a simple moving average
or Autoregressive Integrated Moving Average (ARIMA).
However, this strategy ignores external variables that may
play an important role in the forecast.

For vehicular networks in particular, mobility infor-
mation such as vehicle location and direction of move-
ment are key connectivity predictors, as they indirectly
encode all factors affecting signal attenuation, such as dis-
tance, line-of-sight conditions, and obstacles causing mul-
tipath interference. Thus, we consider the MRDP (Mobil-
ity, Road, Direction, Position) algorithms introduced by
Meireles et al. [6]. These algorithms forecast throughput
to be the average of previously-estimated throughput val-
ues for a given set of mobility conditions. When evaluated
on our experimental dataset, they substantially outper-
formed traditional time-series forecasting algorithms.

In summary, we make the following contributions:

1. Describe how we collected network performance data
in a realistic Wi-Fi-diverse vehicular scenario to test
our estimation and forecasting models (§3).

2. Present our UKF-SR symbolic regression through-
put estimation model, and evaluate it against stan-
dard ML models from the literature using separate
training and testing datasets (§4).

3. Describe and thoroughly evaluate both general and
domain-specific throughput forecasting models, in
isolation and in conjunction with our estimation
model (§5).

In summary, by exploring throughput estimation and
forecasting solutions, this work paves the way for a practi-
cal dynamic network selection system for V2I communica-
tion. It extends a previous conference article on through-
put estimation [8], adding the contribution on forecasting.

2. Related work

We consider two types of related work. That concern-
ing estimation of current throughput, and that concerning
forecasting of future throughput.

Estimating throughput ordinarily implies injecting
large amounts of traffic into the network, rendering it
unusable from congestion. Li et al. [9] proposed an
alternative packet-pair-based algorithm, which requires
only a small number of probes. However, the algorithm
assumes that network conditions are stable, which is not
true in vehicular environments. Furthermore, to generate
probes a user must be connected to an AP, while in the
context of network selection the throughput estimate is
needed prior to connection establishment.

The alternative is to rely on passive measurements
alone, thus not generating additional traffic. A seminal
work in throughput estimation is that of Mathis et al.
[10], where the authors introduced a mathematical TCP
throughput model, function of packet loss probability.
However, it does not apply to wireless environments,
where losses do not necessarily imply congestion.

Samba et al. [11] performed throughput estimation in
cellular Long Term Evolution (LTE) networks by leverag-
ing several data sources, such as context information (e.g.,
distance and speed) and physical layer measurements (e.g.,
signal strength). Using a random forest algorithm the au-
thors obtained a model capable of explaining 84% of the
variation in throughput.

In this work we introduce a throughput estimation
model that employs only client-side passive measurements,
accessible prior to establishing a connection, and trained
specifically for the vehicular Wi-Fi access use case.

Consider now the problem of forecasting future
throughput. Liu & Lee [7] surveyed existing solutions
and categorized them as: (i) formula-based, using
mathematical expressions; (ii) history-based, predicting
throughput using past measurements; or (iii) machine
learning model-based.

He et al. [12] presented a formula-based method to fore-
cast TCP throughput, considering maximum segment and
window sizes, round-trip time, and packet loss rate. In
this study, the authors also explored history-based predic-
tion with moving average and non-seasonal Holt-Winters
algorithms. The history-based methods performed better.
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However, they depend on the availability of prior measure-
ments, unlike the formula-based ones.

Wei et al. [13] developed a history and ML-based ap-
proach to TCP throughput forecasting in mobile networks
named TRUST. It �rst classi�es the user's mobility pat-
tern. The classi�cation is then used to pick a Long Short-
Term Memory (LSTM) neural network model to predict
throughput. The authors showed it outperformed moving
average and hidden Markov models across multiple di�er-
ent mobility scenarios, such as walking or riding a train.

In our work we focus on the quality of the underlying
channel rather than how the transport protocol's ow and
congestion controls interact with it. For this reason, we
use UDP. Further, we focus speci�cally on opportunist ve-
hicular Wi-Fi access, which is characterized by very fast
mobility. The work closest to ours is that of Meireles et
al. [6], who introduced a mobility clustering-based fam-
ily of algorithms that forecast throughput as the average
of previously-observed throughput values for a given set
of mobility variables { more in §5.2. However, these algo-
rithms were evaluated using actively-measured throughput
values, rather than passive estimates. Here we re�ne the
algorithms and evaluate how well they perform with pas-
sive estimates.

3. Datasets

To develop a good throughput estimation model, it is
essential to use data collected in a realistic environment.
We had access to such a dataset, created in the context
of related prior work [6]. We shall refer to it as the Gaia
dataset, in reference to where it was collected.

We decided to complement it with a new dataset, the
Porto dataset, collected at a di�erent time and location.
This let us use di�erent train and test datasets for our
throughput estimation model, thus assessing how well it
generalizes across di�erent environments. In this section
we describe both datasets, highlighting their di�erences.

3.1. Porto dataset

3.1.1. Experimental setup
We drove a vehicle around a stationary access point,

while transmitting data through three di�erent networks,
each using a di�erent Wi-Fi standard | IEEE 802.11n,
ac, and ad, in parallel.

Fig. 1a depicts the location where the experiments took
place | Rua D. Frei Vicente da Soledade e Castro in
Porto, Portugal. This street runs roughly east-west, and
is lined by trees on both sides. It also sits lower than the
surrounding terrain, by roughly 2 m. Weather was cloudy
but dry, with a temperature of around 25 °C.

The AP remained stationary at the location shown,
while the client vehicle did a total of 10 laps around the
indicated circuit, traveling counterclockwise. Speed varied
between 0 and 40 km/h. Vehicular tra�c was substantial,

which added to the environment's multipath and line of
sight obstructions.

Fig. 2 illustrates the vehicles and hardware devices
used in the experiments. We placed a TP-Link Talon
AD7200 [15] router on the roof of each vehicle. These
routers feature 802.11n, ac, and ad interfaces, making
them ideal for our purposes. Given that the original
�rmware is not user-programmable, we installed LEDE-
AD7200, a modi�ed version of the Linux-based LEDE
operating system speci�cally created for the AD7200
routers by the Talon Tools project [16].

Taking advantage of the programmable environment,
we wrote simple data producing and consuming appli-
cations and deployed them on the routers themselves.
Pseudo-random data was sent over the three radio
interfaces, from the mobile client to the static AP. Tab. 1
shows the channels used, all of which are independent.

Standard Channel # Center freq. (GHz) Bandwidth (MHz)
802.11n 6 2.437 20
801.11ac 40 5.2 40
802.11ad 2 60.48 2160

Table 1: Wi-Fi channels used for the experiments.

Throughput was measured by the receiving AP and
sent as feedback to the client over the 802.11n network, as
it featured the longest range. This information was saved
on a database, which, due to memory constraints, ran on
an external device connected to the client router through
Gigabit Ethernet.

Location and time information for the mobile client was
provided by a MikroElektronika GNSS 5 click receiver [17],
which features a 10 Hz GPS module. However, to increase
the number of packets used to compute each throughput
data point, our entire analysis used a granularity of 1 Hz.
This means we downsampled the GPS information, using
the �rst sample in each second to represent that entire
second. Due to a lack of additional GNSS 5 devices, the
AP was equipped with a commodity 1 Hz GPS receiver.

3.1.2. Collected data
Using the described setup, we collected a dataset with

over 3750 samples (1250 per Wi-Fi standard). Each sam-
ple pertains to a speci�c (timestamp, network) combina-
tion. The timestamp resolution is 1 Hz. A sample con-
tains the mobile client's location coordinates, heading, and
speed, along with the measured signal quality, throughput,
and transmission data rate. The data can be downloaded
from Zenodo [18].

Fig. 3 summarizes the collected data through some of
its metrics. Namely, measured throughput, vehicle speed,
and GPS horizontal dilution of precision (HDOP). Isik et
al. [19] suggest the use of dilution of precision values to
validate the integrity of GPS estimates. Values below 1
are considered "ideal", and below 2, "excellent". Follow-
ing these guidelines, we consider the collected GPS data
trustworthy, as HDOP values were consistently below 1.
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(a) Porto mobility pattern. Access point GPS coordinates: 41.177, -8.59585. (b) Gaia data. GPS: 41.112, -8.631.

Figure 1: Experiment locations and client mobility patterns used in the Porto and Gaia datasets. Imagery © 2022 CNES / Airbus, IGP/DGRF,
Maxar Technologies, Map data © 2022 Google.

Figure 2: Porto experimental setup. Vehicles are drawn to scale. Blueprints courtesy of getoutlines.com [14].

The mobile client's speed ranged between 0 and
40 km/h, with average values in the range of 5 to 30 km/h.
The lowest speed values were observed at both extremi-
ties, where we had to slow down to perform a U-turn, and
at the initial/�nal position, where the vehicle remained
stationary for a period of time at the experiments'
beginning and end.

Throughput varied signi�cantly across the di�er-
ent networks, with a maximum average throughput of
50 Mbps for 802.11n, 150 Mbps for 802.11ac, and 200 Mbps
for 802.11ad.

The 802.11n and ac networks remained connected
throughout the experiments, even at distances of over
125 m. On the other hand, 802.11ad was only able to
communicate at distances of less than 25 m. This is due
to its use of 60 GHz frequencies, which su�er from much
greater attenuation than the 2.4 and 5.2 GHz used by
802.11n and ac, respectively.

802.11n's throughput did not vary signi�cantly for dis-
tances above 25 m. 802.11ac's throughput on the other
hand, initially decreased with distance, but then increased
as the vehicle scrubbed speed near the turnaround points
| from 25 to 75 Mbps. This behavior reveals an inverse re-
lationship between speed and throughput, suggesting that
802.11ac is more sensitive to mobility than 802.11n.

Signal strength was similar for both 802.11n and ac,
peaking at = 30 dBm and dropping to between = 60 and
= 70 dBm as the vehicle moved away from the AP. Like
throughput, 802.11ad's signal strength was only reported
for very short distances.

3.2. Gaia dataset
Just like the Porto dataset, the Gaia dataset contains

network performance data collected in a V2I communica-
tion scenario where a vehicle drove a circuit around an
access point. The client exchanged data with the AP over
three di�erent networks, one IEEE 802.11n, one ac, and
one ad, in parallel. This dataset contains essentially the
same time-indexed mobility and throughput information
as the Porto dataset, with the same 1 Hz resolution.

The experimental setup used was also very similar to
the one used to collect the Porto dataset. There are a
total of �ve main di�erences between the two datasets: (i)
location, (ii) mobility pattern, (iii) hardware, (iv) tra�c
ow direction, and (v) number of active clients.

As per Fig. 1a, in the Porto dataset the client drove
back and forth along a tree-lined road. In the Gaia dataset,
the AP remained at the corner of a suburban intersection
as the client approached and left the intersection in every
possible direction combination. Fig. 1b depicts the envi-
ronment and a simpli�ed version of this mobility pattern.

In terms of hardware, the same Talon AD7200 routers
were used for IEEE 802.11ad communication, but the de-
vices used for 802.11n and ac di�ered. The devices were
also mounted on the roof of two vehicles (although of dif-
ferent makes and models, sizes and shapes).

In the Porto dataset, data owed from client to AP. In
the Gaia dataset, it owed in the reverse direction. How-
ever, we believe it reasonable to assume channel symmetry,
as both AP and client used the same exact communication
devices, with the same transmission power and antennas.

Finally, due to logistical reasons, the Porto dataset
featured a single active client per network. In the Gaia
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