
Wi-Fi Throughput Estimation and Forecasting for
Vehicle-to-Infrastructure Communication

Daniel Teixeiraa,b,∗, Rui Meirelesc, Ana Aguiara

aInstituto de Telecomunicações, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200–465 Porto, Portugal
bCisco Systems Inc., Lisbon, Portugal

cComputer Science Department, Vassar College, USA

Abstract

Vehicles increasingly need to connect to external networking infrastructure, to support applications such as over-
the-air updates, edge computing, and even autonomous driving. The ubiquity of IEEE 802.11 Wi-Fi makes it ideal
for opportunistic vehicular access. However, that ubiquity also creates a problem of choice. In a heterogeneous Wi-Fi
environment, where different networks coexist, it becomes important for vehicles to be able to pick the best-performing
one. Focusing on delay-insensitive traffic, we equate network performance with throughput. To inform network selection
we aim to first estimate current throughput, and then forecast its evolution through time. In order to avoid introducing
load onto the network, we estimate throughput using only passively observable variables such as signal strength. We
used Symbolic Regression (SR) and an Unscented Kalman Filter (UKF) to develop a computationally inexpensive
estimation model — UKF-SR. We trained and tested this model using experimental data featuring 802.11n, ac, and
ad networks. UKF-SR proved competitive against more expensive models such as shallow neural networks. To predict
future throughput, we explored both general time-series forecasting models such as Autoregressive Integrated Moving
Average (ARIMA), and domain-specific ones based on mobility information. The latter clusters historical throughput
according to attributes such as vehicle position and direction of movement, using the cluster’s average as the forecast. An
evaluation using experimental data showed the mobility-based models to meaningfully outperform general forecasting.

Keywords: Vehicular Wi-Fi, symbolic regression, vehicular offloading, throughput estimation, throughput forecasting.

1. Introduction

Vehicle-to-Infrastructure (V2I) communication is in-
creasingly important. It enables myriad applications that
promote road safety, efficiency, and entertainment. For
example, Tesla vehicles upload information they collect
to the cloud to help develop autonomous driving algo-
rithms [1]. And they also download media for streaming,
traffic information, and software updates for the vehicles’
subsystems.

Such traffic is typically sent over a cellular connection.
But, with ever increasing capacity demands — Cisco re-
ports compound annual traffic growth rates between 7 and
30% [2] — there is a need for alternatives. The availabil-
ity of IEEE 802.11 Wi-Fi Access Points (APs) usable from

⋆This work is a result of project FLOYD (POCI-01-0247-FEDER-
045912), funded by the European Regional Development Fund
(FEDER), through the Operational Competitiveness and Interna-
tionalization Programme (COMPETE 2020) and by Portuguese Na-
tional Funds (OE), through Fundação para a Ciência e Tecnolo-
gia, I.P.; and UIDB/50008/2020, funded by the applicable financial
framework (FCT/MCTES) (PIDDAC).

∗Corresponding author.
Email addresses: danielfilipeteixeira24@gmail.com (Daniel

Teixeira), rui.meireles@vassar.edu (Rui Meireles), anaa@fe.up.pt
(Ana Aguiar)

roadways, particularly in urban environments, makes them
a compelling proposition. A large scale wardriving study
conducted in the city of Porto, Portugal [3] found over 80
thousand APs visible from roads. Roughly 28% of them
were open, i.e., unsecured, and thus good candidates for
data offloading. The large majority (∼90%) of open APs
required post-connection authentication, e.g., through a
captive portal. However, they were all controlled by a very
small number of providers, such as Fon Wi-Fi [4], that
many consumers already subscribe to. Additionally, au-
thentication could be automated, and carried over across
APs of the same provider.

The abundance of Wi-Fi networks poses an opportu-
nity but also a challenge, as vehicles must choose which
one to use at any given moment. First, different networks
may use different IEEE 802.11 standards, which strike dif-
ferent balances between bandwidth and coverage range.
Second, the high degree of mobility associated with vehic-
ular environments limits the amount of time during which
each network can be used.

One reasonable goal, particularly for delay-insensitive
traffic, is to pick the network that maximizes the amount
of data that can be offloaded [5, 6], which equates to cumu-
lative throughput over time. Determining this for a given
network can be decomposed into two subproblems:

Preprint submitted to Journal of Computer Communications December 27, 2023



1. Estimate the throughput that the network can cur-
rently provide.

2. Forecast how said throughput will evolve in the
near future, given the current throughput estimate
and other variables of interest.

Throughput estimation is often done by actively inject-
ing probe traffic into the network [6, 7], requiring an active
connection and introducing unwanted congestion. In con-
trast, we explore the possibility of leveraging passively-
observable variables such as distance to the AP and re-
ceived signal strength. Moreover, we aim to create an
easily-explainable model that is also computationally in-
expensive and thus suitable for embedded devices.

With these goals in mind our approach was to take
realistic experimental Wi-Fi V2I communication perfor-
mance data, and apply Symbolic Regression (SR) offline
to obtain a simple throughput estimation model. We then
refined the model by incorporating an Unscented Kalman
Filter (UKF), yielding a variant we call UKF-SR.

To assess its generalization capabilities we evaluated
SR-UKF against standard machine learning (ML) models
such as Decision Trees (DT) and Shallow Neural Networks
(SNN), on a separate testing dataset. Despite its simplic-
ity, SR-UKF outperformed the competition.

Switching Wi-Fi networks involves a certain amount of
downtime. Therefore, once current throughput has been
estimated, it’s important to forecast how it will evolve over
time. This will help determine whether it is worth switch-
ing to a different network.

The simplest way to do this is to consider historical
throughput estimates as a time series and apply a standard
forecasting algorithm such as a simple moving average
or Autoregressive Integrated Moving Average (ARIMA).
However, this strategy ignores external variables that may
play an important role in the forecast.

For vehicular networks in particular, mobility infor-
mation such as vehicle location and direction of move-
ment are key connectivity predictors, as they indirectly
encode all factors affecting signal attenuation, such as dis-
tance, line-of-sight conditions, and obstacles causing mul-
tipath interference. Thus, we consider the MRDP (Mobil-
ity, Road, Direction, Position) algorithms introduced by
Meireles et al. [6]. These algorithms forecast throughput
to be the average of previously-estimated throughput val-
ues for a given set of mobility conditions. When evaluated
on our experimental dataset, they substantially outper-
formed traditional time-series forecasting algorithms.

In summary, we make the following contributions:

1. Describe how we collected network performance data
in a realistic Wi-Fi-diverse vehicular scenario to test
our estimation and forecasting models (§3).

2. Present our UKF-SR symbolic regression through-
put estimation model, and evaluate it against stan-
dard ML models from the literature using separate
training and testing datasets (§4).

3. Describe and thoroughly evaluate both general and
domain-specific throughput forecasting models, in
isolation and in conjunction with our estimation
model (§5).

In summary, by exploring throughput estimation and
forecasting solutions, this work paves the way for a practi-
cal dynamic network selection system for V2I communica-
tion. It extends a previous conference article on through-
put estimation [8], adding the contribution on forecasting.

2. Related work

We consider two types of related work. That concern-
ing estimation of current throughput, and that concerning
forecasting of future throughput.

Estimating throughput ordinarily implies injecting
large amounts of traffic into the network, rendering it
unusable from congestion. Li et al. [9] proposed an
alternative packet-pair-based algorithm, which requires
only a small number of probes. However, the algorithm
assumes that network conditions are stable, which is not
true in vehicular environments. Furthermore, to generate
probes a user must be connected to an AP, while in the
context of network selection the throughput estimate is
needed prior to connection establishment.

The alternative is to rely on passive measurements
alone, thus not generating additional traffic. A seminal
work in throughput estimation is that of Mathis et al.
[10], where the authors introduced a mathematical TCP
throughput model, function of packet loss probability.
However, it does not apply to wireless environments,
where losses do not necessarily imply congestion.

Samba et al. [11] performed throughput estimation in
cellular Long Term Evolution (LTE) networks by leverag-
ing several data sources, such as context information (e.g.,
distance and speed) and physical layer measurements (e.g.,
signal strength). Using a random forest algorithm the au-
thors obtained a model capable of explaining 84% of the
variation in throughput.

In this work we introduce a throughput estimation
model that employs only client-side passive measurements,
accessible prior to establishing a connection, and trained
specifically for the vehicular Wi-Fi access use case.

Consider now the problem of forecasting future
throughput. Liu & Lee [7] surveyed existing solutions
and categorized them as: (i) formula-based, using
mathematical expressions; (ii) history-based, predicting
throughput using past measurements; or (iii) machine
learning model-based.

He et al. [12] presented a formula-based method to fore-
cast TCP throughput, considering maximum segment and
window sizes, round-trip time, and packet loss rate. In
this study, the authors also explored history-based predic-
tion with moving average and non-seasonal Holt-Winters
algorithms. The history-based methods performed better.

2



However, they depend on the availability of prior measure-
ments, unlike the formula-based ones.

Wei et al. [13] developed a history and ML-based ap-
proach to TCP throughput forecasting in mobile networks
named TRUST. It first classifies the user’s mobility pat-
tern. The classification is then used to pick a Long Short-
Term Memory (LSTM) neural network model to predict
throughput. The authors showed it outperformed moving
average and hidden Markov models across multiple differ-
ent mobility scenarios, such as walking or riding a train.

In our work we focus on the quality of the underlying
channel rather than how the transport protocol’s flow and
congestion controls interact with it. For this reason, we
use UDP. Further, we focus specifically on opportunist ve-
hicular Wi-Fi access, which is characterized by very fast
mobility. The work closest to ours is that of Meireles et
al. [6], who introduced a mobility clustering-based fam-
ily of algorithms that forecast throughput as the average
of previously-observed throughput values for a given set
of mobility variables – more in §5.2. However, these algo-
rithms were evaluated using actively-measured throughput
values, rather than passive estimates. Here we refine the
algorithms and evaluate how well they perform with pas-
sive estimates.

3. Datasets

To develop a good throughput estimation model, it is
essential to use data collected in a realistic environment.
We had access to such a dataset, created in the context
of related prior work [6]. We shall refer to it as the Gaia
dataset, in reference to where it was collected.

We decided to complement it with a new dataset, the
Porto dataset, collected at a different time and location.
This let us use different train and test datasets for our
throughput estimation model, thus assessing how well it
generalizes across different environments. In this section
we describe both datasets, highlighting their differences.

3.1. Porto dataset

3.1.1. Experimental setup

We drove a vehicle around a stationary access point,
while transmitting data through three different networks,
each using a different Wi-Fi standard — IEEE 802.11n,
ac, and ad, in parallel.

Fig. 1a depicts the location where the experiments took
place — Rua D. Frei Vicente da Soledade e Castro in
Porto, Portugal. This street runs roughly east-west, and
is lined by trees on both sides. It also sits lower than the
surrounding terrain, by roughly 2m. Weather was cloudy
but dry, with a temperature of around 25 °C.

The AP remained stationary at the location shown,
while the client vehicle did a total of 10 laps around the
indicated circuit, traveling counterclockwise. Speed varied
between 0 and 40 km/h. Vehicular traffic was substantial,

which added to the environment’s multipath and line of
sight obstructions.

Fig. 2 illustrates the vehicles and hardware devices
used in the experiments. We placed a TP-Link Talon
AD7200 [15] router on the roof of each vehicle. These
routers feature 802.11n, ac, and ad interfaces, making
them ideal for our purposes. Given that the original
firmware is not user-programmable, we installed LEDE-
AD7200, a modified version of the Linux-based LEDE
operating system specifically created for the AD7200
routers by the Talon Tools project [16].

Taking advantage of the programmable environment,
we wrote simple data producing and consuming appli-
cations and deployed them on the routers themselves.
Pseudo-random data was sent over the three radio
interfaces, from the mobile client to the static AP. Tab. 1
shows the channels used, all of which are independent.

Standard Channel # Center freq. (GHz) Bandwidth (MHz)
802.11n 6 2.437 20
801.11ac 40 5.2 40
802.11ad 2 60.48 2160

Table 1: Wi-Fi channels used for the experiments.

Throughput was measured by the receiving AP and
sent as feedback to the client over the 802.11n network, as
it featured the longest range. This information was saved
on a database, which, due to memory constraints, ran on
an external device connected to the client router through
Gigabit Ethernet.

Location and time information for the mobile client was
provided by a MikroElektronika GNSS 5 click receiver [17],
which features a 10Hz GPS module. However, to increase
the number of packets used to compute each throughput
data point, our entire analysis used a granularity of 1Hz.
This means we downsampled the GPS information, using
the first sample in each second to represent that entire
second. Due to a lack of additional GNSS 5 devices, the
AP was equipped with a commodity 1Hz GPS receiver.

3.1.2. Collected data

Using the described setup, we collected a dataset with
over 3750 samples (1250 per Wi-Fi standard). Each sam-
ple pertains to a specific (timestamp, network) combina-
tion. The timestamp resolution is 1Hz. A sample con-
tains the mobile client’s location coordinates, heading, and
speed, along with the measured signal quality, throughput,
and transmission data rate. The data can be downloaded
from Zenodo [18].

Fig. 3 summarizes the collected data through some of
its metrics. Namely, measured throughput, vehicle speed,
and GPS horizontal dilution of precision (HDOP). Isik et
al. [19] suggest the use of dilution of precision values to
validate the integrity of GPS estimates. Values below 1
are considered ”ideal”, and below 2, ”excellent”. Follow-
ing these guidelines, we consider the collected GPS data
trustworthy, as HDOP values were consistently below 1.

3



240 m

AP

Client

N

S
EW

(a) Porto mobility pattern. Access point GPS coordinates: 41.177, -8.59585.

260 m

20
0 

m

N

S
EW

AP
Client

(b) Gaia data. GPS: 41.112, -8.631.

Figure 1: Experiment locations and client mobility patterns used in the Porto and Gaia datasets. Imagery ©2022 CNES / Airbus, IGP/DGRF,
Maxar Technologies, Map data ©2022 Google.

Stationary Access Point
 (2006 Renault Megane Break)

Mobile client
(2002 Honda Jazz)

Application 
data 

Throughput 
feedback

Router (sender)
GPS DatabaseRouter (receiver)GPS

14
76

 m
m

1525 m
m

Figure 2: Porto experimental setup. Vehicles are drawn to scale. Blueprints courtesy of getoutlines.com [14].

The mobile client’s speed ranged between 0 and
40 km/h, with average values in the range of 5 to 30 km/h.
The lowest speed values were observed at both extremi-
ties, where we had to slow down to perform a U-turn, and
at the initial/final position, where the vehicle remained
stationary for a period of time at the experiments’
beginning and end.

Throughput varied significantly across the differ-
ent networks, with a maximum average throughput of
50Mbps for 802.11n, 150Mbps for 802.11ac, and 200Mbps
for 802.11ad.

The 802.11n and ac networks remained connected
throughout the experiments, even at distances of over
125m. On the other hand, 802.11ad was only able to
communicate at distances of less than 25m. This is due
to its use of 60GHz frequencies, which suffer from much
greater attenuation than the 2.4 and 5.2GHz used by
802.11n and ac, respectively.

802.11n’s throughput did not vary significantly for dis-
tances above 25m. 802.11ac’s throughput on the other
hand, initially decreased with distance, but then increased
as the vehicle scrubbed speed near the turnaround points
— from 25 to 75Mbps. This behavior reveals an inverse re-
lationship between speed and throughput, suggesting that
802.11ac is more sensitive to mobility than 802.11n.

Signal strength was similar for both 802.11n and ac,
peaking at −30 dBm and dropping to between −60 and
−70 dBm as the vehicle moved away from the AP. Like
throughput, 802.11ad’s signal strength was only reported
for very short distances.

3.2. Gaia dataset

Just like the Porto dataset, the Gaia dataset contains
network performance data collected in a V2I communica-
tion scenario where a vehicle drove a circuit around an
access point. The client exchanged data with the AP over
three different networks, one IEEE 802.11n, one ac, and
one ad, in parallel. This dataset contains essentially the
same time-indexed mobility and throughput information
as the Porto dataset, with the same 1Hz resolution.

The experimental setup used was also very similar to
the one used to collect the Porto dataset. There are a
total of five main differences between the two datasets: (i)
location, (ii) mobility pattern, (iii) hardware, (iv) traffic
flow direction, and (v) number of active clients.

As per Fig. 1a, in the Porto dataset the client drove
back and forth along a tree-lined road. In the Gaia dataset,
the AP remained at the corner of a suburban intersection
as the client approached and left the intersection in every
possible direction combination. Fig. 1b depicts the envi-
ronment and a simplified version of this mobility pattern.

In terms of hardware, the same Talon AD7200 routers
were used for IEEE 802.11ad communication, but the de-
vices used for 802.11n and ac differed. The devices were
also mounted on the roof of two vehicles (although of dif-
ferent makes and models, sizes and shapes).

In the Porto dataset, data flowed from client to AP. In
the Gaia dataset, it flowed in the reverse direction. How-
ever, we believe it reasonable to assume channel symmetry,
as both AP and client used the same exact communication
devices, with the same transmission power and antennas.

Finally, due to logistical reasons, the Porto dataset
featured a single active client per network. In the Gaia

4



Figure 3: Mean throughput, RSSI, speed, and GPS horizontal di-
lution of precision as a function of the client’s longitudinal position
relative to the AP (negative for West and positive for East). The
red vertical dotted line denotes the AP’s position; the green vertical
dotted line indicates the client’s initial (and final) position. Ranges
represent the 95% confidence intervals.

dataset the experiments were first performed with a single
client per network and then repeated with two and three
active clients for 802.11n and ac. The goal being to capture
the impact of the number of active clients on throughput.

This Gaia dataset was described in detail in an earlier
work [6]. It is also available for download on Zenodo [20].

4. Throughput estimation

This section presents and evaluates a lightweight sym-
bolic regression-based model to estimate current through-
put without active measurements.

4.1. Symbolic regression-based estimation

Symbolic Regression (SR) is a data-driven technique
used to uncover mathematical expressions that can be
used to model a certain feature from a dataset [21].
The mathematical expressions produced can be sanity-
checked against domain-specific knowledge (e.g., we
expect throughout to be positively correlated with signal
strength), and are computationally inexpensive to apply.
In this section we leverage SR to develop throughput
estimation models based on a Wi-Fi vehicular dataset for
IEEE 802.11n/ac/ad access networks.

4.1.1. Methodology

Symbolic regression is not a statistical method. In-
stead, it implies searching the parameter space to find the

Gaia Dataset (training
+ validation)

Training Set Validation Set

Porto Dataset
(testing)

Model
Testing ResultsGPTIPS2

Training

Trained Models

Model
Selection

Best Model

GPTIPS2
Algorithm

Data Processing

Data Processing

Figure 4: Symbolic regression pipeline methodology for training, val-
idating, and testing the discovered models.

combination yielding the best fit. For this purpose we
used GPTIPS2 [21]. GPTIPS2 is a genetic-programming-
based algorithm that searches for linear combinations of
mathematical functions and input variables. It formulates
an equation similar to a linear model, but with poten-
tially non-linear terms. These terms are represented by
tree structures, where leaves are variables and constants,
and intermediate nodes are mathematical operators, e.g.,
plus, minus, cosine, etc.

To develop the estimation models, we followed the
pipeline in Fig. 4, where models go through training,
validation, and testing phases. We used the Gaia dataset
(§3.2) for training and validation, applying a random
70-30 % split, and the Porto dataset (§3.1) for testing.
Using two different datasets let us analyze how well the
models generalize across environments. To ensure that
the models are kept simple and do not over-fit the data,
we limited their structure to six terms, each represented
by a tree with maximum depth of four. The algorithm
was executed 25 times and in each run it evolved 300
models through 100 generations, resulting in a set of
7500 trained models. At the end of each generation, the
algorithm runs a tournament selection with a size of 30, to
select the best models for crossover. To choose a model,
we plotted the Pareto front with regards to the models’
goodness-of-fit, based on the validation set and their
expressional complexity. The expressional complexity
is calculated as the sum of the number of nodes of all
sub-trees [22]. The chosen model is the one among those
in the Pareto front exhibiting the best empirical trade-off
between performance and complexity.

4.1.2. Resulting estimation models

We performed SR for each Wi-Fi standard separately,
following the previously described methodology. The re-
sulting estimation models for tputn, tputac, and tputad are
described by the following equations:

ˆtputn = 0.7111 ∗RSSI − 2.479 ∗Nusers

+ 11.88 ∗ e−Nusers + 62.02
(1)

ˆtputac = 1.409 ∗RSSI − 2.667 ∗ v

+ 44311 ∗ cos(Nusers

RSSI
)

− 11.14 ∗ cos(Nusers)− 36.77 ∗ d 1
4 − 44022

(2)

5



ˆtputad = 67.75 ∗Nretries
1
4 − 88.18 ∗ tanh(v)

− 6.348 ∗
√
Nretries

− 75.37 ∗ e−(v+Nbeacons)
3

+ 88.83

(3)

where ˆtputn, ˆtputac, and ˆtputad are the throughput esti-
mates in Mbps, RSSI is the received signal strength in
dBm, d is the vehicle-AP distance in meters, v is the ve-
hicle’s speed in m/s, Nusers is the number of users con-
nected to the AP, and Nbeacons and Nretries are the num-
ber of beacon frames received and retransmissions in the
last second, respectively.

The training and validation datasets use RSSI to repre-
sent signal quality for 802.11n and ac, but Signal-to-Noise
Ratio (SNR) for 802.11ad. The testing dataset uses RSSI
for all standards. Therefore, if we were to train a model
with SNR we would be unable to test it. This is why, un-
like the other equations, the one for ˆtputad does not take
signal quality into account. Instead, it uses the number of
beacons and re-transmissions as proxies. The use of these
variables in place of RSSI or SNR may lead to poor per-
formance. To circumvent this limitation and improve the
model’s accuracy, we generated synthetic RSSI values for
802.11ad using a simplified log-distance path loss model:

RSSI = RSSI0 − 10 γ log10

(
d

d0

)
+X

X ∼ N (0, σ)

(4)

where d0 is the reference distance (i.e., one meter), RSSI0
is the RSSI at d0, γ is the path loss exponent, and X is
a zero-mean Gaussian random variable with σ standard
deviation, reflecting the effect of fading. The path loss
exponent and fading standard deviation were set to γ =
1.59 and σ = 2.1, respectively, following the results of
Karedal et al. for suburban environments [23]. RSSI0 was
measured to be −53 dBm for our TP-Link Talon AD7200
access points.

The proportion of 802.11ad samples from disconnected
periods is also concerning, since, given ad’s short range,
they correspond to the vast majority of the dataset. The
large amount of zero-throughput samples influences the
model’s training, forcing it to not only learn how to esti-
mate throughput, but also to classify periods of connection
versus disconnection (i.e., zero throughput versus non-zero
throughput). However, we can easily determine when the
vehicle has a viable connection with an AP, and the model
should not focus on any other task apart from estimating
throughput. Therefore, we reran the SR algorithm with
the generated RSSI values and trained using only non-
zero throughput samples. Throughput for 802.11ad can
then be estimated as:

ˆtputad = 0.7334 ∗RSSI + 47.74 ∗ sin(v ∗RSSI)

− 112.6 ∗ tanh(v)1/4

− 115.8 ∗ tanh(cos(v)) ∗ log(Nusers)
2 + 387.9.

(5)

4.2. Estimation refinement with Kalman filters

When estimating throughput with ML or SR models,
or manually-discovered formulas, we are subject to two
primary sources of noise: (i) process noise, due to inac-
curacies in the fitting of the data; and (ii) measurement
noise, resulting from inherent errors in the model’s inputs
(e.g., RSSI or distance). In this section we improve the SR
model’s performance by minimizing errors using recursive
Bayes filters.

4.2.1. Recursive Bayes filters

Recursive Bayes filters combine a theoretical model of
how a state estimate (e.g., vehicle’s speed and direction)
evolves over time, with an observational model that de-
fines what measurements we should expect given an esti-
mated state. The most popular recursive Bayes filter is
the Kalman Filter (KF), an optimal state-estimator for
linear systems with additive Gaussian noise. Intuitively,
a KF applies a weighted average over the estimated state
and the expected state from the measurements, where the
weight is defined as the Kalman gain.

Our goal in using a KF is to build a state-space model
that leverages the vehicle’s distance, direction, and speed
to estimate throughput using the SR model. But, if we in-
clude Eqs. (1), (2), and (5) in a state-space model we will
have a non-linear system, breaking KF’s linearity assump-
tion. The Extended Kalman Filter (EKF) is a non-linear
version of the Kalman Filter, where a first-order Taylor
series approximation is used to linearize the system. Still,
the use of a first-order approximation may lead to the filter
diverging from an acceptable estimate.

An alternative to EKF has been proposed by Julier &
Uhlmann [24]. It uses an unscented transformation to lin-
earize the system with a small set of chosen points. The
Unscented Kalman Filter (UKF) is equivalent to a third-
order Taylor-series expansion, severely reducing the diver-
gence probability relative to the EKF algorithm.

The UKF algorithm consists of prediction and correc-
tion steps. In the first, a state-space model is used to
predict the state for time t, defined by the mean x−

t n-
dimensional vector and the covariance matrix P−

t , based
on a set of sigma points that characterize the state from
t− 1. This can be expressed mathematically as:

x−
t =

2n∑
i=0

w
(m)
i f(Xi)

P−
t =

2n∑
i=0

w
(c)
i (f(Xi)− x−

t ) (f(Xi)− x−
t )

T +Qt

(6)

where X is a set of 2n sigma points, w(m) and w(c) are the
mean and covariance weights, f is the state-space model,
and Qt is the process noise matrix. In some systems we
may extend the formulation to include control inputs. The
sigma points X and their weights represent the non-linear
distribution for the state in time t− 1 (see [24]).

6



In the correction step, UKF uses the set of measure-
ments for time t and the measurement model to correct
the predicted state. The corrected state, described by the
mean vector xt and covariance matrix Pt, is given as:

Zt =

2n∑
i=0

w
(m)
i h(Xi)

St =

2n∑
i=0

w
(c)
i (h(Xi)−Zt) (h(Xi)−Zt)

T +Rt

Tt =

2n∑
i=0

w
(c)
i (Xi − x−

t ) (Xi − x−
t )

T

Kt = Tt S
−1
t

xt = x−
t +Kt (zt −Zt)

Pt = (I −Kt Tt)P
−
t

(7)

where Zt and St are the mean and covariance of the ex-
pected measurement’s distribution given X sigma points,
h is the measurements model, Rt is the measurement noise
matrix, Tt is the covariance matrix between the sigma
points and the predicted state, zt is the measurements’
vector, and Kt is the Kalman gain.

4.2.2. Filtered estimation models

To model our system using UKF, our state must rep-
resent the set of input features for the SR models in Eqs.
(1), (2), and (5), as well as other available attributes as-
sociated with said features. Considering that the testing
dataset was collected with a single connected user, the
SR models used in the UKF are simplified versions where
Nusers = 1. That said, our state vector xt is defined as:

xt =
[
lon, lat, v, θ, d, RSSI, tput

]
(8)

where lon and lat are geographical coordinates, and θ
is the vehicle’s direction. The corresponding state-space
model f is:

f(xt−1) =



lont = lont−1 +∆lon ∗ (180/π)
latt = latt−1 +∆lat ∗ (180/π)
vt = vt−1

θt = θt−1

dt = haversine(lont, latt)
RSSIt = fRSSI(dt, vt)
tputt = ftput(dt, vt, RSSIt)

(9)

where

∆lon =
cos(θt−1) ∗ vt−1

R ∗ cos(latt−1 ∗ π
180 )

, ∆lat =
sin(θt−1) ∗ vt−1

R

, with R being the earth’s radius, approximated as
6371 km.

In Eq. (9), throughput, represented by ftput, is given
by the simplified (i.e., Nusers = 1) SR models.

Speed and direction of movement are assumed con-
stant, and used to predict the vehicle’s current position

from the previous one. The distance between the vehicle
and AP positions is computed using the Haversine formula.

RSSI is given by fRSSI , which predicts the current
RSSI based on the predicted speed and distance. For
802.11ad this function corresponds to the log-distance path
loss model defined in Eq. (4), used to generate synthetic
RSSI values. For 802.11n and ac, we used the previously
described SR methodology to create two prediction models
that dictate how distance and speed influence RSSI:

RSSIn = 0.050 ∗ v − 2.739 ∗ log(d 3)

− 1.090 ∗
√
v + d− 23.22

(10)

RSSIac = −16.24− 12.43 ∗ log(d). (11)

To analyze these models’ performance, we compared
them against the log-distance path loss model of Eq. (4).
The Root-Mean-Squared Errors (RMSE) for the log-
distance path loss model were 32.46 and 25.80 dBm for
802.11n and ac, respectively, but only 7.01 and 8.44 dBm
for the SR models.

The measurement model h was implemented as
an identity function, i.e., measured values were kept
unchanged. The measurements vector zt has the same
structure as xt in Eq. (8).

4.2.3. Noise matrices

UKF is regulated by a process-noise matrix Qt and a
measurement-noise matrix Rt, which define the variance of
state and measurements, respectively. Incorrectly defining
them may result in poor performance and even divergence.
While there are multiple ways to estimate noise matrices,
we followed a simple approach, relying on domain knowl-
edge and manual tuning. For simplicity, we expressed Qt

and Rt as diagonal matrices. This approach will yield
sub-optimal performance, but serves as a quick way to im-
plement the system and demonstrate its potential.

The manual tuning of the noise matrices was conducted
based on the testing dataset, which introduces biases when
measuring the model’s accuracy. However, we expect the
introduced bias to be negligible since our approach will
naturally lead to a poorer choice of matrices compared to
more statistically-advanced approaches, such as adaptive
filters or the Autocovariance Least-Squares method pro-
posed by Odelson et al. [25].

4.3. Evaluation

In this section we compare our SR and UKF-SR mod-
els’ performance against that of classic ML methods, using
the Porto dataset, described in §3.1.

4.3.1. SR and UKF-SR models

Fig. 5 compares the actual throughput measurements
with estimated throughput using the SR and UKF-SR
models. Both uncorrected (x−

t from Eq. (6)) and corrected
(xt from Eq. (7)) predictions are shown.

Results indicate that UKF-SR’s pre-corrected esti-
mates are less accurate than those made by plain SR, due

7



0

50

100
802.11n

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

802.11ac

0 200 400 600 800 1000 1200

time (s)

0

200

400

600
802.11ad

actual SR UKF Predicted UKF Corrected

Figure 5: Estimated throughput using SR and UKF-SR models;
”UKF Predicted” corresponds to x−

t in Eq. (6), and ”UKF Cor-
rected” to xt in Eq. (7).

to the simple state-space model used and its dependence
on values from time t − 1. However, this is thoroughly
compensated by the correction step. In the end, by
leveraging Kalman filtering, the RMSE relative to plain
SR was decreased by 8.33% for 802.11n, 9.85% for
802.11ac, and 13.94% for 802.11ad.

4.3.2. Machine learning comparison

To put our models’ performance into perspective, we
benchmarked them against commonly available ML mod-
els. The chosen models were Multiple Linear Regression
(MLR), Support-Vector Regression (SVR), Decision Trees

(DT), Random Forests (RF), and Shallow Neural Net-
works (SNN). They were trained following a similar ap-
proach to that used for SR, where models go through sep-
arate training, validation, and testing phases. But, while
for SR the validation step consisted on manually choos-
ing a model among those in the Pareto front, for ML we
used Bayesian optimization to maximize the models’ per-
formance by tuning their hyperparameters. These vary
between models, e.g., the number of neurons in a layer for
SNN, and the regularization value for SVR. MLR is an
exception, as it features no hyperparameters.

Fig. 6 shows the empirical cumulative distribution
function (ECDF) plots for the models’ absolute errors.
For 802.11n, the ECDF error curves are similar among
all models. SR, depicted in orange, managed to compete
with Gaussian SVR ML, and surpassed SNN, RF, and
DT up to the 60th percentile. UKF-SR, depicted in red,
was the best-performing model, improving upon the SR
estimates up to roughly the 92nd percentile.

For 802.11ac, two distinct groups can be observed: a
better-performing group consisting of SR, UKF-SR, RF,
DT, and Gaussian SVR models; and a worse-performing
group composed of Linear SVR, MLR, and SNN.

For 802.11ad, due to the large proportion of zero-
throughput samples from disconnected periods, around
90% of predictions were error-free across the board. Thus,
we focus on the remaning 10% of estimates, pertaining
to connected-period samples. Performance across models
varied less than for 802.11ac, with the SR model showing
good results, but being surpassed by SNN, DT, and
Gaussian SVR by a small margin. However, despite
being based on SR, UKF-SR competed with the more
computationally demanding algorithms quite well.

Tab. 2 shows the different models’ RMSE in both
absolute form, and as a percentage of a UKF-SR baseline.
UKF-SR was the most accurate model for 802.11n and ac,
and the second-best for 802.11ad, with RMSE values of
11.53, 28.43, and 39.11Mbps, respectively. For 802.11n,
DT was second-best, with an error 4.94% higher than

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
C

D
F

802.11n

0 50 100 150 200
Absolute Errors (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
802.11ac

0 100 200 300
0.9

0.92

0.94

0.96

0.98

1
802.11ad

SVR Gaussian SVR Linear NN RF DT MLR SR UKF-SR

Figure 6: ECDF plots of the absolute out-sample errors for the ML, SR and UKF-SR models.

8



Models
802.11n 802.11ac 802.11ad

RMSE % RMSE % RMSE %
MLR 13.77 (+19.43) 124.94 (+339.47) 51.90 (+32.70)
RF 12.46 (+08.07) 39.26 (+38.09) 50.92 (+30.20)
SNN 13.07 (+13.36) 129.02 (+353.82) 42.41 (+08.44)
DT 12.10 (+04.94) 41.77 (+46.92) 42.41 (+08.44)
SVR Gauss 12.76 (+10.67) 39.62 (+39.36) 38.70 (-01.05)
SVR Linear 13.40 (+16.22) 130.38 (+358.60) 116.09 (+196.83)
SVR 2D 14.42 (+25.07) 39.74 (+39.78) — —
SVR 3D 21.29 (+84.65) 39.95 (+40.52) 40.92 (+04.63)
SR 12.49 (+08.33) 31.23 (+09.85) 44.56 (+13.94)
UKF-SR 11.53 — 28.43 — 39.11 —

Table 2: Performance results of the ML, SR and UKF-SR models for 802.11n/ac/ad, considering RMSE.

UKF-SR, followed by the RF model with 8.07%. SR
was the second-best model for 802.11ac, with an error
9.85% higher than UKF-SR. The third-best, RF, was
significantly worse, with an error 38.09% higher than
UKF-SR. For 802.11ad, UKF-SR was outperformed by
the Gaussian SVR model, although by a very small
margin of 1.06%. The third-best performing model for
802.11ad was SVR 2D, with an error 4.63% higher than
Gaussian SVR.

5. Throughput forecasting

This section presents and evaluates different ap-
proaches to throughput forecasting, a new contribution
relative to the preceeding conference article [8].

5.1. Time-series-based forecasting

This subsection considers throughput as a time series
— a sequence of data points ordered by time — and ex-
plores common time-series forecasting techniques [26].

5.1.1. Basic moving average

A moving average forecasts a variable at time t, yt, as
the average of variable values observed in a window of time
prior to t. It can be written as: yt =

∑n
i=i βiyt−i, where

n is the number of prior variable samples, or lags, to be
included, and βi the weight associated with the t − i lag.
The weights add up to one, i.e.,

∑n
i=i βi = 1. Common

variants include:

Arithmetic moving average (AMA): In which all lag
terms are given the same weight of 1/n.

Exponentially-weighted moving average (EWMA):
In which the weight assigned to each lag term expo-
nentially decreases with age, encoding the intuition
that more recent samples are more relevant than
older ones.

Gaussian-weighted moving average (GWMA):
In which lag weights are assigned according to a
Gaussian distribution. Values closer to the mean

are given larger weights than those farther away,
increasing robustness to outliers.

5.1.2. Autoregressive Integrated Moving Average
(ARIMA)

ARIMA is a generalization of the Autoregressive Mov-
ing Average (ARMA) model. The intuition behind ARMA
is that not only can recent variable values be used to pre-
dict future ones, but also that past forecasting errors can
help correct previously-observed prediction biases.

ARMA forecasts a variable at time t, yt, as the sum
of two polynomials. The autoregressive AR(p), which is a
linear combination of the last p variable observations, and
the moving average MA(q), which is a linear combination
of the last q prediction errors. An ARMA(p, q) model can
be written as:

yt = α+

p∑
i=1

βi yt−i +

q∑
i=1

ϕi ϵt−i + ϵt (12)

where α is a constant, βi is observation yt−i’s weight, ϕi

is residual error ϵt−i’s weight, and ϵt is white noise.
ARMA assumes a stationary series, i.e., one without

trends (long term increases or decreases in values) or sea-
sonality (cycles of fixed and known frequency). An au-
tocorrelation analysis of the throughput series from §3 re-
vealed them not to be stationary [27], despite the repetitive
mobility patterns used.

ARIMA is a generalized ARMA model that supports a
non-stationary mean (though not variance). Its key insight
is that even when there are trends, the difference between
consecutive values tends to be uncorrelated. With this in
mind ARIMA replaces the yt values in ARMA’s formula
with differences between values. The simplest version re-
places yt with y′t = yt − yt−1, the first-order difference.
If this is not enough to make the series stationary, the
concept can be applied recursively, e.g., the second-order
difference would be the difference between the last two
differences. The order of differencing, d, is a parameter,
yielding an ARIMA(p, q, d) model. Our throughput data
only required d = 1 to become stationary [27].

ARIMA uses nothing beyond the previous values of
the target variable in its forecasts. However, often there

9



are other correlated variables available that could be used
to improve the forecast, e.g., distance to AP and signal
strength. ARIMAX is an extension that incorporates a
linear function of any such exogenous variables of interest
into the forecast. It can be expressed as:

yt =

m∑
i=1

θi x
(i)
t + α+

p∑
i=1

βi y
′
t−i +

q∑
i=1

ϕi ϵt−i + ϵt (13)

where x
(1)
t , . . . , x

(m)
t are the exogenous variables of inter-

est, and θ1, . . . , θm their respective linear coefficients.
The model’s parameters can be discovered following

the Box-Jenkins method [28].

5.1.3. Vector Autoregression (VAR)

ARIMAX uses the exogenous variables’ values at time
t to predict the value of the target variable at all future
times t+ i. This is a significant limitation, as the correla-
tion between the two can decrease quickly with time. For
example, although current distance to the AP is highly cor-
related with current throughput, it is not correlated with
throughput tens of seconds down the line, as the vehicle
could have moved significantly in the meantime.

VAR addresses this by incorporating the predictor vari-
ables into the model, i.e., making them endogenous. It de-
fines a system of equations, one for each variable of inter-
est, and all of them are forecast together. Each variable is
forecast as a linear combination of prior values of all other
variables. This lets throughput at time t + 30 depend on
the distance forecast for t+ 29, for example.

A VAR(p) model is characterized by the number of lag
terms considered. An n-dimension VAR(1) model can be
written as:

y1,t = c1 + ϕ11,1 y1,t−1 + . . .+ ϕ1n,1 yn,t−1 + ϵ1,t

. . .

yn,t = cn + ϕn1,1 y1,t−1 + . . .+ ϕnn,1 yn,t−1 + ϵn,t (14)

where c1, . . . , cn are constants, ϕij,1 is the weight of yj,t−1

on yi,t, and ϵ1,t, . . . , ϵn,t depict white noise.
In our analysis we ran a 3-dimension VAR, featuring

throughput, distance to the AP, and signal strength.

5.2. Mobility clustering-based forecasting

The channel’s signal-to-noise ratio determines the
achievable data rate and hence, in a single-user environ-
ment, throughput. The vehicle’s position defines distance
to the AP and the presence and nature of obstacles, which
together determine signal attenuation. Thus it makes
sense to use mobility, which determines future position,
to predict throughput.

With this in mind Meireles et al. [6] presented a scheme
that clusters historical network performance data, such
as throughput, by a combination of mobility-related vari-
ables, and then averages it to make a forecast. The clus-
tering can be done for any combination of variables, but
the following two were shown to perform well:

MRDP: Matches the road identifier (R), direction of
movement (D), and position relative to the access
point (P).

MRDP+SQ: Combines MRDP with signal quality, as
defined by the Received Signal Strength Indicator
(RSSI), which can be seen as an indirect measure of
mobility.

Clusters are divided into a number of buckets equal to
the number of seconds into the future we want to fore-
cast. For example, for a forecasting window winf of 10 s a
cluster cx would have ten buckets cxbt+1 through cxbt+10.
Each bucket is meant to hold throughput samples observed
i seconds after the vehicle’s mobility matched the cluster
it belongs to, as per Fig. 6. The intuition is that vehicles
with the same present mobility will tend to be at the same
location a few seconds from now. And we already covered
how location is a good heuristic for throughput.

When a new throughput estimate is received, it
is added to the corresponding buckets of the clusters
matching the client’s mobility over the last winf seconds.
For example, if the vehicle’s mobility matched cluster cx
2 s ago, and cluster cy 1 s ago, the new sample would be
added to buckets cxbt+2 and cybt+1.

To forecast throughput for time t+ i, first the current
mobility is used to find the correct cluster cx. Then, the
forecast is computed as the average of all samples in bucket
cxbt+i. Meireles et al. used an arithmetic average, but
others can be used. In fact, we considered two types of
Gaussian-weighted averages as alternatives:

1. One that assigns larger weights to samples closer to
the observed throughput’s mean, hence reducing the
impact of outliers.

2. One that assigns larger weights to samples collected
closer to the geographical center of the bucket — to
leverage this knowledge in the computation phase.

5.3. Evaluation

5.3.1. Setup and model parameterization

The models’ performance was evaluated through the
Mean Absolute Scaled Error (MASE) metric [29]. Mean
Absolute Error (MAE) is the delta between the forecast
and true values. MASE is the ratio between two MAEs.
That of the model and that of an in-sample näıve ran-
dom walk model, where we assume throughput remains
constant through time. Thus, an MASE of less than one

Cluster cx: road id = 1, direction: east-west, position: 5 m west of AP

Bucket cxbt+1:
contains throughput 

values observed 1 s after 
mobility matched cluster

Bucket cxbt+2:
contains throughput 

values observed 2 s after 
mobility matched cluster

…

Figure 6: Internal structure of an example MRDP cluster.

10



indicates better than näıve performance. Furthermore, the
fact that it is scaled lets us more easily compare perfor-
mance between 802.11n, ac, and ad, which have signifi-
cantly different absolute throughputs.

Time-series forecasting requires periodic sampling, and
mobility-based clustering requires that both training and
test data cover the same geographical area. Therefore, our
evaluation was performed using only one of our datasets,
the Porto dataset from §3.1. The data was sorted by
increasing timestamp and then split into two halves. The
first was used for training the models that require it
(ARIMA(X), VAR, and mobility-based clustering), while
the second was used for testing.

We now describe parameterization for the different
types of models under evaluation.

The basic moving average models require no training.
We tested various different averages, each of them with
between 5 and 30 lag terms. The Exponentially-weighted
(EWMA) and Gaussian-weighted (GWMA) moving aver-
ages with 5 and 10 lag terms performed similarly and bet-
ter than the others. We opted for the 5-term models due
to their lower complexity.

Parameters for the ARIMA(X) models were calculated
by following the Box-Jenkins [28] method. The first step is
to check for stationarity and seasonality. Seasonality was
not observed, obviating the need for a seasonal ARIMA
variant. All three time series (802.11n/ac/ad) were found
to be non-stationary, but became so with the application
of first-order differencing (d = 1). Then, the Akaike (AIC)
and Bayesian (BIC) Information Criteria were used to se-
lect the best p (number of lag terms) and q (number of er-
ror terms) parameters, summarized in Tab. 3. Finally, the
model weights were determined through Maximum Likeli-
hood Estimation (MLE).

Time series ARIMA(p,q,d) ARIMAX(p,q,d)

802.11n 4,1,1 4,1,1

802.11ac 2,1,1 2,1,1

802.11ad 2,1,1 5,1,1

Table 3: Optimal p (number of lag terms), q (number of error terms),
d (order of differencing) for the ARIMA(X) models.

The exogenous variables used by ARIMAX were dis-
tance to AP and RSSI. For VAR the same two variables
were considered endogenous, along with throughput. p
values between 1 and 12 were evaluated for VAR. The
best performing models were VAR(10) for 802.11n and
802.11ac, and VAR(7) for 802.11ad.

Parameterization of the mobility-based clustering mod-
els revolves around selecting the clustering criteria and
the average function for forecasting. We experimented
with various sets of clustering criteria, but MRDP and
MRDP+SQ performed the best. The different clustering
components were specified as follows:

Road id: Not considered because our Porto dataset only
features one road.

Direction: The vehicle’s heading was discretized into
four segments of 90° each, corresponding t o the
four cardinal directions.

Position relative to AP: Was discretized with a 10m
resolution.

RSSI: Was discretized with a 10 dBm resolution.

In terms of average functions used for forecasting, we
evaluated arithmetic average, Gaussian-weighted averages
based on throughput and geographical coordinates, and
finally a non-parametric distribution estimated through
Kernel Distribution Estimation (KDE) with a Gaussian
kernel. The simple arithmetic average performed best for
802.11n and ac, with the throughput-based Gaussian av-
erage surpassing the other options for 802.11ad.

Additional details on our setup and model parameter-
ization can be found in the related master’s thesis [27].

5.3.2. Results

We now present and compare the results obtained by
the best-performing variant of each forecasting model.

We evaluated three different scenarios:

Scenario A: Real, measured throughput values were
used to both train and test the models. The näıve
baseline for the MASE computation consisted of
real throughput values also. This scenario let us
evaluate forecasting performance in isolation.

Scenario B: SR-UKF-estimated throughput values were
used to both train and test the models. The näıve
baseline for the MASE computation consisted of real
throughput values. This let us evaluate how estima-
tion and forecasting work together.

Scenario C: Same as scenario B, but with a more realis-
tic MASE baseline consisting of SR-UKF-estimated
throughput values.

Fig. 7 shows the mean MASE results as a function
of the amount of time into the future the forecast per-
tains to, i.e., the time horizon, for all scenario and network
(802.11n, ac, and ad) combinations.

Let us focus first on scenario A, which isolates the
forecasting component. Interestingly, the näıve baseline,
which predicts throughput will remain constant, outper-
formed basically all other models for t + 1. However,
in general, the mobility-based clustering algorithms per-
formed the best across all three networks, getting close to
0.5 MASE for some time horizon, network combinations.

VAR was second best, being quite competitive for
802.11ac, but underperforming the clustering algorithms
for the n and ad networks. ARIMA was next in the rank-
ing, but it only outperformed the baseline for 802.11n,
with the same being true for the basic moving average
algorithms. Despite taking distance and signal strength

11



0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

80
2.

11
n

(A)

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5
(B)

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5
(C)

EWMA (5)
Gauss-MA (5)
ARIMA (4,1,1)
ARIMAX (4,1,1)
VAR (10)
MRDP
MRDP+SQ

0 10 20 30 40
0.5

1

1.5

2

2.5

80
2.

11
ac

0 10 20 30 40
0.5

1

1.5

2

2.5

0 10 20 30 40
0.5

1

1.5

2

2.5

EWMA (5)
Gauss-MA (5)
ARIMA (2,1,1)
ARIMAX (2,1,1)
VAR (10)
MRDP
MRDP+SQ

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

80
2.

11
ad

0 10 20 30 40
Time (s)

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

EWMA (5)
Gauss-MA (5)
ARIMA (2,1,1)
ARIMAX (5,1,1)
VAR (7)
MRDP
MRDP+SQ

Figure 7: Mean Absolute Scaled Error (MASE) forecasting performance results - (A) calculated using actual throughput values as lags; (B)
calculated using SR-UKF-estimated throughput values but scaled based on the actual throughput; (C) calculated and scaled using SR-UKF-
estimated throughput values.

into account, ARIMAX underperformed ARIMA and the
baseline across all networks.

Consider now scenario B, where forecasts are made
based on throughput estimated by our SR-UKF algorithm,
but compared against a measured throughput baseline.
Naturally, the estimation error propagates into the fore-
casting phase, increasing MASE across the board. The dif-
ferent algorithms’ relative performance remained broadly
similar, with the MRPD algorithms performing the best,
followed by VAR. They surpassed the constant measured
throughput baseline from t+ 1 onwards for 802.11ad, and
t+ 9 onwards for 802.11n and ac.

ARIMA and specially ARIMAX performed poorly.
MASE for the latter increased somewhat linearly with
time horizon, ending up more than 2.5 times that of
the baseline after 40 s, for all networks. This indicates
that the use of distance and signal strength as exogenous
variables was counterproductive. The reason is that, even
when forecasting throughput for time t + 40, ARIMAX
uses exogenous variable measurements from time t, long
after they have lost their relevance. The approach taken
by VAR, which forecasts the evolution of distance and
signal strength and then uses them to forecast throughput
proved much more effective.

Scenario C represents a fairer challenge, as the base-
line is now estimated throughput, not measured. The
biggest change from this pertains to short time horizons
for 802.11n and ac, with the forecasting algorithms being

competitive with the baseline from t+ 1 onwards, instead
of t+9. This eliminates the rationale for a potential hybrid
approach that would use currently-estimated throughput
as the forecast for short time horizons. Comparing sce-
narios B and C, that would only be beneficial if measured
values were used, which are in practice unavailable.

5.4. Discussion

Let us now take a step back and consider the problem
holistically. In our experiments, the vehicle remained con-
nected to the 802.11n and ac networks throughout. Thus
modelling throughput as a time series makes sense. In the
real world however, connectivity will be sporadic. Long
disconnection periods will be interspersed by short high-
throughput bursts, as the vehicle moves in and out of
range. More akin to what happened with the shorter range
802.11ad network in our experiments. This makes it hard
for traditional time series algorithms to find patterns.

The use of additional correlated variables, such as dis-
tance and signal strength, can help, as demonstrated by
VAR’s performance. But the best overall results came
from the mobility clustering algorithms, which do not rely
on the existence of a time series. The results of MRDP and
MRDP+SQ were almost indistinguishable. This makes
the former preferable, as simpler models require less data
to train and are less prone to overfitting.

12



6. Conclusions and future work

In this paper we explored the problems of estimating
current throughput and forecasting its future evolution, to
support network selection in vehicular Wi-Fi access.

We combined Symbolic Regression (SR) with an
Unscented Kalman Filter (UKF) to create a lightweight
throughput estimation model that uses nothing but
passively-observable variables. Benchmarking on our
experimental dataset against common ML models, in-
cluding more complex ones, showed the UKF-SR model
to generally outperform them.

For forecasting future throughput, we explored tra-
ditional time-series methods such as ARIMA and VAR,
along with the mobility-based clustering MRDP family
of algorithms. The latter is domain-specific, leveraging
the fact that throughput is tightly coupled with the vehi-
cle’s location. Consequently, it outperformed the remain-
ing options, regardless of whether measured or estimated
throughput values were used.

Our MRDP forecasting algorithms cluster data based
on mobility features and signal quality. This is sufficient
for single-user scenarios such as the one tested. However,
as shown by our UKF-SR equations (Eqs. (1), (2)), in
multi-user environments throughput is significantly influ-
enced by channel load. The forecasting algorithm is flexi-
ble in that the clustering can be performed using any set
of variables deemed relevant. So it is both possible and
logical to add a network load indicator to that set, which
we hope to do in the future.

At first we planned to use the number of active stations
for this purpose. However it is hard to obtain passively:

1. Counting stations requires listening to all frames.
This necessitates putting the device into promiscu-
ous mode, which precludes regular communication.

2. The number could be underestimated due to the
presence of hidden terminals.

One possibility is to use a more indirect load indicator.
For example, time-of-day or day-of-the-week could capture
seasonality patterns in load and are passively observable.
However, for best results we would like to employ a more
direct metric. Fortunately, the Quality-of-Service amend-
ment to IEEE Wi-Fi, 802.11e [30], specifies how APs can
include a channel utilization percentage in their periodic
beacons. We would like to incorporate that value into our
throughput estimation and forecasting.

Another avenue for future work is the following. The
mobility clustering-based protocols couple the forecasting
of the vehicle’s future position with throughput forecast-
ing. We plan to split these into two separate steps. This
will let us pick different algorithms for each of them, po-
tentially improving performance.

Finally, we plan on combining the best-performing es-
timation and forecasting methods with the network selec-
tion strategies first introduced by Meireles et al. [6], to

create an actual prototype system capable of intelligently
choosing between networks in real-time.

References

[1] M. Harris, The radical scope of Tesla’s data hoard, IEEE
Spectrum 59 (2022) 40–45.
URL https://spectrum.ieee.org/

tesla-autopilot-data-scope

[2] Cisco Annual Internet Report (2018-2023), (accessed on 2022-
12-11) (2020).
URL https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

[3] A. Rodrigues, P. Steenkiste, A. Aguiar, Wi-Fi Assist: Enhanc-
ing Vehicular Wi-Fi Connectivity with an Infrastructure-driven
Approach (2022). arXiv:2207.04547.

[4] Agile Content Group, Fon Wi-Fi, (accessed on 2023-11-11)
(2023).
URL https://fon.com

[5] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana,
X. Jin, J. Rexford, R. K. Sinha, Can Accurate Predictions
Improve Video Streaming in Cellular Networks?, in: 16th In-
ternational Workshop on Mobile Computing Systems and Ap-
plications (HotMobile), ACM, 2015, pp. 57–62. doi:10.1145/

2699343.2699359.
[6] R. Meireles, A. Rodrigues, A. Stanciu, A. Aguiar,

P. Steenkiste, Exploring Wi-Fi Network Diversity for
Vehicle-To-Infrastructure Communication, in: 2020 IEEE
Vehicular Networking Conference (VNC), 2020, pp. 1–8.
doi:10.1109/VNC51378.2020.9318407.

[7] Y. Liu, J. Y. B. Lee, An Empirical Study of Throughput
Prediction in Mobile Data Networks, in: 2015 IEEE Global
Communications Conference (GLOBECOM), 2015, pp. 1–6.
doi:10.1109/GLOCOM.2015.7417858.

[8] D. Teixeira, R. Meireles, A. Aguiar, Wi-Fi Throughput Estima-
tion for Vehicle-to-Network Communication in Heterogeneous
Wireless Environments, in: 2023 18th Wireless On-Demand
Network Systems and Services Conference (WONS), 2023, pp.
24–31. doi:10.23919/WONS57325.2023.10061940.

[9] M. Li, M. Claypool, R. Kinicki, WBest: A bandwidth esti-
mation tool for IEEE 802.11 wireless networks, in: 2008 33rd
IEEE Conference on Local Computer Networks (LCN), 2008,
pp. 374–381. doi:10.1109/LCN.2008.4664193.

[10] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm, SIG-
COMM Comput. Commun. Rev. 27 (3). doi:10.1145/263932.
264023.

[11] A. Samba, Y. Busnel, A. Blanc, P. Dooze, G. Simon, Instan-
taneous throughput prediction in cellular networks: Which in-
formation is needed?, in: 2017 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM), 2017, pp. 624–
627. doi:10.23919/INM.2017.7987345.

[12] Q. He, C. Dovrolis, M. Ammar, On the Predictability of
Large Transfer TCP Throughput, ACM SIGCOMM Computer
Communication Review 35 (4) (2005) 145–156. doi:10.1145/

1090191.1080110.
[13] B. Wei, W. Kawakami, K. Kanai, J. Katto, S. Wang, TRUST:

A TCP Throughput Prediction Method in Mobile Networks,
in: 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1–6. doi:10.1109/GLOCOM.2018.8647390.

[14] Outlines, Car blueprints and vector drawings, (accessed on
2022-06-16) (2022).
URL https://getoutlines.com

[15] TP-Link, AD7200 Multi-Band Wi-Fi Router Datasheet, (ac-
cessed on 2022-11-13) (2018).
URL https://static.tp-link.com/2018/201809/20180912/

AD7200%202.0%20Datasheet.pdf

[16] D. Steinmetzer, D. Wegemer, M. Hollick, Talon Tools: The
Framework for Practical IEEE 802.11ad Research, (accessed on

13

https://spectrum.ieee.org/tesla-autopilot-data-scope
https://spectrum.ieee.org/tesla-autopilot-data-scope
https://spectrum.ieee.org/tesla-autopilot-data-scope
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://arxiv.org/abs/2207.04547
https://fon.com
https://fon.com
http://dx.doi.org/10.1145/2699343.2699359
http://dx.doi.org/10.1145/2699343.2699359
http://dx.doi.org/10.1109/VNC51378.2020.9318407
http://dx.doi.org/10.1109/GLOCOM.2015.7417858
http://dx.doi.org/10.23919/WONS57325.2023.10061940
http://dx.doi.org/10.1109/LCN.2008.4664193
http://dx.doi.org/10.1145/263932.264023
http://dx.doi.org/10.1145/263932.264023
http://dx.doi.org/10.23919/INM.2017.7987345
http://dx.doi.org/10.1145/1090191.1080110
http://dx.doi.org/10.1145/1090191.1080110
http://dx.doi.org/10.1109/GLOCOM.2018.8647390
https://getoutlines.com
https://getoutlines.com
https://static.tp-link.com/2018/201809/20180912/AD7200%202.0%20Datasheet.pdf
https://static.tp-link.com/2018/201809/20180912/AD7200%202.0%20Datasheet.pdf
https://static.tp-link.com/2018/201809/20180912/AD7200%202.0%20Datasheet.pdf
https://seemoo.de/talon-tools
https://seemoo.de/talon-tools


2022-05-30) (2017).
URL https://seemoo.de/talon-tools

[17] MikroElektronika GNSS 5 click, (accessed on 2022-06-22)
(2022).
URL https://www.mikroe.com/gnss-5-click

[18] D. Teixeira, R. Meireles, A. Aguiar, WiPerf Vehicular Wi-Fi
Performance Monitoring Dataset (2022). doi:10.5281/zenodo.
6761916.
URL https://doi.org/10.5281/zenodo.6761916

[19] O. K. Isik, J. Hong, I. Petrunin, A. Tsourdos, Integrity Analy-
sis for GPS-Based Navigation of UAVs in Urban Environment,
Robotics 9 (3). doi:10.3390/robotics9030066.

[20] R. Meireles, A. Rodrigues, A. Stanciu, A. Aguiar, P. Steenkiste,
A Dataset for Exploring Wi-Fi Network Diversity in Vehicle-
to-Infrastructure Communication (2020). doi:10.5281/zenodo.
6884095.
URL https://doi.org/10.5281/zenodo.6884094

[21] D. P. Searson, GPTIPS 2: An Open-Source Software Platform
for Symbolic Data Mining, in: A. H. Gandomi, A. H. Alavi,
C. Ryan (Eds.), Handbook of Genetic Programming Applica-
tions, Springer International Publishing, 2015, pp. 551–573.
doi:10.1007/978-3-319-20883-1_22.

[22] G. F. Smits, M. Kotanchek, Pareto-Front Exploitation in Sym-
bolic Regression, in: U.-M. O’Reilly, T. Yu, R. Riolo, B. Worzel
(Eds.), Genetic Programming Theory and Practice II, Springer
US, 2005, pp. 283–299. doi:10.1007/0-387-23254-0_17.

[23] J. Karedal, N. Czink, A. Paier, F. Tufvesson, A. F. Molisch,
Path Loss Modeling for Vehicle-to-Vehicle Communications,
IEEE Transactions on Vehicular Technology 60 (1) (2011) 323–
328. doi:10.1109/TVT.2010.2094632.

[24] S. J. Julier, J. K. Uhlmann, New extension of the Kalman fil-
ter to nonlinear systems, in: I. Kadar (Ed.), Signal Processing,
Sensor Fusion, and Target Recognition VI, Vol. 3068, Interna-
tional Society for Optics and Photonics, SPIE, 1997, pp. 182–
193. doi:10.1117/12.280797.

[25] B. J. Odelson, M. R. Rajamani, J. B. Rawlings, A new au-
tocovariance least-squares method for estimating noise covari-
ances, Automatica 42 (2) (2006) 303–308. doi:10.1016/j.

automatica.2005.09.006.
[26] R. Hyndman, G. Athanasopoulos, Forecasting: Principles and

Practice, 2nd Edition, OTexts, Australia, 2018.
[27] D. Teixeira, Opportunistic Wi-Fi network selection in heteroge-

neous vehicular wireless networks for detecting VRUs through
edge computing, Master’s thesis, University of Minho (2022).
URL https://hdl.handle.net/1822/84496

[28] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung, Time
series analysis: forecasting and control, Wiley, 2015.

[29] R. J. Hyndman, A. B. Koehler, Another look at mea-
sures of forecast accuracy, International Journal of Forecast-
ing 22 (4) (2006) 679–688. doi:https://doi.org/10.1016/j.

ijforecast.2006.03.001.
[30] IEEE, IEEE Standard for Information technology–Local and

metropolitan area networks–Specific requirements–Part 11:
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications - Amendment 8: Medium Access
Control (MAC) Quality of Service Enhancements, IEEE Std
802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition
(Reaff 2003) (2005) 1–212doi:10.1109/IEEESTD.2005.97890.

14

https://seemoo.de/talon-tools
https://www.mikroe.com/gnss-5-click
https://www.mikroe.com/gnss-5-click
https://doi.org/10.5281/zenodo.6761916
https://doi.org/10.5281/zenodo.6761916
http://dx.doi.org/10.5281/zenodo.6761916
http://dx.doi.org/10.5281/zenodo.6761916
https://doi.org/10.5281/zenodo.6761916
http://dx.doi.org/10.3390/robotics9030066
https://doi.org/10.5281/zenodo.6884094
https://doi.org/10.5281/zenodo.6884094
http://dx.doi.org/10.5281/zenodo.6884095
http://dx.doi.org/10.5281/zenodo.6884095
https://doi.org/10.5281/zenodo.6884094
http://dx.doi.org/10.1007/978-3-319-20883-1_22
http://dx.doi.org/10.1007/0-387-23254-0_17
http://dx.doi.org/10.1109/TVT.2010.2094632
http://dx.doi.org/10.1117/12.280797
http://dx.doi.org/10.1016/j.automatica.2005.09.006
http://dx.doi.org/10.1016/j.automatica.2005.09.006
https://hdl.handle.net/1822/84496
https://hdl.handle.net/1822/84496
https://hdl.handle.net/1822/84496
https://hdl.handle.net/1822/84496
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1109/IEEESTD.2005.97890

	Introduction
	Related work
	Datasets
	Porto dataset
	Experimental setup
	Collected data

	Gaia dataset

	Throughput estimation
	Symbolic regression-based estimation
	Methodology
	Resulting estimation models

	Estimation refinement with Kalman filters
	Recursive Bayes filters
	Filtered estimation models
	Noise matrices

	Evaluation
	SR and UKF-SR models
	Machine learning comparison


	Throughput forecasting
	Time-series-based forecasting
	Basic moving average
	Autoregressive Integrated Moving Average (ARIMA)
	Vector Autoregression (VAR)

	Mobility clustering-based forecasting
	Evaluation
	Setup and model parameterization
	Results

	Discussion

	Conclusions and future work

