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Abstract—Due to their ubiquity and low use-cost, the oppor-
tunistic use of Wi-Fi networks to offload data from moving
vehicles is enticing. However, due to their limited coverage and
variable performance, choosing what Access Points (APs) to use
in order to maximize the amount of data that can be offloaded
is challenging. This difficulty is exacerbated by the heterogeneity
created by the introduction of new Wi-Fi standards such as
802.11ad, which renders heuristics designed for homogeneous
environments, e.g., signal quality, ineffective. In this work we test
the hypothesis that historical network performance, indexed by
vehicular mobility information, can be used to effectively forecast
future network performance, and consequently help select APs
for data offloading in a heterogeneous Wi-Fi environment. Qur
approach was to perform a trace-based analysis on experimental
data collected in a realistic vehicular environment. Our results
show that a practical algorithm based on data rate forecasting
from mobility information was able to transfer at least 80% of
the optimal amount of data, under the tested scenarios.

Index Terms—wireless communication, vehicular communica-
tion, data rate forecasting, AP selection

I. INTRODUCTION

Vehicle-to-Infrastructure (V2I) communication today relies
mostly on cellular connectivity. However, while 4G and 5G
cellular provide fast and, in urban areas, pervasive service, they
can be expensive for clients. For operators, network capacity
can be an issue, especially as bandwidth requirements increase
with the deployment of new driver-assistance and autonomous
driving systems. Wi-Fi is a less expensive, and sometimes
free, alternative, and urban area coverage is extensive. For
example, a large-scale data collection campaign done in Porto,
Portugal [1], found the mean number of visible APs per street
traversal to always be larger than zero, as shown in Fig. 1.
Moreover, 80 % of streets contained at least one public AP,
e.g., part of a commercial hotspot network such as Fon [2].
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Fig. 1: ECDF of the mean number of visible APs per street
traversal observed in Porto, Portugal (2016-2019).

Wi-Fi networks are already used for communication with
parked vehicles, e.g., for software updates as done by Tesla [3].
While a number of research projects have explored the use
of public Wi-Fi for moving vehicles (§V), it has yet to see
actual deployment, because it is challenging. First, due to
their limited radio range and required association process, the
amount of time during which a Wi-Fi network can be used
by a moving vehicle is often very short. Second, due to the
unsupervised nature of deployments, performance can differ
dramatically across networks, and is often poor. Finally, Wi-
Fi security may further slow down association, and potentially
even prevent clients from using a large portion of networks.

Many of the studies on the use of Wi-Fi for vehicular net-
working are more than 10 years old (§V). Since then, new Wi-
Fi standards have emerged, offering dramatic improvements
in throughput: 802.11ac, ad, and more recently ax and ay.
For these standards, even short periods of connection may
enable the transmission of hundreds of megabytes of data.
However, these developments create new challenges for ve-
hicular communication, namely increased diversity. While the
older Wi-Fi standards - b/a/g/n - are relatively similar, albeit
with distinct bit rates, newer versions - ac/ad/ax/ay - are very
different. Besides differences in bit rate, they use very distinct
frequencies (2.4, 5, and 60 GHz, impacting range), different
radiation patterns (impacting range and requiring training), and
require more detailed channel state information (introducing



overhead). Previous work often used signal strength as the
main heuristic to guide AP selection, but this is unlikely to be
effective given the current diversity in technologies.

This paper looks at the question of AP selection for V2I
communication in an heterogeneous Wi-Fi environment. Our
goal is to determine which AP a vehicular client should be
connected to at each point in time, in order to maximize the
total amount of data it can offload over Wi-Fi. To do so, we
follow a two-step approach: first, we predict the data rate that
can be offered by the different APs on the vehicle’s path; then,
we use these predictions to determine, at each point in time,
whether the client should remain connected to the current AP,
or initiate a switch to a different one.

We hypothesize that past data rate observations, indexed by
the client’s current mobility, are a good predictor of future data
rates. And that these are good predictors for throughput. The
intuition is this data-driven approach captures the cumulative
effects of all factors affecting network performance, such as
buildings and terrain. Note that prior work has explored the
use of historical data for AP selection [4], [5], but relied solely
on signal quality as a performance indicator.

Our study is based on a set of traces with detailed informa-
tion on V2I communication using different Wi-Fi standards —
n/ac/ad. The traces were collected by a vehicle with three Wi-
Fi interfaces (one per Wi-Fi type) communicating in parallel
with infrastructure APs. The vehicle was driven along a circuit
to collect multiple measurements for each road segment.

In summary, we make the following contributions:

o Collect spatially-indexed performance measurements in a
Wi-Fi-diverse vehicular environment (§1I).

« Propose and evaluate multiple Wi-Fi data rate forecasting
algorithms that leverage both real-time and historical
mobility and performance information (§I1I).

« Propose and evaluate multiple data rate forecasting-based
Wi-Fi AP selection algorithms (§1V).

II. EXPERIMENTAL DATA COLLECTION

Experimental setup: We used an intersection in a residential
area of Gaia, Portugal as the stage for our experiments, as per

Fig. 2a. To focus on Wi-Fi diversity, we co-located 3 APs at
the intersection’s southwest corner, each supporting a different
Wi-Fi standard: 802.11n, ac, and ad. The three technologies
operate in different frequency bands, 2.4, 5, and 60 GHz, as
shown in Tab. I. All APs were powered by, and mounted on the
roof of, a parked vehicle. The client equipment was mounted
on the roof of a second vehicle — Fig. 2b. We had three pairs
of Wi-Fi interfaces, one for each network. Out of each pair,
one interface was used for communication. The other was a
monitor, running tcpdump to capture 802.11 frames.
Pseudo-random data was sent from each AP to its respective
client, at a rate capable of saturating the network. To avoid po-
tential periods of inactivity from flow and congestion control,
packets were exchanged over UDP. During the experiments,
all devices were controlled and monitored through a separate
802.11n control network, operating on a non-overlapping
2.4 GHz channel. This was also used to synchronize clocks
over NTP, allowing for time-based fusion of the collected data.
To maximize trajectory diversity, the client vehicle drove
laps around the intersection using the circuit pattern depicted
in Fig. 2a, for a total of around 1 h and 45 min. We performed
this experiment twice, once on a Tuesday, and once on a
Thursday. The latter experiment differed from the former in
two ways: (i) the AP vehicle was ~30cm taller, and (ii) we
spent more time at slower speeds and closer to the APs, in
an attempt to better understand 802.11ad connectivity. This is
reflected in the client speed and distance ECDFs of Figs. 3a
and 3b. However, the range of these variables was the same
on both days: between 0and 50 km/h, and 0 and 170 m.
Dataset: From the frames captured via the monitor interfaces
we created a time-indexed, 1 Hz-resolution, table containing
performance statistics for each Wi-Fi network, including:

¢ The mean data rate the AP sent data frames at.

802.11 standard | Channel # Center freq. (GHz) | Bandwidth (MHz)

n 6 2.437 20
ac (wave 1) 40 5.2 40
ad 1 60.48 2160

TABLE I: Wi-Fi channels used during the experiments.
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Fig. 2: Experimental data collection setup. Location’s GPS coordinates: 41.111935, -8.631083.
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Fig. 3: Experimental datasets summary.

o The mean signal quality observed by the client. For
802.11n and ac, this is the Received Signal Strength
Indicator (RSSI) from both data frames and beacons. For
ad, it is the Signal-to-Noise Ratio (SNR) extracted from
Sector Level Sweep (SLS) feedback frames [0].

o The client vehicle’s GPS coordinates and speed, as cap-
tured by a Google Nexus 5 smartphone.

This dataset is available online [7].

Fig. 3c summarizes the observed data rates. On Tuesday,
802.11ad was connected only ~10% of the time, versus
85 % for 802.11ac, and 100 % for 802.11n. However, when
connected, ad achieved data rates up to 5 times higher than ac,
and up to 17 times higher than n. The AP selection algorithms
need to manage this tradeoff between range and throughput.
On Thursday, we had 802.11ad connectivity around 30 % of
the time, due to the client being close to the AP for longer.

For use in rate forecasting, we converted the client’s mobil-
ity information into a tuple (road, dir, toAp, stopped), where:

road: A unique identifier of the road the vehicle is currently

on, assigned as the closest to its GPS coordinates. There

are only 2 roads in our experiment, one running roughly

north-south and another roughly east-west.

The vehicle’s direction of movement, as one of the 4

cardinal directions. This is determined by looking at the

change in latitude and longitude over the last 3s.

toAp: A real number whose magnitude represents the dis-
tance, in meters (10 m resolution), between client and
AP along the road the former is on. The number’s sign
is positive if the vehicle is north or east of the AP, and
negative otherwise (i.e., when it is south or west).

stopped: A binary variable that takes the value 1 if the
vehicle’s speed is under 1m/s (i.e., stopped), and 1
otherwise (i.e., moving).

dir:

This conversion serves three purposes: (i) minimize the
effect of GPS errors (by bounding vehicles to roads); (ii) let
us understand the angle between transmission and reception
antennas (by combining position and direction of movement);
and (iii) avoid data sparsity by limiting granularity.

III. DATA RATE FORECASTING

As a first step, we look at the problem of forecasting data
rates for the different Wi-Fi networks.

A. Problem formulation

We treat data rate as a discrete time series with a 1Hz
resolution. Given a set of Wi-Fi networks and a time ¢, our
goal is to predict, for each network, the data rate at future time
t+ 1, for all integer 4 in interval [1, win¢]. winy is the size of
the forecasting window. We assume vehicles can collect the
following information, to be used in forecasting:

« Signal quality: SNR for 80211.ad, RSSI for other types;
« Data rate, per network;
o Mobility: (road, dir,toAp, stopped) as described in §II.

B. Algorithms

General description: Our goal is to predict the data rate for
network net, 7 seconds into the future, i.e., at time ¢t we
predict the data rate at time ¢ + ¢. All of our forecasting
algorithms share a common structure. We predict data rate
as the arithmetic mean of historical data rates observed over
a window of winy, seconds ending at time ¢ (winy, > ). The
past observations used for prediction are filtered using a set
of conditions K, e.g., location, RSSI, etc., and the proposed
algorithms differ only in the set K they use. More formally:

1 wingy
winn =751 2o Dratencliti=j
Jj=i

Dratey, ., g [t+1] =

where Drate’ represents the predicted data rate, and Drate

a previously observed rate for network net under conditions
K. We have also experimented with Exponentially Weighted
Moving Average (EWMA)-based aggregation, but found arith-
metic mean to yield better forecasting results. Note that data
rate samples are not shared among APs. This circumscribes
AP-specific relationships to their proper contexts, e.g., the
different signal quality vs. data rate relationships observed for
802.11n, ac and ad, depicted in Fig. 3d.



Algorithm variants: Our algorithms identify applicable past

data rate samples by matching the vehicle’s current state

against a set of conditions /. We consider the following

variations of matched conditions K, chosen by their Kendall-7

correlation with data rate in our dataset:

SQ: Signal quality level.

MRD mobility + SQ: The vehicle’s road (R) and direction
of movement (D) combined with signal quality.

MRDP mobility: The vehicle’s road (R), direction of move-
ment (D), and position (P) relative to the AP.

MRDP mobility + SQ: MRDP mobility and signal quality
combined.

MRDPS mobility: MRDP mobility and whether the vehicle’s
stopped or moving (S).

For example, if K = {road}, all samples from the road
the vehicle is currently on are used. We store past data rate
samples in a hash table indexed by key K for efficient lookup.
If no samples match current conditions K, the set of matched
conditions is gradually reduced, as a fallback. E.g., in MRDPS,
if we can’t match the stopped variable, we match only the road,
direction of movement, and position relative to the AP.

Besides the algorithms described above, our evaluation also
considers a simple CDR (Constant Data Rate) one that predicts
future data rates to be the same as the current one.

C. Evaluation

1) Setup: Starting with the dataset from §II, we sorted it
in chronological order and divided it into two halves. The

Data rate forecasting error (tue)

first was used to initialize the historical data rate tables for
all (net, K) pairs, while the second was used for evaluation.
Traversing the evaluation set in chronological order, for each
combination of time ¢, network net, and algorithm algo, we:

1) Prediction: Used algo to predict data rate for all times
in the interval [t + 1,¢ + winy]. The forecasting window
length parameter win; was set to 40s.

2) Error computation: For each prediction, calculated the
error ae as the absolute delta between the predicted and
real rates: ae[t+1i| = |Dratel, [t +1i]| — Dratepet[t +1i]|.

3) Online learning: Added the real rate observed at time ¢,
Dratepe[t], to the algorithm’s historical data table.

2) Results and discussion: Fig. 4 summarizes our results.
The Mean Absolute Error (MAE) is shown as a function of
how far in advance the prediction was made (variable ), for
each experiment date and network type combination. Two
general trends can be observed across the different networks.
First, unsurprisingly, distant-future predictions tended to ex-
hibit higher error. Second, the difference between algorithms
was larger on the Tuesday dataset. We believe this is a result
of the differences in mobility patterns shown in Fig. 3.

Let us first focus on the Tuesday results for 802.11n and
ac. For + = 1s all algorithms performed similarly, but as
the prediction horizon increases, so do the differences in the
plots. CDR performed the worst, with the delta to the best-
performing algorithm peaking at 14.5 Mbps for 802.11n (10 %
of its maximum data rate) and 70 Mbps for ac (17.5% of its
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maximum), when 7 = 25s.

Still on Tuesday, the SQ method, the closest scheme to
those proposed in prior work, performed the second worst,
in-between CDR and the mobility-based algorithms, which
performed the best. From the latter, MRD+SQ performed the
worst, and MRDPS the best.

On Tuesday, MRDPS’s MAE peaked at 16 Mbps for
802.11n (11.4% of its maximum data rate) and 105 Mbps
for ac (26.25% of its maximum), when 7 = 40s (the largest
tested). From this we conclude that 802.11ac’s data rate is
harder to predict than 802.11n’s.

801.11n and ac results for the Thursday dataset differed.
MRDPS still performed the best and the MAE’s magnitude
was similar. But the delta between mobility and non-mobility-
based methods was smaller, and MAE leveled off for i > 20s.

Results for 802.11ad were peculiar. First, CDR performed
competitively, even outperforming every other algorithm for
near-future predictions. We believe this to be caused by ad’s
bimodal behavior — data rate tends to be either zero or very
high. In this situation, averages can lead to substantial errors.
Second, CDR excluded, the error was not as well correlated
with how far in advance the prediction was made. On the
Tuesday dataset, relative ad performance was similar to that
observed for other networks, with the SQ method performing
the worst and MRDPS the best. The error delta between them
was about 35 Mbps. MRDPS achieved MAEs under 135 Mbps,
or 6 % of the maximum observed rate of 2310 Mbps, for all i.
In relative terms, this is less than the MAE observed for other
networks.

Thursday’s ad results were interesting. First, MAEs were
generally larger, which is the result of having a higher number
of non-zero rate samples, as per Fig. 3c. The largest MAE for
the best-performing algorithm was 310 Mbps, or 13.4 % of the
maximum rate — still lower than that observed for 802.11ac.

Second, and unlike other results, for predictions up to 15s
into the future, algorithms that only rely on mobility performed
worse than those using signal quality. We theorize this is
due to us having spent more time stopped near the APs on
Thursday (Figs. 3a and 3b), giving the client time to establish a
connection and beamform. This broke the correlation between
location and data rate: both very low (zero) and very high
data rates could be observed for a given location, depending
on whether a connection had been established or not. 802.11n
and ac were less affected due to their longer range. To test our
hypothesis, we removed periods of immobility > 20 s from the
dataset and reran the evaluation. The results in Fig. 4h confirm
our theory: both MRDP and MRDPS worked very well, being
the best performers for values of ¢ > 5s.

IV. ACCESS POINT SELECTION
A. Problem formulation

The goal of an AP selection algorithm is to select an
AP, or, for simplicity, network, to use at each time in an
interval [tg,t,], so that the total amount of offloadable data
is maximized. Using data rate as a proxy, the goal be-
comes finding a schedule (i.e., a sequence of APs) yielding

maz Y, Drate[t;], where Dratelt;] is the data rate at time
t;. We assume the client can use at most one network at a time,
and that a network switch implies a communication outage —
i.e., a cost — of “network switch time”, nst, seconds.

B. Algorithms

General description: At a given time ¢;, our forecasting-
based AP selection algorithms estimate the amount of data
the vehicle would be able to offload over a window of size
winy seconds into the future, were it to remain on the current
network, or switch to a different one. This indicates whether a
switch is worthwhile. More concretely, we use the following
algorithm to decide whether a switch should be initiated at
time ¢;:
1) Estimate the amount of offloadable data assuming the ve-
hicle remains on the current network cnet. This is calcu-
lated as Y2\ Drate.,, ,[ti+x], where Dratel,, ., [titx]
is the predicted data rate for network cnet at time t; .
2) Estimate the amount of offloadable data from every other
possible network onet as Y., 7 | Dratel, . [titk).
The outage caused by a network switch is modeled by
discarding the interval [t; 11, titnst).
3) If the network that maximizes the amount of offloadable
data is not the current one, initiate a switch.

Algorithm variants: Taking into account the results of
§II-C2, we implemented three variants of forecasting-based
AP selection, using the MRDP, MRD+SQ and MRDP+SQ
rate forecasting algorithms (see §III-C1) as subroutines. We
compared the performance of these methods against: (a) an
optimal algorithm, and (b) a pair of naive algorithms.

a) Optimal algorithm:: The optimal algorithm finds the
schedule that maximizes the total amount of offloadable data
by leveraging knowledge of the future data rates of each
network for the entire trip (times in [tg,t,]), i.e., it has
access to an oracle. It uses a dynamic programming algorithm
based on the computation of Datayet[t;], which represents
the maximum amount of data that can be offloaded in the
interval [¢;,t,] if we’re connected to network net at time ¢;,
assuming optimal choices are made from that point onwards.
The algorithm starts by computing Dataye[t,] and works
backwards until it reaches to. More formally:

Datanet[t;] = Dratenet[t;] + max fd(net, onet,t;).
Yonet

Datanet[t;] is equal to net’s data rate at time t;, plus the
maximum amount of data that can be offloaded in the future.
fd(net, onet,t;) represents the maximum amount of data that
can be offloaded in the future if we go from network net to
network onet at time ¢;. It is defined as:

if net # onet
if net = onet

Dataonet[titnst+1]
Datanet [thL 1]

fd(net,onet, t;) = {

fd models the cost associated with network switching by
skipping nst seconds ahead. The computation of Dataye:|t;]
always picks the network that maximizes fd as the one to be
used next, call it Next,..[t;] = arg max,,,., fd(net, onet,t;).



Once the network that maximizes the amount of offloadable
data from tg is found - i.e., inet = arg max,,.; Datanet[to] —
we can reconstruct the optimal schedule by following the trail
of networks stemming from Next;pe[to]-

b) Naive algorithms: We consider two trivial algorithms
to establish a performance lower bound:

Greedy Switch-on-Zero (SoZ): If data rate drops to zero (or
at the very start), connect to the network with the highest
signal quality. Otherwise stay on the current network.

Greedy Switch-on-Signal Quality (SoSQ): This algorithm
is based on the observation that 802.11n, ac, and ad yield
very distinct data rates. Therefore, we want to use the
highest-performing network standard for which the signal
is good enough. From the relationships between data rate
and signal quality observed in our dataset (Fig. 3d), we
arrived at the following simple rule: pick 802.11ad if
its SNR > —50dB; else pick 802.11ac if its RSSI >
—81 dBm; otherwise pick 802.11n as a fallback.

C. Evaluation

1) Setup: The overall setup was akin to that used in §II1I-C1.
The dataset was sorted chronologically and split into two
halves: the first was used to initialize the historical data tables,
the second for algorithm evaluation. Let the evaluation period
contain timestamps [to, ¢,,]. For each algorithm variant, starting
with ¢ = 0, and while i < n, we:

1) Let the chosen algorithm determine whether a network
switch should be initiated at time t;. If so, said switch
was added to the schedule.

If the chosen algorithm uses historical data, the data rate
at time ¢; for the network the client is currently connected
to was added to that history (data rates of other networks
were unobservable and hence not added), for future use
in data rate forecasting, i.e., we do online learning.

If a switch was initiated, we reran the analysis with ¢ =
i+ nst + 1, to account for the switching cost; otherwise
we reran it with ¢ =7 + 1.

2)

3)

Finally, we compared each variant’s schedule with the
optimal one, according to multiple metrics, including the
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total amount of offloadable data, and time allocated to each
network.

The entire process was repeated for multiple values of the
network switching time and forecast window parameters.

2) Results and discussion: Fig. 5 shows the total amount
of data offloaded when using each algorithm, relative to the
optimal. Fig. 6 displays the percentage of time spent on each
network, as well as how much data was transferred over each
of them, for the particular case of nts = 5 s and winy = 40 s.

Fig. 5a shows the data transferred for the Tuesday dataset.
The forecasting window winy was fixed at 40s, while the
network switching time nts was varied between 1 and 7s.

The greedy SoZ algorithm performed the worst, transferring
~30% of the optimal regardless of the network switching
time. Fig. 6a shows it mostly relied on 802.11n, whose data
rate rarely dropped to zero due to its long range. This explains
SoZ’s insensitivity to the network switching time parameter.

The greedy SoSQ algorithm performed quite well for
nts 1 s, transferring over 65 % of the optimal amount.
However, since its switching decisions do not account for the
associated outage periods, its performance worsened for larger
nts values. In Fig. 6a (nts = 5 s), SoSQ is seen spending over
30 % of its time switching between networks.

All forecasting-based algorithms performed significantly
better than the greedy ones, offloading around 80 % of the
optimal amount, and thus justifying the use of mobility
information. MRDP+SQ and MRDP performed the best for
small nts, and MRDPS for large nts. The tendency is for
performance to decrease slightly with increased nts, due to
the larger penalty incurred for each bad switching decision.
However, because they take outages into account, all of the
forecasting-based schemes were able to mitigate this well.

Fig. 6a highlights the differences between the forecasting
and optimal algorithms. The optimal schedule uses all three
networks, with a strong preference for 802.11ac. The forecast-
ing algorithms rely even more on ac, in detriment of ad, and do
not use n at all. This is explained by n’s low performance and
ad’s unpredictability. Being able to accurately predict 802.11ad
performance is the optimal algorithm’s big advantage.
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Fig. 5c shows the effect of the forecasting window win s
parameter on scheduling performance. Overall, the sensitivity
to winy is low, with the amount of offloadable data hovering
around 80 % of the optimal. By varying winy we were also
able to discover an inverse correlation between it and both the
number of network switches and 802.11ad’s usage.

Figs. 5b and 6b show the amount of transferred data and
time allocation for the Thursday dataset. Compared with
Tuesday’s results, 802.11ad was used more often across the
board, a reflection of the fact that more time was spent near
the APs, resulting in more frequent ad connectivity.

Greedy SoZ performed even worse than on Tuesday, achiev-
ing less than 15 % of the optimal, and only using the 802.11n
network. Surprisingly, SoSQ performed very well, matching
the forecasting-based algorithms for nts = 1 s, at around 85 %
of optimal. However, like on Tuesday, its performance fell off
for larger nts. As shown in Fig. 6b, when nts = 5 s, SoSQ
spent significantly more time switching networks than optimal.

All forecasting algorithms performed well, but MRDP and
MRDPS, which rely solely on mobility information, distin-
guished themselves, always offloading more than 80 % of the
optimal amount. Fig. 6b shows that both MRDP and MRDPS
used 802.11ad more frequently than the other forecasting-
based algorithms, and switched networks less often.

Fig. 6¢ shows that even though the 802.11ad network was
only used ~20% of the time on Thursday, it accounted for
more than half of the total amount of offloaded data for the
better-performing algorithms. This result highlights the added
value of leveraging Wi-Fi diversity, which is likely to increase
even further with the upcoming 802.11ay standard.

MRD+SQ and MRDP+SQ fared worse on the Thursday
dataset, both starting above 80 % for nts = 1 s, but then falling
gradually, and eventually hitting ~75% for nts = 7 s. Even
though both algorithms account for switching costs, we found
the use of signal quality to be detrimental in two ways: (i)
for smaller nts, signal fluctuations trigger too many network
switches; and (ii) the periods of 802.11ad connectivity become
shorter as the switching cost increases.

Taking the results from both datasets into account, MRDP
and MRDPS performed the best. Both were consistently good
across different datasets and switching costs. If collecting
historical data is deemed too onerous, the greedy SoSQ
algorithm may be a reasonable alternative. However, we note
its sensitivity to switching costs and the fact that it really only
applies when choosing between networks with very distinct
performance characteristics. MRDP and MRDPS, on the other
hand, are general, and hence free from that assumption.

V. RELATED WORK

The opportunistic use of Wi-Fi networks by moving vehicles
has been studied extensively in the past. Authors have mostly
focused on three subproblems: (i) minimizing time spent on
Wi-Fi handoffs [8]-[12], (ii) performance forecasting [13]—
[16], and (iii) optimizing network selection [4], [17]-[19].
Since the first topic is largely orthogonal to our work, we
focus on the last two.

Also, to our knowledge, few have used 802.11ad for vehic-
ular data offloading. 802.11ad vehicular research has, so far,
focused on feasibility and beam training optimization [20].
Network performance forecasting: Early work on network
performance forecasting aimed at TCP throughput prediction,
using three techniques: TCP-modeling based [13], history
based [13]-[16], and machine-learning based [14]-[16].

He et al. [13] showed that history-based schemes are
often superior to model-based ones. Mirza et al. [14] showed
that a machine-learning technique based on Support Vector
Regression (SVR) is superior to history-based methods in a
wired environment. But, when applied to a wireless vehicular
network [15], SVR-based prediction was outperformed by
history-based techniques. However, the paper did not consider
wireless network properties and used fairly homogeneous
networks.

Network selection: Previous work has mostly used older
Wi-Fi versions, up to 802.11n, which resulted in fairly ho-
mogeneous deployments. One exception is recent work on
using 802.11ad for vehicular data offloading [20], but this



focused on feasibility and beam training optimization. In
addition, prior work that uses historical data for Wi-Fi network
selection in vehicular environments has largely relied on signal
quality alone as a performance indicator [5], [17]-[19]. This
assumption breaks in diverse Wi-Fi environments, where more
recent Wi-Fi versions may perform better, despite having a
weaker signal, as exemplified by Fig. 3d. Work by Giannoulis
et al. [4] improved on traditional RSSI-based algorithms by
using long-term differences in IP performance, in addition to
RSSI. However, it used fairly homogeneous networks and did
not consider recent throughput samples.

The use of spatial location as a channel-quality estimator
in vehicular networks was previously explored by Meireles et
al. in the context of multi-hop routing [21].

VI. CONCLUSIONS

Our results show that AP selection based on historical
network performance, indexed by mobility features, is a
promising approach for data offloading in our Wi-Fi-diverse
V2I scenario. Mobility, in the form of location and direction
of movement, is able to capture the average speed at which
a vehicle is moving towards or away from an AP, the angle
between the client’s and AP’s antennas, and the fading en-
vironment around both nodes. This gives it good predictive
power, letting our algorithms exploit the tradeoff between the
extended range provided by legacy 802.11n, and the higher
data rates provided by 802.11ac and 802.11ad. We found that
AP schedules that make good use of 802.11ad are capable
of offloading up to 80 % more data than schedules that only
use 802.11n networks. As 802.11ax and ay are developed, the
benefits of leveraging diversity are likely to increase.

The results in this paper are just a first step towards building
a system that can opportunistically use a heterogeneous Wi-Fi
infrastructure for vehicular access. Further studies are needed
that use more extensive datasets and cover more diverse traffic
scenarios. For example, our work can be extended to capture
the effect of multiple users on throughput by adding features
such as channel busy time, or AP load — extracted from the Wi-
Fi radio or AP beacons. Research is also needed on how deal
with factors such as unpredictable network switching times,
competing traffic, etc.
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