
Wi-Fi Throughput Estimation for
Vehicle-to-Network Communication in
Heterogeneous Wireless Environments

1st Daniel Teixeira
University of Porto

Instituto de Telecomunicações
Porto, Portugal

2nd Rui Meireles
Vassar College

Poughkeepsie, NY, USA

3rd Ana Aguiar
University of Porto

Instituto de Telecomunicações
Porto, Portugal

Abstract—Vehicles increasingly need to be connected to net-
working infrastructure, to support applications such as over-
the-air updates, edge computing, and even autonomous driving.
The ubiquity of Wi-Fi networks makes them a good candidate
for opportunistic vehicular access. However, that ubiquity also
creates a problem of choice. In a heterogeneous Wi-Fi envi-
ronment, with multiple different networks available, it becomes
important for vehicles to be able to pick the best-performing
one. Focusing on delay-insensitive traffic, we equate network
performance with throughput, and aim to estimate it to inform
network selection. Throughput estimation is traditionally done
by injecting probe traffic, which induces congestion. We provide
a solution that avoids this by using only passive measurements
of variables such as signal strength to estimate throughput.
Taking real-world training data collected in a diverse vehicular
Wi-Fi communication scenario, with IEEE 802.11n, ac, and ad
networks, we used Symbolic Regression (SR) and Unscented
Kalman Filter (UKF) to develop a computationally inexpensive
throughput estimation model, UKF-SR. Using a separate testing
dataset, we compared the proposed UKF-SR model against
traditional linear and support-vector regression, decision tree,
random forest, and shallow neural network models. UKF-SR
was competitive with even the most complex models. It yielded
the lowest Root-Mean-Square Errors (RMSE) for 802.11n and
ac, by 4.71 % and 27.59 %, respectively, and was within 1 % of
the best-performing model for 802.11ad.

Index Terms—Heterogeneous wireless networks, symbolic re-
gression, vehicular offloading, throughput estimation.

I. INTRODUCTION

Vehicle-to-Network (V2N) communication is increasingly
important. It enables myriad applications that promote road
safety, efficiency, and entertainment. For example, Tesla ve-
hicles upload information they collect to the cloud to help
develop autonomous driving algorithms [1]. And they also
download media for streaming, traffic information, and soft-
ware updates for the vehicles’ subsystems.

Such traffic is typically sent over a cellular connection.
But, with ever increasing capacity demands — Cisco reports

This work is a result of project FLOYD (POCI-01-0247-FEDER-045912),
funded by the European Regional Development Fund (FEDER), through the
Operational Competitiveness and Internationalization Programme (COMPETE
2020) and by Portuguese National Funds (OE), through Fundação para a
Ciência e Tecnologia, I.P.; and UIDB/50008/2020, funded by the applicable
financial framework (FCT/MCTES) (PIDDAC).

compound annual traffic growth rates between 7 and 30 % [2]
— there is a need for alternatives. The availability of Wi-
Fi Access Points (APs) usable from roadways, particularly in
urban scenarios [2], [3], makes them a compelling proposition.

However, the abundance of Wi-Fi networks also makes us
have to choose which one to use at any given moment, which
can be challenging. First, different networks may use different
IEEE 802.11 standards, which strike different balances be-
tween bandwidth and coverage range. Second, the high degree
of mobility associated with vehicular environments limits the
amount of time during which each network can be used.

One reasonable goal, particularly for delay-insensitive traf-
fic, is to pick the network that maximizes the amount of data
that can be offloaded [4], [5], which equates to cumulative
throughput over time. Determining this for a given network
can be decomposed into two subproblems:

1) Estimate the throughput that the network can currently
provide.

2) Predict, based on past throughput estimates and other
features, how throughput will evolve in the near future.

We focus on the first step, throughput estimation. Previous
works have focused on measuring throughput by actively
injecting probe traffic into the network [4], [6], introducing
unwanted congestion. In contrast, we explore the possibility
of leveraging passively-observable variables such as distance
to the AP and received signal strength.

Our approach was to take real-world experimental Wi-
Fi V2N communication performance data, and then apply
Symbolic Regression (SR) to obtain a throughput estimation
model. We then refined the model by incorporating an Un-
scented Kalman Filter (UKF). We tested our SR and UKF-
SR models against standard machine learning models Multiple
Linear Regression (MLR), Support-Vector Regression (SVR),
Decision Tree (DT), Random Forest (RF), and Shallow Neural
Network (SNN), on a separate dataset we collected for that
very purpose. Our models outperformed the competition while
at the same time being computationally inexpensive and thus
suitable for deployment in embedded devices.

In summary, we make the following contributions:

• Describe how we collected network performance data in
a realistic Wi-Fi-diverse vehicular scenario to test our
estimation models (§III).

• Detail how we used Symbolic Regression (SR) to esti-
mate Wi-Fi network throughput (§IV).

• Present how an Unscented Kalman Filter (UKF) can be
used to improve SR estimation, yielding what we call a
UKF-SR model (§V).

• Report on the results of the evaluation of our SR and
UKF-SR models against standard machine learning mod-
els from the literature (§VI).

II. RELATED WORK

In the literature we can find two main types of throughput
prediction problems: (i) predict future throughput (for time
t + 1, . . . , t + n) based on past values and channel quality
metrics, and (ii) predict current throughput (time t) using
passive measurements. We distinguish the two by referring
to the former as prediction, and to the latter as estimation.

Liu & Lee [6] categorized throughput prediction methods
as: (i) formula-based, using mathematical expressions; (ii)
history-based, predicting throughput using past measurements;
or (iii) machine learning (ML) model-based.

Wei et al. [7] developed a two-staged prediction mechanism
for mobile networks. The algorithm first identifies the user’s
mobility pattern, and then applies a neural network regression
model specific to said pattern. The throughput prediction is
based on past values, but also integrates signal strength. The
underlying assumption is that past throughput is available
to use in future-value prediction. But measuring throughput
ordinarily implies injecting large amounts of traffic into the
network, rendering it unusable from congestion.

Li et al. [8] proposed a packet-pair-based algorithm for
measuring throughput, where only a small number of probes
are required. However, the algorithm assumes that network
conditions are stable, which is not the case in vehicular
environments. Furthermore, to generate probes a user must be
connected to an AP, while in the network selection problem
the decision must be made prior to connection establishment.

The alternative is to rely on passive measurements to
estimate throughput, thus not generating additional traffic. A
seminal work in throughput modeling and estimation is that of
Mathis et al. [9], where the authors introduced a mathematical
TCP throughput model, function of packet loss probability.
However, it does not apply to wireless environments, where
losses do not necessarily imply congestion.

Samba et al. [10] explored throughput estimation in cel-
lular Long Term Evolution (LTE) networks by leveraging
several data sources, such as context information (e.g., distance
and speed) and physical layer measurements, such as signal
strength. By feeding these data into a random forest algorithm
the authors obtained a model capable of explaining 84 % of
the variation in throughput.

In this paper we propose two throughput estimation models
for Wi-Fi access networks and analyze their ability to adapt
to different environments. We include mobility features such

as speed and distance to the AP, collected in a real-world
vehicular setup. The models only use client-side passive mea-
surements, accessible prior to establishing a connection.

III. DATASETS

To develop a good throughput estimation model, it is essen-
tial to use data collected in a realistic environment. We had
access to such a dataset, created in the context of related prior
work [4]. We decided to use it for model training, and collect a
new dataset for testing. This let us assess how well the model
generalizes across different environments. In this section we
describe both datasets, highlighting their differences.

A. Testing dataset

1) Experimental Setup: We drove a vehicle around a sta-
tionary access point, while transmitting data through three
different networks, each using a different Wi-Fi standard —
IEEE 802.11n, ac, and ad, in parallel.

Fig. 1a depicts the location where the experiments took
place — Rua D. Frei Vicente da Soledade e Castro in Porto,
Portugal. This street runs roughly east-west, and is lined by
trees on both sides. It also sits lower than the surrounding
terrain, by roughly 2 m. Weather was cloudy but dry, with a
temperature of around 25 °C.

The AP remained stationary at the location shown, while
the client vehicle did a total of 10 laps around the indicated
circuit, traveling counterclockwise. Speed varied between 0
and 40 km/h. Vehicular traffic was substantial, which added to
the environment’s multipath and line of sight obstructions.

Fig. 2 illustrates the vehicles and hardware devices used in
the experiments. We placed a TP-Link Talon AD7200 [12]
router on the roof of each vehicle. These routers feature
802.11n, ac, and ad interfaces, making them ideal for our
purposes. Given that the original firmware is not user-
programmable, we installed LEDE-AD7200, a modified ver-
sion of the Linux-based LEDE operating system specifically
created for the AD7200 routers by the Talon Tools project [13].

Taking advantage of the programmable environment, we
wrote simple data producing and consuming applications and
deployed them on the routers themselves. Pseudo-random data
was sent over the three radio interfaces, from the mobile client
to the static AP. Tab. I shows the channels used, all of which
are independent.

TABLE I: Wi-Fi channels used for the experiments.

Standard Channel # Center freq. (GHz) Bandwidth (MHz)
802.11n 6 2.437 20
801.11ac 40 5.2 40
802.11ad 2 60.48 2160

Throughput was measured by the receiving AP and sent as
feedback to the client over the 802.11n network, as it featured
the longest range. This information was saved on a database,
which, due to memory constraints, ran on an external device
connected to the client router through Gigabit Ethernet.

Although throughput was measured in the client-AP direc-
tion, it is also valid for the reverse direction. We can assume

240 m

AP

Client

N

S
EW

(a) Testing mobility pattern. Access Point GPS coordinates: 41.177, -8.59585.

260 m

20
0

m

N

S
EW

AP
Client

(b) Training. GPS: 41.112, -8.631.

Fig. 1: Experiment locations and client mobility patterns used for testing and training. Imagery ©2022 CNES / Airbus,
IGP/DGRF, Maxar Technologies, Map data ©2022 Google.

Stationary Access Point
 (2006 Renault Megane Break)

Mobile client
(2002 Honda Jazz)

Application
data

Throughput
feedback

Router (sender)
GPS DatabaseRouter (receiver)GPS

14
76

 m
m

1525 m
m

Fig. 2: Experimental setup. Vehicles are drawn to scale. Blueprints courtesy of getoutlines.com [11].

channel symmetry because both AP and client used the same
exact communication devices, with the same transmission
power and antennas.

Location and time information for the mobile client was
provided by a MikroElektronika GNSS 5 click receiver [14],
which features a 10 Hz GPS module. However, to increase
the number of packets used to compute each throughput data
point, our entire analysis used a granularity of 1 Hz. Therefore,
we downsampled the GPS information, using the first sample
in each second to represent that entire second. Due to lack
of additional GNSS 5 devices, the AP was equipped with a
commodity 1 Hz GPS receiver.

2) Collected data: Using the described setup, we collected
a dataset with over 3750 samples (1250 per Wi-Fi standard).
Each sample pertains to a specific (timestamp, network)
combination. The timestamp resolution is 1 Hz. A sample
contains the mobile client’s location coordinates, heading, and
speed, along with the measured signal quality, throughput, and
transmission data rate. We call this the Teixeira dataset. It is
freely available to download on Zenodo [15].

Fig. 3 summarizes the collected data through some of its
metrics. Namely, measured throughput, vehicle speed, and
GPS horizontal dilution of precision (HDOP). Isik et al. [16]
suggest the use of dilution of precision values to validate the
integrity of GPS estimates. Values below 1 are considered
”ideal”, and below 2, ”excellent”. Following these guidelines,
we consider the collected GPS data trustworthy, as HDOP
values were consistently below 1.

The mobile client’s speed ranged between 0 and 40 km/h,
with average values in the range of 5 to 30 km/h. The lowest
speed values were observed at both extremities, where we

Fig. 3: Mean throughput, RSSI, speed, and GPS horizontal
dilution of precision as a function of the client’s longitudinal
position relative to the AP (negative for West and positive for
East). The red vertical dotted line denotes the AP’s position;
the green vertical dotted line indicates the client’s initial (and
final) position. Ranges represent the 95 % confidence intervals.

had to slow down to perform a u-turn, and at the initial/final
position, where the vehicle remained stationary for a period
of time at the experiments’ beginning and end.

Throughput varied significantly across the different net-
works, with a maximum average throughput of 50 Mbps for
802.11n, 150 Mbps for 802.11ac, and 200 Mbps for 802.11ad.

The 802.11n and ac networks remained connected through-
out the experiments, even at distances beyond 125 m. On
the other hand, 802.11ad was only able to communicate at
distances of less than 25 m. This is due to its use of 60 GHz
frequencies, which suffer from much greater attenuation than
the 2.4 and 5.2 GHz used by 802.11n and ac, respectively.

802.11n’s throughput did not vary significantly for dis-
tances above 25 m. 802.11ac’s throughput on the other hand,
initially decreased with distance, but then increased as the
vehicle scrubbed speed near the turnaround points — from
25 to 75 Mbps. This behavior reveals an inverse relationship
between speed and throughput, suggesting that 802.11ac is
more sensitive to mobility than 802.11n.

Signal strength was similar for both 802.11n and ac, peaking
at −30 dBm and dropping to between −60 and −70 dBm as the
vehicle moved away from the AP. Like throughput, 802.11ad’s
signal strength was only reported for very short distances.

B. Training dataset

The dataset we used for training, which we call the Meireles
dataset, was described in detail in an earlier work [4]. IT is
also freely available for download on Zenodo [17].

Just like the testing dataset, it contains network performance
data collected in a V2N communication scenario where a
vehicle drove a circuit around an access point, exchanging
data with it over three different networks, one IEEE 802.11n,
one ac, and one ad, in parallel. It contains essentially the
same time-indexed mobility and throughput information as the
testing dataset, with the same 1 Hz resolution.

The experimental setup used was also very similar to the one
used to collect the testing dataset. The same Talon AD7200
routers were used for IEEE 802.11ad communication (the
devices used for 802.11n and ac differed), and the devices
were also mounted on the roof of two vehicles (although of
different makes and models).

The main differences between the two datasets are the
environment where they where collected, and the client’s
mobility pattern. As per Fig. 1a, in the testing dataset the
client drove back and forth along a tree-lined road.

In the training dataset, the AP remained at the corner of an
intersection as the client approached and left the intersection
in every possible direction combination. Fig. 1b depicts the
environment and a simplified version of this mobility pattern.

Another difference between the two datasets is the direction
of network traffic. In the testing dataset, data flowed from
client to AP. In the training dataset, it flowed in the reverse
direction. However, since the devices were the same on both
ends, the channel can be considered symmetric.

IV. SYMBOLIC REGRESSION-BASED ESTIMATION

Symbolic Regression (SR) is a data-driven technique used
to uncover mathematical expressions that can be used to
model a certain feature from a dataset [18]. The mathematical
expressions produced can vary in complexity, from simple and
intuitive models to complex ones that may be hard to interpret.

Meireles Dataset
(training + validation)

Training Set Validation Set

Teixeira Dataset
(testing)

Model
Testing ResultsGPTIPS2

Training

Trained Models

Model
Selection

Best Model

GPTIPS2
Algorithm

Data Processing

Data Processing

Fig. 4: Symbolic regression pipeline methodology for training,
validating, and testing the discovered models.

In this section we leverage SR to develop throughput
estimation models based on a Wi-Fi vehicular dataset for IEEE
802.11n/ac/ad access networks.

A. Methodology

To perform SR, we relied on the GPTIPS2 algorithm [18].
GPTIPS2 is a genetic-programming-based algorithm that
searches for linear combinations of mathematical functions
and input variables. It formulates an equation similar to a
linear model, but its terms can be non-linear. These terms are
represented by tree structures, where leaves are variables and
constants, and intermediate nodes are mathematical operators,
e.g., plus, minus, cosine, etc.

To develop the estimation models, we followed the pipeline
in Fig. 4, where models go through training, validation, and
testing phases. We used the Meireles dataset (§III-B) for
training and validation, applying a random 70-30 % split, and
the Teixeira dataset (§III-A) for testing. Using two different
datasets let us analyze how well the models generalize across
environments. To ensure that the models are kept simple and
do not over-fit the data, we limited their structure to six terms,
each represented by a tree with maximum depth of four. The
algorithm was executed 25 times and in each run it evolved
300 models through 100 generations, resulting in a set of 7500
trained models. At the end of each generation, the algorithm
runs a tournament selection with a size of 30, to select the
best models for cross-over. To choose a model, we plotted
the Pareto front with regards to the models’ goodness-of-fit,
based on the validation set, and their expressional complexity.
The expressional complexity is calculated as the sum of the
number of nodes of all sub-trees [19]. The chosen model is
the one among those in the Pareto front that exhibits the best
trade-off between performance and complexity.

B. Estimation Models

We performed SR for each Wi-Fi standard separately, fol-
lowing the previously described methodology. The resulting
estimation models for tputn, tputac, and tputad are described
by the following equations:

ˆtputn = 0.7111 ∗RSSI − 2.479 ∗Nusers

+ 11.88 ∗ e−Nusers + 62.02
(1)

ˆtputac = 1.409 ∗RSSI − 2.667 ∗ v

+ 44311 ∗ cos(Nusers

RSSI
)

− 11.14 ∗ cos(Nusers)− 36.77 ∗ d 1
4 − 44022

(2)

ˆtputad = 67.75 ∗Nretries
1
4 − 88.18 ∗ tanh(v)

− 6.348 ∗
√
Nretries

− 75.37 ∗ e−(v+Nbeacons)
3

+ 88.83

(3)

, where ˆtputn, ˆtputac, and ˆtputad are the throughput estimates
in Mbps, RSSI is the received signal strength in dBm, d is
the vehicle-AP distance in meters, v is the vehicle’s speed
in m/s, Nusers is the number of users connected to the AP,
and Nbeacons and Nretries are the number of beacon frames
received and re-transmissions in the last second, respectively.

The training and validation datasets use RSSI to represent
signal quality for 802.11n and ac, but Signal-to-Noise Ratio
(SNR) for 802.11ad. The testing dataset uses RSSI for all
standards. Therefore, if we were to train a model with SNR
we would be unable to test it. This is why, unlike the other
equations, the one for ˆtputad doesn’t take signal quality
into account. Instead, it uses the number of beacons and re-
transmissions as proxies. The use of these variables in place
of RSSI or SNR may lead to poor performance. To circumvent
this limitation and improve the model’s accuracy, we generated
synthetic RSSI values for 802.11ad using a simplified log-
distance path loss model:

RSSI = RSSI0 − 10 γ log10

(
d

d0

)
+X

X ∼ N (0, σ)

(4)

, where d0 is the reference distance (i.e., one meter), RSSI0 is
the RSSI at d0, γ is the path loss exponent, and X is a zero-
mean Gaussian random variable with σ standard deviation,
reflecting the effect of fading. The path loss exponent and
fading standard deviation were set to γ = 1.59 and σ = 2.1,
respectively, following the results of Karedal et al. for subur-
ban environments [20]. RSSI0 was measured to be −53 dBm
for our TP-Link Talon AD7200 access points.

Another issue is the proportion of 802.11ad throughput
samples that pertain to periods of disconnection - which given
ad’s short range, is the vast majority. The large amount of
zero-throughput samples will influence the model’s training
phase, forcing the model to not only learn how to estimate
throughput, but also to classify periods of connection versus
disconnection (i.e., zero throughput versus non-zero through-
put). However, we can easily determine when the vehicle has a
viable connection with an AP, and the model should not focus
on any other task apart from estimating throughput. Therefore,
we re-ran the SR algorithm with the generated RSSI values and
trained it using only non-zero throughput samples. Throughput
for 802.11ad can then be estimated as:

ˆtputad = 0.7334 ∗RSSI + 47.74 ∗ sin(v ∗RSSI)

− 112.6 ∗ tanh(v)1/4

− 115.8 ∗ tanh(cos(v)) ∗ log(Nusers)
2 + 387.9.

(5)

V. ESTIMATION REFINEMENT WITH KALMAN FILTERS

When estimating throughput through ML or SR models,
or manually-discovered formulas, we are subjected to two
primary sources of noise: (i) process noise, due to inaccuracies
in fitting the data; and (ii) measurement noise, resulting from
inherent errors in a model’s inputs, such as RSSI or distance.

In this section we improve the SR models’ performance by
minimizing errors using recursive Bayes filters.

A. Recursive Bayes Filters

Recursive Bayes filters are methods that combine a theo-
retical model of how a state estimate (e.g., vehicle’s speed
and direction) evolves over time, with a measurements model
that defines what measurements we should expect given an
estimated state. The most popular recursive Bayes filter is
the classic Kalman Filter (KF), an optimal state-estimator for
linear systems with additive Gaussian noise. Intuitively, a KF
applies a weighted average over the estimated state and the
expected state from the measurements, where the weight is
defined as the Kalman gain.

Our goal in using a Kalman filter is to build a state-space
model that takes advantage of vehicle distance, direction, and
speed to estimate throughput using the SR model. But, if
we include Eqs. (1), (2), and (5) in a state-space model,
we will have a non-linear system, breaking KF’s linearity
assumption. The Extended Kalman Filter (EKF) is a non-linear
version of the Kalman Filter, where a first-order Taylor series
approximation is used to linearize the system. But the use of
a first-order approximation may lead to the filter diverging
from an acceptable estimate. An alternative to EKF has been
proposed by Julier & Uhlmann [21]. It uses an unscented trans-
formation to linearize the system using a small set of chosen
points. The Unscented Kalman Filter (UKF) is equivalent to
a third-order Taylor-series expansion, severely reducing the
divergence probability relative to the EKF algorithm.

The UKF algorithm consists of a prediction step and a
correction/filtering step. In the prediction step, a state-space
model is used to predict the state for time t — defined by the
mean x−

t n-dimensional vector and the covariance matrix P−
t

— based on a set of sigma points that characterize the state
from t− 1. This can be expressed mathematically as:

x−
t =

2n∑
i=0

w
(m)
i f(Xi)

P−
t =

2n∑
i=0

w
(c)
i (f(Xi)− x−

t) (f(Xi)− x−
t)

T +Qt

(6)

, where X is a set of 2n sigma points, w(m) and w(c) are the
mean and covariance weights, f is the function for the state-
space model, and Qt is the process noise matrix. In some

systems we may extend the formulation to include control
inputs. The sigma points X and their weights represent the
non-linear distribution for the state in time t− 1 (see [21]).

In the correction step, UKF uses the set of measurements
for time t and the measurement model to correct the predicted
state from Eq. (6). The corrected state, described by the mean
vector xt and covariance matrix Pt, is given as:

Zt =

2n∑
i=0

w
(m)
i h(Xi)

St =

2n∑
i=0

w
(c)
i (h(Xi)−Zt) (h(Xi)−Zt)

T +Rt

Tt =

2n∑
i=0

w
(c)
i (Xi − x−

t) (Xi − x−
t)

T

Kt = Tt S
−1
t

xt = x−
t +Kt (zt −Zt)

Pt = (I −Kt Tt)P
−
t

(7)

, where Zt and St are the mean and covariance of the expected
measurement’s distribution given X sigma points, h is the
measurements model, Rt is the measurement noise matrix,
Tt is the covariance matrix between the sigma points and the
predicted state, zt is the measurements’ vector, and Kt is the
Kalman gain.

B. Filtered Estimation Models

To model our system using UKF, our state must represent
the set of input features for the SR models in Eqs. (1), (2),
and (5), as well as other available attributes associated with
said features. Considering that the testing dataset was collected
with a single connected user, the SR models used in the UKF
are simplified versions where Nusers = 1. That said, our state
vector xt is defined as:

xt =
[
lon, lat, v, θ, d, RSSI, tput

]
(8)

, where lon and lat are geographical coordinates, and θ is the
vehicle’s direction. The corresponding state-space model f is:

f(xt−1) =

lont = lont−1 +∆lon ∗ (180/π)
latt = latt−1 +∆lat ∗ (180/π)
vt = vt−1

θt = θt−1

dt = haversine(lont, latt)
RSSIt = fRSSI(dt, vt)
tputt = ftput(dt, vt, RSSIt)

(9)

, where

∆lon =
cos(θt−1) ∗ vt−1

R ∗ cos(latt−1 ∗ π
180)

, ∆lat =
sin(θt−1) ∗ vt−1

R

, with R being the earth’s radius, approximated as 6371 km.
In Eq. (9), throughput, represented by ftput, is given by the

simplified (i.e., Nusers = 1) SR models.
Speed and direction of movement are assumed constant, and

used to predict the vehicle’s current position from the previous

one. The distance between the vehicle and AP positions is
computed using the Haversine formula.

RSSI is given by fRSSI , which predicts the current RSSI
based on the predicted speed and distance. For 802.11ad
this function corresponds to the log-distance path loss model
defined in Eq. (4), used to generate synthetic RSSI values. For
802.11n and 802.11ac, we used the previously described SR
methodology to create two prediction models that dictate how
distance and speed influence RSSI:

RSSIn = 0.050 ∗ v − 2.739 ∗ log(d 3)

− 1.090 ∗
√
v + d− 23.22

(10)

RSSIac = −16.24− 12.43 ∗ log(d). (11)

To analyze these models’ performance, we compared them
against the log-distance path loss model of Eq. (4). The
Root-Mean-Squared Errors (RMSE) for the log-distance path
loss model were 32.46 and 25.80 dBm for 802.11n and ac,
respectively, but only 7.01 and 8.44 dBm for the SR models.

The measurement model h was implemented as an identity
function, i.e., measured values were kept unchanged. The
measurements vector zt has the same structure as xt in Eq. (8).

C. Noise Matrices

UKF is regulated by a process-noise matrix Qt and a
measurement-noise matrix Rt, which define the variance of
state and measurements. Incorrectly defining these matrices
may result in poor performance and even divergence.

While there are multiple ways to estimate noise matrices,
we followed a simple approach, relying on domain knowledge
and manual tuning. For simplicity, we expressed Qt and Rt

as diagonal matrices. This approach is bound to result in sub-
optimal performance, but serves as a fast way to implement
the system and demonstrate its potential.

The manual tuning of the noise matrices was conducted
based on the testing dataset [15], which introduces biases
when measuring the model’s accuracy. However, we expect
the introduced bias to be negligible since our approach will
naturally lead to a poorer choice of matrices compared to
more statistically-advanced approaches, such as adaptive filters
or the Autocovariance Least-Squares method proposed by
Odelson et al. [22].

VI. EVALUATION

In this section we test the models’ performance using the
Teixeira dataset, and compare our SR and UKF-SR models
with against classic ML methods.

A. SR and UKF-SR Models

To assess how SR and UKF-SR models estimate throughput,
we tested them using the testing dataset described in §III-A.

Fig. 5 compares the actual throughput measurements with
estimated throughput using the SR and UKF-SR models (with
both predicted x−

t and corrected xt values). The results show
that UKF-SR’s predictions of Eq. (6) are less accurate than
those made by SR alone, due to the simple state-space model
used and its dependence on values from time t− 1.

0

50

100
802.11n

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

802.11ac

0 200 400 600 800 1000 1200

time (s)

0

200

400

600
802.11ad

actual SR UKF Predicted UKF Corrected

Fig. 5: Estimated throughput using SR and UKF-SR models;
”UKF Predicted” corresponds to x−

t in Eq. (6), and ”UKF
Corrected” to xt in Eq. (7).

But, through the measurements model, the predicted
throughput is accurately corrected. By leveraging Kalman
filtering, we improved our estimation results by 8.33 % for
802.11n, 9.85 % for 802.11ac, and 13.94 % for 802.11ad.

B. Versus Machine Learning Models

To put our models’ performance into perspective, we bench-
marked them against common machine learning models avail-
able in popular software packages. The chosen models were

Multiple Linear Regression (MLR), Support-Vector Regres-
sion (SVR), Decision Trees (DT), Random Forests (RF), and
Shallow Neural Networks (SNN). They were trained following
a similar approach to that used for SR, where models go
through separate training, validation, and testing phases. But,
while for SR the validation step consisted on manually choos-
ing a model among those in the Pareto front, for ML we used
Bayesian optimization to maximize the models’ performance
by tuning their hyperparameters. These vary between models,
e.g., the number of neurons in a layer for SNN, and the
regularization value for and SVR model. The MLR model is
an exception, since it features no hyperparameters.

In Fig. 6 we show the empirical cumulative distribution
function (ECDF) plots for the models’ absolute errors. For
802.11n, the ECDF error curves are similar among all models,
with SR, depicted in orange, managing to compete with
Bayesian-optimized ML, and surpassing SNN, RF, and DT
models for errors smaller than 10 Mbps. The UKF-SR model,
highlighted in red, was the best-performing model, improving
upon the SR predictions for over 90 % of errors. Considering
802.11ac, two distinct groups can be observed: a better-
performing group consisting of SR, UKF-SR, RF, DT, and
Gaussian SVR models; and a worse-performing group com-
posed of Linear SVR, MLR, and SNN.

For 802.11ad, the models were trained using only samples
collected during client-AP connection periods, and tested con-
sidering both connected and disconnected periods. Synthetic
RSSI values were used, as per §IV. Due to the large proportion
of zero-throughput samples from disconnected periods, around
90 % of predictions were error-free. Thus, in Fig. 6 we
analyze the other 10 % of estimates, related to connected-
period samples. Performance across models varied less than
for 802.11ac, with the SR model showing good results, but
being surpassed by SNN, DT, and Gaussian SVR. However,
despite being based on SR, UKF-SR competed with the more
computationally demanding algorithms quite well.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
C

D
F

802.11n

0 50 100 150 200

Absolute Errors (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
802.11ac

0 100 200 300
0.9

0.92

0.94

0.96

0.98

1
802.11ad

SVM Gaussian SVM Linear NN RF DT MLR SR UKF-SR

Fig. 6: ECDF plots of the absolute out-sample errors for the ML, SR and UKF-SR models.

TABLE II: Performance results of the ML, SR and UKF-SR
models for 802.11n/ac/ad, considering RMSE.

Models 802.11n 802.11ac 802.11ad

RMSE % RMSE % RMSE %
MLR 13.77 (+19.43) 124.94 (+339.47) 51.90 (+32.70)
RF 12.46 (+08.07) 39.26 (+38.09) 50.92 (+30.20)
SNN 13.07 (+13.36) 129.02 (+353.82) 42.41 (+08.44)
DT 12.10 (+04.94) 41.77 (+46.92) 42.41 (+08.44)
SVR Gauss 12.76 (+10.67) 39.62 (+39.36) 38.70 (-01.05)
SVR Linear 13.40 (+16.22) 130.38 (+358.60) 116.09 (+196.83)
SVR 2D 14.42 (+25.07) 39.74 (+39.78) — —
SVR 3D 21.29 (+84.65) 39.95 (+40.52) 40.92 (+04.63)
SR 12.49 (+08.33) 31.23 (+09.85) 44.56 (+13.94)
UKF-SR 11.53 — 28.43 — 39.11 —

Table II shows the different models’ RMSE in both absolute
form, and as a percentage of a UKF-SR baseline. UKF-SR
was the most accurate model for 802.11n and ac, and the
second-best for 802.11ad, with RMSE values of 11.53, 28.43,
and 39.11 Mbps, respectively. For 802.11n, DT was second-
best, with an error 4.94 % higher than UKF-SR, followed by
the RF model with 8.07 %. SR was the second-best model
for 802.11ac, with an error 9.85 % higher than UKF-SR.
The third-best, RF, was significantly worse, with an error
38.09 % higher than UKF-SR. For 802.11ad, UKF-SR was
outperformed by the Gaussian SVR model, although by a
very small margin of 1.06 %. The third-best performing model
for 802.11ad was SVR 2D, with an error 4.63 % higher than
Guassian SVR.

VII. CONCLUSIONS

In this paper we explored the problem of throughput esti-
mation for Wi-Fi access networks in vehicular environments,
using nothing but passively-observable variables.

We used Symbolic Regression (SR) to create an initial
model, which we then extended using an Unscented Kalman
Filter (UKF), resulting in a model we call UKF-SR. Both
models were trained, validated and tested using data collected
from real-world vehicular experiments featuring a diversity
of Wi-Fi networks. Benchmarking against common machine
learning models showed the pure SR model to be competitive,
and the UKF-SR model to generally outperform them.

Given their simplicity, SR models are specially suited for
embedded systems, such as those that, due to CPU and
memory limitations, are unable to leverage more advanced
machine learning algorithms.

In the future, we plan to further refine the UKF-SR model
by implementing automated approaches for estimating UKF’s
process and measurement noise matrices. We predict that this
will make the model better adapt to different environments
and thus improve upon its already promising results.

In practice, throughput is also heavily influenced by the
number of stations sharing the access medium. In this in mind,
we also plan on extending our investigations to multi-user
scenarios.

REFERENCES

[1] M. Harris, “The radical scope of Tesla’s data hoard,” IEEE Spectrum,
October 2022.

[2] “Cisco annual internet report (2018-2023),” 2020,
(accessed on 2022-12-11). [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] J. G. P. Rodrigues, A. Aguiar, and J. Barros, “SenseMyCity: Crowd-
sourcing an Urban Sensor,” 2014. DOI: 10.48550/ARXIV.1412.2070

[4] R. Meireles, A. Rodrigues, A. Stanciu, A. Aguiar, and P. Steenkiste,
“Exploring Wi-Fi Network Diversity for Vehicle-To-Infrastructure Com-
munication,” in 2020 IEEE Vehicular Networking Conference (VNC),
2020. DOI: 10.1109/VNC51378.2020.9318407

[5] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin,
J. Rexford, and R. K. Sinha, “Can accurate predictions improve video
streaming in cellular networks?” in Proc. of the 16th International
Workshop on Mobile Computing Systems and Applications. ACM, 2015.
DOI: 10.1145/2699343.2699359

[6] Y. Liu and J. Y. B. Lee, “An Empirical Study of Throughput Prediction
in Mobile Data Networks,” in 2015 IEEE Global Communications Con-
ference (GLOBECOM), 2015. DOI: 10.1109/GLOCOM.2015.7417858

[7] B. Wei, W. Kawakami, K. Kanai, J. Katto, and S. Wang, “TRUST:
A TCP Throughput Prediction Method in Mobile Networks,” in 2018
IEEE Global Communications Conference (GLOBECOM), 2018. DOI:
10.1109/GLOCOM.2018.8647390

[8] M. Li, M. Claypool, and R. Kinicki, “WBest: A bandwidth es-
timation tool for IEEE 802.11 wireless networks,” in 2008 33rd
IEEE Conference on Local Computer Networks (LCN), 2008. DOI:
10.1109/LCN.2008.4664193

[9] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behav-
ior of the TCP Congestion Avoidance Algorithm,” SIGCOMM Comput.
Commun. Rev., vol. 27, no. 3, 1997. DOI: 10.1145/263932.264023

[10] A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, “Instanta-
neous throughput prediction in cellular networks: Which information
is needed?” in 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), 2017. DOI: 10.23919/INM.2017.7987345

[11] Outlines, “Car blueprints and vector drawings,” 2022, (accessed on
2022-06-16). [Online]. Available: https://getoutlines.com

[12] TP-Link, “AD7200 Multi-Band Wi-Fi Router Datasheet,” 2018,
(accessed on 2022-11-13). [Online]. Available: https://static.tp-
link.com/2018/201809/20180912/AD7200%202.0%20Datasheet.pdf

[13] D. Steinmetzer, D. Wegemer, and M. Hollick, “Talon Tools: The
Framework for Practical IEEE 802.11ad Research,” 2017, (accessed on
2022-05-30). [Online]. Available: https://seemoo.de/talon-tools

[14] “MikroElektronika GNSS 5 click,” 2022, (accessed on 2022-06-22).
[Online]. Available: https://www.mikroe.com/gnss-5-click

[15] D. Teixeira, R. Meireles, and A. Aguiar, “WiPerf Vehicular Wi-
Fi Performance Monitoring Dataset,” 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6761916

[16] O. K. Isik, J. Hong, I. Petrunin, and A. Tsourdos, “Integrity Analysis
for GPS-Based Navigation of UAVs in Urban Environment,” Robotics,
vol. 9, no. 3, 2020. DOI: 10.3390/robotics9030066

[17] R. Meireles, A. Rodrigues, A. Stanciu, A. Aguiar, and
P. Steenkiste, “A Dataset for Exploring Wi-Fi Network Diversity
in Vehicle-to-Infrastructure Communication,” 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.6884094

[18] D. P. Searson, “GPTIPS 2: An Open-Source Software Platform for Sym-
bolic Data Mining,” Handbook of Genetic Programming Applications,
2015. DOI: 10.1007/978-3-319-20883-1 22

[19] G. F. Smits and M. Kotanchek, Pareto-Front Exploitation in Symbolic
Regression. Springer US, 2005.

[20] J. Karedal, N. Czink, A. Paier, F. Tufvesson, and A. F. Molisch,
“Path Loss Modeling for Vehicle-to-Vehicle Communications,” IEEE
Transactions on Vehicular Technology, vol. 60, no. 1, 2011. DOI:
10.1109/TVT.2010.2094632

[21] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Signal Processing, Sensor Fusion, and Target
Recognition VI, I. Kadar, Ed., vol. 3068, International Society for Optics
and Photonics. SPIE, 1997. DOI: 10.1117/12.280797

[22] B. J. Odelson, M. R. Rajamani, and J. B. Rawlings, “A new autocovari-
ance least-squares method for estimating noise covariances,” Automatica,
vol. 42, no. 2, 2006. DOI: 10.1016/j.automatica.2005.09.006

