Programming in Standard ML

(Draft: Version 1.2 of 11.02.11.)

Robert Harper
Carnegie Mellon University

Spring Semester, 2011
Preface

This book is an introduction to programming with the Standard ML programming language. It began life as a set of lecture notes for Computer Science 15–212: Principles of Programming, the second semester of the introductory sequence in the undergraduate computer science curriculum at Carnegie Mellon University. It has subsequently been used in many other courses at Carnegie Mellon, and at a number of universities around the world. It is intended to supersede my Introduction to Standard ML, which has been widely circulated over the last ten years.

Standard ML is a formally defined programming language. The Definition of Standard ML (Revised) is the formal definition of the language. It is supplemented by the Standard ML Basis Library, which defines a common basis of types that are shared by all implementations of the language. Commentary on Standard ML discusses some of the decisions that went into the design of the first version of the language.

There are several implementations of Standard ML available for a wide variety of hardware and software platforms. The best-known compilers are Standard ML of New Jersey, MLton, Moscow ML, MLKit, and PolyML. These are all freely available on the worldwide web. Please refer to The Standard ML Home Page for up-to-date information on Standard ML and its implementations.

Numerous people have contributed directly and indirectly to this text. I am especially grateful to the following people for their helpful comments and suggestions: Brian Adkins, Nels Beckman, Marc Bezem, James Bostock, Terrence Brannon, Franck van Breugel, Chris Capel, Matthew William Cox, Karl Crary, Yaakov Eisenberg, Matt Elder, Mike Erdmann, Matthias Felleisen, Andrei Formiga, Stephen Harris, Nils Jähnig, Joel Jones, David Koppstein, John Lafferty, Johannes Laire, Flavio Lerda, Daniel R. Licata, Adrian Moos, Bryce Nichols, Michael Norrish, Arthur J. O’Dwyer,
Frank Pfenning, Chris Stone, Dave Swasey, Michael Velten, Johan Wallen, Scott Williams, and Jeannette Wing. Richard C. Cobbe helped with font selection. I am also grateful to the many students of 15-212 who used these notes and sent in their suggestions over the years.

These notes are a work in progress. Corrections, comments and suggestions are most welcome.
Contents

Preface ii

I Overview

1 Programming in Standard ML

1.1 A Regular Expression Package 3

1.2 Sample Code 12

II The Core Language

2 Types, Values, and Effects 15

2.1 Evaluation and Execution 15

2.2 The ML Computation Model 16

2.2.1 Type Checking 17

2.2.2 Evaluation 19

2.3 Types, Types, Types 21

2.4 Type Errors .. 23

3 Declarations ... 24

3.1 Variables .. 24

3.2 Basic Bindings 25

3.2.1 Type Bindings 25

3.2.2 Value Bindings 26

3.3 Compound Declarations 27

3.4 Limiting Scope 28
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 Typing and Evaluation</td>
<td>29</td>
</tr>
<tr>
<td>3.6 Sample Code</td>
<td>32</td>
</tr>
<tr>
<td>4 Functions</td>
<td>33</td>
</tr>
<tr>
<td>4.1 Functions as Templates</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Functions and Application</td>
<td>34</td>
</tr>
<tr>
<td>4.3 Binding and Scope, Revisited</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Sample Code</td>
<td>39</td>
</tr>
<tr>
<td>5 Products and Records</td>
<td>40</td>
</tr>
<tr>
<td>5.1 Product Types</td>
<td>40</td>
</tr>
<tr>
<td>5.1.1 Tuples</td>
<td>40</td>
</tr>
<tr>
<td>5.1.2 Tuple Patterns</td>
<td>42</td>
</tr>
<tr>
<td>5.2 Record Types</td>
<td>45</td>
</tr>
<tr>
<td>5.3 Multiple Arguments and Multiple Results</td>
<td>48</td>
</tr>
<tr>
<td>5.4 Sample Code</td>
<td>50</td>
</tr>
<tr>
<td>6 Case Analysis</td>
<td>51</td>
</tr>
<tr>
<td>6.1 Homogeneous and Heterogeneous Types</td>
<td>51</td>
</tr>
<tr>
<td>6.2 Clausal Function Expressions</td>
<td>52</td>
</tr>
<tr>
<td>6.3 Booleans and Conditionals, Revisited</td>
<td>53</td>
</tr>
<tr>
<td>6.4 Exhaustiveness and Redundancy</td>
<td>54</td>
</tr>
<tr>
<td>6.5 Sample Code</td>
<td>56</td>
</tr>
<tr>
<td>7 Recursive Functions</td>
<td>57</td>
</tr>
<tr>
<td>7.1 Self-Reference and Recursion</td>
<td>58</td>
</tr>
<tr>
<td>7.2 Iteration</td>
<td>61</td>
</tr>
<tr>
<td>7.3 Inductive Reasoning</td>
<td>62</td>
</tr>
<tr>
<td>7.4 Mutual Recursion</td>
<td>65</td>
</tr>
<tr>
<td>7.5 Sample Code</td>
<td>66</td>
</tr>
<tr>
<td>8 Type Inference and Polymorphism</td>
<td>67</td>
</tr>
<tr>
<td>8.1 Type Inference</td>
<td>67</td>
</tr>
<tr>
<td>8.2 Polymorphic Definitions</td>
<td>70</td>
</tr>
<tr>
<td>8.3 Overloading</td>
<td>73</td>
</tr>
<tr>
<td>8.4 Sample Code</td>
<td>76</td>
</tr>
</tbody>
</table>
CONTENTS

9 Programming with Lists 77
 9.1 List Primitives 77
 9.2 Computing With Lists 79

10 Concrete Data Types 82
 10.1 Datatype Declarations 82
 10.2 Non-Recursive Datatypes 83
 10.3 Recursive Datatypetypes 85
 10.4 Heterogeneous Data Structures 88
 10.5 Abstract Syntax 89

11 Higher-Order Functions 92
 11.1 Functions as Values 92
 11.2 Binding and Scope 93
 11.3 Returning Functions 95
 11.4 Patterns of Control 97
 11.5 Staging 99

12 Exceptions 103
 12.1 Exceptions as Errors 104
 12.1.1 Primitive Exceptions 104
 12.1.2 User-Defined Exceptions 105
 12.2 Exception Handlers 107
 12.3 Value-Carrying Exceptions 110
Part I

Overview
Standard ML is a type-safe programming language that embodies many innovative ideas in programming language design. It is a statically typed language, with an extensible type system. It supports polymorphic type inference, which all but eliminates the burden of specifying types of variables and greatly facilitates code re-use. It provides efficient automatic storage management for data structures and functions. It encourages functional (effect-free) programming where appropriate, but allows imperative (effect-ful) programming where necessary. It facilitates programming with recursive and symbolic data structures by supporting the definition of functions by pattern matching. It features an extensible exception mechanism for handling error conditions and effecting non-local transfers of control. It provides a richly expressive and flexible module system for structuring large programs, including mechanisms for enforcing abstraction, imposing hierarchical structure, and building generic modules. It is portable across platforms and implementations because it has a precise definition. It provides a portable standard basis library that defines a rich collection of commonly-used types and routines.

Many implementations go beyond the standard to provide experimental language features, extensive libraries of commonly-used routines, and useful program development tools. Details can be found with the documentation for your compiler, but here’s some of what you may expect. Most implementations provide an interactive system supporting on-line program development, including tools for compiling, linking, and analyzing the behavior of programs. A few implementations are “batch compilers” that rely on the ambient operating system to manage the construction of large programs from compiled parts. Nearly every compiler generates native machine code, even when used interactively, but some also generate code for a portable abstract machine. Most implementations support separate compilation and provide tools for managing large systems and shared libraries. Some implementations provide tools for tracing and stepping programs; many provide tools for time and space profiling. Most implementations supplement the standard basis library with a rich collection of handy components such as dictionaries, hash tables, or interfaces to the ambient operating system. Some implementations support language extensions such as support for concurrent programming (using message-passing or locking), richer forms of modularity constructs, and support for “lazy” data structures.
Part II

The Core Language
All Standard ML is divided into two parts. The first part, the core language, comprises the fundamental programming constructs of the language — the primitive types and operations, the means of defining and using functions, mechanisms for defining new types, and so on. The second part, the module language, comprises the mechanisms for structuring programs into separate units and is described in Part III. Here we introduce the core language.
Chapter 2

Types, Values, and Effects

2.1 Evaluation and Execution

Most familiar programming languages, such as C or Java, are based on an imperative model of computation. Programs are thought of as specifying a sequence of commands that modify the memory of the computer. Each step of execution examines the current contents of memory, performs a simple computation, modifies the memory, and continues with the next instruction. The individual commands are executed for their effect on the memory (which we may take to include both the internal memory and registers and the external input/output devices). The progress of the computation is controlled by evaluation of expressions, such as boolean tests or arithmetic operations, that are executed for their value. Conditional commands branch according to the value of some expression. Many languages maintain a distinction between expressions and commands, but often (in C, for example) expressions may also modify the memory, so that even expression evaluation has an effect.

Computation in ML is of a somewhat different nature. The emphasis in ML is on computation by evaluation of expressions, rather than execution of commands. The idea of computation is as a generalization of your experience from high school algebra in which you are given a polynomial in a variable x and are asked to calculate its value at a given value of x. We proceed by “plugging in” the given value for x, and then, using the rules of arithmetic, determine the value of the polynomial. The evaluation model of computation used in ML is based on the same idea, but rather than re-
strict ourselves to arithmetic operations on the reals, we admit a richer variety of values and a richer variety of primitive operations on them.

The evaluation model of computation enjoys several advantages over the more familiar imperative model. Because of its close relationship to mathematics, it is much easier to develop mathematical techniques for reasoning about the behavior of programs. These techniques are important tools for helping us to ensure that programs work properly without having to resort to tedious testing and debugging that can only show the presence of errors, never their absence. Moreover, they provide important tools for documenting the reasoning that went into the formulation of a program, making the code easier to understand and maintain.

What is more, the evaluation model subsumes the imperative model as a special case. Execution of commands for the effect on memory can be seen as a special case of evaluation of expressions by introducing primitive operations for allocating, accessing, and modifying memory. Rather than forcing all aspects of computation into the framework of memory modification, we instead take expression evaluation as the primary notion. Doing so allows us to support imperative programming without destroying the mathematical elegance of the evaluation model for programs that don’t use memory. As we will see, it is quite remarkable how seldom memory modification is required. Nevertheless, the language provides for storage-based computation for those few times that it is actually necessary.

2.2 The ML Computation Model

Computation in ML consists of evaluation of expressions. Each expression has three important characteristics:

- It may or may not have a type.
- It may or may not have a value.
- It may or may not engender an effect.

These characteristics are all that you need to know to compute with an expression.

The type of an expression is a description of the value it yields, should it yield a value at all. For example, for an expression to have type int is to
say that its value (should it have one) is a number, and for an expression
to have type \texttt{real} is to say that its value (if any) is a floating point number.
In general we can think of the type of an expression as a “prediction” of
the form of the value that it has, should it have one. Every expression is
required to have at least one type; those that do are said to be \textit{well-typed}.
Those without a type are said to be \textit{ill-typed}; they are considered ineligible
for evaluation. The \textit{type checker} determines whether or not an expression
is well-typed, rejecting with an error those that are not.

A well-typed expression is evaluated to determine its value, if indeed
it has one. An expression can fail to have a value because its evaluation
never terminates or because it raises an exception, either because of a run-
time fault such as division by zero or because some programmer-defined
condition is signalled during its evaluation. If an expression has a value,
the form of that value is predicted by its type. For example, if an expres-
sion evaluates to a value \(v \) and its type is \texttt{bool}, then \(v \) must be either \texttt{true}
or \texttt{false}; it cannot be, say, 17 or 3.14. The \textit{soundness} of the type system
ensures the accuracy of the predictions made by the type checker.

Evaluation of an expression might also engender an \textit{effect}. Effects in-
clude such phenomena as raising an exception, modifying memory, per-
forming input or output, or sending a message on the network. It is impor-
tant to note that the type of an expression says nothing about its possible
effects! An expression of type \texttt{int} might well display a message on the
screen before returning an integer value. This possibility is not accounted
for in the type of the expression, which classifies only its value. For this
reason effects are sometimes called \textit{side effects}, to stress that they happen
“off to the side” during evaluation, and are not part of the value of the
expression. We will ignore effects until \textit{chapter 13}. For the time being we
will assume that all expressions are \textit{effect-free}, or \textit{pure}.

2.2.1 Type Checking

What is a type? What types are there? Generally speaking, a type is de-
finied by specifying three things:

- a name for the type,
- the values of the type, and
- the operations that may be performed on values of the type.
2.2 The ML Computation Model

Often the division of labor into values and operations is not completely clear-cut, but it nevertheless serves as a very useful guideline for describing types.

Let’s consider first the type of integers. Its name is int. The values of type int are the numerals 0, 1, −1, 2, −2, and so on. (Note that negative numbers are written with a prefix tilde, rather than a minus sign!) Operations on integers include addition, +, subtraction, −, multiplication, *, quotient, div, and remainder, mod. Arithmetic expressions are formed in the familiar manner, for example, 3*2+6, governed by the usual rules of precedence. Parentheses may be used to override the precedence conventions, just as in ordinary mathematical practice. Thus the preceding expression may be equivalently written as (3*2)+6, but we may also write 3*(2+6) to override the default precedences.

The formation of expressions is governed by a set of typing rules that define the types of expressions in terms of the types of their constituent expressions (if any). The typing rules are generally quite intuitive since they are consistent with our experience in mathematics and in other programming languages. In their full generality the rules are somewhat involved, but we will sneak up on them by first considering only a small fragment of the language, building up additional machinery as we go along.

Here are some simple arithmetic expressions, written using infix notation for the operations (meaning that the operator comes between the arguments, as is customary in mathematics):

3
3 + 4
4 div 3
4 mod 3

Each of these expressions is well-formed; in fact, they each have type int. This is indicated by a typing assertion of the form exp : typ, which states that the expression exp has the type typ. A typing assertion is said to be valid iff the expression exp does indeed have the type typ. The following are all valid typing assertions:

3 : int
3 + 4 : int
4 div 3 : int
4 mod 3 : int
Why are these typing assertions valid? In the case of the value 3, it is an axiom that integer numerals have integer type. What about the expression $3+4$? The addition operation takes two arguments, each of which must have type int. Since both arguments in fact have type int, it follows that the entire expression is of type int. For more complex cases we reason analogously, for example, deducing that $(3+4) \div (2+3) : \text{int}$ by observing that $(3+4) : \text{int}$ and $(2+3) : \text{int}$.

The reasoning involved in demonstrating the validity of a typing assertion may be summarized by a typing derivation consisting of a nested sequence of typing assertions, each justified either by an axiom, or a typing rule for an operation. For example, the validity of the typing assertion $(3+7) \div 5 : \text{int}$ is justified by the following derivation:

1. $(3+7) : \text{int}$, because

 (a) $3 : \text{int}$ because it is an axiom

 (b) $7 : \text{int}$ because it is an axiom

 (c) the arguments of $+$ must be integers, and the result of $+$ is an integer

2. $5 : \text{int}$ because it is an axiom

3. the arguments of \div must be integers, and the result is an integer

The outermost steps justify the assertion $(3+4) \div 5 : \text{int}$ by demonstrating that the arguments each have type int. Recursively, the inner steps justify that $(3+4) : \text{int}$.

2.2.2 Evaluation

Evaluation of expressions is defined by a set of evaluation rules that determine how the value of a compound expression is determined as a function of the values of its constituent expressions (if any). Since the value of an operator is determined by the values of its arguments, ML is sometimes said to be a call-by-value language. While this may seem like the only sensible way to define evaluation, we will see in chapter 15 that this need not be the case — some operations may yield a value without evaluating their arguments. Such operations are sometimes said to be lazy, to distinguish
2.2 The ML Computation Model

them from *eager* operations that require their arguments to be evaluated before the operation is performed.

An *evaluation assertion* has the form \(\text{exp} \downarrow \text{val} \). This assertion states that the expression \(\text{exp} \) has value \(\text{val} \). It should be intuitively clear that the following evaluation assertions are valid.

\[
\begin{align*}
5 & \downarrow 5 \\
2+3 & \downarrow 5 \\
(2+3) \div (1+4) & \downarrow 1
\end{align*}
\]

An evaluation assertion may be justified by an *evaluation derivation*, which is similar to a typing derivation. For example, we may justify the assertion \((3+7) \div 5 \downarrow 2\) by the derivation

1. \((3+7) \downarrow 10\) because
 (a) \(3 \downarrow 3\) because it is an axiom
 (b) \(7 \downarrow 7\) because it is an axiom
 (c) Adding 3 to 7 yields 10.

2. \(5 \downarrow 5\) because it is an axiom

3. Dividing 10 by 5 yields 2.

Note that is an axiom that a numeral evaluates to itself; numerals are fully-evaluated expressions, or *values*. Second, the rules of arithmetic are used to determine that adding 3 and 7 yields 10.

Not every expression has a value. A simple example is the expression \(5 \div 0\), which is undefined. If you attempt to evaluate this expression it will incur a run-time error, reflecting the erroneous attempt to find the number \(n\) that, when multiplied by 0, yields 5. The error is expressed in ML by raising an *exception*; we will have more to say about exceptions in chapter 12. Another reason that a well-typed expression might not have a value is that the attempt to evaluate it leads to an infinite loop. We don’t yet have the machinery in place to define such expressions, but we will soon see that it is possible for an expression to *diverge*, or run forever, when evaluated.
2.3 Types, Types, Types

What types are there besides the integers? Here are a few useful base types of ML:

- **Type name**: real
 - **Values**: 3.14, 2.17, 0.1E6, ...
 - **Operations**: +, -, *, /, =, <, ...

- **Type name**: char
 - **Values**: #"a", #"b", ...
 - **Operations**: ord, chr, =, <, ...

- **Type name**: string
 - **Values**: "abc", "1234", ...
 - **Operations**: ^, size, =, <, ...

- **Type name**: bool
 - **Values**: true, false
 - **Operations**: if exp then exp₁ else exp₂

There are many, many (in fact, infinitely many!) others, but these are enough to get us started. (See Appendix A for a complete description of the primitive types of ML, including the ones given above.)

Notice that some of the arithmetic operations for real numbers are written the same way as for the corresponding operation on integers. For example, we may write 3.1+2.7 to perform a floating point addition of two floating point numbers. This is called overloading; the addition operation is said to be overloaded at the types int and real. In an expression involving addition the type checker tries to resolve which form of addition (fixed point or floating point) you mean. If the arguments are int’s, then fixed point addition is used; if the arguments are real’s, then floating addition is used; otherwise an error is reported.¹ Note that ML does not perform any implicit conversions between types! For example, the expression

¹If the type of the arguments cannot be determined, the type defaults to int.
3+3.14 is rejected as ill-formed! If you intend floating point addition, you must write instead \texttt{real(3)+3.14}, which converts the integer 3 to its floating point representation before performing the addition. If, on the other hand, you intend integer addition, you must write \texttt{3+round(3.14)}, which converts 3.14 to an integer by rounding before performing the addition.

Finally, note that floating point division is a \textit{different} operation from integer quotient! Thus we write \texttt{3.1/2.7} for the result of dividing 3.1 by 2.7, which results in a floating point number. We reserve the operator \texttt{div} for integers, and use \texttt{/} for floating point division.

The \textit{conditional expression}

\begin{verbatim}
 if \texttt{exp} then \texttt{exp}_1 \texttt{else} \texttt{exp}_2
\end{verbatim}

is used to discriminate on a Boolean value. It has type \texttt{typ} if \texttt{exp} has type \texttt{bool} and both \texttt{exp}_1 and \texttt{exp}_2 have type \texttt{typ}. Notice that both “arms” of the conditional must have the same type! It is evaluated by first evaluating \texttt{exp}, then proceeding to evaluate either \texttt{exp}_1 or \texttt{exp}_2, according to whether the value of \texttt{exp} is \texttt{true} or \texttt{false}. For example,

\begin{verbatim}
 if 1<2 then "less" \texttt{else} "greater"
\end{verbatim}

evaluates to \texttt{"less"} since the value of the expression \texttt{1<2} is \texttt{true}.

Note that the expression

\begin{verbatim}
 if 1<2 then 0 \texttt{else} (1 \texttt{div} 0)
\end{verbatim}

evaluates to 0, even though \texttt{1 div 0} incurs a run-time error. This is because evaluation of the conditional proceeds \texttt{either} to the \texttt{then} clause or to the \texttt{else} clause, depending on the outcome of the boolean test. Whichever clause is evaluated, the other is simply discarded without further consideration.

Although we may, in fact, test equality of two boolean expressions, it is rarely useful to do so. Beginners often write conditionals of the form

\begin{verbatim}
 if \texttt{exp} = \texttt{true} then \texttt{exp}_1 \texttt{else} \texttt{exp}_2.
\end{verbatim}

But this is equivalent to the simpler expression

\begin{verbatim}
 if \texttt{exp} then \texttt{exp}_1 \texttt{else} \texttt{exp}_2.
\end{verbatim}

Similarly, rather than write
2.4 Type Errors

if $\text{exp} = \text{false}$ then exp_1 else exp_2,

it is better to write

if not exp then exp_1 else exp_2

or, better yet, just

if exp then exp_2 else exp_1.

2.4 Type Errors

Now that we have more than one type, we have enough rope to hang ourselves by forming \textit{ill-typed} expressions. For example, the following expressions are not well-typed:

\begin{verbatim}
size 45
"1" + 1
"2" ^ "1"
3.14 + 2
\end{verbatim}

In each case we are “misusing” an operator with arguments of the wrong type.

This raises a natural question: is the following expression well-typed or not?

if 1<2 then 0 else ("abc"+4)

Since the boolean test will come out \texttt{true}, the \texttt{else} clause will never be executed, and hence need not be constrained to be well-typed. While this reasoning is sensible for such a simple example, in general it is impossible for the type checker to determine the outcome of the boolean test during type checking. To be safe the type checker “assumes the worst” and insists that both clauses of the conditional be well-typed, and in fact have the \textit{same} type, to ensure that the conditional expression can be given a type, namely that of both of its clauses.
Chapter 3

Declarations

3.1 Variables

Just as in any other programming language, values may be assigned to variables, which may then be used in expressions to stand for that value. However, in sharp contrast to most familiar languages, variables in ML do not vary! A value may be bound to a variable using a construct called a value binding. Once a variable is bound to a value, it is bound to it for life; there is no possibility of changing the binding of a variable once it has been bound. In this respect variables in ML are more akin to variables in mathematics than to variables in languages such as C.

A type may also be bound to a type constructor using a type binding. A bound type constructor stands for the type bound to it, and can never stand for any other type. For this reason a type binding is sometimes called a type abbreviation — the type constructor stands for the type to which it is bound.\(^1\)

A value or type binding introduces a “new” variable or type constructor, distinct from all others of that class, for use within its range of significance, or scope. Scoping in ML is static, or lexical, meaning that the range of significance of a variable or type constructor is determined by the program text, not by the order of evaluation of its constituent expressions. (Languages with dynamic scope adopt the opposite convention.) For the time being variables and type constructors have global scope, meaning that

\(^1\)By the same token a value binding might also be called a value abbreviation, but for some reason it never is.
the range of significance of the variable or type constructor is the “rest” of the program — the part that lexically follows the binding. However, we will soon introduce mechanisms for limiting the scopes of variables or type constructors to a given expression.

3.2 Basic Bindings

3.2.1 Type Bindings

Any type may be given a name using a type binding. At this stage we have so few types that it is hard to justify binding type names to identifiers, but we’ll do it anyway because we’ll need it later. Here are some examples of type bindings:

\[
\text{type float} = \text{real} \\
\text{type count} = \text{int} \, \text{and average} = \text{real}
\]

The first type binding introduces the type constructor float, which subsequently is synonymous with real. The second introduces two type constructors, count and average, which stand for int and real, respectively.

In general a type binding introduces one or more new type constructors simultaneously in the sense that the definitions of the type constructors may not involve any of the type constructors being defined. Thus a binding such as

\[
\text{type float} = \text{real} \, \text{and average} = \text{float}
\]

is nonsensical (in isolation) since the type constructors float and average are introduced simultaneously, and hence cannot refer to one another.

The syntax for type bindings is

\[
\text{type } \text{tycon}_1 = \text{typ}_1 \\
\text{and } \ldots \\
\text{and } \text{tycon}_n = \text{typ}_n
\]

where each \(\text{tycon}_i \) is a type constructor and each \(\text{typ}_i \) is a type expression.
3.2 Basic Bindings

3.2.2 Value Bindings

A value may be given a name using a value binding. Here are some examples:

val m : int = 3+2
val pi : real = 3.14 and e : real = 2.17

The first binding introduces the variable m, specifying its type to be int and its value to be 5. The second introduces two variables, pi and e, simultaneously, both having type real, and with pi having value 3.14 and e having value 2.17. Notice that a value binding specifies both the type and the value of a variable.

The syntax of value bindings is

val var_1 : typ_1 = exp_1
and ...
and var_n : typ_n = exp_n,

where each var_i is a variable, each typ_i is a type expression, and each exp_i is an expression.

A value binding of the form

val var : typ = exp

is type-checked by ensuring that the expression exp has type typ. If not, the binding is rejected as ill-formed. If so, the binding is evaluated using the bind-by-value rule: first exp is evaluated to obtain its value val, then val is bound to var. If exp does not have a value, then the declaration does not bind anything to the variable var.

The purpose of a binding is to make a variable available for use within its scope. In the case of a type binding we may use the type variable introduced by that binding in type expressions occurring within its scope. For example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type constructor float is bound to the type real, the type of the expression 3.14. Similarly, we may make use of the variable introduced by a value binding in value expressions occurring within its scope.

Continuing from the preceding binding, we may use the expression
Math.sin pi
to stand for 0.0 (approximately), and we may bind this value to a variable by writing
val x : float = Math.sin pi

As these examples illustrate, type checking and evaluation are context dependent in the presence of type and value bindings since we must refer to these bindings to determine the types and values of expressions. For example, to determine that the above binding for x is well-formed, we must consult the binding for pi to determine that it has type float, consult the binding for float to determine that it is synonymous with real, which is necessary for the binding of x to have type float.

The rough-and-ready rule for both type-checking and evaluation is that a bound variable or type constructor is implicitly replaced by its binding prior to type checking and evaluation. This is sometimes called the substitution principle for bindings. For example, to evaluate the expression Math.cos x in the scope of the above declarations, we first replace the occurrence of x by its value (approximately 0.0), then compute as before, yielding (approximately) 1.0. Later on we will have to refine this simple principle to take account of more sophisticated language features, but it is useful nonetheless to keep this simple idea in mind.

3.3 Compound Declarations

Bindings may be combined to form declarations. A binding is an atomic declaration, even though it may introduce many variables simultaneously. Two declarations may be combined by sequential composition by simply writing them one after the other, optionally separated by a semicolon. Thus we may write the declaration

```mermaid
seq
  dec1
  ...
  decn
```

which binds m to 5 and n to 25. Subsequently, we may evaluate m+n to obtain the value 30. In general a sequential composition of declarations has the form dec₁ ⋯ decₙ, where n is at least 2. The scopes of these declarations...
are nested within one another: the scope of dec_1 includes dec_2, \ldots, dec_n, the scope of dec_2 includes dec_3, \ldots, dec_n, and so on.

One thing to keep in mind is that binding is not assignment. The binding of a variable never changes; once bound to a value, it is always bound to that value (within the scope of the binding). However, we may shadow a binding by introducing a second binding for a variable within the scope of the first binding. Continuing the above example, we may write

```ml
val n : real = 2.17
```

to introduce a new variable n with both a different type and a different value than the earlier binding. The new binding eclipses the old one, which may then be discarded since it is no longer accessible. (Later on, we will see that in the presence of higher-order functions shadowed bindings are not always discarded, but are preserved as private data in a closure. One might say that old bindings never die, they just fade away.)

3.4 Limiting Scope

The scope of a variable or type constructor may be delimited by using `let` expressions and `local` declarations. A `let` expression has the form

```
let dec in exp end
```

where `dec` is any declaration and `exp` is any expression. The scope of the declaration `dec` is limited to the expression `exp`. The bindings introduced by `dec` are discarded upon completion of evaluation of `exp`.

Similarly, we may limit the scope of one declaration to another declaration by writing

```
local dec in dec' end
```

The scope of the bindings in `dec` is limited to the declaration `dec'`. After processing `dec'`, the bindings in `dec` may be discarded.

The value of a `let` expression is determined by evaluating the declaration part, then evaluating the expression relative to the bindings introduced by the declaration, yielding this value as the overall value of the `let` expression. An example will help clarify the idea:
3.5 Typing and Evaluation

```ml
let
  val m : int = 3
  val n : int = m*m
in
  m*n
end
```

This expression has type int and value 27, as you can readily verify by first calculating the bindings for `m` and `n`, then computing the value of `m*n` relative to these bindings. The bindings for `m` and `n` are local to the expression `m*n`, and are not accessible from outside the expression.

If the declaration part of a `let` expression eclipses earlier bindings, the ambient bindings are restored upon completion of evaluation of the `let` expression. Thus the following expression evaluates to 54:

```ml
val m : int = 2
val r : int =
  let
    val m : int = 3
    val n : int = m*m
  in
    m*n
  end * m
```

The binding of `m` is temporarily overridden during the evaluation of the `let` expression, then restored upon completion of this evaluation.

3.5 Typing and Evaluation

To complete this chapter, let’s consider in more detail the context-sensitivity of type checking and evaluation in the presence of bindings. The key ideas are:

- Type checking must take account of the declared type of a variable.
- Evaluation must take account of the declared value of a variable.

This is achieved by maintaining *environments* for type checking and evaluation. The *type environment* records the types of variables; the *value
environment records their values. For example, after processing the compound declaration

```plaintext
val m : int = 0
val x : real = Math.sqrt(2.0)
val c : char = #"a"
```

the type environment contains the information

```plaintext
val m : int
val x : real
val c : char
```

and the value environment contains the information

```plaintext
val m = 0
val x = 1.414
val c = #"a"
```

In a sense the value declarations have been divided in “half”, separating the type from the value information.

Thus we see that value bindings have significance for both type checking and evaluation. In contrast type bindings have significance only for type checking, and hence contribute only to the type environment. A type binding such as

```plaintext
type float = real
```

is recorded in its entirety in the type environment, and no change is made to the value environment. Subsequently, whenever we encounter the type constructor `float` in a type expression, it is replaced by `real` in accordance with the type binding above.

In chapter 2 we said that a typing assertion has the form `exp : typ`, and that an evaluation assertion has the form `exp \Downarrow val`. While two-place typing and evaluation assertions are sufficient for closed expressions (those without variables), we must extend these relations to account for open expressions (those with variables). Each must be equipped with an environment recording information about type constructors and variables introduced by declarations.

Typing assertions are generalized to have the form
3.5 Typing and Evaluation

\[\textit{typenv} \vdash \textit{exp} : \textit{typ} \]

where \textit{typenv} is a \textit{type environment} that records the bindings of type constructors and the types of variables that may occur in \textit{exp}.\(^2\) We may think of \textit{typenv} as a sequence of specifications of one of the following two forms:

1. \texttt{type typvar = typ}
2. \texttt{val var : typ}

Note that the second form does not include the binding for \textit{var}, only its type!

Evaluation assertions are generalized to have the form

\[\textit{valenv} \vdash \textit{exp} \downarrow \textit{val} \]

where \textit{valenv} is a \textit{value environment} that records the bindings of the variables that may occur in \textit{exp}. We may think of \textit{valenv} as a sequence of specifications of the form

\texttt{val var = val}

that bind the value \textit{val} to the variable \textit{var}.

Finally, we also need a new assertion, called \textit{type equivalence}, that determines when two types are equivalent, relative to a type environment. This is written

\[\textit{typenv} \vdash \textit{typ}_1 \equiv \textit{typ}_2 \]

Two types are equivalent iff they are the same when the type constructors defined in \textit{typenv} are replaced by their bindings.

The primary use of a type environment is to record the types of the value variables that are available for use in a given expression. This is expressed by the following axiom:

\[\ldots \texttt{val var : typ} \ldots \vdash \texttt{var : typ} \]

\(^2\)The \textit{turnstile} symbol, “\(\vdash\)”, is simply a punctuation mark separating the type environment from the expression and its type.
In words, if the specification \(\text{val} \ var : \text{typ} \) occurs in the type environment, then we may conclude that the variable \(var \) has type \(\text{typ} \). This rule glosses over an important point. In order to account for shadowing we require that the rightmost specification govern the type of a variable. That way re-binding of variables with the same name but different types behaves as expected.

Similarly, the evaluation relation must take account of the value environment. Evaluation of variables is governed by the following axiom:

\[
\ldots \text{val} \ var = \text{val} \ldots \vdash \var \downarrow \text{val}
\]

Here again we assume that the \(\text{val} \) specification is the rightmost one governing the variable \(var \) to ensure that the scoping rules are respected.

The role of the type equivalence assertion is to ensure that type constructors always stand for their bindings. This is expressed by the following axiom:

\[
\ldots \text{type} \ \text{typvar} = \text{typ} \ldots \vdash \text{typvar} \equiv \text{typ}
\]

Once again, the rightmost specification for \(\text{typvar} \) governs the assertion.
Chapter 4

Functions

4.1 Functions as Templates

So far we just have the means to calculate the values of expressions, and to bind these values to variables for future reference. In this chapter we will introduce the ability to abstract the data from a calculation, leaving behind the bare pattern of the calculation. This pattern may then be instantiated as often as you like so that the calculation may be repeated with specified data values plugged in.

For example, consider the expression $2 \times (3 + 4)$. The data might be taken to be the values 2, 3, and 4, leaving behind the pattern $\Box \times (\Box + \Box)$, with “holes” where the data used to be. We might equally well take the data to just be 2 and 3, and leave behind the pattern $\Box \times (\Box + 4)$. Or we might even regard \times and $+$ as the data, leaving $2 \times (3 \times 4)$ as the pattern! What is important is that a complete expression can be recovered by filling in the holes with chosen data.

Since a pattern can contain many different holes that can be independently instantiated, it is necessary to give names to the holes so that instantiation consists of plugging in a given value for all occurrences of a name in an expression. These names are, of course, just variables, and instantiation is just the process of substituting a value for all occurrences of a variable in a given expression. A pattern may therefore be viewed as a function of the variables that occur within it; the pattern is instantiated by applying the function to argument values.

This view of functions is similar to our experience from high school
4.2 Functions and Application

algebra. In algebra we manipulate polynomials such as $x^2 + 2x + 1$ as a form of expression denoting a real number, with the variable x representing a fixed, but unknown, quantity. (Indeed, variables in algebra are sometimes called unknowns, or indeterminates.) It is also possible to think of a polynomial as a function on the real line: given a real number x, a polynomial determines a real number y computed by the given combination of arithmetic operations. Indeed, we sometimes write equations such as $f(x) = x^2 + 2x + 1$, to stand for the function f determined by the polynomial. In the univariate case we can get away with just writing the polynomial for the function, but in the multivariate case we must be more careful: we may regard the polynomial $x^2 + 2xy + y^2$ to be a function of x, a function of y, or a function of both x and y. In these cases we write $f(x) = x^2 + 2xy + y^2$ when x varies and y is held fixed, and $g(y) = x^2 + 2xy + y^2$ when y varies for fixed x, and $h(x,y) = x^2 + 2xy + y^2$, when both vary jointly.

In algebra it is usually left implicit that the variables x and y range over the real numbers, and that f, g, and h are functions on the real line. However, to be fully explicit, we sometimes write something like

$$f : \mathbb{R} \rightarrow \mathbb{R} : x \in \mathbb{R} \mapsto x^2 + 2x + 1$$

to indicate that f is a function on the reals sending $x \in \mathbb{R}$ to $x^2 + 2x + 1 \in \mathbb{R}$. This notation has the virtue of separating the name of the function, f, from the function itself, the mapping that sends $x \in \mathbb{R}$ to $x^2 + 2x + 1$. It also emphasizes that functions are a kind of “value” in mathematics (namely, a certain set of ordered pairs), and that the variable f is bound to that value (i.e., that set) by the declaration. This viewpoint is especially important once we consider operators, such as the differential operator, that map functions to functions. For example, if f is a differentiable function on the real line, the function Df is its first derivative, another function on the real line. In the case of the function f defined above the function Df sends $x \in \mathbb{R}$ to $2x + 2$.

4.2 Functions and Application

The treatment of functions in ML is very similar, except that we stress the *algorithmic* aspects of functions (*how* they determine values from arguments), as well as the *extensional* aspects (*what* they compute). As in
4.2 Functions and Application

In mathematics, a function in ML is a kind of value, namely a value of function type of the form \(\text{typ} \rightarrow \text{typ}' \). The type \(\text{typ} \) is the domain type (the type of arguments) of the function, and \(\text{typ}' \) is its range type (the type of its results). We compute with a function by applying it to an argument value of its domain type and calculating the result, a value of its range type. Function application is indicated by juxtaposition: we simply write the argument next to the function.

The values of function type consist of primitive functions, such as addition and square root, and function expressions, which are also called lambda expressions,\(^1\) of the form

\[
\text{fn } \text{var : typ }\rightarrow\text{exp}
\]

The variable \(\text{var} \) is called the parameter, and the expression \(\text{exp} \) is called the body. It has type \(\text{typ} \rightarrow \text{typ}' \) provided that \(\text{exp} \) has type \(\text{typ}' \) under the assumption that the parameter \(\text{var} \) has the type \(\text{typ} \).

To apply such a function expression to an argument value \(\text{val} \), we add the binding

\[
\text{val } \text{var }=\text{val}
\]

to the value environment, and evaluate \(\text{exp} \), obtaining a value \(\text{val}' \). Then the value binding for the parameter is removed, and the result value, \(\text{val}' \), is returned as the value of the application.

For example, \(\text{Math} \cdot \text{sqrt} \) is a primitive function of type \(\text{real} \rightarrow \text{real} \) that may be applied to a real number to obtain its square root. For example, the expression \(\text{Math} \cdot \text{sqrt} \ 2.0 \) evaluates to 1.414 (approximately). We can, if we wish, parenthesize the argument, writing \(\text{Math} \cdot \text{sqrt} \ (2.0) \) for the sake of clarity; this is especially useful for expressions such as \(\text{Math} \cdot \text{sqrt} \ (\text{Math} \cdot \text{sqrt} \ 2.0) \). The square root function is built in. We may write the fourth root function as the following function expression:

\[
\text{fn } \text{x : real }\rightarrow\text{Math} \cdot \text{sqrt} \ (\text{Math} \cdot \text{sqrt} \ \text{x})
\]

It may be applied to an argument by writing an expression such as

\[
(\text{fn } \text{x : real }\rightarrow\text{Math} \cdot \text{sqrt} \ (\text{Math} \cdot \text{sqrt} \ \text{x})) \ (16.0),
\]

\(^1\)For purely historical reasons.
which calculates the fourth root of 16.0. The calculation proceeds by binding the variable \(x \) to the argument 16.0, then evaluating the expression \(\text{Math.sqrt (Math.sqrt } x) \) in the presence of this binding. When evaluation completes, we drop the binding of \(x \) from the environment, since it is no longer needed.

Notice that we did not give the fourth root function a name; it is an "anonymous" function. We may give it a name using the declaration forms introduced in chapter 3. For example, we may bind the fourth root function to the variable \text{fourthroot} using the following declaration:

\[
\text{val fourthroot : real -> real = fn x : real => Math.sqrt (Math.sqrt x)}
\]

We may then write \text{fourthroot 16.0} to compute the fourth root of 16.0.

This notation for defining functions quickly becomes tiresome, so ML provides a special syntax for function bindings that is more concise and natural. Instead of using the \text{val} binding above to define \text{fourthroot}, we may instead write

\[
\text{fun fourthroot (x:real):real = Math.sqrt (Math.sqrt x)}
\]

This declaration has the same meaning as the earlier \text{val} binding, namely it binds \(\text{fn x:real \to Math.sqrt (Math.sqrt x)} \) to the variable \text{fourthroot}.

It is important to note that function applications in ML are evaluated according to the \text{call-by-value} rule: the arguments to a function are evaluated before the function is called. Put in other terms, functions are defined to act on values, rather than on unevaluated expressions. Thus, to evaluate an expression such as \text{fourthroot (2.0+2.0)}, we proceed as follows:

1. Evaluate \text{fourthroot} to the function value \(\text{fn x : real \to Math.sqrt (Math.sqrt x)} \).
2. Evaluate the argument 2.0+2.0 to its value 4.0
3. Bind \(x \) to the value 4.0.
4. Evaluate \(\text{Math.sqrt (Math.sqrt x)} \) to 1.414 (approximately).

(a) Evaluate \(\text{Math.sqrt} \) to a function value (the primitive square root function).
4.3 Binding and Scope, Revisited

(b) Evaluate the argument expression \texttt{Math.sqrt x} to its value, approximately 2.0.
 i. Evaluate \texttt{Math.sqrt} to a function value (the primitive square root function).
 ii. Evaluate \texttt{x} to its value, 4.0.
 iii. Compute the square root of 4.0, yielding 2.0.

(c) Compute the square root of 2.0, yielding 1.414.

5. Drop the binding for the variable \texttt{x}.

Notice that we evaluate both the function and argument positions of an application expression — both the function and argument are expressions yielding values of the appropriate type. The value of the function position must be a value of function type, either a primitive function or a lambda expression, and the value of the argument position must be a value of the domain type of the function. In this case the result value (if any) will be of the range type of the function. Functions in ML are \textit{first-class}, meaning that they may be computed as the value of an expression. We are not limited to applying only named functions, but rather may compute “new” functions on the fly and apply these to arguments. This is a source of considerable expressive power, as we shall see in the sequel.

Using similar techniques we may define functions with arbitrary domain and range. For example, the following are all valid function declarations:

\begin{verbatim}
fun srev (s:string):string = implode (rev (explode s))
fun pal (s:string):string = s ^ (srev s)
fun double (n:int):int = n + n
fun square (n:int):int = n * n
fun halve (n:int):int = n div 2
fun is_even (n:int):bool = (n mod 2 = 0)
\end{verbatim}

Thus \texttt{pal "ot"} evaluates to the string "otto", and \texttt{is_even 4} evaluates to \texttt{true}.

4.3 Binding and Scope, Revisited

A function expression of the form
fn \textit{var:typ} => \textit{exp}

binds the variable \textit{var} within the body \textit{exp} of the function. Unlike \texttt{val} bindings, function expressions bind a variable without giving it a specific value. The value of the parameter is only determined when the function is applied, and then only temporarily, for the duration of the evaluation of its body.

It is worth reviewing the rules for binding and scope of variables that we introduced in \texttt{chapter 3} in the presence of function expressions. As before we adhere to the principle of \textit{static scope}, according to which variables are taken to refer to the \textit{nearest enclosing binding} of that variable, whether by a \texttt{val} binding or by a \texttt{fn} expression.

Thus, in the following example, the occurrences of \texttt{x} in the body of the function \texttt{f} refer to the parameter of \texttt{f}, whereas the occurrences of \texttt{x} in the body of \texttt{g} refer to the preceding \texttt{val} binding.

\begin{verbatim}
val x:real = 2.0
fun f(x:real):real = x+x
fun g(y:real):real = x+y
\end{verbatim}

Local \texttt{val} bindings may shadow parameters, as well as other \texttt{val} bindings. For example, consider the following function declaration:

\begin{verbatim}
fun h(x:real):real =
 let val x:real = 2.0 in x+x end * x
\end{verbatim}

The inner binding of \texttt{x} by the \texttt{val} declaration shadows the parameter \texttt{x} of \texttt{h}, but only within the body of the \texttt{let} expression. Thus the last occurrence of \texttt{x} refers to the parameter of \texttt{h}, whereas the preceding two occurrences refer to the inner binding of \texttt{x} to \texttt{2.0}.

The phrases “inner” and “outer” binding refer to the \textit{logical structure}, or \textit{abstract syntax} of an expression. In the preceding example, the body of \texttt{h} lies “within” the scope of the parameter \texttt{x}, and the expression \texttt{x+x} lies within the scope of the \texttt{val} binding for \texttt{x}. Since the occurrences of \texttt{x} within the body of the \texttt{let} lie within the scope of the inner \texttt{val} binding, they are taken to refer to that binding, rather than to the parameter. On the other hand the last occurrence of \texttt{x} does not lie within the scope of the \texttt{val} binding, and hence refers to the parameter of \texttt{h}.

In general the names of parameters do not matter; we can rename them at will without affecting the meaning of the program, provided that we
simultaneously (and consistently) rename the binding occurrence and all uses of that variable. Thus the functions f and g below are completely equivalent to each other:

\[
\begin{align*}
\text{fun } f(x:\text{int}):\text{int} &= x \times x \\
\text{fun } g(y:\text{int}):\text{int} &= y \times y
\end{align*}
\]

A parameter is just a placeholder; its name is not important.

Our ability to rename parameters is constrained by the static scoping rule. We may rename a parameter to whatever we'd like, provided that we don't change the way in which uses of a variable are resolved. For example, consider the following situation:

\[
\begin{align*}
\text{val } x:\text{real} &= 2.0 \\
\text{fun } h(y:\text{real}):\text{real} &= x + y
\end{align*}
\]

The parameter y to h may be renamed to z without affecting its meaning. However, we may not rename it to x, for doing so changes its meaning! That is, the function

\[
\text{fun } h'(x:\text{real}):\text{real} = x + x
\]

does not have the same meaning as h, because now both occurrences of x in the body of h' refer to the parameter, whereas in h the variable x refers to the outer val binding, whereas the variable y refers to the parameter.

While this may seem like a minor technical issue, it is essential that you master these concepts now, for they play a central, and rather subtle, role later on.
Chapter 5

Products and Records

5.1 Product Types

A distinguishing feature of ML is that aggregate data structures, such as tuples, lists, arrays, or trees, may be created and manipulated with ease. In contrast to most familiar languages it is not necessary in ML to be concerned with allocation and deallocation of data structures, nor with any particular representation strategy involving, say, pointers or address arithmetic. Instead we may think of data structures as first-class values, on a par with every other value in the language. Just as it is unnecessary to think about “allocating” integers to evaluate an arithmetic expression, it is unnecessary to think about allocating more complex data structures such as tuples or lists.

5.1.1 Tuples

This chapter is concerned with the simplest form of aggregate data structure, the \(n \)-tuple. An \(n \)-tuple is a finite ordered sequence of values of the form

\[
(val_1, \ldots, val_n),
\]

where each \(val_i \) is a value. A 2-tuple is usually called a \textit{pair}, a 3-tuple a \textit{triple}, and so on.

An \(n \)-tuple is a value of a \textit{product type} of the form

\[
typ_1 \times \ldots \times typ_n.
\]
5.1 Product Types

Values of this type are n-tuples of the form

$$(val_1, \ldots, val_n),$$

where val_i is a value of type typ_i (for each $1 \leq i \leq n$).

Thus the following are well-formed bindings:

```plaintext
val pair : int * int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val quadruple : int * int * real * real = (2,3,2.0,3.0)
val pair_of_pairs : (int * int) * (real * real) = ((2,3),(2.0,3.0))
```

The nesting of parentheses matters! A pair of pairs is not the same as a quadruple, so the last two bindings are of distinct values with distinct types.

There are two limiting cases, $n = 0$ and $n = 1$, that deserve special attention. A 0-tuple, which is also known as a null tuple, is the empty sequence of values, $()$. It is a value of type unit, which may be thought of as the 0-tuple type.1 The null tuple type is surprisingly useful, especially when programming with effects. On the other hand there seems to be no particular use for 1-tuples, and so they are absent from the language.

As a convenience, ML also provides a general tuple expression of the form

$$(exp_1, \ldots, exp_n),$$

where each exp_i is an arbitrary expression, not necessarily a value. Tuple expressions are evaluated from left to right, so that the above tuple expression evaluates to the tuple value

$$(val_1, \ldots, val_n),$$

provided that exp_1 evaluates to val_1, exp_2 evaluates to val_2, and so on. For example, the binding

\[\text{In Java (and other languages) the type unit is misleadingly written void, which suggests that the type has no members, but in fact it has exactly one!}\]
val pair : int * int = (1+1, 5-2)

binds the value (2, 3) to the variable pair.

Strictly speaking, it is not essential to have tuple expressions as a primitive notion in the language. Rather than write

\((exp_1, \ldots, exp_n)\),

with the (implicit) understanding that the \(exp_i\)'s are evaluated from left to right, we may instead write

\[
\begin{align*}
\text{let} & \quad \text{val } x_1 = exp_1 \\
& \quad \text{val } x_2 = exp_2 \\
& \quad \vdots \\
& \quad \text{val } x_n = exp_n \\
\text{in } & \quad (x_1, \ldots, x_n) \text{ end}
\end{align*}
\]

which makes the evaluation order explicit.

5.1.2 Tuple Patterns

One of the most powerful, and distinctive, features of ML is the use of pattern matching to access components of aggregate data structures. For example, suppose that \(val\) is a value of type

\[(\text{int } \ast \text{string}) \ast (\text{real } \ast \text{char})\]

and we wish to retrieve the first component of the second component of \(val\), a value of type \text{real}. Rather than explicitly “navigate” to this position to retrieve it, we may simply use a generalized form of value binding in which we select that component using a pattern:

\[\text{val } ((_, _), (r:\text{real}, _)) = val\]

The left-hand side of the \(\text{val}\) binding is a tuple pattern that describes a pair of pairs, binding the first component of the second component to the variable \(r\). The underscores indicate “don’t care” positions in the pattern — their values are not bound to any variable. If we wish to give names to all of the components, we may use the following value binding:

\[\text{val } ((i:\text{int}, s:\text{string}), (r:\text{real}, c:\text{char})) = val\]
5.1 Product Types

If we’d like we can even give names to the first and second components of the pair, without decomposing them into constituent parts:

\[
\text{val } (\text{is: int*string}, \text{rc: real*char}) = \text{val }
\]

The general form of a value binding is

\[
\text{val } \text{pat } = \text{exp },
\]

where \text{pat} is a pattern and \text{exp} is an expression. A pattern is one of three forms:

1. A variable pattern of the form \text{var:typ}.
2. A tuple pattern of the form \((\text{pat}_1, \ldots, \text{pat}_n)\), where each \text{pat}_i is a pattern. This includes as a special case the null-tuple pattern, ()
3. A wildcard pattern of the form _

The type of a pattern is determined by an inductive analysis of the form of the pattern:

1. A variable pattern \text{var:typ} is of type \text{typ}.
2. A tuple pattern \((\text{pat}_1, \ldots, \text{pat}_n)\) has type \text{typ}_1 \ast \cdots \ast \text{typ}_n, where each \text{pat}_i is a pattern of type \text{typ}_i. The null-tuple pattern () has type \text{unit}.
3. The wildcard pattern _ has any type whatsoever.

A value binding of the form

\[
\text{val } \text{pat } = \text{exp }
\]

is well-typed iff \text{pat} and \text{exp} have the same type; otherwise the binding is ill-typed and is rejected.

For example, the following bindings are well-typed:

\[
\begin{align*}
\text{val } (\text{m: int, n: int}) &= (7+1, 4 \text{ div } 2) \\
\text{val } (\text{m: int, r: real, s: string}) &= (7, 7.0, "7") \\
\text{val } ((\text{m: int, n: int}), (\text{r: real, s: real})) &= ((4,5),(3.1,2.7)) \\
\text{val } (\text{m: int, n: int, r: real, s: real}) &= (4,5,3.1,2.7)
\end{align*}
\]

In contrast, the following are ill-typed:
5.1 Product Types

val (m:int, n:int, r:real, s:real) = ((4,5),(3.1,2.7))
val (m:int, r:real) = (7+1, 4 div 2)
val (m:int, r:real) = (7, 7.0, "7")

Value bindings are evaluated using the *bind-by-value* principle discussed earlier, except that the binding process is now more complex than before. First, we evaluate the right-hand side of the binding to a value (if indeed it has one). This happens regardless of the form of the pattern — the right-hand side is *always* evaluated. Second, we perform *pattern matching* to determine the bindings for the variables in the pattern.

The process of matching a value against a pattern is defined by a set of rules for reducing bindings with complex patterns to a set of bindings with simpler patterns, stopping once we reach a binding with a variable pattern. The rules are as follows:

1. The variable binding `val var = val` is irreducible.
2. The wildcard binding `val _ = val` is discarded.
3. The tuple binding

 \[
 \text{val } (\text{pat}_1, \ldots, \text{pat}_n) = \\
 (\text{val}_1, \ldots, \text{val}_n)
 \]

 is reduced to the set of \(n\) bindings

 \[
 \text{val } \text{pat}_1 = \text{val}_1 \\
 \vdots \\
 \text{val } \text{pat}_n = \text{val}_n
 \]

 In the case that \(n = 0\) the tuple binding is simply discarded.

These simplifications are repeated until all bindings are irreducible, which leaves us with a set of variable bindings that constitute the result of pattern matching.

For example, evaluation of the binding

\[
\text{val } ((\text{m:int}, \text{n:int}), (\text{r:real}, \text{s:real})) = ((2,3),(2.0,3.0))
\]

proceeds as follows. First, we compose this binding into the following two bindings:
val (m:int, n:int) = (2,3)
and (r:real, s:real) = (2.0,3.0).

Then we decompose each of these bindings in turn, resulting in the following set of four atomic bindings:

val m:int = 2
and n:int = 3
and r:real = 2.0
and s:real = 3.0

At this point the pattern-matching process is complete.

5.2 Record Types

Tuples are most useful when the number of positions is small. When the number of components grows beyond a small number, it becomes difficult to remember which position plays which role. In that case it is more natural to attach a label to each component of the tuple that mediates access to it. This is the notion of a record type.

A record type has the form

\{lab_1:typ_1,...,lab_n:typ_n\},

where \(n \geq 0 \), and all of the labels \(lab_i \) are distinct. A record value has the form

\{lab_1=val_1,...,lab_n=val_n\},

where \(val_i \) has type \(typ_i \). A record pattern has the form

\{lab_1=pat_1,...,lab_n=pat_n\}

which has type

\{lab_1:typ_1,...,lab_n:typ_n\}

provided that each \(pat_i \) has type \(typ_i \).

A record value binding of the form
5.2 Record Types

val
\{lab_1=pat_1, \ldots, lab_n=pat_n\} =
\{lab_1=val_1, \ldots, lab_n=val_n\}

is decomposed into the following set of bindings

val pat_1 = val_1
and ...
and pat_n = val_n.

Since the components of a record are identified by name, not position, the order in which they occur in a record value or record pattern is not important. However, in a record expression (in which the components may not be fully evaluated), the fields are evaluated from left to right in the order written, just as for tuple expressions.

Here are some examples to help clarify the use of record types. First, let us define the record type hyperlink as follows:

type hyperlink =
\{ protocol : string,
 address : string,
 display : string \}

The record binding

val mailto_rwh : hyperlink =
\{ protocol="mailto",
 address="rwh@cs.cmu.edu",
 display="Robert Harper" \}

defines a variable of type hyperlink. The record binding

val { protocol=prot, display=disp, address=addr } = mailto_rwh

decomposes into the three variable bindings

val prot = "mailto"
val addr = "rwh@cs.cmu.edu"
val disp = "Robert Harper"

which extract the values of the fields of mailto_rwh.

Using wild cards we can extract selected fields from a record. For example, we may write
5.2 Record Types

val {protocol=prot, address=_, display=_} = mailto_rwh

to bind the variable prot to the protocol field of the record value mailto_rwh.

It is quite common to encounter record types with tens of fields. In such cases even the wild card notation doesn’t help much when it comes to selecting one or two fields from such a record. For this we often use ellipsis patterns in records, as illustrated by the following example.

val {protocol=prot,...} = intro_home

The pattern {protocol=prot,...} stands for the expanded pattern

{protocol=prot, address=_, display=_}

in which the elided fields are implicitly bound to wildcard patterns.

In general the ellipsis is replaced by as many wildcard bindings as are necessary to fill out the pattern to be consistent with its type. In order for this to occur the compiler must be able to determine unambiguously the type of the record pattern. Here the right-hand side of the value binding determines the type of the pattern, which then determines which additional fields to fill in. In some situations the context does not disambiguate, in which case you must supply additional type information, or avoid the use of ellipsis notation.

Finally, ML provides a convenient abbreviated form of record pattern

{lab₁,...,labₙ}

which stands for the pattern

{lab₁=var₁,...,labₙ=varₙ}

where the variables varᵢ are variables with the same name as the corresponding label labᵢ. For example, the binding

val { protocol, address, display } = mailto_rwh

decomposes into the sequence of atomic bindings

val protocol = "mailto"
val address = "rwh@cs.cmu.edu"
val display = "Robert Harper"

This avoids the need to think up a variable name for each field; we can just make the label do “double duty” as a variable.
5.3 Multiple Arguments and Multiple Results

A function may bind more than one argument by using a pattern, rather than a variable, in the argument position. Function expressions are generalized to have the form

\[\text{fn } \text{pat} \Rightarrow \text{exp} \]

where \(\text{pat} \) is a pattern and \(\text{exp} \) is an expression. Application of such a function proceeds much as before, except that the argument value is matched against the parameter pattern to determine the bindings of zero or more variables, which are then used during the evaluation of the body of the function.

For example, we may make the following definition of the Euclidean distance function:

\[
\begin{align*}
\text{val dist} & : \text{real} \times \text{real} \rightarrow \text{real} \\
& = \text{fn} (x: \text{real}, y: \text{real}) \Rightarrow \text{Math.sqrt} (x*x + y*y)
\end{align*}
\]

This function may then be applied to a pair (a two-tuple!) of arguments to yield the distance between them. For example, \(\text{dist} (2.0, 3.0) \) evaluates to (approximately) \(4.0 \).

Using \textit{fun} notation, the distance function may be defined more concisely as follows:

\[
\text{fun dist} (x: \text{real}, y: \text{real}): \text{real} = \text{Math.sqrt} (x*x + y*y)
\]

The meaning is the same as the more verbose \textit{val} binding given earlier.

\textit{Keyword parameter passing} is supported through the use of record patterns. For example, we may define the distance function using keyword parameters as follows:

\[
\text{fun dist'} \{x=x: \text{real}, y=y: \text{real}\} = \text{Math.sqrt} (x*x + y*y)
\]

The expression \(\text{dist'} \{x=2.0, y=3.0\} \) invokes this function with the indicated \(x \) and \(y \) values.

Functions with multiple results may be thought of as functions yielding tuples (or records). For example, we might compute two different notions of distance between two points at once as follows:
fun dist2 (x:real, y:real):real*real
 = (Math.sqrt (x*x+y*y), Math.abs(x-y))

Notice that the result type is a pair, which may be thought of as two results.

These examples illustrate a pleasing regularity in the design of ML. Rather than introduce ad hoc notions such as multiple arguments, multiple results, or keyword parameters, we make use of the general mechanisms of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular component from a tuple or record (e.g., the third component or the component with a given label). Such functions may be easily defined using pattern matching. But since they arise so frequently, they are pre-defined in ML using sharp notation. For any tuple type

typ1*···*typn,

and each 1 ≤ i ≤ n, there is a function #i of type

typ1*···*typn->typi

defined as follows:

fun #i (_, ..., _, x, _, ..., _) = x

where x occurs in the ith position of the tuple (and there are underscores in the other n − 1 positions).

Thus we may refer to the second field of a three-tuple val by writing #2(val). It is bad style, however, to over-use the sharp notation; code is generally clearer and easier to maintain if you use patterns wherever possible. Compare, for example, the following definition of the Euclidean distance function written using sharp notation with the original.

fun dist (p:real*real):real
 = Math.sqrt((#1 p)*(#1 p)+(#2 p)*(#2 p))

You can easily see that this gets out of hand very quickly, leading to unreadable code. Use of the sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following function #lab selects the component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement: any use of #lab must be in a context sufficient to determine the full record type of its argument.
Chapter 6

Case Analysis

6.1 Homogeneous and Heterogeneous Types

Tuple types have the property that all values of that type have the same form \((n\)-tuples, for some \(n\) determined by the type); they are said to be homogeneous. For example, all values of type \(\text{int}\times\text{real}\) are pairs whose first component is an integer and whose second component is a real. Any type-correct pattern will match any value of that type; there is no possibility of failure of pattern matching. The pattern \((x:\text{int},y:\text{real})\) is of type \(\text{int}\times\text{real}\) and hence will match any value of that type. On the other hand the pattern \((x:\text{int},y:\text{real},z:\text{string})\) is of type \(\text{int}\times\text{real}\times\text{string}\) and cannot be used to match against values of type \(\text{int}\times\text{real}\); attempting to do so fails at compile time.

Other types have values of more than one form; they are said to be heterogeneous types. For example, a value of type \(\text{int}\) might be 0, 1, \("1", \ldots\) or a value of type \(\text{char}\) might be \("a"\) or \("z"\). (Other examples of heterogeneous types will arise later on.) Corresponding to each of the values of these types is a pattern that matches only that value. Attempting to match any other value against that pattern fails at execution time with an error condition called a bind failure.

Here are some examples of pattern-matching against values of a heterogeneous type:

\[
\begin{align*}
\text{val} \ 0 &= 1-1 \\
\text{val} \ (0,x) &= (1-1, 34) \\
\text{val} \ (0, \ "0") &= (2-1, \ "0")
\end{align*}
\]
The first two bindings succeed, the third fails. In the case of the second, the variable \(x \) is bound to 34 after the match. No variables are bound in the first or third examples.

6.2 Clausal Function Expressions

The importance of constant patterns becomes clearer once we consider how to define functions over heterogeneous types. This is achieved in ML using a *clausal function expression* whose general form is

\[
\text{fn } pat_1 \Rightarrow exp_1 \\
| :\\n| pat_n \Rightarrow exp_n
\]

Each \(pat_i \) is a pattern and each \(exp_i \) is an expression involving the variables of the pattern \(pat_i \). Each component \(pat \Rightarrow exp \) is called a clause, or a rule. The entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses. Specifically, there must exist types \(\text{typ}_1 \) and \(\text{typ}_2 \) such that

1. Each pattern \(pat_i \) has type \(\text{typ}_1 \).
2. Each expression \(exp_i \) has type \(\text{typ}_2 \), given the types of the variables in pattern \(pat_i \).

If these requirements are satisfied, the function has the type \(\text{typ}_1 \Rightarrow \text{typ}_2 \).

Application of a clausal function to a value \(val \) proceeds by considering the clauses in the order written. At stage \(i \), where \(1 \leq i \leq n \), the argument value \(val \) is matched against the pattern \(pat_i \); if the pattern match succeeds, evaluation continues with the evaluation of expression \(exp_i \), with the variables of \(pat_i \) replaced by their values as determined by pattern matching. Otherwise we proceed to stage \(i + 1 \). If no pattern matches (*i.e.*, we reach stage \(n + 1 \)), then the application fails with an execution error called a match failure.

Here’s an example. Consider the following clausal function:

\[
\text{val recip : int -> int =}
\text{ fn 0 => 0 | n:int => 1 div n}
\]
This defines an integer-valued reciprocal function on the integers, where the reciprocal of 0 is arbitrarily defined to be 0. The function has two clauses, one for the argument 0, the other for non-zero arguments \(n \). (Note that \(n \) is guaranteed to be non-zero because the patterns are considered in order: we reach the pattern \(n:int \) only if the argument fails to match the pattern 0.)

The `fun` notation is also generalized so that we may define `recip` using the following more concise syntax:

```plaintext
fun recip 0 = 0
| recip (n:int) = 1 div n
```

One annoying thing to watch out for is that the `fun` form uses an equal sign to separate the pattern from the expression in a clause, whereas the `fn` form uses a double arrow.

Case analysis on the values of a heterogeneous type is performed by application of a clausally-defined function. The notation

```plaintext
case exp
  of pat\_1 \Rightarrow exp\_1
  | . . .
  | pat\_n \Rightarrow exp\_n
```

is short for the application

```plaintext
(fn pat\_1 \Rightarrow exp\_1
 | . . .
 | pat\_n \Rightarrow exp\_n) exp
```

Evaluation proceeds by first evaluating \(exp \), then matching its value successively against the patterns in the match until one succeeds, and continuing with evaluation of the corresponding expression. The case expression fails if no pattern succeeds to match the value.

6.3 Booleans and Conditionals, Revisited

The type `bool` of booleans is perhaps the most basic example of a heterogeneous type. Its values are `true` and `false`. Functions may be defined
6.4 Exhaustiveness and Redundancy

on booleans using clausal definitions that match against the patterns true and false.
For example, the negation function may be defined clausally as follows:

```ml
fun not true = false
    | not false = true
```
The conditional expression

```ml
if exp then exp₁ else exp₂
```
is short-hand for the case analysis

```ml
case exp
  of true => exp₁
    | false => exp₂
```
which is itself short-hand for the application

```ml
(fn true => exp₁ | false => exp₂) exp.
```
The “short-circuit” conjunction and disjunction operations are defined as follows. The expression `exp₁ andalso exp₂` is short for

```ml
if exp₁ then exp₂ else false
```
and the expression `exp₁ orelse exp₂` is short for

```ml
if exp₁ then true else exp₂.
```
You should expand these into case expressions and check that they behave as expected. Pay particular attention to the evaluation order, and observe that the call-by-value principle is not violated by these expressions.

6.4 Exhaustiveness and Redundancy

Matches are subject to two forms of “sanity check” as an aid to the ML programmer. The first, called exhaustiveness checking, ensures that a well-formed match covers its domain type in the sense that every value of the
domain must match one of its clauses. The second, called redundancy checking, ensures that no clause of a match is subsumed by the clauses that precede it. This means that the set of values covered by a clause in a match must not be contained entirely within the set of values covered by the preceding clauses of that match.

Redundant clauses are always a mistake — such a clause can never be executed. Redundant rules often arise accidentally. For example, the second rule of the following clausal function definition is redundant:

```plaintext
fun not True = false
  | not False = true
```

By capitalizing True we have turned it into a variable, rather than a constant pattern. Consequently, every value matches the first clause, rendering the second redundant.

Since the clauses of a match are considered in the order they are written, redundancy checking is correspondingly order-sensitive. In particular, changing the order of clauses in a well-formed, irredundant match can make it redundant, as in the following example:

```plaintext
fun recip (n:int) = 1 div n
  | recip 0 = 0
```

The second clause is redundant because the first matches any integer value, including 0.

Inexhaustive matches may or may not be in error, depending on whether the match might ever be applied to a value that is not covered by any clause. Here is an example of a function with an inexhaustive match that is plausibly in error:

```plaintext
fun is_numeric #"0" = true
  | is_numeric #"1" = true
  | is_numeric #"2" = true
  | is_numeric #"3" = true
  | is_numeric #"4" = true
  | is_numeric #"5" = true
  | is_numeric #"6" = true
  | is_numeric #"7" = true
  | is_numeric #"8" = true
  | is_numeric #"9" = true
```
When applied to, say, "a", this function fails. Indeed, the function never returns false for any argument!

Perhaps what was intended here is to include a catch-all clause at the end:

```haskell
fun is_numeric "0" = true
  | is_numeric "1" = true
  | is_numeric "2" = true
  | is_numeric "3" = true
  | is_numeric "4" = true
  | is_numeric "5" = true
  | is_numeric "6" = true
  | is_numeric "7" = true
  | is_numeric "8" = true
  | is_numeric "9" = true
  | is_numeric _ = false
```

The addition of a final catch-all clause renders the match exhaustive, because any value not matched by the first ten clauses will surely be matched by the eleventh.

Having said that, it is a very bad idea to simply add a catch-all clause to the end of every match to suppress inexhaustiveness warnings from the compiler. The exhaustiveness checker is your friend! Each such warning is a suggestion to double-check that match to be sure that you’ve not made a silly error of omission, but rather have intentionally left out cases that are ruled out by the invariants of the program. In chapter 10 we will see that the exhaustiveness checker is an extremely valuable tool for managing code evolution.
Chapter 7

Recursive Functions

So far we’ve only considered very simple functions (such as the reciprocal function) whose value is computed by a simple composition of primitive functions. In this chapter we introduce recursive functions, the principal means of iterative computation in ML. Informally, a recursive function is one that computes the result of a call by possibly making further calls to itself. Obviously, to avoid infinite regress, some calls must return their results without making any recursive calls. Those that do must ensure that the arguments are, in some sense, “smaller” so that the process will eventually terminate.

This informal description obscures a central point, namely the means by which we may convince ourselves that a function computes the result that we intend. In general we must prove that for all inputs of the domain type, the body of the function computes the “correct” value of result type. Usually the argument imposes some additional assumptions on the inputs, called the pre-conditions. The correctness requirement for the result is called a post-condition. Our burden is to prove that for every input satisfying the pre-conditions, the body evaluates to a result satisfying the post-condition. In fact we may carry out such an analysis for many different pre- and post-condition pairs, according to our interest. For example, the ML type checker proves that the body of a function yields a value of the range type (if it terminates) whenever it is given an argument of the domain type. Here the domain type is the pre-condition, and the range type is the post-condition. In most cases we are interested in deeper properties, examples of which we shall consider below.

To prove the correctness of a recursive function (with respect to given
pre- and post-conditions) it is typically necessary to use some form of inductive reasoning. The base cases of the induction correspond to those cases that make no recursive calls; the inductive step corresponds to those that do. The beauty of inductive reasoning is that we may assume that the recursive calls work correctly when showing that a case involving recursive calls is correct. We must separately show that the base cases satisfy the given pre- and post-conditions. Taken together, these two steps are sufficient to establish the correctness of the function itself, by appeal to an induction principle that justifies the particular pattern of recursion.

No doubt this all sounds fairly theoretical. The point of this chapter is to show that it is also profoundly practical.

7.1 Self-Reference and Recursion

In order for a function to “call itself”, it must have a name by which it can refer to itself. This is achieved by using a recursive value binding, which are ordinary value bindings qualified by the keyword rec. The simplest form of a recursive value binding is as follows:

```ml
val rec var:typ = val.
```

As in the non-recursive case, the left-hand is a pattern, but here the right-hand side must be a value. In fact the right-hand side must be a function expression, since only functions may be defined recursively in ML. The function may refer to itself by using the variable var.

Here’s an example of a recursive value binding:

```ml
val rec factorial : int->int = 
  fn 0 => 1 | n:int => n * factorial (n-1)
```

Using fun notation we may write the definition of factorial much more clearly and concisely as follows:

```ml
fun factorial 0 = 1 |
  factorial (n:int) = n * factorial (n-1)
```

There is obviously a close correspondence between this formulation of factorial and the usual textbook definition of the factorial function in
terms of recursion equations:

\[
\begin{align*}
0! &= 1 \\
\quad n! &= n \times (n-1)! \quad (n > 0)
\end{align*}
\]

Recursive value bindings are type-checked in a manner that may, at first glance, seem paradoxical. To check that the binding

\[
\text{val rec } \text{var : typ } = \text{val}
\]

is well-formed, we ensure that the value \text{val} has type \text{typ}, assuming that \text{var} has type \text{typ}. Since \text{var} refers to the value \text{val} itself, we are in effect assuming what we intend to prove while proving it!

(Incidentally, since \text{val} is required to be a function expression, the type \text{typ} will always be a function type.)

Let’s look at an example. To check that the binding for \text{factorial} given above is well-formed, we assume that the variable \text{factorial} has type \text{int->int}, then check that its definition, the function

\[
\text{fn } 0 \Rightarrow 1 \mid \text{n:int } \Rightarrow \text{n } \ast \text{factorial (n-1)},
\]

has type \text{int->int}. To do so we must check that each clause has type \text{int->int} by checking for each clause that its pattern has type \text{int} and that its expression has type \text{int}. This is clearly true for the first clause of the definition. For the second, we assume that \text{n} has type \text{int}, then check that \text{n } \ast \text{factorial (n-1)} has type \text{int}. This is so because of the rules for the primitive arithmetic operations and because of our assumption that \text{factorial} has type \text{int->int}.

How are applications of recursive functions evaluated? The rules are almost the same as before, with one modification. We must arrange that all occurrences of the variable standing for the function are replaced by the function itself before we evaluate the body. That way all references to the variable standing for the function itself are indeed references to the function itself!

Suppose that we have the following recursive function binding

\[
\text{val rec } \text{var : typ } = \\
\quad \text{fn } \text{pat}_1 \Rightarrow \text{exp}_1 \\
\quad \mid \ldots \\
\quad \mid \text{pat}_n \Rightarrow \text{exp}_n
\]
and we wish to apply \texttt{var} to the value \texttt{val} of type \texttt{typ}. As before, we consider each clause in turn, until we find the first pattern \texttt{pat}_i matching \texttt{val}. We proceed, as before, by evaluating \texttt{exp}_i, replacing the variables in \texttt{pat}_i by the bindings determined by pattern matching, but, \textit{in addition}, we replace all occurrences of the \texttt{var} by its binding in \texttt{exp}_i before continuing evaluation.

For example, to evaluate \texttt{factorial 3}, we proceed by retrieving the binding of \texttt{factorial} and evaluating
\[
(fn\ 0=>1\ \mid\ n:\int\ =\Rightarrow\ n*\text{factorial}(n-1))(3).
\]
Considering each clause in turn, we find that the first doesn’t match, but the second does. We therefore continue by evaluating its right-hand side, the expression \(n\ *\ \text{factorial}(n-1)\), after replacing \(n\) by \(3\) and \texttt{factorial} by its definition. We are left with the sub-problem of evaluating the expression
\[
3\ *\ (fn\ 0=>1\ \mid\ n:\int\ =\Rightarrow\ n*\text{factorial}(n-1))(2)
\]
Proceeding as before, we reduce this to the sub-problem of evaluating
\[
3\ *\ (2\ *\ (fn\ 0=>1\ \mid\ n:\int\ =\Rightarrow\ n*\text{factorial}(n-1))(1)),
\]
which reduces to the sub-problem of evaluating
\[
3\ *\ (2\ *\ (1\ *\ (fn\ 0=>1\ \mid\ n:\int\ =\Rightarrow\ n*\text{factorial}(n-1))(0))),
\]
which reduces to
\[
3\ *\ (2\ *\ (1\ *\ 1)),
\]
which then evaluates to \(6\), as desired.

Observe that the repeated substitution of \texttt{factorial} by its definition ensures that the recursive calls really do refer to the factorial function itself. Also observe that the size of the sub-problems grows until there are no more recursive calls, at which point the computation can complete. In broad outline, the computation proceeds as follows:

1. \texttt{factorial 3}
2. \(3\ *\ \text{factorial 2}\)
7.2 Iteration

3. 3 * 2 * factorial 1
4. 3 * 2 * 1 * factorial 0
5. 3 * 2 * 1 * 1
6. 3 * 2 * 1
7. 3 * 2
8. 6

Notice that the size of the expression first grows (in direct proportion to the argument), then shrinks as the pending multiplications are completed. This growth in expression size corresponds directly to a growth in runtime storage required to record the state of the pending computation.

7.2 Iteration

The definition of factorial given above should be contrasted with the following two-part definition:

```plaintext
fun helper (0,r:int) = r
  | helper (n:int,r:int) = helper (n-1,n*r)
fun factorial (n:int) = helper (n, 1)
```

First we define a “helper” function that takes two parameters, an integer argument and an accumulator that records the running partial result of the computation. The idea is that the accumulator re-associates the pending multiplications in the evaluation trace given above so that they can be performed prior to the recursive call, rather than after it completes. This reduces the space required to keep track of those pending steps. Second, we define factorial by calling helper with argument n and initial accumulator value 1, corresponding to the product of zero terms (empty prefix).

As a matter of programming style, it is usual to conceal the definitions of helper functions using a local declaration. In practice we would make the following definition of the iterative version of factorial:
local

```
|fun helper (0,r:int) = r
|   | helper (n:int,r:int) = helper (n-1,n*r)
in
|fun factorial (n:int) = helper (n,1)
end
```

This way the helper function is not visible, only the function of interest is “exported” by the declaration.

The important thing to observe about `helper` is that it is **iterative**, or **tail recursive**, meaning that the recursive call is the last step of evaluation of an application of it to an argument. This means that the evaluation trace of a call to `helper` with arguments `(3, 1)` has the following general form:

1. `helper (3, 1)`
2. `helper (2, 3)`
3. `helper (1, 6)`
4. `helper (0, 6)`
5. 6

Notice that there is no growth in the size of the expression because there are no pending computations to be resumed upon completion of the recursive call. Consequently, there is no growth in the space required for an application, in contrast to the first definition given above. Tail recursive definitions are analogous to loops in imperative languages: they merely iterate a computation, without requiring auxiliary storage.

7.3 Inductive Reasoning

Time and space usage are important, but what is more important is that the function compute the intended result. The key to the correctness of a recursive function is an inductive argument establishing its correctness. The critical ingredients are these:

1. An *input-output specification* of the intended behavior stating *pre-conditions* on the arguments and a *post-condition* on the result.
2. A proof that the specification holds for each clause of the function, assuming that it holds for any recursive calls.

3. An induction principle that justifies the correctness of the function as a whole, given the correctness of its clauses.

We’ll illustrate the use of inductive reasoning by a graduated series of examples. First consider the simple, non-tail recursive definition of factorial given in section 7.1. One reasonable specification for factorial is as follows:

1. Pre-condition: \(n \geq 0 \).

2. Post-condition: \(\text{factorial } n \) evaluates to \(n! \).

We are to establish the following statement of correctness of factorial:

\[
\text{if } n \geq 0, \text{ then } \text{factorial } n \text{ evaluates to } n!.
\]

That is, we show that the pre-conditions imply the post-condition holds for the result of any application. This is called a total correctness assertion because it states not only that the post-condition holds of any result of application, but, moreover, that every application in fact yields a result (subject to the pre-condition on the argument).

In contrast, a partial correctness assertion does not insist on termination, only that the post-condition holds whenever the application terminates. This may be stated as the assertion

\[
\text{if } n \geq 0 \text{ and } \text{factorial } n \text{ evaluates to } p, \text{ then } p = n!.
\]

Notice that this statement is true of a function that diverges whenever it is applied! In this sense a partial correctness assertion is weaker than a total correctness assertion.

Let us establish the total correctness of factorial using the pre- and post-conditions stated above. To do so, we apply the principle of mathematical induction on the argument \(n \). Recall that this means we are to establish the specification for the case \(n = 0 \), and, assuming it to hold for \(n \geq 0 \), show that it holds for \(n + 1 \). The base case, \(n = 0 \), is trivial: by definition \(\text{factorial } n \) evaluates to 1, which is 0!. Now suppose that \(n = m + 1 \) for some \(m \geq 0 \). By the inductive hypothesis we have that
factorial \(m \) evaluates to \(m! \) (since \(m \geq 0 \)), and so by definition factorial \(n \) evaluates to

\[
 n \times m! = (m + 1) \times m! \\
 = (m + 1)! \\
 = n!,
\]
as required. This completes the proof.

That was easy. What about the iterative definition of factorial? We focus on the behavior of helper. A suitable specification is given as follows:

1. **Pre-condition**: \(n \geq 0 \).
2. **Post-condition**: \(\text{helper} (n, r) \) evaluates to \(n! \times r \).

To show the total correctness of helper with respect to this specification, we once again proceed by mathematical induction on \(n \). We leave it as an exercise to give the details of the proof.

With this in hand it is easy to prove the correctness of factorial — if \(n \geq 0 \) then factorial \(n \) evaluates to the result of helper \((n, 1) \), which evaluates to \(n! \times 1 = n! \). This completes the proof.

Helper functions correspond to lemmas, main functions correspond to theorems. Just as we use lemmas to help us prove theorems, we use helper functions to help us define main functions. The foregoing argument shows that this is more than an analogy, but lies at the heart of good programming style.

Here’s an example of a function defined by complete induction (or strong induction), the Fibonacci function, defined on integers \(n \geq 0 \):

\[
\begin{align*}
\text{fun fib 0} & = 1 \\
\mid \text{fib 1} & = 1 \\
\mid \text{fib (n:int) = fib (n-1) + fib (n-2)}
\end{align*}
\]

The recursive calls are made not only on \(n-1 \), but also \(n-2 \), which is why we must appeal to complete induction to justify the definition. This definition of \(\text{fib} \) is very inefficient because it performs many redundant computations: to compute \(\text{fib n} \) requires that we compute \(\text{fib (n-1)} \) and \(\text{fib (n-2)} \). To compute \(\text{fib (n-1)} \) requires that we compute \(\text{fib (n-2)} \) a second time, and \(\text{fib (n-3)} \). Computing \(\text{fib (n-2)} \) requires computing \(\text{fib} \).
(n-3) again, and fib (n-4). As you can see, there is considerable redundancy here. It can be shown that the running time of fib is exponential in its argument, which is quite awful.

Here’s a better solution: for each \(n \geq 0 \) compute not only the \(n \)th Fibonacci number, but also the \((n - 1)\)st as well. (For \(n = 0 \) we define the “−1st” Fibonacci number to be zero). That way we can avoid redundant recomputation, resulting in a linear-time algorithm. Here’s the code:

\[
\begin{align*}
\text{fun fib' 0} &= (1, 0) \\
| \text{fib' 1} &= (1, 1) \\
| \text{fib' (n:int)} &= \\
& \quad \text{let} \\
& \quad \quad \text{val (a:int, b:int) = fib' (n-1)} \\
& \quad \quad \text{in} \\
& \quad (a+b, a) \\
& \quad \text{end}
\end{align*}
\]

You might feel satisfied with this solution since it runs in time linear in \(n \). It turns out (see Graham, Knuth, and Patashnik, Concrete Mathematics (Addison-Wesley 1989) for a derivation) that the recurrence

\[
\begin{align*}
F_0 &= 1 \\
F_1 &= 1 \\
F_n &= F_{n-1} + F_{n-2}
\end{align*}
\]

has a closed-form solution over the real numbers. This means that the \(n \)th Fibonacci number can be calculated directly, without recursion, by using floating point arithmetic. However, this is an unusual case. In most instances recursively-defined functions have no known closed-form solution, so that some form of iteration is inevitable.

7.4 Mutual Recursion

It is often useful to define two functions simultaneously, each of which calls the other (and possibly itself) to compute its result. Such functions
are said to be *mutually recursive*. Here’s a simple example to illustrate the point, namely testing whether a natural number is odd or even. The most obvious approach is to test whether the number is congruent to 0 mod 2, and indeed this is what one would do in practice. But to illustrate the idea of mutual recursion we instead use the following inductive characterization: 0 is even, and not odd; \(n > 0\) is even iff \(n - 1\) is odd; \(n > 0\) is odd iff \(n - 1\) is even. This may be coded up using two mutually-recursive procedures as follows:

```plaintext
fun even 0 = true
    | even n = odd (n-1)
and odd 0 = false
    | odd n = even (n-1)
```

Notice that `even` calls `odd` and `odd` calls `even`, so they are not definable separately from one another. We join their definitions using the keyword `and` to indicate that they are defined simultaneously by mutual recursion.
Chapter 8

Type Inference and Polymorphism

8.1 Type Inference

So far we’ve mostly written our programs in what is known as the explicitly typed style. This means that whenever we’ve introduced a variable, we’ve assigned it a type at its point of introduction. In particular every variable in a pattern has a type associated with it. As you may have noticed, this gets a little tedious after a while, especially when you’re using clausal function definitions. A particularly pleasant feature of ML is that it allows you to omit this type information whenever it can be determined from context. This process is known as type inference since the compiler is inferring the missing type information based on context.

For example, there is no need to give a type to the variable s in the function

\[\text{fn } s:\text{string } \Rightarrow s \ ^{\text{"\n"}}. \]

The reason is that no other type for s makes sense, since s is used as an argument to string concatenation. Consequently, you may write simply

\[\text{fn } s \Rightarrow s \ ^{\text{"\n"}}, \]

leaving ML to insert “:string” for you.

When is it allowable to omit this information? Almost always, with very few exceptions. It is a deep, and important, result about ML that
missing type information can (almost) always be reconstructed completely and unambiguously where it is omitted. This is called the principal typing property of ML: whenever type information is omitted, there is always a most general (i.e., least restrictive) way to recover the omitted type information. If there is no way to recover the omitted type information, then the expression is ill-typed. Otherwise there is a “best” way to fill in the blanks, which will (almost) always be found by the compiler. This is an amazingly useful, and widely under-appreciated, property of ML. It means, for example, that the programmer can enjoy the full benefits of a static type system without paying any notational penalty whatsoever!

The prototypical example is the identity function, fn x=>x. The body of the function places no constraints on the type of x, since it merely returns x as the result without performing any computation on it. Since the behavior of the identity function is the same for all possible choices of type for its argument, it is said to be polymorphic. Therefore the identity function has infinitely many types, one for each choice of the type of the parameter x. Choosing the type of x to be typ, the type of the identity function is typ->typ. In other words every type for the identity function has the form typ->typ, where typ is the type of the argument.

Clearly there is a pattern here, which is captured by the notion of a type scheme. A type scheme is a type expression involving one or more type variables standing for an unknown, but arbitrary type expression. Type variables are written 'a (pronounced “α”), 'b (pronounced “β”), 'c (pronounced “γ”), etc. An instance of a type scheme is obtained by replacing each of the type variables occurring in it with a type scheme, with the same type scheme replacing each occurrence of a given type variable. For example, the type scheme 'a->'a has instances int->int, string->string, (int*int)->(int*int), and ('b->'b)->('b->'b), among infinitely many others. However, it does not have the type int->string as instance, since we are constrained to replace all occurrences of a type variable by the same type scheme. However, the type scheme 'a->'b has both int->int and int->string as instances since there are different type variables occurring in the domain and range positions.

Type schemes are used to express the polymorphic behavior of functions. For example, we may write fn x: 'a=>x for the polymorphic identity function of type 'a->'a, meaning that the behavior of the identity function is independent of the type of x. Similarly, the behavior of the function fn (x,y)=>x+1 is independent of the type of y, but constrains the
8.1 Type Inference

Type of \(x \) to be \(\text{int} \). This may be expressed using type schemes by writing this function in the explicitly-typed form \(\text{fn} \ (x:\text{int},y:'a)\Rightarrow x+1 \) with type \(\text{int}'a->\text{int} \).

In these examples we needed only one type variable to express the polymorphic behavior of a function, but usually we need more than one. For example, the function \(\text{fn} \ (x,y) = x \) constrains neither the type of \(x \) nor the type of \(y \). Consequently we may choose their types freely and independently of one another. This may be expressed by writing this function in the form \(\text{fn} \ (x:'a,y:'b)\Rightarrow x \) with type scheme \('a*'b->'a \). Notice that while it is correct to assign the type \('a*'a->'a \) to this function, doing so would be overly restrictive since the types of the two parameters need not be the same. However, we could not assign the type \('a*'b->'c \) to this function because the type of the result must be the same as the type of the first parameter: it returns its first parameter when invoked! The type scheme \('a*'b->'a \) precisely captures the constraints that must be satisfied for the function to be type correct. It is said to be the most general or principal type scheme for the function.

It is a remarkable fact about ML that every expression (with the exception of a few pesky examples that we’ll discuss below) has a principal type scheme. That is, there is (almost) always a best or most general way to infer types for expressions that maximizes generality, and hence maximizes flexibility in the use of the expression. Every expression “seeks its own depth” in the sense that an occurrence of that expression is assigned a type that is an instance of its principal type scheme determined by the context of use.

For example, if we write

\[
(\text{fn} \ x=>x)(0),
\]

the context forces the type of the identity function to be \(\text{int}->\text{int} \), and if we write

\[
(\text{fn} \ x=>x)(\text{fn} \ x=>x)(0)
\]

the context forces the instance \(\text{int}->\text{int} \) of the principal type scheme for the identity at the first occurrence, and the instance \(\text{int}->\text{int} \) for the second.

How is this achieved? Type inference is a process of constraint satisfaction. First, the expression determines a set of equations governing the relationships among the types of its subexpressions. For example, if a function
is applied to an argument, then a constraint equating the domain type of
the function with the type of the argument is generated. Second, the con-
straints are solved using a process similar to Gaussian elimination, called
unification. The equations can be classified by their solution sets as follows:

1. **Overconstrained**: there is no solution. This corresponds to a type error.

2. **Underconstrained**: there are many solutions. There are two sub-cases:
 ambiguous (due to overloading, which we will discuss further in section 8.3), or *polymorphic* (there is a “best” solution).

3. **Uniquely determined**: there is precisely one solution. This corresponds
to a completely unambiguous type inference problem.

The free type variables in the solution to the system of equations may be
thought of as determining the “degrees of freedom” or “range of polymor-
phism” of the type of an expression — the constraints are solvable for any
choice of types to substitute for these free type variables.

This description of type inference as a constraint satisfaction procedure
accounts for the notorious obscurity of type checking errors in ML. If a
program is not type correct, then the system of constraints associated with
it will not have a solution. The type inference procedure attempts to find
a solution to these constraints, and at some point discovers that it cannot
succeed. It is fundamentally impossible to attribute this inconsistency to
any particular constraint; all that can be said is that the constraint set as
a whole has no solution. The checker usually reports the first unsatisfi-
able equation it encounters, but this may or may not correspond to the
“reason” (in the mind of the programmer) for the type error. The usual
method for finding the error is to insert sufficient type information to nar-
row down the source of the inconsistency until the source of the difficulty
is uncovered.

8.2 Polymorphic Definitions

There is an important interaction between polymorphic expressions and
value bindings that may be illustrated by the following example. Suppose
that we wish to bind the identity function to a variable I so that we may
refer to it by name. We’ve previously observed that the identity function
is polymorphic, with principal type scheme \(\text{'a} \rightarrow \text{'a}\). This may be captured by ascribing this type scheme to the variable \(\text{I}\) at the \text{val} binding. That is, we may write

\[
\text{val I : 'a} \rightarrow \text{'a} = \text{fn x} => \text{x}
\]

to ascribe the type scheme \(\text{'a} \rightarrow \text{'a}\) to the variable \(\text{I}\). (We may also write

\[
\text{fun I(x:'a):'a = x}
\]

for an equivalent binding of \(\text{I}\).) Having done this, \textit{each use of I determines a distinct instance of the ascribed type scheme 'a->'a}. That is, both \(\text{I0}\) and \(\text{II}\) are well-formed expressions, the first assigning the type \(\text{int} \rightarrow \text{int}\) to \(\text{I}\), the second assigning the types

\[
(\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int})
\]

and

\[
\text{int} \rightarrow \text{int}
\]

to the two occurrences of \(\text{I}\). Thus the variable \(\text{I}\) behaves precisely the same as its definition, \(\text{fn x} => \text{x}\), in any expression where it is used.

As a convenience ML also provides a form of type inference on value bindings that eliminates the need to ascribe a type scheme to the variable when it is bound. If no type is ascribed to a variable introduced by a \text{val} binding, then it is implicitly ascribed the principal type scheme of the right-hand side. For example, we may write

\[
\text{val I = fn x} => \text{x}
\]

or

\[
\text{fun I(x) = x}
\]

as a binding for the variable \(\text{I}\). The type checker implicitly assigns the principal type scheme, \(\text{'a} \rightarrow \text{'a}\), of the binding to the variable \(\text{I}\). In practice we often allow the type checker to infer the principal type of a variable, but it is often good form to explicitly indicate the intended type as a consistency check and for documentation purposes.

The treatment of \text{val} bindings during type checking ensures that a bound variable has precisely the same type as its binding. In other words
8.2 Polymorphic Definitions

the type checker behaves as though all uses of the bound variable are implicitly replaced by its binding before type checking. Since this may involve replication of the binding, the meaning of a program is not necessarily preserved by this transformation. (Think, for example, of any expression that opens a window on your screen: if you replicate the expression and evaluate it twice, it will open two windows. This is not the same as evaluating it only once, which results in one window.)

To ensure semantic consistency, variables introduced by a \texttt{val} binding are allowed to be polymorphic only if the right-hand side is a value. This is called the \textit{value restriction} on polymorphic declarations. For \texttt{fun} bindings this restriction is always met since the right-hand side is implicitly a lambda expression, which is a value. However, it might be thought that the following declaration introduces a polymorphic variable of type \('a \rightarrow 'a \), but in fact it is rejected by the compiler:

\begin{verbatim}
val J = I I
\end{verbatim}

The reason is that the right-hand side is not a value; it requires computation to determine its value. It is therefore ruled out as inadmissible for polymorphism; the variable J may not be used polymorphically in the remainder of the program. In this case the difficulty may be avoided by writing instead

\begin{verbatim}
fun J x = I I x
\end{verbatim}

because now the binding of \(J \) is a lambda, which is a value.

In some rare circumstances this is not possible, and some polymorphism is lost. For example, the following declaration of a value of list type\(^1\)

\begin{verbatim}
val l = nil @ nil
\end{verbatim}

does not introduce an identifier with a polymorphic type, even though the almost equivalent declaration

\begin{verbatim}
val l = nil
\end{verbatim}

does do so. Since the right-hand side is a list, we cannot apply the “trick” of defining \(l \) to be a function; we are stuck with a loss of polymorphism in

\(^1\)To be introduced in \textit{chapter 9}.
this case. This particular example is not very impressive, but occasionally similar examples do arise in practice.

Why is the value restriction necessary? Later on, when we study mutable storage, we’ll see that some restriction on polymorphism is essential if the language is to be type safe. The value restriction is an easily-remembered sufficient condition for soundness, but as the examples above illustrate, it is by no means necessary. The designers of ML were faced with a choice of simplicity vs flexibility; in this case they opted for simplicity at the expense of some expressiveness in the language.

8.3 Overloading

Type information cannot always be omitted. There are a few corner cases that create problems for type inference, most of which arise because of concessions that are motivated by long-standing, if dubious, notational practices.

The main source of difficulty stems from overloading of arithmetic operators. As a concession to long-standing practice in informal mathematics and in many programming languages, the same notation is used for both integer and floating point arithmetic operations. As long as we are programming in an explicitly-typed style, this convention creates no particular problems. For example, in the function

```
fn x:int => x+x
```

it is clear that integer addition is called for, whereas in the function

```
fn x:real => x+x
```

it is equally obvious that floating point addition is intended.

However, if we omit type information, then a problem arises. What are we to make of the function

```
fn x => x+x
```

Does “+” stand for integer or floating point addition? There are two distinct reconstructions of the missing type information in this example, corresponding to the preceding two explicitly-typed programs. Which is the compiler to choose?

When presented with such a program, the compiler has two choices:
8.3 Overloading

1. Declare the expression ambiguous, and force the programmer to provide enough explicit type information to resolve the ambiguity.

2. Arbitrarily choose a “default” interpretation, say the integer arithmetic, that forces one interpretation or another.

Each approach has its advantages and disadvantages. Many compilers choose the second approach, but issue a warning indicating that it has done so. To avoid ambiguity, explicit type information is required from the programmer.

The situation is actually a bit more subtle than the preceding discussion implies. The reason is that the type inference process makes use of the surrounding context of an expression to help resolve ambiguities. For example, if the expression \(\text{fn } x \Rightarrow x+x \) occurs in the following, larger expression, there is in fact no ambiguity:

\[
(\text{fn } x \Rightarrow x+x)(3).
\]

Since the function is applied to an integer argument, there is no question that the only possible resolution of the missing type information is to treat \(x \) as having type \(\text{int} \), and hence to treat + as integer addition.

The important question is how much context is considered before the situation is considered ambiguous? The rule of thumb is that context is considered up to the nearest enclosing function declaration. For example, consider the following example:

```
let
  val double = fn x => x+x
in
  (double 3, double 4)
end
```

The function expression \(\text{fn } x \Rightarrow x+x \) will be flagged as ambiguous, even though its only uses are with integer arguments. The reason is that value bindings are considered to be “units” of type inference for which all ambiguity must be resolved before type checking continues. If your compiler adopts the integer interpretation as default, the above program will be accepted (with a warning), but the following one will be rejected:
8.3 Overloading

```ml
let
  val double = fn x => x+x
in
  (double 3.0, double 4.0)
end
```

Finally, note that the following program must be rejected because no resolution of the overloading of addition can render it meaningful:

```ml
let
  val double = fn x => x+x
in
  (double 3, double 3.0)
end
```

The ambiguity must be resolved at the `val` binding, which means that the compiler must commit at that point to treating the addition operation as either integer or floating point. No single choice can be correct, since we subsequently use `double` at both types.

A closely related source of ambiguity arises from the “record elision” notation described in chapter 5. Consider the function `#name`, defined by

```ml
fun #name {name=n:string, ...} = n
```

which selects the `name` field of a record. This definition is ambiguous because the compiler cannot uniquely determine the domain type of the function! Any of the following types are legitimate domain types for `#name`, none of which is “best”:

```ml
{name:string}
{name:string,salary:real}
{name:string,salary:int}
{name:string,address:string}
```

Of course there are infinitely many such examples, none of which is clearly preferable to the other. This function definition is therefore rejected as ambiguous by the compiler — there is no one interpretation of the function that suffices for all possible uses.

In chapter 5 we mentioned that functions such as `#name` are pre-defined by the ML compiler, yet we just now claimed that such a function definition is rejected as ambiguous. Isn’t this a contradiction? Not really,
8.4 Sample Code

because what happens is that each occurrence of #name is replaced by the function

\[
\text{fn } \{\text{name=n,\ldots}\} = n
\]

and then context is used to resolve the “local” ambiguity. This works well, provided that the complete record type of the arguments to #name can be determined from context. If not, the uses are rejected as ambiguous. Thus, the following expression is well-typed

\[
\text{fn } r : \{\text{name:string, address:string, salary:int}\} \Rightarrow
\]

\[
(\text{#name } r, \text{#address } r)
\]

because the record type of \(r\) is explicitly given. If the type of \(r\) were omitted, the expression would be rejected as ambiguous (unless the context resolves the ambiguity.)
Chapter 9

Programming with Lists

9.1 List Primitives

In chapter 5 we noted that aggregate data structures are especially easy to handle in ML. In this chapter we consider another important aggregate type, the list type. In addition to being an important form of aggregate type it also illustrates two other general features of the ML type system:

1. **Type constructors**, or parameterized types. The type of a list reveals the type of its elements.

2. **Recursive types**. The set of values of a list type are given by an inductive definition.

Informally, the values of type \(\text{typ} \text{list} \) are the finite lists of values of type \(\text{typ} \). More precisely, the values of type \(\text{typ} \text{list} \) are given by an inductive definition, as follows:

1. \(\text{nil} \) is a value of type \(\text{typ} \text{list} \).

2. if \(h \) is a value of type \(\text{typ} \), and \(t \) is a value of type \(\text{typ} \text{list} \), then \(h :: t \) is a value of type \(\text{typ} \text{list} \).

3. Nothing else is a value of type \(\text{typ} \text{list} \).

The type expression \(\text{typ} \text{list} \) is a postfix notation for the application of the type constructor \(\text{list} \) to the type \(\text{typ} \). Thus \(\text{list} \) is a kind of “function” mapping types to types: given a type \(\text{typ} \), we may apply \(\text{list} \) to it.
9.1 List Primitives

to get another type, written typ list. The forms nil and $::$ are the \textit{value constructors} of type typ list. The nullary (no argument) constructor nil may be thought of as the empty list. The binary (two argument) constructor $::$ constructs a non-empty list from a value h of type typ and another value t of type typ list; the resulting value, $h :: t$, of type typ list, is pronounced “h cons t” (for historical reasons). We say that “h is cons’ed onto t”, that h is the \textit{head} of the list, and that t is its \textit{tail}.

The definition of the values of type typ list given above is an example of an \textit{inductive definition}. The type is said to be \textit{recursive} because this definition is “self-referential” in the sense that the values of type typ list are defined in terms of (other) values of the same type. This is especially clear if we examine the types of the value constructors for the type typ list:

\begin{verbatim}
val nil : typ list
val (op ::) : typ * typ list -> typ list
\end{verbatim}

The notation op :: is used to \textit{refer} to the $::$ operator as a function, rather than to \textit{use} it to form a list, which requires infix notation.

Two things are notable here:

1. The $::$ operation takes as its second argument a value of type typ list, and yields a result of type typ list. This self-referential aspect is characteristic of an inductive definition.

2. Both nil and op :: are \textit{polymorphic} in the type of the underlying elements of the list. Thus nil is the empty list of type typ list for any element type typ, and op :: constructs a non-empty list independently of the type of the elements of that list.

It is easy to see that a value val of type typ list has the form

\begin{verbatim}
val :: (val :: (··· :: (val :: nil)···))
\end{verbatim}

for some $n \geq 0$, where val_i is a value of type typ for each $1 \leq i \leq n$. For according to the inductive definition of the values of type typ list, the value val must either be nil, which is of the above form, or $val :: val'$, where val' is a value of type typ list. By induction val' has the form

\begin{verbatim}
(val :: (··· :: (val :: nil)···))
\end{verbatim}
and hence val again has the specified form.

By convention the operator :: is right-associative, so we may omit the parentheses and just write

\[val_1 :: val_2 :: \ldots :: val_n :: \text{nil} \]

as the general form of val of type typ list. This may be further abbreviated using list notation, writing

\[[val_1, val_2, \ldots, val_n] \]

for the same list. This notation emphasizes the interpretation of lists as finite sequences of values, but it obscures the fundamental inductive character of lists as being built up from nil using the :: operation.

9.2 Computing With Lists

How do we compute with values of list type? Since the values are defined inductively, it is natural that functions on lists be defined recursively, using a clausal definition that analyzes the structure of a list. Here’s a definition of the function length that computes the number of elements of a list:

```ml
fun length nil = 0
  | length (:: t) = 1 + length t
```

The definition is given by induction on the structure of the list argument. The base case is the empty list, nil. The inductive step is the non-empty list :: t (notice that we do not need to give a name to the head). Its definition is given in terms of the tail of the list t, which is “smaller” than the list :: t. The type of length is 'a list -> int; it is defined for lists of values of any type whatsoever.

We may define other functions following a similar pattern. Here’s the function to append two lists:

```ml
fun append (nil, l) = l
  | append (h::t, l) = h :: append (t, l)
```

This function is built into ML; it is written using infix notation as exp1 @ exp2. The running time of append is proportional to the length of the first list, as should be obvious from its definition.

Here’s a function to reverse a list.
fun rev nil = nil
 | rev (h::t) = rev t @ [h]

Its running time is \(O(n^2) \), where \(n \) is the length of the argument list. This can be demonstrated by writing down a recurrence that defines the running time \(T(n) \) on a list of length \(n \).

\[
\begin{align*}
T(0) &= O(1) \\
T(n+1) &= T(n) + O(n)
\end{align*}
\]

Solving the recurrence we obtain the result \(T(n) = O(n^2) \).

Can we do better? Oddly, we can take advantage of the non-associativity of \(:: \) to give a tail-recursive definition of \(\text{rev} \).

local
 fun helper (nil, a) = a
 | helper (h::t, a) = helper (t, h::a)
 in
 fun rev' l = helper (l, nil)
end

The general idea of introducing an accumulator is the same as before, except that by re-ordering the applications of \(:: \) we reverse the list! The helper function reverses its first argument and prepends it to its second argument. That is, \(\text{helper} \ (l, a) \) evaluates to \((\text{rev} \ l) @ a \), where we assume here an independent definition of \(\text{rev} \) for the sake of the specification. Notice that \(\text{helper} \) runs in time proportional to the length of its first argument, and hence \(\text{rev}' \) runs in time proportional to the length of its argument.

The correctness of functions defined on lists may be established using the principle of structural induction. We illustrate this by establishing that the function \(\text{helper} \) satisfies the following specification:

for every \(l \) and \(a \) of type \(\text{typ list} \), \(\text{helper} \ (l, a) \) evaluates to the result of appending \(a \) to the reversal of \(l \).

That is, there are no pre-conditions on \(l \) and \(a \), and we establish the post-condition that \(\text{helper} \ (l, a) \) yields \((\text{rev} \ l) @ a \).

The proof is by structural induction on the list \(l \). If \(l \) is \(\text{nil} \), then \(\text{helper} \ (l,a) \) evaluates to \(a \), which fulfills the post-condition. If \(l \) is the list \(h::t \),
then the application helper \((l, a)\) reduces to the value of helper \((t, (h::a))\). By the inductive hypothesis this is just \((\text{rev } t) @ (h :: a)\), which is equivalent to \((\text{rev } t) @ [h] @ a\). But this is just \(\text{rev } (h::t) @ a\), which was to be shown.

The principle of structural induction may be summarized as follows. To show that a function works correctly for every list \(l\), it suffices to show

1. The correctness of the function for the empty list, \(\text{nil}\), and
2. The correctness of the function for \(h::t\), assuming its correctness for \(t\).

As with mathematical induction over the natural numbers, structural induction over lists allows us to focus on the basic and incremental behavior of a function to establish its correctness for all lists.
Chapter 10

Concrete Data Types

10.1 Datatype Declarations

Lists are one example of the general notion of a recursive type. ML provides a general mechanism, the datatype declaration, for introducing programmer-defined recursive types. Earlier we introduced type declarations as an abbreviation mechanism. Types are given names as documentation and as a convenience to the programmer, but doing so is semantically inconsequential — one could replace all uses of the type name by its definition and not affect the behavior of the program. In contrast the datatype declaration provides a means of introducing a new type that is distinct from all other types and that does not merely stand for some other type. It is the means by which the ML type system may be extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype declaration introduces

1. One or more new type constructors. The type constructors introduced may, or may not, be mutually recursive.

2. One or more new value constructors for each of the type constructors introduced by the declaration.

The type constructors may take zero or more arguments; a zero-argument, or nullary, type constructor is just a type. Each value constructor may also take zero or more arguments; a nullary value constructor is just a constant. The type and value constructors introduced by the declaration are “new” in the sense that they are distinct from all other type and value
constructors previously introduced; if a datatype re-defines an “old” type or value constructor, then the old definition is shadowed by the new one, rendering the old ones inaccessible in the scope of the new definition.

10.2 Non-Recursive Datatypes

Here’s a simple example of a nullary type constructor with four nullary value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit with four nullary value constructors, Spades, Hearts, Diamonds, and Clubs. This declaration may be read as introducing a type suit such that a value of type suit is either Spades, or Hearts, or Diamonds, or Clubs. There is no significance to the ordering of the constructors in the declaration; we could just as well have written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the names of value constructors, but this is not required by the language.

Given the declaration of the type suit, we may define functions on it by case analysis on the value constructors using a clausal function definition. For example, we may define the suit ordering in the card game of bridge by the function

fun outranks (Spades, Spades) = false
| outranks (Spades, _) = true
| outranks (Hearts, Spades) = false
| outranks (Hearts, Hearts) = false
| outranks (Hearts, _) = true
| outranks (Diamonds, Clubs) = true
| outranks (Diamonds, _) = false
| outranks (Clubs, _) = false

This defines a function of type suit * suit -> bool that determines whether or not the first suit outranks the second.

Data types may be parameterized by a type. For example, the declaration
10.2 Non-Recursive Datatypes

datatype 'a option = NONE | SOME of 'a

introduces the unary type constructor 'a option with two value constructors, NONE, with no arguments, and SOME, with one. The values of type typ option are

1. The constant NONE, and

2. Values of the form SOME val, where val is a value of type typ.

For example, some values of type string option are NONE, SOME "abc", and SOME "def".

The option type constructor is pre-defined in Standard ML. One common use of option types is to handle functions with an optional argument. For example, here is a function to compute the base-b exponential function for natural number exponents that defaults to base 2:

```ml
fun expt (NONE, n) = expt (SOME 2, n)
| expt (SOME b, 0) = 1
| expt (SOME b, n) =
  if n mod 2 = 0 then
    expt (SOME (b*b), n div 2)
  else
    b * expt (SOME b, n-1)
```

The advantage of the option type in this sort of situation is that it avoids the need to make a special case of a particular argument, e.g., using 0 as first argument to mean “use the default exponent”.

A related use of option types is in aggregate data structures. For example, an address book entry might have a record type with fields for various bits of data about a person. But not all data is relevant to all people. For example, someone may not have a spouse, but they all have a name. For this we might use a type definition of the form

```
type entry = { name:string, spouse:string option }
```

so that one would create an entry for an unmarried person with a spouse field of NONE.

Option types may also be used to represent an optional result. For example, we may wish to define a function reciprocal that returns the reciprocal of an integer, if it has one, and otherwise indicates that it has
no reciprocal. This is achieve by defining \texttt{reciprocal} to have type \texttt{int \rightarrow int \ option} as follows:

\begin{verbatim}
fun reciprocal 0 = NONE
 | reciprocal n = SOME (1 div n)
\end{verbatim}

To use the result of a call to \texttt{reciprocal} we must perform a case analysis of the form

\begin{verbatim}
case (reciprocal exp)
 of NONE => exp₁
 | SOME r => exp₂
\end{verbatim}

where \texttt{exp₁} covers the case that \texttt{exp} has no reciprocal, and \texttt{exp₂} covers the case that \texttt{exp} has reciprocal \texttt{r}.

\section{Recursive Datatypes}

The next level of generality is the recursive type definition. For example, one may define a type \texttt{typ tree} of binary trees with values of type \texttt{typ} at the nodes using the following declaration:

\begin{verbatim}
datatype 'a tree =
 Empty |
 Node of 'a tree * 'a * 'a tree
\end{verbatim}

This declaration corresponds to the informal definition of binary trees with values of type \texttt{typ} at the nodes:

1. The empty tree \texttt{Empty} is a binary tree.

2. If \texttt{tree₁} and \texttt{tree₂} are binary trees, and \texttt{val} is a value of type \texttt{typ}, then Node (\texttt{tree₁}, \texttt{val}, \texttt{tree₂}) is a binary tree.

3. Nothing else is a binary tree.

The distinguishing feature of this definition is that it is \textit{recursive} in the sense that binary trees are constructed out of other binary trees, with the empty tree serving as the base case.
(Incidentally, a leaf in a binary tree is here represented as a node both of whose children are the empty tree. This definition of binary trees is analogous to starting the natural numbers with zero, rather than one. One can think of the children of a node in a binary tree as the “predecessors” of that node, the only difference compared to the usual definition of predecessor being that a node has two, rather than one, predecessors.)

To compute with a recursive type, use a recursive function. For example, here is the function to compute the height of a binary tree:

```ml
fun height Empty = 0
    | height (Node (lft, _, rht)) = 1 + max (height lft, height rht)
```

Notice that `height` is called recursively on the children of a node, and is defined outright on the empty tree. This pattern of definition is another instance of structural induction (on the `tree` type). The function `height` is said to be defined by induction on the structure of a tree. The general idea is to define the function directly for the base cases of the recursive type (i.e., value constructors with no arguments or whose arguments do not involve values of the type being defined), and to define it for non-base cases in terms of its definitions for the constituent values of that type. We will see numerous examples of this as we go along.

Here’s another example. The size of a binary tree is the number of nodes occurring in it. Here’s a straightforward definition in ML:

```ml
fun size Empty = 0
    | size (Node (lft, _, rht)) = 1 + size lft + size rht
```

The function `size` is defined by structural induction on trees.

A word of warning. One reason to capitalize value constructors is to avoid a pitfall in the ML syntax that we mentioned in chapter 2. Suppose we gave the following definition of `size`:

```ml
fun size empty = 0
    | size (Node (lft, _, rht)) = 1 + size lft + size rht
```

The compiler will warn us that the second clause of the definition is redundant! Why? Because `empty`, spelled with a lower-case “e”, is a variable, not
a constructor, and hence matches any tree whatsoever. Consequently the
second clause never applies. By capitalizing constructors we can hope to
make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

The tree data type is appropriate for binary trees: those for which each
node has exactly two children. (Of course, either or both children might
be the empty tree, so we may consider this to define the type of trees with
at most two children; it's a matter of terminology which interpretation you
prefer.) It should be obvious how to define the type of ternary trees, whose
nodes have at most three children, and so on for other fixed arities. But
what if we wished to define a type of trees with a variable number of chil-
dren? In a so-called variadic tree some nodes might have three children,
some might have two, and so on. This can be achieved in at least two
ways. One way combines lists and trees, as follows:

```
datatype 'a tree =
    Empty |
    Node of 'a * 'a tree list
```

Each node has a list of children, so that distinct nodes may have different
numbers of children. Notice that the empty tree is distinct from the tree
with one node and no children because there is no data associated with
the empty tree, whereas there is a value of type 'a at each node.

Another approach is to simultaneously define trees and “forests”. A
variadic tree is either empty, or a node gathering a “forest” to form a tree;
a forest is either empty or a variadic tree together with another forest. This
leads to the following definition:

```
datatype 'a tree =
    Empty |
    Node of 'a * 'a forest

and 'a forest =
    None |
    Tree of 'a tree * 'a forest
```

This example illustrates the introduction of two mutually recursive datatypes.

Mutually recursive datatypes beget mutually recursive functions. Here’s
a definition of the size (number of nodes) of a variadic tree:
fun size_tree Empty = 0
 | size_tree (Node (_, f)) = 1 + size_forest f
and size_forest None = 0
 | size_forest (Tree (t, f')) = size_tree t + size_forest f'

Notice that we define the size of a tree in terms of the size of a forest, and
vice versa, just as the type of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion
of binary tree in which data items are associated with branches, rather than
nodes. Here’s a datatype declaration for such trees:

datatype 'a tree =
 Empty |
 Node of 'a branch * 'a branch
and 'a branch =
 Branch of 'a * 'a tree

In contrast to our first definition of binary trees, in which the branches
from a node to its children were implicit, we now make the branches them-
selves explicit, since data is attached to them.

For example, we can collect into a list the data items labelling the branches
of such a tree using the following code:

fun collect Empty = nil
 | collect (Node (Branch (ld, lt), Branch (rd, rt))) =
 ld :: rd :: (collect lt) @ (collect rt)

10.4 Heterogeneous Data Structures

Returning to the original definition of binary trees (with data items at the
nodes), observe that the type of the data items at the nodes must be the
same for every node of the tree. For example, a value of type int tree has
an integer at every node, and a value of type string tree has a string at
every node. Therefore an expression such as

Node (Empty, 43, Node (Empty, "43", Empty))

is ill-typed. The type system insists that trees be homogeneous in the sense
that the type of the data items is the same at every node.
10.5 Abstract Syntax

It is quite rare to encounter heterogeneous data structures in real programs. For example, a dictionary with strings as keys might be represented as a binary search tree with strings at the nodes; there is no need for heterogeneity to represent such a data structure. But occasionally one might wish to work with a \textit{heterogeneous} tree, whose data values at each node are of different types. How would one represent such a thing in ML?

To discover the answer, first think about how one might manipulate such a data structure. When accessing a node, we would need to check at run-time whether the data item is an integer or a string; otherwise we would not know whether to, say, add 1 to it, or concatenate "1" to the end of it. This suggests that the data item must be \textit{labelled} with sufficient information so that we may determine the type of the item at run-time. We must also be able to recover the underlying data item itself so that familiar operations (such as addition or string concatenation) may be applied to it.

The required labelling and discrimination is neatly achieved using a datatype declaration. Suppose we wish to represent the type of integer-or-string trees. First, we define the type of values to be integers or strings, marked with a constructor indicating which:

\begin{verbatim}
datatype int_or_string =
 Int of int |
 String of string
\end{verbatim}

Then we define the type of interest as follows:

\begin{verbatim}
type int_or_string_tree =
 int_or_string tree
\end{verbatim}

\textit{Voila!} Perfectly natural and easy — heterogeneity is really a special case of homogeneity!

10.5 Abstract Syntax

Datatype declarations and pattern matching are extremely useful for defining and manipulating the \textit{abstract syntax} of a language. For example, we may define a small language of arithmetic expressions using the following declaration:
10.5 Abstract Syntax

datatype expr =
 Numeral of int |
 Plus of expr * expr |
 Times of expr * expr

This definition has only three clauses, but one could readily imagine adding others. Here is the definition of a function to evaluate expressions of the language of arithmetic expressions written using pattern matching:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) =
 let
 val Numeral n1 = eval e1
 val Numeral n2 = eval e2
 in
 Numeral (n1+n2)
 end
| eval (Times (e1, e2)) =
 let
 val Numeral n1 = eval e1
 val Numeral n2 = eval e2
 in
 Numeral (n1*n2)
 end

The combination of datatype declarations and pattern matching contributes enormously to the readability of programs written in ML. A less obvious, but more important, benefit is the error checking that the compiler can perform for you if you use these mechanisms in tandem. As an example, suppose that we extend the type expr with a new component for the reciprocal of a number, yielding the following revised definition:

datatype expr =
 Numeral of int |
 Plus of expr * expr |
 Times of expr * expr |
 Recip of expr

First, observe that the “old” definition of eval is no longer applicable to values of type expr! For example, the expression
10.6 Sample Code

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn’t use the Recip constructor. The reason is that the re-declaration of expr introduces a “new” type that just happens to have the same name as the “old” type, but is in fact distinct from it. This is a boon because it reminds us to recompile the old code relative to the new definition of the expr type.

Second, upon recompiling the definition of eval we encounter an inexhaustive match warning: the old code no longer applies to every value of type expr according to its new definition! We are of course lacking a case for Recip, which we may provide as follows:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) = ... as before ...
| eval (Times (e1, e2)) = ... as before ...
| eval (Recip e) =
 let
 val Numeral n = eval e
 in
 Numeral (1 div n)
 end

The value of the checks provided by the compiler in such cases cannot be overestimated. When recompiling a large program after making a change to a datatype declaration the compiler will automatically point out every line of code that must be changed to conform to the new definition; it is impossible to forget to attend to even a single case. This is a tremendous help to the developer, especially if she is not the original author of the code being modified and is another reason why the static type discipline of ML is a positive benefit, rather than a hindrance, to programmers.
Chapter 11

Higher-Order Functions

11.1 Functions as Values

Values of function type are first-class, which means that they have the same rights and privileges as values of any other type. In particular, functions may be passed as arguments and returned as results of other functions, and functions may be stored in and retrieved from data structures such as lists and trees. We will see that first-class functions are an important source of expressive power in ML.

Functions which take functions as arguments or yield functions as results are known as higher-order functions (or, less often, as functionals or operators). Higher-order functions arise frequently in mathematics. For example, the differential operator is the higher-order function that, when given a (differentiable) function on the real line, yields its first derivative as a function on the real line. We also encounter functionals mapping functions to real numbers, and real numbers to functions. An example of the former is provided by the definite integral viewed as a function of its integrand, and an example of the latter is the definite integral of a given function on the interval \([a, x]\), viewed as a function of \(a\), that yields the area under the curve from \(a\) to \(x\) as a function of \(x\).

Higher-order functions are less familiar tools for many programmers since the best-known programming languages have only rudimentary mechanisms to support their use. In contrast higher-order functions play a prominent role in ML, with a variety of interesting applications. Their use may be classified into two broad categories:
1. Abstracting patterns of control. Higher-order functions are design patterns that “abstract out” the details of a computation to lay bare the skeleton of the solution. The skeleton may be fleshed out to form a solution of a problem by applying the general pattern to arguments that isolate the specific problem instance.

2. Staging computation. It arises frequently that computation may be staged by expending additional effort “early” to simplify the computation of “later” results. Staging can be used both to improve efficiency and, as we will see later, to control sharing of computational resources.

11.2 Binding and Scope

Before discussing these programming techniques, we will review the critically important concept of scope as it applies to function definitions. Recall that Standard ML is a statically scoped language, meaning that identifiers are resolved according to the static structure of the program. A use of the variable var is considered to be a reference to the nearest lexically enclosing declaration of var. We say “nearest” because of the possibility of shadowing; if we re-declare a variable var, then subsequent uses of var refer to the “most recent” (lexically!) declaration of it; any “previous” declarations are temporarily shadowed by the latest one.

This principle is easy to apply when considering sequences of declarations. For example, it should be clear by now that the variable y is bound to 32 after processing the following sequence of declarations:

```ml
val x = 2 (* x=2 *)
val y = x*x (* y=4 *)
val x = y*x (* x=8 *)
val y = x*y (* y=32 *)
```

In the presence of function definitions the situation is the same, but it can be a bit tricky to understand at first.

Here’s an example to test your grasp of the lexical scoping principle:
11.2 Binding and Scope

val x = 2
fun f y = x+y
val x = 3
val z = f 4

After processing these declarations the variable z is bound to 6, not to 7! The reason is that the occurrence of x in the body of f refers to the first declaration of x since it is the nearest lexically enclosing declaration of the occurrence, even though it has been subsequently re-declared.

This example illustrates three important points:

1. Binding is not assignment! If we were to view the second binding of x as an assignment statement, then the value of z would be 7, not 6.

2. Scope resolution is lexical, not temporal. We sometimes refer to the “most recent” declaration of a variable, which has a temporal flavor, but we always mean “nearest lexically enclosing at the point of occurrence”.

3. “Shadowed” bindings are not lost. The “old” binding for x is still available (through calls to f), even though a more recent binding has shadowed it.

One way to understand what’s going on here is through the concept of a closure, a technique for implementing higher-order functions. When a function expression is evaluated, a copy of the environment is attached to the function. Subsequently, all free variables of the function (i.e., those variables not occurring as parameters) are resolved with respect to the environment attached to the function; the function is therefore said to be “closed” with respect to the attached environment. This is achieved at function application time by “swapping” the attached environment of the function for the environment active at the point of the call. The swapped environment is restored after the call is complete. Returning to the example above, the environment associated with the function f contains the declaration val x = 2 to record the fact that at the time the function was evaluated, the variable x was bound to the value 2. The variable x is subsequently re-bound to 3, but when f is applied, we temporarily reinstate the binding of x to 2, add a binding of y to 4, then evaluate the body of the function, yielding 6. We then restore the binding of x and drop the binding of y before yielding the result.
11.3 Returning Functions

While seemingly very simple, the principle of lexical scope is the source of considerable expressive power. We’ll demonstrate this through a series of examples.

To warm up let’s consider some simple examples of passing functions as arguments and yielding functions as results. The standard example of passing a function as argument is the map’ function, which applies a given function to every element of a list. It is defined as follows:

```ml
fun map' (f, nil) = nil
    | map' (f, h::t) = (f h) :: map' (f, t)
```

For example, the application

```ml
map' (fn x => x+1, [1,2,3,4])
```

evaluates to the list `[2,3,4,5]`.

Functions may also yield functions as results. What is surprising is that we can create new functions during execution, not just return functions that have been previously defined. The most basic (and deceptively simple) example is the function constantly that creates constant functions: given a value k, the application constantly k yields a function that yields k whenever it is applied. Here’s a definition of constantly:

```ml
val constantly = fn k => (fn a => k)
```

The function constantly has type `'a -> ('b -> 'a)`. We used the fn notation for clarity, but the declaration of the function constantly may also be written using fun notation as follows:

```ml
fun constantly k a = k
```

Note well that a white space separates the two successive arguments to constantly! The meaning of this declaration is precisely the same as the earlier definition using fn notation.

The value of the application `constantly 3` is the function that is constantly 3; i.e., it always yields 3 when applied. Yet nowhere have we defined the function that always yields 3. The resulting function is “created” by the application of constantly to the argument 3, rather than merely...
“retrieved” off the shelf of previously-defined functions. In implementation terms the result of the application `constantly 3` is a closure consisting of the function `fn a => k` with the environment `val k = 3` attached to it. The closure is a data structure (a pair) that is created by each application of `constantly` to an argument; the closure is the representation of the “new” function yielded by the application. Notice, however, that the only difference between any two results of applying the function `constantly` lies in the attached environment; the underlying function is *always* `fn a => k`. If we think of the lambda as the “executable code” of the function, then this amounts to the observation that no new code is created at run-time, just new *instances* of existing code.

This also points out why functions in ML are not the same as code pointers in C. You may be familiar with the idea of passing a pointer to a C function to another C function as a means of passing functions as arguments or yielding functions as results. This may be considered to be a form of “higher-order” function in C, but it must be emphasized that code pointers are significantly less powerful than closures because in C there are only *statically many* possibilities for a code pointer (it must point to one of the functions defined in your code), whereas in ML we may generate *dynamically many* different instances of a function, differing in the bindings of the variables in its environment. The non-varying part of the closure, the code, is directly analogous to a function pointer in C, but there is no counterpart in C of the varying part of the closure, the dynamic environment.

The definition of the function `map'` given above takes a function and list as arguments, yielding a new list as result. Often it occurs that we wish to map the same function across several different lists. It is inconvenient (and a tad inefficient) to keep passing the same function to `map'`, with the list argument varying each time. Instead we would prefer to create a instance of `map` specialized to the given function that can then be applied to many different lists. This leads to the following definition of the function `map`:

```plaintext
fun map f nil = nil |
      map f (h::t) = (f h) :: (map f t)
```

The function `map` so defined has type `(a->b) -> a list -> b list`. It takes a function of type `a -> b` as argument, and yields another function of type `a list -> b list` as result.
The passage from map' to map is called currying. We have changed a two-argument function (more properly, a function taking a pair as argument) into a function that takes two arguments in succession, yielding after the first a function that takes the second as its sole argument. This passage can be codified as follows:

```latex
fun curry f x y = f (x, y)
```

The type of curry is

```
('a*'b->'c) -> ('a -> ('b -> 'c)).
```

Given a two-argument function, curry returns another function that, when applied to the first argument, yields a function that, when applied to the second, applies the original two-argument function to the first and second arguments, given separately.

Observe that map may be alternately defined by the binding

```latex
fun map f l = curry map' f l
```

Applications are implicitly left-associated, so that this definition is equivalent to the more verbose declaration

```latex
fun map f l = ((curry map') f) l
```

11.4 Patterns of Control

We turn now to the idea of abstracting patterns of control. There is an obvious similarity between the following two functions, one to add up the numbers in a list, the other to multiply them.

```latex
fun add_up nil = 0
  | add_up (h::t) = h + add_up t

fun mul_up nil = 1
  | mul_up (h::t) = h * mul_up t
```

What precisely is the similarity? We will look at it from two points of view.

One view is that in each case we have a binary operation and a unit element for it. The result on the empty list is the unit element, and the result on a non-empty list is the operation applied to the head of the list and the result on the tail. This pattern can be abstracted as the function reduce defined as follows:
11.4 Patterns of Control

fun reduce (unit, opn, nil) =
 unit
 | reduce (unit, opn, h::t) =
 opn (h, reduce (unit, opn, t))

Here is the type of reduce:

val reduce : 'b * ('a*'b->'b) * 'a list -> 'b

The first argument is the unit element, the second is the operation, and the third is the list of values. Notice that the type of the operation admits the possibility of the first argument having a different type from the second argument and result.

Using reduce, we may re-define add_up and mul_up as follows:

fun add_up l = reduce (0, op +, l)
fun mul_up l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that "op ::" is the function of type 'a * 'a list -> 'a list that adds a given value to the front of a list.) What function does mystery compute?

Another view of the commonality between add_up and mul_up is that they are both defined by induction on the structure of the list argument, with a base case for nil, and an inductive case for h::t, defined in terms of its behavior on t. But this is really just another way of saying that they are defined in terms of a unit element and a binary operation! The difference is one of perspective: whether we focus on the pattern part of the clauses (the inductive decomposition) or the result part of the clauses (the unit and operation). The recursive structure of add_up and mul_up is abstracted by the reduce functional, which is then specialized to yield add_up and mul_up. Said another way, the function reduce abstracts the pattern of defining a function by induction on the structure of a list.

The definition of reduce leaves something to be desired. One thing to notice is that the arguments unit and opn are carried unchanged through the recursion; only the list parameter changes on recursive calls. While this might seem like a minor overhead, it's important to remember that
multi-argument functions are really single-argument functions that take a tuple as argument. This means that each time around the loop we are constructing a new tuple whose first and second components remain fixed, but whose third component varies. Is there a better way? Here’s another definition that isolates the “inner loop” as an auxiliary function:

```haskell
fun better_reduce (unit, opn, l) =  
    let  
        fun red nil = unit  
            | red (h::t) = opn (h, red t)  
    in  
        red l  
    end
```

Notice that each call to `better_reduce` creates a new function `red` that uses the parameters `unit` and `opn` of the call to `better_reduce`. This means that `red` is bound to a closure consisting of the code for the function together with the environment active at the point of definition, which will provide bindings for `unit` and `opn` arising from the application of `better_reduce` to its arguments. Furthermore, the recursive calls to `red` no longer carry bindings for `unit` and `opn`, saving the overhead of creating tuples on each iteration of the loop.

11.5 Staging

An interesting variation on `reduce` may be obtained by staging the computation. The motivation is that `unit` and `opn` often remain fixed for many different lists (e.g., we may wish to sum the elements of many different lists). In this case `unit` and `opn` are said to be “early” arguments and the list is said to be a “late” argument. The idea of staging is to perform as much computation as possible on the basis of the early arguments, yielding a function of the late arguments alone.

In the case of the function `reduce` this amounts to building `red` on the basis of `unit` and `opn`, yielding it as a function that may be later applied to many different lists. Here’s the code:
fun staged_reduce (unit, opn) =
 let
 fun red nil = unit
 | red (h::t) = opn (h, red t)
 in
 red
 end

The definition of staged_reduce bears a close resemblance to the definition of better_reduce; the only difference is that the creation of the closure bound to red occurs as soon as unit and opn are known, rather than each time the list argument is supplied. Thus the overhead of closure creation is “factored out” of multiple applications of the resulting function to list arguments.

We could just as well have replaced the body of the let expression with the function

fn l => red l

but a moment’s thought reveals that the meaning is the same.

Note well that we would not obtain the effect of staging were we to use the following definition:

fun curried_reduce (unit, opn) nil = unit
 | curried_reduce (unit, opn) (h::t) =
 opn (h, curried_reduce (unit, opn) t)

If we unravel the fun notation, we see that while we are taking two arguments in succession, we are not doing any useful work in between the arrival of the first argument (a pair) and the second (a list). A curried function does not take significant advantage of staging. Since staged_reduce and curried_reduce have the same iterated function type, namely

('b * ('a * 'b -> 'b)) -> 'a list -> 'b

to the contrast between these two examples may be summarized by saying not every function of iterated function type is curried. Some are, and some aren’t. The “interesting” examples (such as staged_reduce) are the ones that aren’t curried. (This directly contradicts established terminology, but it is necessary to deviate from standard practice to avoid a serious misapprehension.)
11.5 Staging

The time saved by staging the computation in the definition of \texttt{staged_reduce} is admittedly minor. But consider the following definition of an append function for lists that takes both arguments at once:

\begin{verbatim}
fun append (nil, l) = l
| append (h::t, l) = h :: append(t, l)
\end{verbatim}

Suppose that we will have occasion to append many lists to the end of a given list. What we'd like is to build a specialized appender for the first list that, when applied to a second list, appends the second to the end of the first. Here's a naive solution that merely curries append:

\begin{verbatim}
fun curried_append nil l = l
| curried_append (h::t) l = h :: curried_append t l
\end{verbatim}

Unfortunately this solution doesn’t exploit the fact that the first argument is fixed for many second arguments. In particular, each application of the result of applying \texttt{curried_append} to a list results in the first list being traversed so that the second can be appended to it.

We can improve on this by staging the computation as follows:

\begin{verbatim}
fun staged_append nil = (fn l => l)
| staged_append (h::t) =
 let
 val tail_appender = staged_append t
 in
 fn l => h :: tail_appender l
 end
\end{verbatim}

Notice that the first list is traversed \textit{once} for all applications to a second argument. When applied to a list \([v_1, \ldots, v_n]\), the function \texttt{staged_append} yields a function that is equivalent to, but not quite as efficient as, the function

\begin{verbatim}
fn l => v_1 :: v_2 :: \ldots :: v_n :: l.
\end{verbatim}

This still takes time proportional to \(n\), but a substantial savings accrues from avoiding the pattern matching required to destructure the original list argument on each call.
Chapter 12

Exceptions

In chapter 2 we mentioned that expressions in Standard ML always have a type, may have a value, and may have an effect. So far we’ve concentrated on typing and evaluation. In this chapter we will introduce the concept of an effect. While it’s hard to give a precise general definition of what we mean by an effect, the idea is that an effect is any action resulting from evaluation of an expression other than returning a value. From this point of view we might consider non-termination to be an effect, but we don’t usually think of failure to terminate as a positive “action” in its own right, rather as a failure to take any action.

The main examples of effects in ML are these:

1. **Exceptions.** Evaluation may be aborted by signaling an exceptional condition.

2. **Mutation.** Storage may be allocated and modified during evaluation.

3. **Input/output.** It is possible to read from an input source and write to an output sink during evaluation.

4. **Communication.** Data may be sent to and received from communication channels.

This chapter is concerned with exceptions; the other forms of effects will be considered later.
12.1 Exceptions as Errors

ML is a safe language in the sense that its execution behavior may be understood entirely in terms of the constructs of the language itself. Behavior such as “dumping core” or incurring a “bus error” are extra-linguistic notions that may only be explained by appeal to the underlying implementation of the language. These cannot arise in ML. This is ensured by a combination of a static type discipline, which rules out expressions that are manifestly ill-defined (e.g., adding a string to an integer or casting an integer as a function), and by dynamic checks that rule out violations that cannot be detected statically (e.g., division by zero or arithmetic overflow). Static violations are signalled by type checking errors; dynamic violations are signalled by raising exceptions.

12.1.1 Primitive Exceptions

The expression 3 + "3" is ill-typed, and hence cannot be evaluated. In contrast the expression 3 \texttt{div} 0 is well-typed (with type \texttt{int}), but incurs a run-time fault that is signalled by raising the exception \texttt{Div}. We will indicate this by writing

\[
3 \texttt{div} 0 \downarrow \texttt{raise Div}
\]

An exception is a form of “answer” to the question “what is the value of this expression?”. In most implementations an exception such as this is reported by an error message of the form “Uncaught exception Div”, together with the line number (or some other indication) of the point in the program where the exception occurred.

Exceptions have names so that we may distinguish different sources of error in a program. For example, evaluation of the expression \texttt{maxint \times maxint} (where \texttt{maxint} is the largest representable integer) causes the exception \texttt{Overflow} to be raised, indicating that an arithmetic overflow error arose in the attempt to carry out the multiplication. This is usefully distinguished from the exception \texttt{Div}, corresponding to division by zero.

(You may be wondering about the overhead of checking for arithmetic faults. The compiler must generate instructions that ensure that an overflow fault is caught before any subsequent operations are performed. This can be quite expensive on pipelined processors, which sacrifice precise delivery of arithmetic faults in the interest of speeding up execution in the...
12.1 Exceptions as Errors

non-faulting case. Unfortunately it is necessary to incur this overhead if we are to avoid having the behavior of an ML program depend on the underlying processor on which it is implemented.)

Another source of run-time exceptions is an inexhaustive match. Suppose we define the function \texttt{hd} as follows

\begin{verbatim}
fun hd (h::) = h
\end{verbatim}

This definition is inexhaustive since it makes no provision for the possibility of the argument being \texttt{nil}. What happens if we apply \texttt{hd} to \texttt{nil}? The exception \texttt{Match} is raised, indicating the failure of the pattern-matching process:

\begin{verbatim}
hd nil \downarrow \texttt{raise Match}
\end{verbatim}

The occurrence of a \texttt{Match} exception at run-time is indicative of a violation of a pre-condition to the invocation of a function somewhere in the program. Recall that it is often sensible for a function to be inexhaustive, provided that we take care to ensure that it is never applied to a value outside of its domain. Should this occur (because of a programming mistake, evidently), the result is nevertheless well-defined because ML checks for, and signals, pattern match failure. That is, ML programs are implicitly “bullet-proofed” against failures of pattern matching. The flip side is that if no inexhaustive match warnings arise during type checking, then the exception \texttt{Match} can never be raised during evaluation (and hence no run-time checking need be performed).

A related situation is the use of a pattern in a \texttt{val} binding to destructure a value. If the pattern can fail to match a value of this type, then a \texttt{Bind} exception is raised at run-time. For example, evaluation of the binding

\begin{verbatim}
val h::_ = nil
\end{verbatim}

raises the exception \texttt{Bind} since the pattern \texttt{h::_} does not match the value \texttt{nil}. Here again observe that a \texttt{Bind} exception cannot arise unless the compiler has previously warned us of the possibility: no warning, no \texttt{Bind} exception.

12.1.2 User-Defined Exceptions

So far we have considered examples of pre-defined exceptions that indicate fatal error conditions. Since the built-in exceptions have a built-
in meaning, it is generally inadvisable to use these to signal program-
specific error conditions. Instead we introduce a new exception using an
exception declaration, and signal it using a raise expression when a run-
time violation occurs. That way we can associate specific exceptions with
specific pieces of code, easing the process of tracking down the source of
the error.

Suppose that we wish to define a “checked factorial” function that en-
sures that its argument is non-negative. Here’s a first attempt at defining
such a function:

```haskell
exception Factorial
fun checked_factorial n = 
  if n < 0 then
    raise Factorial
  else if n=0 then
    1
  else n * checked_factorial (n-1)
```

The declaration exception Factorial introduces an exception Factorial,
which we raise in the case that checked_factorial is applied to a negative
number.

The definition of checked_factorial is unsatisfactory in at least two
respects. One, relatively minor, issue is that it does not make effective use
of pattern matching, but instead relies on explicit comparison operations.
To some extent this is unavoidable since we wish to check explicitly for
negative arguments, which cannot be done using a pattern. A more sig-
nificant problem is that checked_factorial repeatedly checks the validity
of its argument on each recursive call, even though we can prove that if
the initial argument is non-negative, then so must be the argument on each
recursive call. This fact is not reflected in the code. We can improve the
definition by introducing an auxiliary function:

```haskell
exception Factorial
local
  fun fact 0 = 1
    | fact n = n * fact (n-1)
in
  fun checked_factorial n = 
    if n >= 0 then
```
Notice that we perform the range check exactly once, and that the auxiliary function makes effective use of pattern-matching.

12.2 Exception Handlers

The use of exceptions to signal error conditions suggests that raising an exception is fatal: execution of the program terminates with the raised exception. But signaling an error is only one use of the exception mechanism. More generally, exceptions can be used to effect non-local transfers of control. By using an exception handler we may “catch” a raised exception and continue evaluation along some other path. A very simple example is provided by the following driver for the factorial function that accepts numbers from the keyboard, computes their factorial, and prints the result.

```ml
fun factorial_driver () = 
  let
    val input = read_integer ()
    val result =
      toString (checked_factorial input)
  in
    print result
  end
handle Factorial => print "Out of range."
```

An expression of the form `exp handle match` is called an exception handler. It is evaluated by attempting to evaluate `exp`. If it returns a value, then that is the value of the entire expression; the handler plays no role in this case. If, however, `exp` raises an exception `exc`, then the exception value is matched against the clauses of the match (exactly as in the application of a clausal function to an argument) to determine how to proceed. If the pattern of a clause matches the exception `exc`, then evaluation resumes with the expression part of that clause. If no pattern matches, the exception
12.2 Exception Handlers

exc is re-raised so that outer exception handlers may dispatch on it. If no handler handles the exception, then the uncaught exception is signaled as the final result of evaluation. That is, computation is aborted with the uncaught exception exc.

In more operational terms, evaluation of $exp {\text{ handle}} {\text{ match}}$ proceeds by installing an exception handler determined by match, then evaluating exp. The previous binding of the exception handler is preserved so that it may be restored once the given handler is no longer needed. Raising an exception consists of passing a value of type exn to the current exception handler. Passing an exception to a handler de-installs that handler, and re-installs the previously active handler. This ensures that if the handler itself raises an exception, or fails to handle the given exception, then the exception is propagated to the handler active prior to evaluation of the handle expression. If the expression does not raise an exception, the previous handler is restored as part of completing the evaluation of the handle expression.

Returning to the function factorial_driver, we see that evaluation proceeds by attempting to compute the factorial of a given number (read from the keyboard by an unspecified function read_integer), printing the result if the given number is in range, and otherwise reporting that the number is out of range. The example is trivialized to focus on the role of exceptions, but one could easily imagine generalizing it in a number of ways that also make use of exceptions. For example, we might repeatedly read integers until the user terminates the input stream (by typing the end of file character). Termination of input might be signaled by an EndOfFile exception, which is handled by the driver. Similarly, we might expect that the function read_integer raises the exception SyntaxError in the case that the input is not properly formatted. Again we would handle this exception, print a suitable message, and resume.

Here’s a sketch of a more complicated factorial driver:

```ml
fun factorial_driver () =
  let
    val input = read_integer ()
    val result =
      toString (checked_factorial input)
    val _ = print result
  in
```

REVISED 11.02.11 DRAFT VERSION 1.2
12.2 Exception Handlers

```haskell
factorial_driver ()
end
handle EndOfFile => print "Done."
| SyntaxError =>
  let
    val_ = print "Syntax error."
  in
    factorial_driver ()
end
| Factorial =>
  let
    val_ = print "Out of range."
  in
    factorial_driver ()
end
```

We will return to a more detailed discussion of input/output later in these notes. The point to notice here is that the code is structured with a completely uncluttered “normal path” that reads an integer, computes its factorial, formats it, prints it, and repeats. The exception handler takes care of the exceptional cases: end of file, syntax error, and domain error. In the latter two cases we report an error, and resume reading. In the former we simply report completion and we are done.

The reader is encouraged to imagine how one might structure this program without the use of exceptions. The primary benefits of the exception mechanism are as follows:

1. They *force* you to consider the exceptional case (if you don’t, you’ll get an uncaught exception at run-time), and

2. They *allow* you to segregate the special case from the normal case in the code (rather than clutter the code with explicit checks).

These aspects work hand-in-hand to facilitate writing robust programs.

A typical use of exceptions is to implement *backtracking*, a programming technique based on exhaustive search of a state space. A very simple, if somewhat artificial, example is provided by the following function to compute change from an arbitrary list of coin values. What is at issue is that the obvious “greedy” algorithm for making change that proceeds...
by doling out as many coins as possible in decreasing order of value does not always work. Given only a 5 cent and a 2 cent coin, we cannot make 16 cents in change by first taking three 5’s and then proceeding to dole out 2’s. In fact we must use two 5’s and three 2’s to make 16 cents. Here’s a method that works for any set of coins:

```haskell
exception Change
fun change 0 = nil
  | change nil _ = raise Change
  | change (coin::coins) amt =
    if coin > amt then
      change coins amt
    else
      (coin :: change (coin::coins) (amt-coin))
    handle Change => change coins amt
```

The idea is to proceed greedily, but if we get “stuck”, we undo the most recent greedy decision and proceed again from there. Simulate evaluation of the example of change [5,2] 16 to see how the code works.

12.3 Value-Carrying Exceptions

So far exceptions are just “signals” that indicate that an exceptional condition has arisen. Often it is useful to attach additional information that is passed to the exception handler. This is achieved by attaching values to exceptions.

For example, we might associate with a `SyntaxError` exception a string indicating the precise nature of the error. In a parser for a language we might write something like

```haskell
raise SyntaxError "Integer expected"
```

to indicate a malformed expression in a situation where an integer is expected, and write

```haskell
raise SyntaxError "Identifier expected"
```

to indicate a badly-formed identifier.

To associate a string with the exception `SyntaxError`, we declare it as
exception SyntaxError of string.

This declaration introduces the exception SyntaxError as an exception carrying a string as value. This declaration introduces the exception constructor SyntaxError.

Exception constructors are in many ways similar to value constructors. In particular they can be used in patterns, as in the following code fragment:

```haskell
... handle SyntaxError msg => (print "Syntax error: " ^ msg)
```

Here we specify a pattern for SyntaxError exceptions that also binds the string associated with the exception to the identifier msg and prints that string along with an error indication.

Recall that we may use value constructors in two ways:

1. We may use them to create values of a datatype (perhaps by applying them to other values).
2. We may use them to match values of a datatype (perhaps also matching a constituent value).

The situation with exception constructors is symmetric.

1. We may use them to create an exception (perhaps with an associated value).
2. We may use them to match an exception (perhaps also matching the associated value).

Value constructors have types, as we previously mentioned. For example, the list constructors nil and :: have types 'a list and 'a * 'a list -> 'a list, respectively. What about exception constructors? A “bare” exception constructor (such as Factorial above) has type exn and a value-carrying exception constructor (such as SyntaxError) has type string -> exn. Thus Factorial is a value of type exn, and

SyntaxError "Integer expected"

is a value of type exn.

The type exn is the type of exception packets, the data values associated with exceptions. The primitive operation raise takes any value of type
exn as argument and raises an exception with that value. The clauses of a handler may be applied to any value of type exn using the rules of pattern matching described earlier; if an exception constructor is no longer in scope, then the handler cannot catch it (other than via a wild-card pattern).

The type exn may be thought of as a kind of built-in datatype, except that the constructors of this type are not determined once and for all (as they are with a datatype declaration), but rather are incrementally introduced as needed in a program. For this reason the type exn is sometimes called an extensible datatype.