Formal Verification
Formal Verification

- Formal Methods
- Basics of Logic
 - first order predicate logic
- Program proofs:
 - input/output assertions
 - intermediate assertions
 - proof rules
- Practical formal methods
Motivation

→ Here is a specification

```c
void merge(int a[ ], a_len, b[ ], b_len, *c)
{ /*requires a and b are sorted arrays of integers of length a_len and b_len
respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elements of a and b. */

→ ...and here is a program

```int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
 if (a[i] < b[j]) {
 c[k] = a[i];
 i++; }
 else {
 c[k] = b[j];
 j++; }
 k++; }
```

→ does the program meet the specification?
Notes on Logic

→ We will need a suitable logic

→ First Order Propositional Logic provides:
  ✎ a set of *primitives* for building expressions:
      ➢ variables, numeric constants, brackets
  ✎ a set of logical *connectives*:
      ➢ and (\&), or (\lor), not (\neg), implies (\rightarrow), logical equality (=)
  ✎ the *quantifiers*:
      ➢ \( \forall \) - “for all”
      ➢ \( \exists \) - “there exists”
  ✎ a set of *deduction rules*

→ Expressions in FOPL
  ✎ expressions can be *true* or *false*
  ➢ \((x>y \land y>z) \rightarrow x>z\)
  ➢ \(x=y = y=x\)
  ➢ \(\forall x, y, z ((x>y \land y>z)) \rightarrow x>z\)
  ➢ \(x+1 < x-1\)
  ➢ \(\forall x (\exists y (y=x+z))\)
  ➢ \(x>3 \lor x<-6\)
More notes on Logic

→ **Free vs. bound variables**
  
  - a variable that is not quantified is **free**
  - a variable that is quantified is **bound**
    - E.g. \( \forall x \ (\exists y \ (y=x+z)) \)
    - \( x \) and \( y \) are bound
    - \( z \) is free

→ **Closed formulae**
  
  - if all the variables in a formula are bound, the formula is **closed**
  - a closed formula is either true or false
  - the truth of a formula that is not closed cannot be determined
    - (it depends on the environment)
  - we can close any formula by quantifying all free variables with \( \forall \)
    - if a formula is true for all values of its free variables then its closure is true.
Input/Output Assertions

→ Pre-conditions and Post-conditions

◊ we could formalize:
  ➢ a requires clause as a pre-condition
  ➢ an effects clause as a post-condition

◊ e.g. for a program with inputs $i_1, i_2, i_3$ and return value $r$, we could specify the program by:

{ Pre($i_1, i_2, i_3$) }
Program
{ Post($r, i_1, i_2, i_3$) }

➢ where Pre($i_1, i_2, i_3$) is a logic statement that refers to $i_1, i_2, i_3$

➢ The specification then says:
  ➢ “if Pre($i_1, i_2, i_3$) is true before executing the program then Post($r, i_1, i_2, i_3$) should be true after it terminates”

◊ E.g.

{ true }
Program
{ ($r=i_1 \lor r=i_2$) $\land$ $r \geq i_1$ $\land$ $r \geq i_2$ }
Strength of Preconditions

→ Strong preconditions
   ➤ a precondition limits the range of inputs for which the program must work
   ➤ a strong precondition places fewer constraints
      ➢ the strongest possible precondition is \{true\} (same as an empty “requires” clause)
      ➢ it is harder for a program to meet a spec that has a stronger precondition
   ➤ a weak precondition places more constraints
      ➢ the weakest possible precondition is \{false\}
      ➢ ...which means that there are no conditions under which the program has to work
      ➢ every program meets this spec!!!

→ precondition A is stronger than B if: B implies A
   ➤ read implies as “is not as true as” or “is true in fewer cases than”

\[
\begin{align*}
&\{ \exists z \ (a=z*b \text{ and } z>0) \} \\
&x := \text{divide}(a, b);
&\{ x*b=a \}
\end{align*}
\]

\[
\begin{align*}
&\{ a>=b \} \\
&x := \text{divide}(a, b);
&\{ \exists c \ (x*b+c=a \text{ and } c>=0 \text{ and } c<b) \}
\end{align*}
\]

this precondition is stronger
   ➤ it doesn’t require a to be a multiple of b
   ➤ \(\exists (a=z*b \text{ and } z>0)\) implies \(a>=b\)
Correctness Proofs

→ Program correctness
   ✷ if we write formal specifications we can prove that a program meets its specification
   ✷ “program correctness” only makes sense in relation to a specification

→ To prove a program is correct:
   ✷ We need to prove the post-condition is true after executing the program
     ➢ (assuming the pre-condition was true beforehand)
   ✷ E.g.

\[
\begin{align*}
\{ & \text{x>0 and y>0 } \\
\text{z := x*y;}
\{ & \text{z>0 } \\
\end{align*}
\]

Step 1: for z>0 to be true after the assignment, x*y>0 must have been true before it
Step 2: for x*y>0 to be true before the assignment, the precondition must imply it.
Step 3: show that (x>0 and y>0) implies x*y>0 (after closure)
Weakest Pre-conditions

→ The general strategy is:
   1) start with the post-condition
   2) work backwards through the program line-by-line
   3) find the weakest pre-condition (WP) that guarantees the post-condition
   4) prove that the actual pre-condition implies WP
      ➢ i.e. the actual pre-condition is weaker than the “weakest pre-condition”, WP

→ For example

<table>
<thead>
<tr>
<th>Pre</th>
<th>{ true }</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td>$x := 0$;</td>
</tr>
<tr>
<td>$S_2$</td>
<td>$y := 1$</td>
</tr>
<tr>
<td>Post</td>
<td>$x &lt; y$</td>
</tr>
</tbody>
</table>

1) for Post to be true after $S_2$, then $x < 1$ must be true before $S_2$
2) for $x < 1$ to be true after $S_1$, then $0 < 1$ must be true before $S_1$
3) $(0 < 1)$ is the weakest precondition for this program
4) So is (true implies $0 < 1$) true?
Proof rules

→ Proof rules
  ✇ tell us how to find weakest preconditions for different programs
  ✇ we need a proof rule for each programming language construct

→ Proof rule for assignment
  ✇ e.g. for
    { Pre }
    x := e;
    { Post }

  ✇ …the weakest precondition is Post with all free occurrences of x replaced by e

→ Proof rule for sequence
  ✇ e.g. for
    { Pre }
    S1; S2
    { Post }

  ✇ …if WP2 is the weakest precondition for S2, then the weakest precondition for the whole program is the same as the weakest precondition for
    { Pre } S1 { WP2 }
Hoare Notation

→ We can express proof rules more concisely
   ✷ e.g. using Hoare notation:

\[
\text{claim}_1, \text{claim}_2, \ldots \\
\underline{\quad \text{conclusion}}
\]

✷ this means “if \(\text{claim}_1\) and \(\text{claim}_2\) have both been proved, then \text{conclusion} must be true”

→ E.g. for sequence: \(\{\text{Pre}\}S_1\{Q\}, \{Q\}S_2\{\text{Post}\}\)
   \(\{\text{Pre}\}S_1; S_2\{\text{Post}\}\)

→ E.g. for if statements:

\[
\{\text{Pre and } c\}S_1\{\text{Post}\}, \{\text{Pre and not}(c)\}S_2\{\text{Post}\}
\]
\(\{\text{Pre}\}\text{if } (c) \text{ then } S_1 \text{ else } S_2\{\text{Post}\}\)

✷ find the weakest precondition for \(S_1\) and the weakest precondition for \(S_2\).
✷ Then show \(((\text{Pre and } c) \text{ implies } WP \ S_1)\) and \(((\text{Pre and not}(c)) \text{ implies } WP \ S_2)\)
Proving an IF statement

E.g.

```plaintext
{ true }
if (x>y) then
 max := x;
else
 max := y;
{ (max=x or max=y) and max>=x and max>=y }\)
```

1) the first branch:

```plaintext
{ true and x>y }
max := x;
{ Post }
```

to find the weakest precondition, substitute x for max:

\[ WP_1 = \{(x=x \text{ or } x=y) \text{ and } (x>y)\} \]
\[ = \{(true \text{ or } x=y) \text{ and true } \text{ and } (x>y)\} \]
\[ = \{(true) \text{ and } (x>y)\} \]
\[ = \{x>y\} \]

which is okay because

(Pre and c) implies WP₁,
{true and x>y} implies {x>y}

2) the second branch:

```plaintext
{ true and not(x>y) }
max := y;
{ Post }
```

to find the weakest precondition, substitute y for max:

\[ WP_2 = \{(y=x \text{ or } y=y) \text{ and } (y>x)\} \]
\[ = \{(y=x \text{ or true}) \text{ and } (y>x) \text{ and true}\} \]
\[ = \{(true) \text{ and } (y>x)\} \]
\[ = \{y>x\} \]

which is okay because

(Pre and not(c)) implies WP₂,
{true and not(x>y)} implies {y>x}
Practicalities

→ Program proofs are not (currently) widely used:
  ­ they can be tedious to construct
  ­ they tend to be longer than the programs they refer to
  ­ they could contain mistakes too!
  ­ they require mathematical expertise
  ­ they do not ensure against hardware errors, compiler errors, etc.
  ­ they only prove functional correctness (i.e. not termination, efficiency,...)

→ Practical formal methods:
  ­ Just use for small parts of the program
    ­ e.g. isolate the safety-critical parts
  ­ Use to reason about changes to a program
    ­ e.g. prove that changing a statement preserves correctness
  ­ Automate some of the proof
    ­ use proof checkers and theorem provers
  ­ Use formal reasoning for other things
    ­ test properties of the specification to see if we got the spec right
    ­ i.e. use for validation, rather than verification
Other approaches

→ Model-checking

◊ A model checker takes a state-machine model and a temporal logic property and tells you whether the property holds in the model
  ➢ temporal logic adds modal operators to propositional logic:
    ➢ e.g. \( x \land x \) is true now and always (in the future)
    ➢ e.g. \( x \land 
    \) is true eventually (in the future)

◊ The model may be:
  ➢ of the program itself (each statement is a ‘state’)
  ➢ an abstraction of the program
  ➢ a model of the specification
  ➢ a model of the domain

◊ Model checking works by searching all the paths through the state space
  ➢ ...with lots of techniques for reducing the size of the search

◊ Model checking does not guarantee correctness...
  ➢ it only tells you about the properties you ask about
  ➢ it may not be able to search the entire state space (too big!)

◊ ...but is (generally) more practical than proofs of correctness.