Standard ML Summary

CMPU-235: Programming Languages
Vassar College, Fall 2017
Sameer Pradhan

This summary covers roughly the same material as class and some additional details that could not be covered in class in the appropriate level of detail, but topics that you need to know for the purposes of this course, and beyond. It can help to read about the material in a narrative style and to have the material for an entire unit of the course in a single document, especially when reviewing the material later. Please report errors in these notes, even typos. This summary is not a sufficient substitute for attending class, reading the associated code, etc.

Table of Contents

1 ML Expressions and Variable Bindings ... 3
2 Using use ... 4
3 Variables are Immutable .. 4
4 Function Bindings .. 4
5 Pairs and Other Tuples .. 6
6 Lists .. 7
7 Let Expressions ... 9
8 Options ... 11
9 Some Other Expressions and Operators 12
10 Lack of Mutation and Benefits Thereof 13
11 Conceptual Ways to Build New Types 15
12 Records: Another Approach to “Each-of” Types 15
13 By Name vs. By Position, Syntactic Sugar, and The Truth About Tuples . 16
14 Datatype Bindings: Our Own “One-of” Types 17
15 ML Does Not Provide Access to Datatype Values 17
16 ML Provides Access to Datatype Values: Case Expressions 18
17 Useful Examples of “One-of” Types .. 19
18 Datatype Bindings and Case Expressions So Far, Precisely 20
19 Type Synonyms ... 21
20 Lists and Options are Datatypes ... 21
21 Polymorphic Datatypes .. 23
22 Pattern-Matching for Each-Of Types: The Truth About Val-Bindings . 23
23 Digression: Type inference .. 25
24 Digression: Polymorphic Types and Equality Types 26
25 Nested Patterns ... 26
26 Useful Examples of Nested Patterns 27
27 Multiple Cases in a Function Binding 29
28 Exceptions .. 30
29 Tail Recursion and Accumulators ... 31
30 More Examples of Tail Recursion ... 32
31 A Precise Definition of Tail Position 33
32 More New Terms .. 33
33 Taking Functions as Arguments ... 34
34 Polymorphic Types and Functions as Arguments 35
35 Anonymous functions .. 35
36 Unnecessary Function Wrapping .. 36
37 Maps and filters ... 36
38 Returning functions ... 37
39 Not just for numbers and lists .. 38
40 Lexical Scope ... 38
41 Environments and Closures ... 39
42 (Silly) Examples Including Higher-Order Functions 39
43 Why Lexical Scope and not Dynamic Scope? 40
44 Passing Closures to Iterators Like Filter 41
45 Fold and More Closure Examples .. 41
46 Closure Idiom (I): Combining Functions 42
47 Closure Idiom (II): Currying and Partial Application 43
48 The Value Restriction ... 46
49 Mutation via ML References .. 46
50 Closure Idiom (III): Callbacks ... 47
51 Closure Idiom (IV): Abstract Data Types 48
52 Closures in Other Languages .. 50
53 Standard-Library Documentation ... 56
1 ML Expressions and Variable Bindings

Let’s just start “learning ML” but in a way that teaches core programming-languages concepts rather than just “getting down some code that works.” Therefore, pay extremely careful attention to the words used to describe the very, very simple code we start with. Do not yet try to relate what you see back to what you already know in other languages as that is likely to lead to struggle.

An ML program is a sequence of bindings. Each binding gets type-checked and then (assuming it type-checks) evaluated. What type (if any) a binding has depends on a static environment, which is roughly the types of the preceding bindings in the file. How a binding is evaluated depends on a dynamic environment, which is roughly the values of the preceding bindings in the file. When we just say environment, we usually mean dynamic environment. Sometimes context is used as a synonym for static environment.

There are several kinds of bindings, but for now let’s consider only a variable binding, which in ML has this syntax:

```ml
val x = e;
```

Here, val is a keyword, x can be any variable, and e can be any expression. We will learn many ways to write expressions. The semicolon is optional in a file, but necessary in the read-eval-print loop to let the interpreter know that you are done typing the binding.

We now know a variable binding’s syntax (how to write it), but we still need to know its semantics (how it type-checks and evaluates). Mostly this depends on the expression e. To type-check a variable binding, we use the “current static environment” (the types of preceding bindings) to type-check e (which will depend on what kind of expression it is) and produce a “new static environment” that is the current static environment except with x having type t where t is the type of e. Evaluation is analogous: To evaluate a variable binding, we use the “current dynamic environment” (the values of preceding bindings) to evaluate e (which will depend on what kind of expression it is) and produce a “new dynamic environment” that is the current environment except with x having the value v where v is the result of evaluating e.

A value is an expression that, “has no more computation to do,” i.e., there is no way to simplify it. As described more generally below, 17 is a value, but 8+9 is not. All values are expressions. Not all expressions are values.

This whole description of what ML programs mean (bindings, expressions, types, values, environments) may seem awfully theoretical or esoteric, but it is exactly the foundation we need to give precise and concise definitions for several different kinds of expressions. Here are several such definitions:

- **Integer constants:**
 - Syntax: a sequence of digits
 - Type-checking: type `int` in any static environment
 - Evaluation: to itself in any dynamic environment (it is a value)

- **Addition:**
 - Syntax: `e1+e2` where `e1` and `e2` are expressions
 - Type-checking: type `int` but only if `e1` and `e2` have type `int` in the same static environment, else does not type-check
 - Evaluation: evaluate `e1` to `v1` and `e2` to `v2` in the same dynamic environment and then produce the sum of `v1` and `v2`

- **Variables:**

1 The word static here has a tenuous connection to its use in Java/C/C++, but too tenuous to explain at this point.
– Syntax: a sequence of letters, underscores, etc.
– Type-checking: look up the variable in the current static environment and use that type
– Evaluation: look up the variable in the current dynamic environment and use that value

• Conditionals:
 – Syntax is if e1 then e2 else e3 where e1, e2, and e3 are expressions
 – Type-checking: using the current static environment, a conditional type-checks only if (a) e1 has
type bool and (b) e2 and e3 have the same type. The type of the whole expression is the type of
e2 and e3.
 – Evaluation: under the current dynamic environment, evaluate e1. If the result is true, the result
of evaluating e2 under the current dynamic environment is the overall result. If the result is
false, the result of evaluating e3 under the current dynamic environment is the overall result.

• Boolean constants:
 – Syntax: either true or false
 – Type-checking: type bool in any static environment
 – Evaluation: to itself in any dynamic environment (it is a value)

• Less-than comparison:
 – Syntax: e1 < e2 where e1 and e2 are expressions
 – Type-checking: type bool but only if e1 and e2 have type int in the same static environment,
else does not type-check
 – Evaluation: evaluate e1 to v1 and e2 to v2 in the same dynamic environment and then produce
true if v1 is less than v2 and false otherwise

2 Using use

When using the read-eval-print loop, it is very convenient to add a sequence of bindings from a file.

```ml
use "foo.sml";
```

does just that. Its type is unit and its result is () (the only value of type unit), but its effect is to include
all the bindings in the file "foo.sml".

3 Variables are Immutable

Bindings are immutable. Given val x = 8+9; we produce a dynamic environment where x maps to 17. In
this environment, x will always map to 17; there is no “assignment statement” in ML for changing what x
maps to. That is very useful if you are using x. You can have another binding later, say val x = 19;, but
that just creates a different environment where the later binding for x shadows the earlier one. This
distinction will be extremely important when we define functions that use variables.

4 Function Bindings

Recall that an ML program is a sequence of bindings. Each binding adds to the static environment (for
type-checking subsequent bindings) and to the dynamic environment (for evaluating subsequent bindings).
We already introduced variable bindings; we now introduce function bindings, i.e., how to define and use
functions. We will then learn how to build up and use larger pieces of data from smaller ones using pairs
and lists.

A function is sort of like a method in languages like Java — it is something that is called with arguments
and has a body that produces a result. Unlike a method, there is no notion of a class, this, etc. We also do
not have things like return statements. A simple example is this function that computes x^y assuming y ≥ 0:
fun pow (x:int, y:int) = (* correct only for y >= 0 *)
 if y=0
 then 1
 else x * pow(x,y-1)

Syntax

The syntax for a function binding looks like this (we will generalize this definition a little later in the course):

fun x0 (x1 : t1, ..., xn : tn) = e

This is a binding for a function named x0. It takes n arguments x1, ... xn of types t1, ..., tn and has an expression e for its body. As always, syntax is just syntax — we must define the typing rules and evaluation rules for function bindings. But roughly speaking, in e, the arguments are bound to x1, ... xn and the result of calling x0 is the result of evaluating e.

Type-checking

To type-check a function binding, we type-check the body e in a static environment that (in addition to all the earlier bindings) maps x1 to t1, ... xn to tn and x0 to t1 * ... * tn -> t. Because x0 is in the environment, we can make recursive function calls, i.e., a function definition can use itself. The syntax of a function type is “argument types” -> “result type” where the argument types are separated by * (which just happens to be the same character used in expressions for multiplication). For the function binding to type-check, the body e must have the type t, i.e., the result type of x0. That makes sense given the evaluation rules below because the result of a function call is the result of evaluating e.

But what, exactly, is t – we never wrote it down? It can be any type, and it is up to the type-checker (part of the language implementation) to figure out what t should be such that using it for the result type of x0 makes, “everything work out.” For now, we will take it as magical, but type inference (figuring out types not written down) is a very cool feature of ML discussed later in the course. It turns out that in ML you almost never have to write down types. Soon the argument types t1, ..., tn will also be optional but not until we learn pattern matching a little later.2

After a function binding, x0 is added to the static environment with its type. The arguments are not added to the top-level static environment — they can be used only in the function body.

Evaluation

The evaluation rule for a function binding is trivial: A function is a value — we simply add x0 to the environment as a function that can be called later. As expected for recursion, x0 is in the dynamic environment in the function body and for subsequent bindings (but not, unlike in say Java, for preceding bindings, so the order you define functions is very important).

2The way we are using pair-reading constructs like #1.
Function calls

Function bindings are useful only with function calls, a new kind of expression. The syntax is \(e_0 \ (e_1, \ldots, e_n) \) with the parentheses optional if there is exactly one argument. The typing rules require that \(e_0 \) has a type that looks like \(t_1 \times \cdots \times t_n \rightarrow t \) and for \(1 \leq i \leq n, e_i \) has type \(t_i \). Then the whole call has type \(t \). Hopefully, this is not too surprising. For the evaluation rules, we use the environment at the point of the call to evaluate \(e_0 \) to \(v_0, e_1 \) to \(v_1, \ldots, e_n \) to \(v_n \). Then \(v_0 \) must be a function (it will be assuming the call type-checked) and we evaluate the function’s body in an environment extended such that the function arguments map to \(v_1, \ldots, v_n \).

Exactly which environment is it we extend with the arguments? The environment that “was current” when the function was defined, not the one where it is being called. This distinction will not arise right now, but we will discuss it in great detail later.

Putting all this together, we can determine that this code will produce an environment where \(\text{ans} \) is 64:

```ml
fun pow (x:int, y:int) = (* correct only for y >= 0 *)
  if y=0
    then 1
  else x * pow(x,y-1)

fun cube (x:int) = pow(x,3)
val ans = cube(4)
```

5 Pairs and Other Tuples

Programming languages need ways to build compound data out of simpler data. The first way we will learn about in ML is pairs. The syntax to build a pair is \((e_1, e_2) \) which evaluates \(e_1 \) to \(v_1 \) and \(e_2 \) to \(v_2 \) and makes the pair of values \((v_1, v_2) \), which is itself a value. Since \(v_1 \) and/or \(v_2 \) could themselves be pairs (possibly holding other pairs, etc.), we can build data with several “basic” values, not just two, say, integers. The type of a pair is \(t_1 \times t_2 \) where \(t_1 \) is the type of the first part and \(t_2 \) is the type of the second part.

Just like making functions is useful only if we can call them, making pairs is useful only if we can later retrieve the pieces. Until we learn pattern-matching, we will use \#1 and \#2 to access the first and second part. The typing rule for \#1 e or \#2 e should not be a surprise: \(e \) must have some type that looks like \(t_a \times t_b \) and then \#1 e has type \(t_a \) and \#2 e has type \(t_b \).

Here are several example functions using pairs. \texttt{div_mod} is perhaps the most interesting because it uses a pair to return an answer that has two parts. This is quite pleasant in ML, whereas in Java (for example) returning two integers from a function requires defining a class, writing a constructor, creating a new object, initializing its fields, and writing a return statement.
fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) = (* note: returning a pair is a real pain in Java *)
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else ((#2 pr),(#1 pr))

In fact, ML supports *tuples* by allowing any number of parts. For example, a 3-tuple (i.e., a triple) of integers has type *int* *int* *int*. An example is *(7,9,11)* and you retrieve the parts with *#1 e*, *#2 e*, and *#3 e* where *e* is an expression that evaluates to a triple.

Pairs and tuples can be nested however you want. For example, *(7,(true,9))* is a value of type *int* * (bool * int), which is different from *(7,true),9* which has type * (int * bool) * int* or *(7,true,9)* which has type *int* * bool* *int*.

6 Lists

Though we can nest pairs of pairs (or tuples) as deep as we want, for any variable that has a pair, any function that returns a pair, etc. there has to be a type for a pair and that type will determine the amount of “real data.” Even with tuples the type specifies how many parts it has. That is often too restrictive; we may need a list of data (say integers) and the length of the list is not yet known when we are type-checking (it might depend on a function argument). ML has *lists*, which are more flexible than pairs because they can have any length, but less flexible because all the elements of any particular list must have the same type.

The empty list, with syntax [], has 0 elements. It is a value, so like all values it evaluates to itself immediately. It can have type *t list* for *any* type *t*, which ML writes as *'a list* (pronounced “quote a list” or “alpha list”). In general, the type *t list* describes lists where all the elements in the list have type *t*. That holds for [] no matter what *t* is.

A non-empty list with *n* values is written *[v1,v2,…,vn]*. You can make a list with *[e1,…,en]* where each expression is evaluated to a value. It is more common to make a list with *e1 :: e2*, pronounced “*e1 consed onto e2*.” Here *e1* evaluates to an “item of type *t*” and *e2* evaluates to a “list of *t* values” and the result is a new list that starts with the result of *e1* and then is all the elements in *e2*.

As with functions and pairs, making lists is useful only if we can then do something with them. As with pairs, we will change how we use lists after we learn pattern-matching, but for now we will use three functions provided by ML. Each takes a list as an argument.

- *null* evaluates to *true* for empty lists and *false* for nonempty lists.
- *hd* returns the first element of a list, *raising an exception* if the list is empty.
- *tl* returns the tail of a list (a list like its argument but without the first element), raising an exception if the list is empty.
Here are some simple examples of functions that take or return lists:

```ml
fun sum_list (xs : int list) =  
  if null xs  
  then 0  
  else hd(xs) + sum_list(tl xs)

fun countdown (x : int) =  
  if x=0  
  then []  
  else x :: countdown(x-1)

fun append (xs : int list, ys : int list) =  
  if null xs  
  then ys  
  else (hd xs) :: append(tl xs, ys)
```

Functions that make and use lists are almost always recursive because a list has an unknown length. To write a recursive function, the thought process involves thinking about the base case — for example, what should the answer be for an empty list — and the recursive case — how can the answer be expressed in terms of the answer for the rest of the list.

When you think this way, many problems become much simpler in a way that surprises people who are used to thinking about while loops and assignment statements. A great example is the append function above that takes two lists and produces a list that is one list appended to the other. This code implements an elegant recursive algorithm: If the first list is empty, then we can append by just evaluating to the second list. Otherwise, we can append the tail of the first list to the second list. That is almost the right answer, but we need to “cons on” (using :: has been called “consing” for decades) the first element of the first list. There is nothing magical here — we keep making recursive calls with shorter and shorter first lists and then as the recursive calls complete we add back on the list elements removed for the recursive calls.

Finally, we can combine pairs and lists however we want without having to add any new features to our language. For example, here are several functions that take a list of pairs of integers. Notice how the last function reuses earlier functions to allow for a very short solution. This is very common in functional programming. In fact, it should bother us that firsts and seconds are so similar but we do not have them share any code. We will learn how to fix that later.
fun sum_pair_list (xs : (int * int) list) =
 if null xs
 then 0
 else #1 (hd xs) + #2 (hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int * int) list) =
 if null xs
 then []
 else (#1 (hd xs))::(firsts(tl xs))

fun seconds (xs : (int * int) list) =
 if null xs
 then []
 else (#2 (hd xs))::(seconds(tl xs))

fun sum_pair_list2 (xs : (int * int) list) =
 (sum_list (firsts xs)) + (sum_list (seconds xs))

7 Let Expressions

Let-expressions are an absolutely crucial feature that allows for local variables in a very simple, general, and flexible way. Let-expressions are crucial for style and for efficiency. A let-expression lets us have local variables. In fact, it lets us have local bindings of any sort, including function bindings. Because it is a kind of expression, it can appear anywhere an expression can.

Syntactically, a let-expression is:

```ml
let b1 b2 ... bn in e end
```

where each \(b_i \) is a binding and \(e \) is an expression.

The type-checking and semantics of a let-expression are much like the semantics of the top-level bindings in our ML program. We evaluate each binding in turn, creating a larger environment for the subsequent bindings. So we can use all the earlier bindings for the later ones, and we can use them all for \(e \). We call the scope of a binding “where it can be used,” so the scope of a binding in a let-expression is the later bindings in that let-expression and the “body” of the let-expression (the \(e \)). The value \(e \) evaluates to is the value for the entire let-expression, and, unsurprisingly, the type of \(e \) is the type for the entire let-expression.

For example, this expression evaluates to 7; notice how one inner binding for \(x \) shadows an outer one.

```ml
let val x = 1  
in (let val x = 2 in x+1 end) + (let val y = x+2 in y+1 end)
end
```

Also notice how let-expressions are expressions so they can appear as a subexpression in an addition (though this example is silly and bad style because it is hard to read).

Let-expressions can bind functions too, since functions are just another kind of binding. If a helper function is needed by only one other function and is unlikely to be useful elsewhere, it is good style to bind it locally. For example, here we use a local helper function to help produce the list \([1,2,\ldots,x]\):
fun countup_from1 (x:int) =
 let fun count (from:int, to:int) =
 if from=to
 then to::[]
 else from :: count(from+1,to)
 in
 count(1,x)
end

However, we can do better. When we evaluate a call to count, we evaluate count’s body in a dynamic environment that is the environment where count was defined, extended with bindings for count’s arguments. The code above does not really utilize this: count’s body uses only from, to, and count (for recursion). It could also use x, since that is in the environment when count is defined. Then we do not need to at all, since in the code above it always has the same value as x. So this is better style:

fun countup_from1_better (x:int) =
 let fun count (from:int) =
 if from=x
 then x::[]
 else from :: count(from+1)
 in
 count 1
end

This technique — define a local function that uses other variables in scope — is a hugely common and convenient thing to do in functional programming. It is a shame that many non-functional languages have little or no support for doing something like it.

Local variables are often good style for keeping code readable. They can be much more important than that when they bind to the results of potentially expensive computations. For example, consider this code that does not use let-expressions:

fun bad_max (xs : int list) =
 if null xs
 then 0 (* note: bad style; see below *)
 else if null (tl xs)
 then hd xs
 else if hd xs > bad_max(tl xs)
 then hd xs
 else bad_max(tl xs)

If you call bad_max with countup_from1 30, it will make approximately 2^{30} (over one billion) recursive calls to itself. The reason is an “exponential blowup” — the code calls bad_max(tl xs) twice and each of those calls call bad_max two more times (so four total) and so on. This sort of programming “error” can be difficult to detect because it can depend on your test data (if the list counts down, the algorithm makes only 30 recursive calls instead of 2^{30}).

We can use let-expressions to avoid repeated computations. This version computes the max of the tail of the list once and stores the resulting value in tl_ans.
fun good_max (xs : int list) =
 if null xs
 then 0 (* note: bad style; see below *)
 else if null (tl xs)
 then hd xs
 else (* for style, could also use a let-binding for hd xs *)
 let val tl_ans = good_max(tl xs)
 in
 if hd xs > tl_ans
 then hd xs
 else tl_ans
 end

8 Options

The previous example does not properly handle the empty list — it returns 0. This is bad style because 0 is really not the maximum value of 0 numbers. There is no good answer, but we should deal with this case reasonably. One possibility is to raise an exception; you can learn about ML exceptions on your own if you are interested before we discuss them later in the course. Instead, let’s change the return type to either return the maximum number or indicate the input list was empty so there is no maximum. Given the constructs we have, we could “code this up” by return an int list, using [] if the input was the empty list and a list with one integer (the maximum) if the input list was not empty.

While that works, lists are “overkill” — we will always return a list with 0 or 1 elements. So a list is not really a precise description of what we are returning. The ML library has “options” which are a precise description: an option value has either 0 or 1 thing: NONE is an option value “carrying nothing” whereas SOME e evaluates e to a value v and becomes the option carrying the one value v. The type of NONE is 'a option and the type of SOME e is t option if e has type t.

Given a value, how do you use it? Just like we have null to see if a list is empty, we have isSome which evaluates to false if its argument is NONE. Just like we have hd and tl to get parts of lists (raising an exception for the empty list), we have valOf to get the value carried by SOME (raising an exception for NONE).

Using options, here is a better version with return type int option:

fun better_max (xs : int list) =
 if null xs
 then NONE
 else
 let val tl_ans = better_max(tl xs)
 in
 if isSome tl_ans
 and also valOf tl_ans > hd xs
 then tl_ans
 else SOME (hd xs)
 end

The version above works just fine and is a reasonable recursive function because it does not repeat any potentially expensive computations. But it is both awkward and a little inefficient to have each recursive call except the last one create an option with SOME just to have its caller access the value underneath. Here is an alternative approach where we use a local helper function for non-empty lists and then just have the
outer function return an option. Notice the helper function would raise an exception if called with [], but since it is defined locally, we can be sure that will never happen.

```ml
fun better_max2 (xs : int list) =  
    if null xs  
    then NONE  
    else let  
        (* fine to assume argument nonempty because it is local *)  
        fun max_nonempty (xs : int list) =  
            if null (tl xs) (* xs must not be [] *)  
            then hd xs  
            else let val tl_ans = max_nonempty(tl xs)  
                in  
                    if hd xs > tl_ans  
                    then hd xs  
                    else tl_ans  
                end  
        in  
            SOME (max_nonempty xs)  
        end
```

9 Some Other Expressions and Operators

ML has all the arithmetic and logical operators you need, but the syntax is sometimes different than in most languages. Here is a brief list of some additional forms of expressions we will find useful:

- `e1 andalso e2` is logical-and: It evaluates `e2` only if `e1` evaluates to `true`. The result is `true` if `e1` and `e2` evaluate to `true`. Naturally, `e1` and `e2` must both have type `bool` and the entire expression also has type `bool`. In many languages, such expressions are written `e1 && e2`, but that is not the ML syntax, nor is `e1 and e2` (but `and` is a keyword we will encounter later for a different purpose). Using `e1 andalso e2` is generally better style than the equivalent `if e1 then e2 else false`.
- `e1 orelse e2` is logical-or: It evaluates `e2` only if `e1` evaluates to `false`. The result is `true` if `e1` or `e2` evaluates to `true`. Naturally, `e1` and `e2` must both have type `bool` and the entire expression also has type `bool`. In many languages, such expressions are written `e1 || e2`, but that is not the ML syntax, nor is `e1 or e2`. Using `e1 orelse e2` is generally better style than the equivalent `if e1 then true else e2`.
- `not e` is logical-negation. `not` is just a provided function of type `bool->bool` that we could have defined ourselves as `fun not x = if x then false else true`. In many languages, such expressions are written `!e`, but in ML the `!` operator means something else (related to mutable variables, which we will not use).
- You can compare many values, including integers, for equality using `e1 = e2`.
- Instead of writing `not (e1 = e2)` to see if two numbers are different, better style is `e1 <> e2`. In many languages, the syntax is `e1 != e2`, whereas ML’s `<>` can be remembered as, “less than or greater than.”
- The other arithmetic comparisons have the same syntax as in most languages: `>`, `<`, `>=`, `<=`.
- Subtraction is written `e1 - e2`, but it must take two operands, so you cannot just write `- e` for negation. For negation, the correct syntax is `~ e`, in particular negative numbers are written like `~7`, `not ~7`. Using `~ e` is better style than `0 - e`, but equivalent for integers.
10 Lack of Mutation and Benefits Thereof

In ML, there is no way to change the contents of a binding, a tuple, or a list. If \(x \) maps to some value like the list of pairs \([(3,4),(7,9)]\) in some environment, then \(x \) will forever map to that list in that environment. There is no assignment statement that changes \(x \) to map to a different list. (You can introduce a new binding that shadows \(x \), but that will not affect any code that looks up the “original” \(x \) in an environment.) There is no assignment statement that lets you change the head or tail of a list. And there is no assignment statement that lets you change the contents of a tuple. So we have constructs for building compound data and accessing the pieces, but no constructs for mutating the data we have built.

This is a really powerful feature! That may surprise you: how can a language not having something be a feature? Because if there is no such feature, then when you are writing your code you can rely on no other code doing something that would make your code wrong, incomplete, or difficult to use. Having immutable data is probably the most important “non-feature” a language can have, and it is one of the main contributions of functional programming.

While there are various advantages to immutable data, here we will focus on a big one: it makes sharing and aliasing irrelevant. Let’s re-consider two examples from above before picking on Java (and every other language where mutable data is the norm and assignment statements run rampant).

```ml
fun sort_pair (pr : int*int) = 
  if (#1 pr) < (#2 pr) 
    then pr 
    else ((#2 pr),(#1 pr))
```

In `sort_pair`, we clearly build and return a new pair in the else-branch, but in the then-branch, do we return a copy of the pair referred to by `pr` or do we return an alias, where a caller like:

```ml
val x = (3,4)  
val y = sort_pair x
```

would now have \(x \) and \(y \) be aliases for the same pair? The answer is you cannot tell — there is no construct in ML that can figure out whether or not \(x \) and \(y \) are aliases, and no reason to worry that they might be. If we had mutation, life would be different. Suppose we could say, “change the second part of the pair \(x \) is bound to so that it holds 5 instead of 4.” Then we would have to wonder if \(#2 y \) would be 4 or 5.

In case you are curious, we would expect that the code above would create aliasing: by returning `pr`, the `sort_pair` function would return an alias to its argument. That is more efficient than this version, which would create another pair with exactly the same contents:

```ml
fun sort_pair (pr : int*int) = 
  if (#1 pr) < (#2 pr) 
    then (#1 pr, #2 pr) 
    else ((#2 pr),(#1 pr))
```

Making the new pair \((#1 pr, #2 pr)\) is bad style, since `pr` is simpler and will do just as well. Yet in languages with mutation, programmers make copies like this all the time, exactly to prevent aliasing where doing an assignment using one variable like `x` causes unexpected changes to using another variable like `y`. In ML, no users of `sort_pair` can ever tell whether we return a new pair or not.

Our second example is our elegant function for list append:
fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else (hd xs) :: append(tl xs, ys)

We can ask a similar question: Does the list returned share any elements with the arguments? Again the answer does not matter because no caller can tell. And again the answer happens to be yes: we build a new list that “reuses” all the elements of ys. This saves space, but would be very confusing if someone could later mutate ys. Saving space is a nice advantage of immutable data, but so is simply not having to worry about whether things are aliased or not when writing down elegant algorithms.

In fact, tl itself thankfully introduces aliasing (though you cannot tell): it returns (an alias to) the tail of the list, which is always “cheap,” rather than making a copy of the tail of the list, which is “expensive” for long lists.

The append example is very similar to the sort_pair example, but it is even more compelling because it is hard to keep track of potential aliasing if you have many lists of potentially large lengths. If I append [1,2] to [3,4,5], I will get some list [1,2,3,4,5] but if later someone can change the [3,4,5] list to be [3,7,5] is the appended list still [1,2,3,4,5] or is it now [1,2,3,7,5]?

In the analogous Java program, this is a crucial question, which is why Java programmers must obsess over when references to old objects are used and when new objects are created. There are times when obsessing over aliasing is the right thing to do and times when avoiding mutation is the right thing to do — functional programming will help you get better at the latter.

For a final example, the following Java is the key idea behind an actual security hole in an important (and subsequently fixed) Java library. Suppose we are maintaining permissions for who is allowed to access something like a file on the disk. It is fine to let everyone see who has permission, but clearly only those that do have permission can actually use the resource. Consider this wrong code (some parts omitted if not relevant):

```java
class ProtectedResource {
    private Resource theResource = ...;
    private String[] allowedUsers = ...;
    public String[] getAllowedUsers() {
        return allowedUsers;
    }
    public String currentUser() { ... }
    public void useTheResource() {
        for(int i=0; i < allowedUsers.length; i++) {
            if(currentUser().equals(allowedUsers[i])) {
                ... // access allowed: use it
                return;
            }
        }
        throw new IllegalAccessException();
    }
}
```

Can you find the problem? Here it is: getAllowedUsers returns an alias to the allowedUsers array, so any user can gain access by doing getAllowedUsers()[0] = currentUser(). Oops! This would not be possible if we had some sort of array in Java that did not allow its contents to be updated. Instead, in Java we often have to remember to make a copy. The correction below shows an explicit loop to show in detail
what must be done, but better style would be to use a library method like System.arraycopy or similar
methods in the Arrays class — these library methods exist because array copying is necessarily common, in
part due to mutation.

```java
public String[] getAllowedUsers() {
    String[] copy = new String[allowedUsers.length];
    for (int i = 0; i < allowedUsers.length; i++)
        copy[i] = allowedUsers[i];
    return copy;
}
```

11 Conceptual Ways to Build New Types

Programming languages have base types, like int, bool, and unit and compound types, which are types
that contain other types in their definition. We have already seen ways to make compound types in ML,
namely by using tuple types, list types, and option types. We will soon learn new ways to make even more
flexible compound types and to give names to our new types. To create a compound type, there are really
only three essential building blocks. Any decent programming language provides these building blocks in
some way:

- “Each-of”: A compound type t describes values that contain each of values of type t1, t2, ..., and tn.
- “One-of”: A compound type t describes values that contain a value of one of the types t1, t2, ..., or
tn.
- “Self-reference”: A compound type t may refer to itself in its definition in order to describe recursive
data structures like lists and trees.

Each-of types are the most familiar to most programmers. Tuples are an example: int * bool describes
values that contain an int and a bool. A Java class with fields is also an each-of sort of thing.

One-of types are also very common but unfortunately are not emphasized as much in many introductory
programming courses. int option is a simple example: A value of this type contains an int or it does not.
For a type that contains an int or a bool in ML, we need datatype bindings, which are the main focus of
this section of the course. In object-oriented languages with classes like Java, one-of types are achieved
with subclassing, but that is a topic for much later in the course.

Self-reference allows types to describe recursive data structures. This is useful in combination with each-of
and one-of types. For example, int list describes values that either contain nothing or contain an int and
another int list. A list of integers in any programming language would be described in terms of or, and,
and self-reference because that is what it means to be a list of integers.

Naturally, since compound types can nest, we can have any nesting of each-of, one-of, and self-reference.
For example, consider the type (int * bool) list list * (int option) list * bool.

12 Records: Another Approach to “Each-of” Types

Record types are “each-of” types where each component is a named field. For example, the type

As a matter of jargon you do not need to know, the terms “each-of types,” “one-of types,” and “self-reference types” are not
standard – they are just good ways to think about the concepts. Usually people just use constructs from a particular language
like “tuples” when they are talking about the ideas. Programming-language researchers use the terms “product types,” “sum
types,” and “recursive types.” Why product and sum? It is related to the fact that in Boolean algebra where 0 is false and 1 is
ture, and works like multiply and or works like addition.

{foo : int, bar : int*bool, baz : bool*int} describes records with three fields named foo, bar, and baz. This is just a new sort of type, just like tuple types were new when we learned them.

A record expression builds a record value. For example, the expression
{bar = (1+2,true andalso true), foo = 3+4, baz = (false,9)} would evaluate to the record value
{bar = (3,true), foo = 7, baz = (false,9)}, which can have type
{foo : int, bar : int*bool, baz : bool*int} because the order of fields never matters (we use the field names instead). In general the syntax for a record expression is {f1 = e1, ..., fn = en} where, as always, each ei can be any expression. Here each f can be any field name (though each must be different). A field name is basically any sequence of letters or numbers.

In ML, we do not have to declare that we want a record type with particular field names and field types — we just write down a record expression and the type-checker gives it the right type. The type-checking rules for record expressions are not surprising: Type-check each expression to get some type ti and then build the record type that has all the right fields with the right types. Because the order of field names never matters, the REPL always alphabetizes them when printing just for consistency.

The evaluation rules for record expressions are analogous: Evaluate each expression to a value and create the corresponding record value.

Now that we know how to build record values, we need a way to access their pieces. For now, we will use #foo e where foo is a field name. Type-checking requires e has a record type with a field named foo, and if this field has type t, then that is the type of #foo e. Evaluation evaluates e to a record value and then produces the contents of the foo field.

13 By Name vs. By Position, Syntactic Sugar, and The Truth About Tuples

Records and tuples are very similar. They are both “each-of” constructs that allow any number of components. The only real difference is that records are “by name” and tuples are “by position.” This means with records we build them and access their pieces by using field names, so the order we write the fields in a record expression does not matter. But tuples do not have field names, so we use the position (first, second, third, ...) to distinguish the components.

By name versus by position is a classic decision when designing a language construct or choosing which one to use, with each being more convenient in certain situations. As a rough guide, by position is simpler for a small number of components, but for larger compound types it becomes too difficult to remember which position is which.

Java method arguments (and ML function arguments as we have described them so far) actually take a hybrid approach: The method body uses variable names to refer to the different arguments, but the caller passes arguments by position. There are other languages where callers pass arguments by name.4

Despite “by name vs. by position,” records and tuples are still so similar that we can define tuples entirely in terms of records. Here is how:

- When you write (e1,...,en), it is another way of writing {1=e1,...,n=en}, i.e., a tuple expression is a record expression with field names 1, 2, ..., n.
- The type t1 * ... * tn is just another way of writing {1:t1, ..., n:tn}.
- Notice that #1 e, #2 e, etc. now already mean the right thing: get the contents of the field named 1, 2, etc.

4The phrase “call by name” actually means something else in relation to function arguments. It is a different topic.
In fact, this is how ML actually defines tuples: A tuple is a record. That is, all the syntax for tuples is just a convenient way to write down and use records. The REPL just always uses the tuple syntax where possible, so if you evaluate \(\{2=1+2, 1=3+4\} \) it will print the result as \((7, 3)\). Using the tuple syntax is better style, but we did not need to give tuples their own semantics: we can instead use the “another way of writing” rules above and then reuse the semantics for records.

This is the first of many examples we will see of syntactic sugar. We say, “tuples are just syntactic sugar for records with fields named 1, 2, ..., n.” It is syntactic because we can describe everything about tuples in terms of equivalent record syntax. It is sugar because it makes the language sweeter. The term syntactic sugar is widely used. Syntactic sugar is a great way to keep the key ideas in a programming-language small (making it easier to implement) while giving programmers convenient ways to write things.

14 Datatype Bindings: Our Own “One-of” Types

We now introduce datatype bindings, our third kind of binding after variable bindings and function bindings. We start with a silly but simple example because it will help us see the many different aspects of a datatype binding. We can write:

```plaintext
datatype mytype = TwoInts of int * int
               | Str of string
               | Pizza
```

Roughly, this defines a new type where values have an int * int or a string or nothing. Any value will also be “tagged” with information that lets us know which variant it is: These “tags,” which we will call constructors, are TwoInts, Str, and Pizza. Two constructors could be used to tag the same type of underlying data; in fact this is common even though our example uses different types for each variant.

More precisely, the example above adds four things to the environment:

- A new type mytype that we can now use just like any other type
- Three constructors TwoInts, Str, and Pizza

A constructor is two different things. First, it is either a function for creating values of the new type (if the variant has of t for some type t) or it is actually a value of the new type (otherwise). In our example, TwoInts is a function of type int*int -> mytype, Str is a function of type string->mytype, and Pizza is a value of type mytype. Second, we use constructors in case-expressions as described further below.

So we know how to build values of type mytype: call the constructors (they are functions) with expressions of the right types (or just use the Pizza value). The result of these function calls are values that “know which variant they are” (they store a “tag”) and have the underlying data passed to the constructor. The REPL represents these values like TwoInts(3,4) or Str "hi".

What remains is a way to retrieve the pieces...

15 ML Does Not Provide Access to Datatype Values

Given a value of type mytype, how can we access the data stored in it? First, we need to find out which variant it is since a value of type mytype might have been made from TwoInts, Str, or Pizza and this affects what data is available. Once we know what variant we have, then we can access the pieces, if any, that variant carries.

Recall how we have done this so for lists and options, which are also one-of types: We had functions for testing which variant we had (null or isSome) and functions for getting the pieces (hd, tl, or valOf), which raised exceptions if given arguments of the wrong variant.
ML could have taken the same approach for datatype bindings. For example, it could have taken our
datatype definition above and added to the environment functions \texttt{isTwoInts}, \texttt{isStr}, and \texttt{isPizza} all of
type \texttt{mytype \rightarrow bool}. And it could have added functions like \texttt{getTwoInts} of type \texttt{mytype \rightarrow int*int} and
\texttt{getStr} of type \texttt{mytype \rightarrow string}, which might raise exceptions.

But ML does not take this approach. Instead it does something better. You could write these functions
yourself using the better thing, though it is usually poor style to do so. In fact, after learning the better
thing, we will no longer use the functions for lists and options the way we have been — we just started
with these functions so we could learn one thing at a time.

16 ML Provides Access to Datatype Values: Case Expressions

The better thing is a \textit{case expression}. Here is a basic example for our example datatype binding:

\begin{verbatim}
fun f x = (* f has type mytype \rightarrow int *)
 case x of
 Pizza => 3
 | TwoInts(i1,i2) => i1 + i2
 | Str s => String.size s
\end{verbatim}

In one sense, a case-expression is like a more powerful if-then-else expression: Like a conditional expression, it evaluates two of its subexpressions: first the expression between the \texttt{case} and \texttt{of}
keywords and second the expression in the \texttt{first branch that matches}. But instead of having two branches (one for \texttt{true} and one
for \texttt{false}), we can have one branch for each variant of our datatype (and we will generalize this further
below). Like conditional expressions, each branch’s expression must have the same type (\texttt{int} in the
example above) because the type-checker cannot know what branch will be used.

Each branch has the form \texttt{p \rightarrow e} where \texttt{p} is a \textit{pattern} and \texttt{e} is an expression, and we separate the branches with
the \texttt{|} character. Patterns look like expressions, but do not think of them as expressions. Instead they are
used to \texttt{match} against the result of evaluating the case’s first expression (the part after \texttt{case}). This is
why evaluating a case-expression is called \textit{pattern-matching}.

For now (to be significantly generalized soon), we keep pattern-matching simple: Each pattern uses a
different constructor and pattern-matching picks the branch with the “right one” given the expression after
the word \texttt{case}. The result of evaluating that branch is the overall answer; no other branches are evaluated.
For example, if \texttt{TwoInts(7,9)} is passed to \texttt{f}, then the second branch will be chosen.

That takes care of the “check the variant” part of using the one-of type, but pattern matching \textit{also} takes
care of the “get out the underlying data” part. Since \texttt{TwoInts} has two values it “carries”, a pattern for it can (and, for now, must) use two variables (the \texttt{(i1,i2)}). As part of matching, the corresponding parts of the value (continuing our example, the 7 and the 9)
are bound to \texttt{i1} and \texttt{i2} in the environment used to evaluate the corresponding right-hand side (the \texttt{i1+i2}). In this sense, pattern-matching is like a
let-expression: It binds variables in a local scope. The type-checker knows what types these variables have
because they were specified in the datatype binding that created the constructor used in the pattern.

Why are case-expressions better than functions for testing variants and extracting pieces?

\begin{itemize}
 \item We can never “mess up” and try to extract something from the wrong variant. That is, we will not
 get exceptions like we get with \texttt{hd []}.
 \item If a case expression forgets a variant, then the type-checker will give a warning message. This
 indicates that evaluating the case-expression could find no matching branch, in which case it will
 raise an exception. If you have no such warnings, then you know this does not occur.
 \item If a case expression uses a variant twice, then the type-checker will give an error message since one of
 the branches could never possibly be used.
\end{itemize}
- If you still want functions like null and hd, you can easily write them yourself.
- Pattern-matching is much more general and powerful than we have indicated so far. We give the “whole truth” about pattern-matching below.

17 Useful Examples of “One-of” Types

Let us now consider several examples where “one-of” types are useful, since so far we considered only a silly example.

First, they are good for enumerating a fixed set of options – and much better style than using, say, small integers. For example:

```plaintext
datatype suit = Club | Diamond | Heart | Spade
```

Many languages have support for this sort of enumeration including Java and C, but ML takes the next step of letting variants carry data, so we can do things like this:

```plaintext
datatype rank = Jack | Queen | King | Ace | Num of int
```

We can then combine the two pieces with an each-of type: suit * rank

One-of types are also useful when you have different data in different situations. For example, suppose you want to identify students by their id-numbers, but in case there are students that do not have one (perhaps they are new to the university), then you will use their full name instead (with first name, optional middle name, and last name). This datatype binding captures the idea directly:

```plaintext
datatype id = StudentNum of int
            | Name of string * (string option) * string
```

Unfortunately, this sort of example is one where programmers often show a profound lack of understanding of one-of types and insist on using each-of types, which is like using a saw as a hammer (it works, but you are doing the wrong thing). Consider BAD code like this:

```plaintext
(* If student_num is -1, then use the other fields, otherwise ignore other fields *)
{student_num : int, first : string, middle : string option, last : string}
```

This approach requires all the code to follow the rules in the comment, with no help from the type-checker. It also wastes space, having fields in every record that should not be used.

On the other hand, each-of types are exactly the right approach if we want to store for each student their id-number (if they have one) and their full name:

```plaintext
{ student_num : int option,
  first : string,
  middle : string option,
  last : string }
```

Our last example is a data definition for arithmetic expressions containing constants, negations, additions, and multiplications.
datatype \texttt{exp} = \texttt{Constant} of \texttt{int} \\
| \texttt{Negate} of \texttt{exp} \\
| \texttt{Add} of \texttt{exp} * \texttt{exp} \\
| \texttt{Multiply} of \texttt{exp} * \texttt{exp}

Thanks to the self-reference, what this data definition really describes is \textit{trees} where the leaves are integers and the internal nodes are either negations with one child, additions with two children or multiplications with two children. We can write a function that takes an \texttt{exp} and evaluates it:

\begin{verbatim}
fun \texttt{eval} \texttt{e} = \\
 case \texttt{e} of \\
 | \texttt{Constant} \texttt{i} => \texttt{i} \\
 | \texttt{Negate} \texttt{e2} => \neg (\texttt{eval} \texttt{e2}) \\
 | \texttt{Add} (\texttt{e1}, \texttt{e2}) => (\texttt{eval} \texttt{e1}) + (\texttt{eval} \texttt{e2}) \\
 | \texttt{Multiply} (\texttt{e1}, \texttt{e2}) => (\texttt{eval} \texttt{e1}) * (\texttt{eval} \texttt{e2})
\end{verbatim}

So this function call evaluates to 15:

\begin{verbatim}
\texttt{eval} \ (\texttt{Add} \ (\texttt{Constant} 19, \texttt{Negate} \ (\texttt{Constant} 4)))
\end{verbatim}

Notice how constructors are just functions that we call with other expressions (often other values built from constructors).

There are many functions we might write over values of type \texttt{exp} and most of them will use pattern-matching and recursion in a similar way. Here are other functions you could write that process an \texttt{exp} argument:

- The largest constant in an expression
- A list of all the constants in an expression (use list append)
- A \texttt{bool} indicating whether there is at least one multiplication in the expression
- The number of addition expressions in an expression

Here is the last one:

\begin{verbatim}
fun \texttt{number_of_adds} \texttt{e} = \\
 case \texttt{e} of \\
 | \texttt{Constant} \texttt{i} => 0 \\
 | \texttt{Negate} \texttt{e2} => \texttt{number_of_adds} \texttt{e2} \\
 | \texttt{Add} (\texttt{e1}, \texttt{e2}) => 1 + \texttt{number_of_adds} \texttt{e1} + \texttt{number_of_adds} \texttt{e2} \\
 | \texttt{Multiply} (\texttt{e1}, \texttt{e2}) => \texttt{number_of_adds} \texttt{e1} + \texttt{number_of_adds} \texttt{e2}
\end{verbatim}

18 \hspace{1em} Datatype Bindings and Case Expressions So Far, Precisely

We can summarize what we know about datatypes and pattern matching so far as follows: The binding

\begin{verbatim}
datatype \texttt{t} = \texttt{C1 of} \texttt{t1} | \texttt{C2 of} \texttt{t2} | \ldots | \texttt{Cn of} \texttt{tn}
\end{verbatim}

introduces a new type \texttt{t} and each constructor \texttt{Ci} is a function of type \texttt{ti->t}. One omits the “of \texttt{ti}” for a variant that “carries nothing” and such a constructor just has type \texttt{t}. To “get at the pieces” of a \texttt{t} we use a case expression:
case e of p1 => e1 | p2 => e2 | ... | pn => en

A case expression evaluates e to a value v, finds the first pattern pi that matches v, and evaluates ei to produce the result for the whole case expression. So far, patterns have looked like Ci(x1,...,xn) where Ci is a constructor of type t1 * ... * tn -> t (or just Ci if Ci carries nothing). Such a pattern matches a value of the form Ci(v1,...,vn) and binds each xi to vi for evaluating the corresponding ei.

19 Type Synonyms

Before continuing our discussion of datatypes, let’s contrast them with another useful kind of binding that also introduces a new type name. A type synonym simply creates another name for an existing type that is entirely interchangeable with the existing type.

For example, if we write:

```plaintext
type foo = int
```

then we can write `foo` wherever we write `int` and vice-versa. So given a function of type `foo->foo` we could call the function with 3 and add the result to 4. The REPL will sometimes print `foo` and sometimes print `int` depending on the situation; the details are unimportant and up to the language implementation. For a type like `int`, such a synonym is not very useful (though later when we study ML’s module system we will build on this feature).

But for more complicated types, it can be convenient to create type synonyms. Here are some examples for types we created above:

```plaintext
type card = suit * rank

type name_record = { student_num : int option,
                     first : string,
                     middle : string option,
                     last : string }
```

Just remember these synonyms are fully interchangeable. For example, if you need to write a function of type `card -> int` and the REPL reports your solution has type `suit * rank -> int`, this is okay because the types are “the same.”

In contrast, datatype bindings introduce a type that is not the same as any existing type. It creates constructors that produces values of this new type. So, for example, the only type that is the same as `suit` is `suit` unless we later introduce a synonym for it.

20 Lists and Options are Datatypes

Because datatype definitions can be recursive, we can use them to create our own types for lists. For example, this binding works well for a linked list of integers:

```plaintext
datatype my_int_list = Empty
                    | Cons of int * my_int_list
```
We can use the constructors `Empty` and `Cons` to make values of `my_int_list` and we can use case expressions to use such values:

```ml
val one_two_three = Cons(1,Cons(2,Cons(3,Empty)))
```

```ml
fun append_mylist (xs,ys) = 
  case xs of
    Empty => ys 
  | Cons(x,xs') => Cons(x, append_mylist(xs',ys))
```

It turns out the lists and options “built in” (i.e., predefined with some special syntactic support) are just datatypes. As a matter of style, it is better to use the built-in widely-known feature than to invent your own.

More importantly, it is better style to use pattern-matching for accessing list and option values, not the functions `null`, `hd`, `tl`, `isSome`, and `valOf` we saw previously. (We used them because we had not learned pattern-matching yet and we did not want to delay practicing our functional-programming skills.)

For options, all you need to know is `SOME` and `NONE` are constructors, which we use to create values (just like before) and in patterns to access the values. Here is a short example of the latter:

```ml
fun inc_or_zero intoption = 
  case intoption of
    NONE => 0 
  | SOME i => i+1
```

The story for lists is similar with a few convenient syntactic peculiarities: `[]` really is a constructor that carries nothing and `::` really is a constructor that carries two things, but `::` is unusual because it is an infix operator (it is placed between its two operands), both when creating things and in patterns:

```ml
fun sum_list xs = 
  case xs of
    [] => 0 
  | x::xs' => x + sum_list xs'
```

```ml
fun append (xs,ys) = 
  case xs of
    [] => ys 
  | x::xs' => x :: append(xs',ys)
```

Notice here `x` and `xs'` are nothing but local variables introduced via pattern-matching. We can use any names for the variables we want. We could even use `hd` and `tl` — doing so would simply shadow the functions predefined in the outer environment.

The reasons why you should usually prefer pattern-matching for accessing lists and options instead of functions like `null` and `hd` is the same as for datatype bindings in general: you cannot forget cases, you cannot apply the wrong function, etc. So why does the ML environment predefine these functions if the approach is inferior? In part, because they are useful for passing as arguments to other functions, a major topic for the next section of the course.

5In this example, we use a variable `xs'`. Many languages do not allow the character ‘ in variable names, but ML does and it is common in mathematics to use it and pronounce such a variable “exes prime.”
21 Polymorphic Datatypes

Other than the strange syntax of [] and ::, the only thing that distinguishes the built-in lists and options from our example datatype bindings is that the built-in ones are polymorphic – they can be used for carrying values of any type, as we have seen with int list, int list list, (bool * int) list, etc. You can do this for your own datatype bindings too, and indeed it is very useful for building “generic” data structures. While we will not focus on using this feature here (i.e., you are not responsible for knowing how to do it), there is nothing very complicated about it. For example, this is exactly how options are pre-defined in the environment:

```
datatype 'a option = NONE | SOME of 'a
```

Such a binding does not introduce a type option. Rather, it makes it so that if t is a type, then t option is type. You can also define polymorphic datatypes that take multiple types. For example, here is a binary tree where internal nodes hold values of type 'a and leaves hold values of type 'b

```
datatype ('a,'b) tree = Node of 'a * ('a,'b) tree * ('a,'b) tree | Leaf of 'b
```

We then have types like (int,int) tree (in which every node and leaf holds an int) and (string,bool) tree (in which every node holds a string and every leaf holds a bool). The way you use constructors and pattern-matching is the same for regular datatypes and polymorphic datatypes.

22 Pattern-Matching for Each-Of Types: The Truth About Val-Bindings

So far we have used pattern-matching for one-of types, but we can use it for each-of types also. Given a record value \{f1=v1,...,fn=vn\}, the pattern \{f1=x1,...,fn=xn\} matches and binds xi to vi. As you might expect, the order of fields in the pattern does not matter. As before, tuples are syntactic sugar for records: the pattern (x1,...,xn) is the same as \{1=x1,...,n=xn\} and matches the tuple value (v1,...,vn), which is the same as \{1=v1,...,n=vn\}. So we could write this function for summing the three parts of an int * int * int:

```
fun sum_triple (triple : int * int * int) =
  case triple of
    (x,y,z) => z + y + x
```

And a similar example with records (and ML’s string-concatenation operator) could look like this:

```
fun full_name (r : {first:string,middle:string,last:string}) =
  case r of
    {first=x,middle=y,last=z} => x ^ " " ^ y ^ " " ^z
```

However, a case-expression with one branch is poor style — it looks strange because the purpose of such expressions is to distinguish cases, plural. So how should we use pattern-matching for each-of types, when we know that a single pattern will definitely match so we are using pattern-matching just for the convenient extraction of values? It turns out you can use patterns in val-bindings too! So this approach is better style:
fun full_name (r : {first:string,middle:string,last:string}) =
 let val {first=x,middle=y,last=z} = r
 in
 x ^ " " ^ y ^ " " ^ z
 end

fun sum_triple (triple : int*int*int) =
 let val (x,y,z) = triple
 in
 x + y + z
 end

Actually we can do even better: Just like a pattern can be used in a val-binding to bind variables (e.g., \(x\), \(y\), and \(z\)) to the various pieces of the expression (e.g., \(\text{triple}\)), we can use a pattern when defining a function binding and the pattern will be used to introduce bindings by matching against the value passed when the function is called. So here is the third and best approach for our example functions:

fun full_name {first=x,middle=y,last=z} =
 x ^ " " ^ y ^ " " ^ z

fun sum_triple (x,y,z) =
 x + y + z

This version of \(\text{sum_triple}\) should intrigue you: It takes a triple as an argument and uses pattern-matching to bind three variables to the three pieces for use in the function body. But it looks exactly like a function that takes three arguments of type \(\text{int}\). Indeed, is the type \(\text{int*int*int->int}\) for three-argument functions or for one argument functions that take triples?

It turns out we have been basically lying: There is no such thing as a multi-argument function in ML: *Every function in ML takes exactly one argument!* Every time we write a multi-argument function, we are really writing a one-argument function that takes a tuple as an argument and uses pattern-matching to extract the pieces. This is such a common idiom that it is easy to forget about and it is totally fine to talk about “multi-argument functions” when discussing your ML code with friends. But in terms of the actual language definition, it really is a one-argument function: syntactic sugar for expanding out to the first version of \(\text{sum_triple}\) with a one-arm case expression.

This flexibility is sometimes useful. In languages like C and Java, you cannot have one function/method compute the results that are immediately passed to another multi-argument function/method. But with one-argument functions that are tuples, this works fine. Here is a silly example where we “rotate a triple to the right” by “rotating it to the left twice”:

fun rotate_left (x,y,z) = (y,z,x)
fun rotate_right triple = rotate_left(rotate_left triple)

More generally, you can compute tuples and then pass them to functions even if the writer of that function was thinking in terms of multiple arguments.

What about zero-argument functions? They do not exist either. The binding \(\text{fun f () = e}\) is using the unit-pattern \(()\) to match against calls that pass the unit value \(()\), which is the only value of type \(\text{unit}\). The type unit is just a datatype with only one constructor, which takes no arguments and uses the unusual syntax \(()\). Basically, \(\text{datatype unit = ()}\) comes pre-defined.
23 Digression: Type inference

By using patterns to access values of tuples and records rather than #foo, you will find it is no longer necessary to write types on your function arguments. In fact, it is conventional in ML to leave them off — you can always use the REPL to find out a function’s type. The reason we needed them before is that #foo does not give enough information to type-check the function because the type-checker does not know what other fields the record is supposed to have, but the record/tuple patterns introduced above provide this information. In ML, every variable and function has a type (or your program fails to type-check) — type inference only means you do not need to write down the type.

So none of our examples above that used pattern-matching instead of #middle or #2 need argument types. It is often better style to write these less cluttered versions, where again the last one is the best:

```ml
fun sum_triple triple = 
    case triple of 
      (x,y,z) => z + y + x 

fun sum_triple triple = 
    let val (x,y,z) = triple 
    in 
      x + y + z 
    end

fun sum_triple (x,y,z) = 
    x + y + z
```

This version needs an explicit type on the argument:

```ml
fun sum_triple (triple : int * int * int) = 
    #1 triple + #2 triple + #3 triple
```

The reason is the type-checker cannot take

```ml
fun sum_triple triple = 
    #1 triple + #2 triple + #3 triple
```

and infer that the argument must have type int*int*int, since it could also have type int*int*int*int or int*int*int*string or int*int*int*bool*string or an infinite number of other types. If you do not use #, ML almost never requires explicit type annotations thanks to the convenience of type inference.

In fact, type inference sometimes reveals that functions are more general than you might have thought. Consider this code, which does use part of a tuple/record:

```ml
fun partial_sum (x,y,z) = x + z 
fun partial_name {first=x, middle=y, last=z} = x ^ " " ^ z
```

In both cases, the inferred function types reveal that the type of y can be any type, so we can call partial_sum (3,4,5) or partial_sum (3,false,5).

We will discuss these polymorphic functions as well as how type inference works in future sections because they are major course topics in their own right. For now, just stop using #, stop writing argument types, and do not be confused if you see the occasional type like `a or `b due to type inference, as discussed a bit more next...
24 Digression: Polymorphic Types and Equality Types

We now encourage you to leave explicit type annotations out of your program, but as seen above that can lead to surprisingly general types. Suppose you are asked to write a function of type `int*int*int -> int` that behaves like `partial_sum` above, but the REPL indicates, correctly, that `partial_sum` has type `int*Var a*int->int`. This is okay because the polymorphism indicates that `partial_sum` has a more general type. If you can take a type containing ` Var a, Var b, Var c`, etc. and replace each of these type variables consistently to get the type you “want,” then you have a more general type than the one you want.

As another example, `append` as we have written it has type `Var a list * Var a list -> Var a list`, so by consistently replacing ` Var a` with `string`, we can use `append` as though it has the type `string list * string list -> string list`. We can do this with any type, not just `string`. And we do not actually do anything: this is just a mental exercise to check that a type is more general than the one we need. Note that type variables like `Var a` must be replaced consistently, meaning the type of `append` is not more general than `string list * int list -> string list`.

You may also see type variables with two leading apostrophes, like `Var Var a`. These are called equality types and they are a fairly strange feature of ML not relevant to our current studies. Basically, the `=` operator in ML (for comparing things) works for many types, not just `int`, but its two operands must have the same type. For example, it works for `string` as well as tuple types for which all types in the tuple support equality (e.g., `int * (string * bool)`). But it does not work for every type. A type like `Var Var a` can only have an “equality type” substituted for it.

```plaintext
fun same_thing(x,y) = if x=y then "yes" else "no" (* has type `Var Var a * Var Var a -> string *`)
fun is_three x = if x=3 then "yes" else "no" (* has type int -> string *)
```

Again, we will discuss polymorphic types and type inference more later. In the meanwhile, if you write a function that the REPL gives a more general type to than you need, that is okay. Also remember, as discussed above, that it is also okay if the REPL uses different type synonyms than you expect.

25 Nested Patterns

It turns out the definition of patterns is recursive: anywhere we have been putting a variable in our patterns, we can instead put another pattern. Roughly speaking, the semantics of pattern-matching is that the value being matched must have the same “shape” as the pattern and variables are bound to the “right pieces.” (This is very hand-wavy explanation which is why a precise definition is described below.) For example, the pattern `a:(b:(c:d))` would match any list with at least 3 elements and it would bind `a` to the first element, `b` to the second, `c` to the third, and `d` to the list holding all the other elements (if any). The pattern `a:(b:((c:[])))` on the other hand, would match only lists with exactly three elements. Another nested patterns is `(a,b,c)::d`, which matches any non-empty list of triples, binding `a` to the first component of the head, `b` to the second component of the head, `c` to the third component of the head, and `d` to the tail of the list.

In general, pattern-matching is about taking a value and a pattern and (1) deciding if the pattern matches the value and (2) if so, binding variables to the right parts of the value. Here are some key parts to the elegant recursive definition of pattern matching:

- A variable pattern `(x)` matches any value `v` and introduces one binding (from `x` to `v`).

6 It does not work for functions since it is impossible to tell if two functions always do the same thing. It also does not work for type `real` to enforce the rule that, due to rounding of floating-point values, comparing them is almost always wrong algorithmically.

26
The pattern \(C \) matches the value \(C \), if \(C \) is a constructor that carries no data.

The pattern \(C \ p \) where \(C \) is a constructor and \(p \) is a pattern matches a value of the form \(C \ v \) (notice the constructors are the same) if \(p \) matches \(v \) (i.e., the nested pattern matches the carried value). It introduces the bindings that \(p \) matching \(v \) introduces.

The pattern \((p_1,p_2,\ldots,p_n)\) matches a tuple value \((v_1,v_2,\ldots,v_n)\) if \(p_1 \) matches \(v_1 \) and \(p_2 \) matches \(v_2 \), ..., and \(p_n \) matches \(v_n \). It introduces all the bindings that the recursive matches introduce.

(A similar case for record patterns of the form \(\{f_1=p_1,\ldots,f_n=p_n\}\) ...)

This recursive definition extends our previous understanding in two interesting ways. First, for a constructor \(C \) that carries multiple arguments, we do not have to write patterns like \(C(x_1,\ldots,x_n) \) though we often do. We could also write \(C \ x \); this would bind \(x \) to the tuple that the value \(C(v_1,\ldots,v_n) \) carries.

What is really going on is that all constructors take 0 or 1 arguments, but the 1 argument can itself be a tuple. So \(C(x_1,\ldots,x_n) \) is really a nested pattern where the \((x_1,\ldots,x_n)\) part is just a pattern that matches all tuples with \(n \) parts. Second, and more importantly, we can use nested patterns instead of nested case expressions when we want to match only values that have a certain “shape.”

There are additional kinds of patterns as well. Sometimes we do not need to bind a variable to part of a value. For example, consider this function for computing a list’s length:

```haskell
fun len xs =
  case xs of
    [] => 0
    | x::xs' => 1 + len xs'
```

We do not use the variable \(x \). In such cases, it is better style not to introduce a variable. Instead, the wildcard pattern \(_ \) matches everything (just like a variable pattern matches everything), but does not introduce a binding. So we should write:

```haskell
fun len xs =
  case xs of
    [] => 0
    | _::xs' => 1 + len xs'
```

In terms of our general definition, wildcard patterns are straightforward:

- A wildcard pattern \((_) \) matches any value \(v \) and introduces no bindings.

Lastly, you can use integer constants in patterns. For example, the pattern \(37 \) matches the value \(37 \) and introduces no bindings.

26 Useful Examples of Nested Patterns

An elegant example of using nested patterns rather than an ugly mess of nested case-expressions is “zipping” or “unzipping” lists (three of them in this example):\(^7\)

\(^7\)Exceptions are discussed below but are not the important part of this example.
exception BadTriple

fun zip3 list_triple =
 case list_triple of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) => (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise BadTriple

fun unzip3 lst =
 case lst of
 [] => ([],[],[])
 | (a,b,c)::tl => let val
 (l1,l2,l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

This example checks that a list of integers is sorted:

fun nondecreasing intlist =
 case intlist of
 [] => true
 | _::[] => true
 | head::(neck::rest) => (head <= neck andalso nondecreasing (neck::rest))

It is also sometimes elegant to compare two values by matching against a pair of them. This example, for determining the sign that a multiplication would have without performing the multiplication, is a bit silly but demonstrates the idea:

datatype sgn = P | N | Z

fun multsign (x1,x2) =
 let fun sign x = if x=0 then Z else if x>0 then P else N
 in
 case (sign x1,sign x2) of
 (Z,_) => Z
 | (_,Z) => Z
 | (P,P) => P
 | (N,N) => P
 | _ => N (* many say bad style; I am okay with it *)
 end

The style of this last case deserves discussion: When you include a “catch-all” case at the bottom like this, you are giving up any checking that you did not forget any cases: after all, it matches anything the earlier cases did not, so the type-checker will certainly not think you forgot any cases. So you need to be extra careful if using this sort of technique and it is probably less error-prone to enumerate the remaining cases (in this case (N,P) and (P,N)). That the type-checker will then still determine that no cases are missing is useful and non-trivial since it has to reason about the use (Z,_) and (_,Z) to figure out that there are no missing possibilities of type sgn * sgn.
27 Multiple Cases in a Function Binding

So far, we have seen pattern-matching on one-of types in case expressions. We also have seen the good style of pattern-matching each-of types in val or function bindings and that this is what a “multi-argument function” really is. But is there a way to match against one-of types in val/function bindings? This seems like a bad idea since we need multiple possibilities. But it turns out ML has special syntax for doing this in function definitions. Here are two examples, one for our own datatype and one for lists:

```ml
datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun eval (Constant i) = i
| eval (Negate e2) = ~ (eval e2)
| eval (Add(e1,e2)) = (eval e1) + (eval e2)
| eval (Multiply(e1,e2)) = (eval e1) * (eval e2)

fun append ([],ys) = ys
| append (x::xs,ys) = x :: append(xs,ys)
```

As a matter of taste, your instructor has never liked this style very much, and you have to get parentheses in the right places. But it is common among ML programmers, so you are welcome to as well. As a matter of semantics, it is just syntactic sugar for a single function body that is a case expression:

```ml
fun eval e =
    case e of
    Constant i => i
    | Negate e2 => ~ (eval e2)
    | Add(e1,e2) => (eval e1) + (eval e2)
    | Multiply(e1,e2) => (eval e1) * (eval e2)

fun append e =
    case e of
    ([],ys) => ys
    | (x::xs,ys) => x :: append(xs,ys)
```

In general, the syntax

```ml
fun f p1 = e1
| f p2 = e2
...
| f pn = en
```

is just syntactic sugar for:

```ml
fun f x =
    case x of
    p1 => e1
    | p2 => e2
...
    | pn => en
```

8 As a technicality, x must be some variable not already defined in the outer environment and used by one of the expressions in the function.
Notice the append example uses nested patterns: each branch matches a pair of lists, by putting patterns (e.g., [] or x::xs') inside other patterns.

28 Exceptions

ML has a built-in notion of exception. You can raise (also known as throw) an exception with the raise primitive. For example, the hd function in the standard library raises the List.Empty exception when called with []:

```ml
fun hd xs =
  case xs of
    [] => raise List.Empty
  | x::_ => x
```

You can create your own kinds of exceptions with an exception binding. Exceptions can optionally carry values with them, which let the code raising the exception provide more information:

```ml
exception MyUndesirableCondition
exception MyOtherException of int * int
```

Kinds of exceptions are a lot like constructors of a datatype binding. Indeed, they are functions (if they carry values) or values (if they don’t) that create values of type exn rather than the type of a datatype. So Empty, MyUndesirableCondition, and MyOtherException(3,9) are all values of type exn, whereas MyOtherException has type int*int->exn.

Usually we just use exception constructors as arguments to raise, such as raise MyOtherException(3,9), but we can use them more generally to create values of type exn. For example, here is a version of a function that returns the maximum element in a list of integers. Rather than return an option or raise a particular exception like List.Empty if called with [], it takes an argument of type exn and raises it. So the caller can pass in the exception of its choice. (The type-checker can infer that ex must have type exn because that is the type raise expects for its argument.)

```ml
fun maxlist (xs,ex) =
  case xs of
    [] => raise ex
  | x::[] => x
  | x::xs' => Int.max(x,maxlist(xs',ex))
```

Notice that calling maxlist([3,4,0],List.Empty) would not raise an exception; this call passes an exception value to the function, which the function then does not raise.

The other feature related to exceptions is handling (also known as catching) them. For this, ML has handle-expressions, which look like e1 handle p => e2 where e1 and e2 are expressions and p is a pattern that matches an exception. The semantics is to evaluate e1 and have the result be the answer. But if an exception matching p is raised by e1, then e2 is evaluated and that is the answer for the whole expression. If e1 raises an exception that does not match p, then the entire handle-expression also raises that exception. Similarly, if e2 raises an exception, then the whole expression also raises an exception.

As with case-expressions, handle-expression can also have multiple branches each with a pattern and expression, syntactically separated by |.
29 Tail Recursion and Accumulators

This topic involves new programming idioms, but no new language constructs. It defines *tail recursion*, describes how it relates to writing *efficient* recursive functions in functional languages like ML, and presents how to use *accumulators* as a technique to make some functions tail recursive.

To understand tail recursion and accumulators, consider these functions for summing the elements of a list:

```ml
fun sum1 xs =  
  case xs of  
    [] => 0  
  | i::xs' => i + sum1 xs

fun sum2 xs =  
  let fun f (xs,acc) =  
    case xs of  
      [] => acc  
    | i::xs' => f(xs',i+acc)

    in  
      f(xs,0)
  end
```

Both functions compute the same results, but *sum2* is more complicated, using a local helper function that takes an extra argument, called *acc* for “accumulator.” In the base case of *f* we return *acc* and the value passed for the outermost call is 0, the same value used in the base case of *sum1*. This pattern is common: The base case in the non-accumulator style becomes the initial accumulator and the base case in the accumulator style just returns the accumulator.

Why might *sum2* be preferred when it is clearly more complicated? To answer, we need to understand a little bit about how function calls are implemented. Conceptually, there is a *call stack*, which is a stack (the data structure with push and pop operations) with one element for each function call that has been started but has not yet completed. Each element stores things like the value of local variables and what part of the function has not been evaluated yet. When the evaluation of one function body calls another function, a new element is pushed on the call stack and it is popped off when the called function completes.

So for *sum1*, there will be one call-stack element (sometimes just called a “stack frame”) for each recursive call to *sum1*, i.e., the stack will be as big as the list. This is necessary because after each stack frame is popped off the caller has to, “do the rest of the body” — namely add *i* to the recursive result and return.

Given the description so far, *sum2* is no better: *sum2* makes a call to *f* which then makes one recursive call for each list element. However, when *f* makes a recursive call to *f*, *there is nothing more for the caller to do after the callee returns except return the callee’s result*. This situation is called a *tail call* (let’s not try to figure out why it’s called this) and functional languages like ML typically promise an essential optimization: When a call is a tail call, the caller’s stack-frame is popped before the call — the callee’s stack-frame just replaces the caller’s. This makes sense: the caller was just going to return the callee’s result anyway. Therefore, calls to *sum2* never use more than 1 stack frame.

Why do implementations of functional languages include this optimization? By doing so, recursion can sometimes be as efficient as a while-loop, which also does not make the call-stack bigger. The “sometimes” is exactly when calls are tail calls, something you the programmer can reason about since you can look at the code and identify which calls are tail calls.

Tail calls do not need to be to the same function (*f* can call *g*), so they are more flexible than while-loops.
that always have to “call” the same loop. Using an accumulator is a common way to turn a recursive function into a “tail-recursive function” (one where all recursive calls are tail calls), but not always. For example, functions that process trees (instead of lists) typically have call stacks that grow as big as the depth of a tree, but that’s true in any language: while-loops are not very useful for processing trees.

30 More Examples of Tail Recursion

Tail recursion is common for functions that process lists, but the concept is more general. For example, here are two implementations of the factorial function where the second one uses a tail-recursive helper function so that it needs only a small constant amount of call-stack space:

```haskell
fun fact1 n = if n=0 then 1 else n * fact1(n-1)

fun fact2 n = 
  let fun aux(n,acc) = if n=0 then acc else aux(n-1,acc*n) 
  in aux(n,1) end
```

It is worth noticing that `fact1 4` and `fact2 4` produce the same answer even though the former performs $4 \times (3 \times (2 \times (1 \times 1)))$ and the latter performs $((1 \times 4) \times 3) \times 2 \times 1$. We are relying on the fact that multiplication is associative $(a \times (b \times c) = (a \times b) \times c)$ and that multiplying by 1 is the identity function $(1 \times x = x \times 1 = x)$. The earlier `sum` example made analogous assumptions about addition. In general, converting a non-tail-recursive function to a tail-recursive function usually needs associativity, but many functions are associative.

A more interesting example is this inefficient function for reversing a list:

```haskell
fun rev1 lst = 
  case lst of 
    [] => [] 
  | x::xs => (rev1 xs) @ [x]
```

We can recognize immediately that it is not tail-recursive since after the recursive call it remains to append the result onto the one-element list that holds the head of the list. Although this is the most natural way to reverse a list recursively, the inefficiency is caused by more than creating a call-stack of depth equal to the argument’s length, which we will call n. The worse problem is that the total amount of work performed is proportional to n^2, i.e., this is a quadratic algorithm. The reason is that appending two lists takes time proportional to the length of the first list: it has to traverse the first list — see our own implementations of append discussed previously. Over all the recursive calls to `rev1`, we call `@` with first arguments of length $n-1, n-2, \ldots, 1$ and the sum of the integers from 1 to $n-1$ is $n(n-1)/2$.

As you learn in a data structures and algorithms course, quadratic algorithms like this are much slower than linear algorithms for large enough n. That said, if you expect n to always be small, it may be be worth valuing the programmer’s time and sticking with a simple recursive algorithm. Else, fortunately, using the accumulator idiom leads to an almost-as-simple linear algorithm.
fun rev2 lst =
 let fun aux(lst,acc) =
 case lst of
 [] => acc
 | x::xs => aux(xs, x::acc)
 in
 aux(lst,[],)
 end

The key differences are (1) tail recursion and (2) we do only a constant amount of work for each recursive call because :: does not have to traverse either of its arguments.

31 A Precise Definition of Tail Position

While most people rely on intuition for, “which calls are tail calls,” we can be more precise by defining tail position recursively and saying a call is a tail call if it is in tail position. The definition has one part for each kind of expression; here are several parts:

- In fun f(x) = e, e is in tail position.
- If an expression is not in tail position, then none of its subexpressions are in tail position.
- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but not e1).
- If let b1 ... bn in e end is in tail position, then e is in tail position (but no expressions in the bindings are).
- Function-call arguments are not in tail position.

32 More New Terms

Next, We will focus on first-class functions and function closures. By “first-class” we mean that functions can be computed, passed, stored, etc. wherever other values can be computed, passed, stored, etc. As examples, we can pass them to functions, return them from functions, put them in pairs, have them be part of the data a datatype constructor carries, etc. “Function closures” refers to functions that use variables defined outside of them, which makes first-class functions much more powerful, as we will see after starting with simpler first-class functions that do not use this ability. The term higher-order function just refers to a function that takes or returns other functions.

Terms like first-class functions, function closures, and higher-order functions are often confused with each other or considered synonyms. Because so much of the world is not careful with these terms, we will not be too worried about them either. But the idea of first-class functions and the idea of function closures really are distinct concepts that we often use together to write elegant, reusable code. For that reason, we will delay the idea of closures, so we can introduce it as a separate concept.

There is an even more general term, functional programming. This term also is often used imprecisely to refer to several distinct concepts. The two most important and most common are:

- Not using mutable data in most or all cases: We have avoided mutation throughout the course so far and will mostly continue to do so.
- Using functions as values

There are other things that are also considered related to functional programming:
• A programming style that encourages recursion and recursive data structures
• Programming with a syntax or style that is closer to traditional mathematical definitions of functions
• Anything that is not object-oriented programming (this one is really incorrect)
• Using certain programming idioms related to **laziness**, a technical term for a certain kind of programming construct/idiom we will study, briefly, later in the course

An obvious related question is “what makes a programming language a functional language?” Your instructor has come to the conclusion this is not a question for which there is a precise answer and barely makes sense as a question. But one could say that a functional language is one where writing in a functional style (as described above) is more convenient, more natural, and more common than programming in other styles. At a minimum, you need good support for immutable data, first-class functions, and function closures. More and more we are seeing new languages that provide such support but also provide good support for other styles, like object-oriented programming, which we will study some toward the end of the course.

33 Taking Functions as Arguments

The most common use of first-class functions is passing them as arguments to other functions, so we motivate this use first.

Here is a first example of a function that takes another function:

```ml
fun n_times (f,n,x) = 
  if n=0 
  then x 
  else f (n_times(f,n-1,x))
```

We can tell the argument `f` is a function because the last line calls `f` with an argument. What `n_times` does is compute `f(f(...(f(x))))` where the number of calls to `f` is `n`. That is a genuinely useful helper function to have around. For example, here are 3 different uses of it:

```ml
fun double x = x+x
val x1 = n_times(double,4,7) (* answer: 112 *)

fun increment x = x+1
val x2 = n_times(increment,4,7) (* answer: 11 *)

val x3 = n_times(tl,2,[4,8,12,16]) (* answer: [12,16] *)
```

Like any helper function, `n_times` lets us *abstract* the common parts of multiple computations so we can reuse some code in different ways by passing in different arguments. The main novelty is making one of those arguments a function, which is a powerful and flexible programming idiom. It also makes perfect sense — we are not introducing any new language constructs here, just using ones we already know in ways you may not have thought of.

Once we define such abstractions, we can find additional uses for them. For example, even if our program today does not need to triple any values `n` times, maybe tomorrow it will, in which case we can just define the function `triple_n_times` using `n_times`:
fun triple x = 3*x

fun triple_n_times (n,x) = n_times(triple,n,x)

34 Polymorphic Types and Functions as Arguments

Let us now consider the type of \(n _____\times \), which is \((\text{'a} \rightarrow \text{'a}) \times \text{int} \times \text{'a} \rightarrow \text{'a} \). It might be simpler at first to consider the type \((\text{int} \rightarrow \text{int}) \times \text{int} \times \text{int} \rightarrow \text{int} \), which is how \(n_____\times \) is used for \(x1 \) and \(x2 \) above: It takes 3 arguments, the first of which is itself a function that takes and returns an \text{int}. Similarly, for \(x3 \) we use \(n_____\times \) as though it has type \((\text{int list} \rightarrow \text{int list}) \times \text{int} \times \text{int list} \rightarrow \text{int list} \). But choosing either one of these types for \(n_____\times \) would make it less useful because only some of our example uses would type-check. The type \((\text{'a} \rightarrow \text{'a}) \times \text{int} \times \text{'a} \rightarrow \text{'a} \) says the third argument and result can be any type, but they have to be the same type, as does the argument and return type for the first argument. When types can be any type and do not have to be the same as other types, we use different letters \((\text{'b}, \text{'c}, \text{etc.}) \). This is called **parametric polymorphism**, or perhaps more commonly **generic types**. It lets functions take arguments of any type. It is a separate issue from first-class functions:

- There are functions that take functions and do not have polymorphic types
- There are functions with polymorphic types that do not take functions.

However, many of our examples with first-class functions will have polymorphic types. That is a good thing because it makes our code more reusable.

Without parametric polymorphism, we would have to redefine lists for every type of element that a list might have. Instead, we can have functions that work for any kind of list, like \text{length}, which has type \(\text{'a list} \rightarrow \text{int} \) even though it does not use any function arguments. Conversely, here is a higher-order function that is not polymorphic: it has type \((\text{int} \rightarrow \text{int}) \times \text{int} \rightarrow \text{int}\):

\[
\text{fun times_until_zero \((f, x) = \)
 \text{if } x = 0 \text{ then } 0 \text{ else } 1 + \text{times_until_zero}(f, x)\n\]

35 Anonymous functions

There is no reason that a function like \text{triple} that is passed to another function like \text{n_times} needs to be defined at top-level. As usual, it is better style to define such functions locally if they are needed only locally. So we could write:

\[
\text{fun triple_n_times \((n, x) = \)
 \text{let fun triple } x = 3*x \text{ in } n____\times(triple,n,x) \text{ end}\n\]

In fact, we could give the \text{triple} function an even smaller scope: we need it only as the first argument to \text{n_times}, so we could have a let-expression there that evaluates to the triple function:

\[
\text{fun triple_n_times \((n, x) = n____\times(\text{let fun triple } y = 3*y \text{ in triple } \text{ end}), n, x)\n\]

\[9\text{It would be better to make this function tail-recursive using an accumulator.}\]
Notice that in this example, which is actually poor style, we need to have the let-expression “return” triple since, as always, a let-expression produces the result of the expression between in and end. In this case, we simply look up triple in the environment, and the resulting function is the value that we then pass as the first argument to n_times.

ML has a much more concise way to define functions right where you use them, as in this final, best version:

```ml
fun triple_n_times (n,x) = n_times((fn y => 3*y), n, x)
```

This code defines an anonymous function fn y => 3*y. It is a function that takes an argument y and has body 3*y. The fn is a keyword and => (not =) is also part of the syntax. We never gave the function a name (it is anonymous, see?), which is convenient because we did not need one. We just wanted to pass a function to n_times, and in the body of n_times, this function is bound to f.

It is common to use anonymous functions as arguments to other functions. Moreover, you can put an anonymous function anywhere you can put an expression — it simply is a value, the function itself. The only thing you cannot do with an anonymous function is recursion, exactly because you have no name to use for the recursive call. In such cases, you need to use a fun binding as before, and fun bindings must be in let-expressions or at top-level.

For non-recursive functions, you could use anonymous functions with val bindings instead of a fun binding. For example, these two bindings are exactly the same thing:

```ml
fun increment x = x + 1
val increment = fn x => x+1
```

They both bind increment to a value that is a function that returns its argument plus 1. So function-bindings are almost syntactic sugar, but they support recursion, which is essential.

36 Unnecessary Function Wrapping

While anonymous functions are incredibly convenient, there is one poor idiom where they get used for no good reason. Consider:

```ml
fun nth_tail_poor (n,x) = n_times((fn y => tl y), n, x)
```

What is fn y => tl y? It is a function that returns the list-tail of its argument. But there is already a variable bound to a function that does the exact same thing: tl! In general, there is no reason to write fn x => f x when we can just use f. This is analogous to the beginner’s habit of writing if x then true else false instead of x. Just do this:

```ml
fun nth_tail (n,x) = n_times(tl, n, x)
```

37 Maps and filters

We now consider a very useful higher-order function over lists:

```ml
fun map (f,xs) =
  case xs of
    [] => []
  | x::xs' => (f x)::(map(f,xs'))
```
The map function takes a list and a function \(f \) and produces a new list by applying \(f \) to each element of the list. Here are two example uses:

\[
\begin{align*}
\text{val } x1 &= \text{map } (\text{increment}, [4,8,12,16]) \quad (* \text{ answer: [5,9,13,17] } *) \\
\text{val } x2 &= \text{map } (\text{hd}, [[1,2],[3,4],[5,6,7]]) \quad (* \text{ answer: [1,3,5] } *)
\end{align*}
\]

The type of map is illuminating: \(('a \rightarrow 'b) \times 'a \text{ list} \rightarrow 'b \text{ list} \). You can pass map any kind of list you want, but the argument type of \(f \) must be the element type of the list (they are both \('a\)). But the return type of \(f \) can be a different type \('b\). The resulting list is a \('b \text{ list}\). For \(x1 \), both \('a\) and \('b\) are instantiated with int. For \(x2 \), \('a\) is \text{int list} and \('b\) is int.

The ML standard library provides a very similar function List.map, but it is defined in a curried form, a topic we will discuss a bit later.

The definition and use of map is an incredibly important idiom even though our particular example is simple. We could have easily written a recursive function over lists of integers that incremented all the elements, but instead we divided the work into two parts: The map implementer knew how to traverse a recursive data structure, in this case a list. The map client knew what to do with the data there, in this case increment each number. You could imagine either of these tasks — traversing a complicated piece of data or doing some calculation for each of the pieces — being vastly more complicated and best done by different developers without making assumptions about the other task. That is exactly what writing map as a helper function that takes a function lets us do.

Here is a second very useful higher-order function for lists. It takes a function of type \('a \rightarrow \text{bool} \) and an \('a \text{ list} \) and returns the \('a \text{ list} \) containing only the elements of the input list for which the function returns true:

\[
\begin{align*}
\text{fun } &\text{filter } (f,xs) = \\
&\quad \text{case } xs \text{ of } \\
&\qquad [] \Rightarrow [] \\
&\qquad x::xs' \Rightarrow \text{if } f\ x \\
&\quad \quad \text{then } x::(\text{filter } (f,xs')) \\
&\quad \quad \text{else } \text{filter } (f,xs')
\end{align*}
\]

Here is an example use that assumes the list elements are pairs with second component of type int; it returns the list elements where the second component is even:

\[
\text{fun } \text{get_all_even_snd } xs = \text{filter}((\text{fn } (_,v) \Rightarrow v \mod 2 = 0), xs)
\]

(Notice how we are using a pattern for the argument to our anonymous function.)

38 Returning functions

Functions can also return functions. Here is an example:

\[
\begin{align*}
\text{fun } &\text{double_or_triple } f = \\
&\quad \text{if } f\ 7 \\
&\quad \quad \text{then } fn\ x \Rightarrow 2\times x \\
&\quad \quad \text{else } fn\ x \Rightarrow 3\times x
\end{align*}
\]

The type of double_or_triple is \((\text{int } \rightarrow \text{bool}) \rightarrow (\text{int } \rightarrow \text{int}) \): The if-test makes the type of \(f \) clear and as usual the two branches of the if must have the same type, in this case int->int. However, ML will
print the type as \((\text{int} \to \text{bool}) \to \text{int} \to \text{int}\), which is the same thing. The parentheses are unnecessary because the \(\to\) “associates to the right”, i.e., \(t_1 \to t_2 \to t_3 \to t_4\) is \(t_1 \to (t_2 \to (t_3 \to t_4))\).

39 Not just for numbers and lists

Because ML programs tend to use lists a lot, you might forget that higher-order functions are useful for more than lists. Some of our first examples just used integers. But higher-order functions also are great for our own data structures. Here we use an \texttt{is_even} function to see if all the constants in an arithmetic expression are even. We could easily reuse \texttt{true_of_all_constants} for any other property we wanted to check.

```ml
datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun is_even v =
  (v mod 2 = 0)

fun true_of_all_constants(f,e) =
  case e of
    Constant i => f i
  | Negate e1 => true_of_all_constants(f,e1)
  | Add(e1,e2) => true_of_all_constants(f,e1) andalso true_of_all_constants(f,e2)
  | Multiply(e1,e2) => true_of_all_constants(f,e1) andalso true_of_all_constants(f,e2)

fun all_even e = true_of_all_constants(is_even,e)
```

40 Lexical Scope

So far, the functions we have passed to or returned from other functions have been \textit{closed}: the function bodies used only the function’s argument(s) and any locally defined variables. But we know that functions can do more than that: they can use any bindings that are in scope. Doing so in combination with higher-order functions is very powerful, so it is crucial to learn effective idioms using this technique. But first it is even more crucial to get the semantics right. This is probably the most subtle and important concept in the entire course, so go slowly and read carefully.

\textit{The body of a function is evaluated in the environment where the function is defined, not the environment where the function is called.} Here is a very simple example to demonstrate the difference:

```ml
val x = 1
fun f y = x + y
val x = 2
val y = 3
val z = f (x+y)
```

In this example, \texttt{f} is bound to a function that takes an argument \texttt{y}. Its body also looks up \texttt{x} in the environment where \texttt{f} was defined. Hence this function \textit{always} increments its argument since the environment at the definition maps \texttt{x} to 1. Later we have a different environment where \texttt{f} maps to this function, \texttt{x} maps to 2, \texttt{y} maps to 3, and we make the call \texttt{f x}. Here is how evaluation proceeds:

- Look up \texttt{f} to get the previously described function.
- Evaluate the argument \texttt{x+y} in the \textit{current} environment by looking up \texttt{x} and \texttt{y}, producing 5.
• Call the function with the argument 5, which means evaluating the body \(x + y \) in the “old” environment where \(x \) maps to 1 extended with \(y \) mapping to 5. So the result is 6.

Notice the argument was evaluated in the current environment (producing 5), but the function body was evaluated in the “old” environment. We discuss below why this semantics is desirable, but first we define this semantics more precisely and understand the semantics with additional silly examples that use higher-order functions.

This semantics is called *lexical scope*. The alternate, inferior semantics where you use the current environment (which would produce 7 in the above example) is called *dynamic scope*.

41 Environments and Closures

We have said that functions are values, but we have not been precise about what that value exactly is. We now explain that a function value has *two parts*, the *code* for the function (obviously) and the *environment that was current when we created the function*. These two parts really do form a “pair” but we put “pair” in quotation marks because it is not an ML pair, just something with two parts. You cannot access the parts of the “pair” separately; all you can do is call the function. This call uses both parts because it evaluates the code part using the environment part.

This “pair” is called a *function closure* or just *closure*. The reason is that while the code itself can have *free variables* (variables that are not *bound* inside the code so they need to be bound by some outer environment), the closure carries with it an environment that provides all these bindings. So the closure overall is “closed” — it has everything it needs to produce a function result given a function argument.

In the example above, the binding `fun f y = x + y` bound `f` to a closure. The code part is the function `fn y => x + y` and the environment part maps `x` to 1. Therefore, any call to this closure will return `y+1`.

42 (Silly) Examples Including Higher-Order Functions

Lexical scope and closures get more interesting when we have higher-order functions, but the semantics already described will lead us to the right answers.

Example 1:

```
val x = 1
fun f (y, z) = let
  val y = y + 1
  in
    fn z => x + y + z
  end
val x = 3
val g = f 4
val y = 5
val z = g 6
```

Here, `f` is bound to a closure where the environment part maps `x` to 1. So when we later evaluate `f 4`, we evaluate `let val x = y + 1 in fn z => x + y + z end` in an environment where `x` maps to 1 extended to map `y` to 4. But then due to the let-binding we shadow `x` so we evaluate `fn z => x + y + z` in an environment where `x` maps to 5 and `y` maps to 4. How do we evaluate a function like `fn z => x + y + z`? We create a closure with the current environment. So `f 4` returns a closure that, when called, will always
add 9 to its argument, no matter what the environment is at any call-site. Hence, in the last line of the example, \(z \) will be bound to 15.

Example 2:

```ml
fun f g = 
  let
    val x = 3
    in
    g 2
  end
val x = 4
fun h y = x + y
val z = f h
```

In this example, \(f \) is bound to a closure that takes another function \(g \) as an argument and returns the result of \(g \ 2 \). The closure bound to \(h \) always adds 4 to its argument because the argument is \(y \), the body is \(x+y \), and the function is defined in an environment where \(x \) maps to 4. So in the last line, \(z \) will be bound to 6. The binding \(\text{val } x = 3 \) is totally irrelevant: the call \(g \ 2 \) is evaluated by looking up \(g \) to get the closure that was passed in and then using that closure with its \emph{environment} (in which \(x \) maps to 4) with 2 for an argument.

43 Why Lexical Scope and not Dynamic Scope?

While lexical scope and higher-order functions take some getting used to, decades of experience make clear that this semantics is what we want. Much of the rest of this section will describe various widespread idioms that are powerful and that rely on lexical scope.

But first we can also motivate lexical scope by showing how dynamic scope (where you just have one current environment and use it to evaluate function bodies) leads to some fundamental problems.

First, suppose in Example 1 above the body of \(f \) was changed to \(\text{let } \text{val } q = y+1 \text{ in } \text{fn } z \Rightarrow q + y + z \). Under lexical scope this is fine: we can always change the name of a local variable and its uses without it affecting anything. Under dynamic scope, now the call to \(g \ 6 \) will make no sense: we will try to look up \(q \), but there is no \(q \) in the environment at the call-site.

Second, consider again the original version of Example 1 but now change the line \(\text{val } x = 3 \) to \(\text{val } x = \text{"hi"} \). Under lexical scope, this is again fine: that binding is never actually used. Under dynamic scope, the call to \(g \ 6 \) will look-up \(x \), get a string, and try to add it, which should not happen in a program that type-checks.

Similar issues arise with Example 2: The body of \(f \) in this example is awful: we have a local binding we never use. Under lexical scope we can remove it, changing the body to \(g \ 2 \) and know that this has no effect on the rest of the program. Under dynamic scope it would have an effect. Also, under lexical scope we know that any use of the closure bound to \(h \) will add 4 to its argument regardless of how other functions like \(g \) are implemented and what variable names they use. This is a key separation-of-concerns that only lexical scope provides.

For “regular” variables in programs, lexical scope is the way to go. There are some compelling uses for dynamic scoping for certain idioms, but few languages have special support for these (Racket does) and very few if any modern languages have dynamic scoping as the default. But you have seen one feature that is more like dynamic scope than lexical scope: exception handling. When an exception is raised, evaluation has to “look up” which handle expression should be evaluated. This “look up” is done using the dynamic call stack, with no regard for the lexical structure of the program.
44 Passing Closures to Iterators Like Filter

The examples above are silly, so we need to show useful programs that rely on lexical scope. The first idiom we will show is passing functions to iterators like \textit{map} and \textit{filter}. The functions we previously passed did not use their environment (only their arguments and maybe local variables), but being able to pass in closures makes the higher-order functions much more widely useful. Consider:

\begin{verbatim}
fun filter (f,xs) =
 case xs of
 [] => []
 | x::xs' => if f x then x::(filter(f,xs')) else filter(f,xs')

fun allGreaterThanSeven xs = filter (fn x => x > 7, xs)
fun allGreaterThan (xs,n) = filter (fn x => x > n, xs)
\end{verbatim}

Here, \texttt{allGreaterThanSeven} is “old news” — we pass in a function that removes from the result any numbers 7 or less in a list. But it is much more likely that you want a function like \texttt{allGreaterThan} that takes the “limit” as a parameter \texttt{n} and uses the function \texttt{fn x => x > n}. Notice this requires a closure and lexical scope! When the implementation of \texttt{filter} calls this function, we need to look up \texttt{n} in the environment where \texttt{fn x => x > n} was defined.

Here are two additional examples:

\begin{verbatim}
fun allShorterThan1 (xs,s) = filter (fn x => \texttt{String.size} x < \texttt{String.size} s, xs)
fun allShorterThan2 (xs,s) =
 let
 val i = \texttt{String.size} s
 in
 filter(fn x => \texttt{String.size} x < i, xs)
 end
\end{verbatim}

Both these functions take a list of strings \texttt{xs} and a string \texttt{s} and return a list containing only the strings in \texttt{xs} that are shorter than \texttt{s}. And they both use closures, to look up \texttt{s} or \texttt{i} when the anonymous functions get called. The second one is more complicated but a bit more efficient: The first one recomputes \texttt{String.size} \texttt{s} once per element in \texttt{xs} (because \texttt{filter} calls its function argument this many times and the body evaluates \texttt{String.size} \texttt{s} each time). The second one “precomputes” \texttt{String.size} \texttt{s} and binds it to a variable \texttt{i} available to the function \texttt{fn x => String.size} \texttt{x < i}.

45 Fold and More Closure Examples

Beyond map and filter, a third incredibly useful higher-order function is \textit{fold}, which can have several slightly different definitions and is also known by names such as \textit{reduce} and \textit{inject}. Here is one common definition:

\begin{verbatim}
fun fold (f,acc,xs) =
 case xs of
 [] => acc
 | x::xs' => fold (f, f(acc,x), xs')
\end{verbatim}

\texttt{fold} takes an “initial answer” \texttt{acc} and uses \texttt{f} to “combine” \texttt{acc} and the first element of the list, using this as the new “initial answer” for “folding” over the rest of the list. We can use \texttt{fold} to take care of iterating
over a list while we provide some function that expresses how to combine elements. For example, to sum
the elements in a list `foo`, we can do:

```
fold ((fn (x,y) => x+y), 0, foo)
```

As with `map` and `filter`, much of `fold`’s power comes from clients passing closures that can have “private
fields” (in the form of variable bindings) for keeping data they want to consult. Here are two examples.
The first counts how many elements are in some integer range. The second checks if all elements are strings
shorter than some other string’s length.

```
fun numberInRange (xs,lo,hi) =
  fold ((fn (x,y) =>
         x + (if y >= lo andalso y <= hi then 1 else 0)),
       0, xs)

fun areAllShorter (xs,s) =
  let
    val i = string.size s
  in
    fold((fn (x,y) => x andalso string.size y < i), true, xs)
  end
```

This pattern of splitting the recursive traversal (`fold` or `map`) from the data-processing done on the
elements (the closures passed in) is fundamental. In our examples, both parts are so easy we could just do
the whole thing together in a few simple lines. More generally, we may have a very complicated set of data
structures to traverse or we may have very involved data processing to do. It is good to *separate these
concerns* so that the programming problems can be solved separately.

46 Closure Idiom (I): Combining Functions

We will look at the first of the few closure idioms:

Function composition

When we program with lots of functions, it is useful to create new functions that are just combinations of
other functions. You have probably done similar things in mathematics, such as when you compose two
functions. For example, here is a function that does exactly function composition:

```
fun compose (f,g) = fn x => f (g x)
```

It takes two functions `f` and `g` and returns a function that applies its argument to `g` and makes that the
argument to `f`. Crucially, the code `fn x => f (g x)` uses the `f` and `g` in the environment where it was
defined. Notice the type of `compose` is inferred to be `('a -> 'b) * ('c -> 'a) -> 'c -> 'b`, which is
equivalent to what you might write: `('b -> 'c) * ('a -> 'b) -> ('a -> 'c)` since the two types simply
use different type-variable names consistently.

As a cute and convenient library function, the ML library defines the infix operator `o` as function
composition, just like in math. So instead of writing:
You could write:

```plaintext
fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i
```

But this second version makes clearer that we can just use function-composition to create a function that we bind to a variable with a val-binding, as in this third version:

```plaintext
val sqrt_of_abs = Math.sqrt o Real.fromInt o abs
```

While all three versions are fairly readable, the first one does not immediately indicate to the reader that `sqrt_of_abs` is just the composition of other functions.

The Pipeline Operator

In functional programming, it is very common to compose other functions to create larger ones, so it makes sense to define convenient syntax for it. While the third version above is concise, it, like function composition in mathematics, has the strange-to-many-programmers property that the computation proceeds from right-to-left: “Take the absolute value, convert it to a real, and compute the square root” may be easier to understand than, “Take the square root of the conversion to real of the absolute value.”

We can define convenient syntax for left-to-right as well. Let’s first define our own infix operator that lets us put the function to the right of the argument we are calling it with:

```plaintext
infix |> (* tells the parser |> is a function that appears between its two arguments *)
fun x |> f = f x
```

Now we can write:

```plaintext
fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt
```

This operator, commonly called the pipeline operator, is very popular in F# programming. (F# is a dialect of ML that runs on .Net and interacts well with libraries written in other .Net languages.) As we have seen, there is nothing complicated about the semantics of the pipeline operator.

47 Closure Idiom (II): Currying and Partial Application

The next idiom we consider is very convenient in general, and is often used when defining and using higher-order functions like map, filter, and fold. We have already seen that in ML every function takes exactly one argument, so you have to use an idiom to get the effect of multiple arguments. Our previous approach passed a tuple as the one argument, so each part of the tuple is conceptually one of the multiple arguments. Another more clever and often more convenient way is to have a function take the first conceptual argument and return another function that takes the second conceptual argument and so on. Lexical scope is essential to this technique working correctly.

This technique is called *currying* after a logician named Haskell Curry who studied related ideas (so if you do not know that, then the term currying does not make much sense).
Defining and Using a Curried Function

Here is an example of a “three argument” function that uses currying:

```haskell
val sorted3 = fn x => fn y => fn z => z >= y andalso y >= x
```

If we call `sorted3 4` we will get a closure that has `x` in its environment. If we then call this closure with `5`, we will get a closure that has `x` and `y` in its environment. If we then call this closure with `6`, we will get `true` because `6` is greater than `5` and `5` is greater than `4`. That is just how closures work.

So `((sorted3 4) 5) 6` computes exactly what we want and feels pretty close to calling `sorted3` with 3 arguments. Even better, the parentheses are optional, so we can write exactly the same thing as `sorted3 4 5 6`, which is actually fewer characters than our old tuple approach where we would have:

```haskell
fun sorted3_tupled (x,y,z) = z >= y andalso y >= x
val someClient = sorted3_tupled(4,5,6)
```

In general, the syntax `e1 e2 e3 e4` is implicitly the nested function calls `(((e1 e2) e3) e4)` and this choice was made because it makes using a curried function so pleasant.

Partial Application

Even though we might expect most clients of our curried `sorted3` to provide all 3 conceptual arguments, they might provide fewer and use the resulting closure later. This is called “partial application” because we are providing a subset (more precisely, a prefix) of the conceptual arguments. As a silly example, `sorted3 0 0` returns a function that returns `true` if its argument is nonnegative.

Partial Application and Higher-Order Functions

Currying is particularly convenient for creating similar functions with iterators. For example, here is a curried version of a fold function for lists:

```haskell
fun fold f = fn acc => fn xs =>
    case xs of
    | [] => acc
    | x::xs' => fold f (f(acc,x)) xs'
```

Now we could use this fold to define a function that sums a list elements like this:

```haskell
fun sum1 xs = fold (fn (x,y) => x+y) 0 xs
```

But that is unnecessarily complicated compared to just using partial application:

```haskell
val sum2 = fold (fn (x,y) => x+y) 0
```

The convenience of partial application is why many iterators in ML’s standard library use currying with the function they take as the first argument. For example, the types of all these functions use currying:

```haskell
val List.map = fn : ('a -> 'b) -> 'a list -> 'b list
val List.filter = fn : ('a -> bool) -> 'a list -> 'a list
val List.foldl = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
```
As an example, `List.foldl((fn (x,y) => x+y), 0, [3,4,5])` does not type-check because `List.foldl` expects a `'(a * 'b) -> 'b` function, not a triple. The correct call is `List.foldl (fn (x,y) => x+y) 0 [3,4,5]`, which calls `List.foldl` with a function, which returns a closure and so on.

There is syntactic sugar for defining curried functions; you can just separate the conceptual arguments by spaces rather than using anonymous functions. So the better style for our fold function would be:

```
fun fold f acc xs =
  case xs of
    [] => acc
  | x::xs' => fold f (f(acc,x)) xs'
```

Another useful curried function is `List.exists`, which we use in the callback example below. These library functions are easy to implement ourselves, so we should understand they are not fancy:

```
fun exists predicate xs =
  case xs of
    [] => false
  | x::xs' => predicate x orelse exists predicate xs'
```

Currying in General

While currying and partial application are great for higher-order functions, they are great in general too. They work for any multi-argument function and partial application can also be surprisingly convenient. In this example, both `zip` and `range` are defined with currying and `countup` partially applies `range`. The `add_numbers` function turns the list `[v1,v2,...,vn]` into `[(1,v1),(2,v2),...,(n,vn)]`.

```
fun zip xs ys =
  case (xs,ys) of
    ([],[]) => []
  | (x::xs',y::ys') => (x,y) :: (zip xs' ys')
  | _ => raise Empty

fun range i j = if i > j then [] else i :: range (i+1) j

val countup = range 1

fun add_numbers xs = zip (countup (length xs)) xs
```

Combining Functions to Curry and Uncurry Other Functions

Sometimes functions are curried but the arguments are not in the order you want for a partial application. Or sometimes a function is curried when you want it to use tuples or vice-versa. Fortunately our earlier idiom of combining functions can take functions using one approach and produce functions using another:

```
fun other_curry1 f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry f x y = f (x,y)
fun uncurry f (x,y) = f x y
```
Looking at the types of these functions can help you understand what they do. As an aside, the types are also fascinating because if you pronounce \(\rightarrow \) as “implies” and \(\ast \) as “and”, the types of all these functions are logical tautologies.

Efficiency

Finally, you might wonder which is faster, currying or tupling. It almost never matters; they both do work proportional to the number of conceptual arguments, which is typically quite small. For the performance-critical functions in your software, it might matter to pick the faster way. In the version of the ML compiler we are using, tupling happens to be faster. In widely used implementations of OCaml, Haskell, and F#, curried functions are faster so they are the standard way to define multi-argument functions in those languages.

48 The Value Restriction

Once you have learned currying and partial application, you might try to use it to create a polymorphic function. Unfortunately, certain uses, such as these, do not work in ML:

```plaintext
val mapSome = List.map SOME (*turn \[v1,v2,...,vn\] into \[SOME v1, SOME v2, ..., SOME vn\]*)
val pairIt = List.map (fn x => (x,x)) (*turn \[v1,v2,...,vn\] into [(v1,v1),(v2,v2),...,(vn,vn)]*)
```

Given what we have learned so far, there is no reason why this should not work, especially since all these functions do work:

```plaintext
fun mapSome xs = List.map SOME xs
val mapSome = fn xs => List.map SOME xs
val pairIt : int list -> (int * int) list = List.map (fn x => (x,x))
val incrementIt = List.map (fn x => x+1)
```

The reason is called the *value restriction* and it is sometimes annoying. It is in the language for good reason: without it, the type-checker might allow some code to break the type system. This can happen only with code that is using mutation and the code above is not, but the type-checker does not know that.

The simplest approach is to ignore this issue until you get a warning/error about the value restriction. When you do, turn the val-binding back into a fun-binding like in the first example above of what works.

When we study type inference later, we will discuss the value restriction in a little more detail.

49 Mutation via ML References

We now finally introduce ML’s support for mutation. Mutation is okay in some settings. A key approach in functional programming is to use it only when “updating the state of something so all users of that state can see a change has occurred” is the natural way to model your computation. Moreover, we want to keep features for mutation separate so that we know when mutation is not being used.

In ML, most things really cannot be mutated. Instead you must create a *reference*, which is a container whose contents can be changed. You create a new reference with the expression \(\text{ref } e \) (the initial contents are the result of evaluating \(e \)). You get a reference \(r \)'s current contents with \(!r \) (not to be confused with negation in Java or C), and you change \(r \)'s contents with \(r := e \). The type of a reference that contains values of type \(t \) is written \(t \text{ ref} \).

One good way to think about a reference is as a record with one field where that field can be updated with the \(:= \) operator. Following is a short example:
```plaintext
val x = ref 0
val x2 = x (* x and x2 both refer to the same reference *)
val x3 = ref 0
(* val y = x + 1*) (* wrong: x is not an int *)
val y = (!x) + 1 (* y is 1 *)
val _ = x := (!x) + 7 (* the contents of the reference x refers to is now 7 *)
val z1 = !x (* z1 is 7 *)
val z2 = !x2 (* z2 is also 7 -- with mutation, aliasing matters*)
val z3 = !x3 (* z3 is 0 *)
```

50 Closure Idiom (III): Callbacks

The next common idiom we consider is implementing a library that detects when “events” occur and
informs clients that have previously “registered” their interest in hearing about events. Clients can register
their interest by providing a “callback” — a function that gets called when the event occurs. Examples of
events for which you might want this sort of library include things like users moving the mouse or pressing
a key. Data arriving from a network interface is another example. Computer players in a game where the
events are “it is your turn” is yet another.

The purpose of these libraries is to allow multiple clients to register callbacks. The library implementer has
no idea what clients need to compute when an event occurs, and the clients may need “extra data” to do
the computation. So the library implementor should not restrict what “extra data” each client uses. A
closure is ideal for this because a function’s type `\(t_1 \rightarrow t_2 \)` does not specify the types of any other variables
a closure uses, so we can put the “extra data” in the closure’s environment.

If you have used “event listeners” in Java’s Swing library, then you have used this idiom in an
object-oriented setting. In Java, you get “extra data” by defining a subclass with additional fields. This
can take an awful lot of keystrokes for a simple listener, which is a (the?) main reason the Java language
added anonymous inner classes (which you do not need to know about for this course, but we will show an
example later), which are closer to the convenience of closures.

In ML, we will use mutation to show the callback idiom. This is reasonable because we really do want
registering a callback to “change the state of the world” — when an event occurs, there are now more
callbacks to invoke.

Our example uses the idea that callbacks should be called when a key on the keyboard is pressed. We will
pass the callbacks an `int` that encodes which key it was. Our interface just needs a way to register
callbacks. (In a real library, you might also want a way to unregister them.)

```plaintext
val onKeyEvent : (int -> unit) -> unit
```

Clients will pass a function of type `int -> unit` that, when called later with an `int`, will do whatever they
want. To implement this function, we just use a reference that holds a list of the callbacks. Then when an
event actually occurs, we assume the function `onEvent` is called and it calls each callback in the list:
Most importantly, the type of `onKeyEvent` places no restriction on what extra data a callback can access when it is called. Here are different clients (calls to `onKeyEvent`) that use different bindings of different types in their environment. (The `val _ = e` idiom is common for executing an expression just for its side-effect, in this case registering a callback.)

51 Closure Idiom (IV): Abstract Data Types

This last closure idiom we will consider is the fanciest and most subtle. It is not the sort of thing programmers typically do — there is usually a simpler way to do it in a modern programming language. It is included as an advanced example to demonstrate that a record of closures that have the same environment is a lot like an object in object-oriented programming: the functions are methods and the bindings in the environment are private fields and methods. There are no new language features here, just lexical scope. It suggests (correctly) that functional programming and object-oriented programming are more similar than they might first appear (a topic we will revisit later in the course; there are also important differences).

The key to an abstract data type (ADT) is requiring clients to use it via a collection of functions rather than directly accessing its private implementation. Thanks to this abstraction, we can later change how the data type is implemented without changing how it behaves for clients. In an object-oriented language, you might implement an ADT by defining a class with all private fields (inaccessible to clients) and some public methods (the interface with clients). We can do the same thing in ML with a record of closures; the variables that the closures use from the environment correspond to the private fields.

As an example, consider an implementation of a set of integers that supports creating a new bigger set and seeing if an integer is in a set. Our sets are mutation-free in the sense that adding an integer to a set produces a new, different set. (We could just as easily define a mutable version using ML’s references.) In ML, we could define a type that describes our interface:
Roughly speaking, a set is a record with three fields, each of which holds a function. It would be simpler to write:

```
type set = { insert : int -> set, member : int -> bool, size : unit -> int }
```

but this does not work in ML because `type` bindings cannot be recursive. So we have to deal with the mild inconvenience of having a constructor `S` around our record of functions defining a set even though sets are each-of types, not one-of types. Notice we are not using any new types or features; we simply have a type describing a record with fields named `insert`, `member`, and `size`, each of which holds a function.

Once we have an empty set, we can use its `insert` field to create a one-element set, and then use that set’s `insert` field to create a two-element set, and so on. So the only other thing our interface needs is a binding like this:

```
val empty_set = ... : set
```

Before implementing this interface, let’s see how a client might use it (many of the parentheses are optional but may help understand the code):

```
fun use_sets () =
  let val S s1 = empty_set
      val S s2 = (#insert s1) 34
      val S s3 = (#insert s2) 34
      val S s4 = #insert s3 19
  in
    if (#member s4) 42
    then 99
    else if (#member s4) 19
    then 17 + (#size s3) ()
    else 0
  end
```

Again we are using no new features. `#insert s1` is reading a record field, which in this case produces a function that we can then call with 34. If we were in Java, we might write `s1.insert(34)` to do something similar. The `val` bindings use pattern-matching to “strip off” the `S` constructors on values of type `set`.

There are many ways we could define `empty_set`; they will all use the technique of using a closure to “remember” what elements a set has. Here is one way:
val empty_set =
 let
 fun make_set xs = (* xs is a "private field" in result *)
 let (* contains a "private method" in result *)
 fun contains i = List.exists (fn j => i=j) xs
 in
 S { insert = fn i => if contains i
 then make_set xs
 else make_set (i::xs),
 member = contains,
 size = fn () => length xs
 }
 end
 in
 make_set []
 end

All the fanciness is in make_set, and empty_set is just the record returned by make_set []. What make_set returns is a value of type set. It is essentially a record with three closures. The closures can use xs, the helper function contains, and make_set. Like all function bodies, they are not executed until they are called.

52 Closures in Other Languages

To conclude our study of function closures, we digress from ML to show similar programming patterns in Java (using generics and interfaces) and C (using function pointers taking explicit environment arguments). We will not test you on this material, and you are welcome to skip it. However, it may help you understand closures by seeing similar ideas in other settings, and it should help you see how central ideas in one language can influence how you might approach problems in other languages. That is, it could make you a better programmer in Java or C.

For both Java and C, we will “port” this ML code, which defines our own polymorphic linked-list type constructor and three polymorphic functions (two higher-order) over that type. We will investigate a couple ways we could write similar code in Java or C, which will help us better understand similarities between closures and objects (for Java) and how environments can be made explicit (for C). In ML, there is no reason to define our own type constructor since 'a list is already written, but doing so will help us compare to the Java and C versions.
datatype 'a mylist = Cons of 'a * ('a mylist) | Empty

fun map f xs =
case xs of
 Empty => Empty
 | Cons(x,xs) => Cons(f x, map f xs)

fun filter f xs =
case xs of
 Empty => Empty
 | Cons(x,xs) => if f x then Cons(x,filter f xs) else filter f xs

fun length xs =
case xs of
 Empty => 0
 | Cons(_,xs) => 1 + length xs

Using this library, here are two client functions. (The latter is not particularly efficient, but shows a simple use of length and filter.)

val doubleAll = map (fn x => x * 2)
fun countNs (xs, n : int) = length (filter (fn x => x=n) xs)

Closures in Java using Objects and Interfaces

Java 8 includes support for closures much like most other mainstream object-oriented languages now do (C#, Scala, Ruby, ...), but it is worth considering how we might write similar code in Java without this support, as has been necessary for almost two decades. While we do not have first-class functions, currying, or type inference, we do have generics (Java did not used to) and we can define interfaces with one method, which we can use like function types. Without further ado, here is a Java analogue of the code, followed by a brief discussion of features you may not have seen before and other ways we could have written the code:
interface Func<B,A> {
 B m(A x);
}

interface Pred<A> {
 boolean m(A x);
}

class List<T> {
 T head;
 List<T> tail;
 List(T x, List<T> xs) {
 head = x;
 tail = xs;
 }

 static <A,B> List map(Func<B,A> f, List<A> xs) {
 if(xs==null)
 return null;
 return new List(f.m(xs.head), map(f,xs.tail));
 }

 static <A> List<A> filter(Pred<A> f, List<A> xs) {
 if(xs==null)
 return null;
 if(f.m(xs.head))
 return new List<A>(xs.head, filter(f,xs.tail));
 return filter(f,xs.tail);
 }

 static <A> int length(List<A> xs) {
 int ans = 0;
 while(xs != null) {
 ++ans;
 xs = xs.tail;
 }
 return ans;
 }
}

class ExampleClients {
 static List<Integer> doubleAll(List<Integer> xs) {
 return List.map((new Func<Integer,Integer>() {
 public Integer m(Integer x) { return x * 2; }
 }),
 xs);
 }

 static int countNs(List<Integer> xs, final int n) {
 return List.length(List.filter((new Pred<Integer>() {
 public boolean m(Integer x) { return x==n; }
 }),
 xs));
 }
}
This code uses several interesting techniques and features:

- In place of the (inferred) function types `'a -> 'b` for `map` and `'a -> bool` for `filter`, we have generic interfaces with one method. A class implementing one of these interfaces can have fields of any types it needs, which will serve the role of a closure’s environment.
- The generic class `List` serves the role of the datatype binding. The constructor initializes the `head` and `tail` fields as expected, using the standard Java convention of `null` for the empty list.
- Static methods in Java can be generic provided the type variables are explicitly mentioned to the left of the return type. Other than that and syntax, the `map` and `filter` implementations are similar to their ML counterparts, using the one method in the `Func` or `Pred` interface as the function passed as an argument. For `length`, we could use recursion, but choose instead to follow Java’s preference for loops.
- If you have never seen anonymous inner classes, then the methods `doubleAll` and `countNs` will look quite odd. Somewhat like anonymous functions, this language feature lets us create an object that implements an interface without giving a name to that object’s class. Instead, we use `new` with the interface being implemented (instantiating the type variables appropriately) and then provide definitions for the methods. As an inner class, this definition can use fields of the enclosing object or `final` local variables and parameters of the enclosing method, gaining much of the convenience of a closure’s environment with more cumbersome syntax. (Anonymous inner classes were added to Java to support callbacks and similar idioms.)

There are many different ways we could have written the Java code. Of particular interest:

- Tail recursion is not as efficient as loops in implementations of Java, so it is reasonable to prefer loop-based implementations of `map` and `filter`. Doing so without reversing an intermediate list is more intricate than you might think (you need to keep a pointer to the previous element, with special code for the first element), which is why this sort of program is often asked at programming interviews. The recursive version is easy to understand, but would be unwise for very long lists.
- A more object-oriented approach would be to make `map`, `filter`, and `length` instance methods instead of static methods. The method signatures would change to:

```java
<B>List<B> map(Func<B,T> f) {...};
List<T> filter(Pred<T> f) {...};
int length() {...};
```

The disadvantage of this approach is that we have to add special cases in any use of these methods if the client may have an empty list. The reason is empty lists are represented as `null` and using `null` as the receiver of a call raises a `NullPointerException`. So methods `doubleAll` and `countNs` would have to check their arguments for `null` to avoid such exceptions.
- Another more object-oriented approach would be to not use `null` for empty lists. Instead we would have an abstract list class with two subclasses, one for empty lists and one for nonempty lists. This approach is a much more faithful object-oriented approach to datatypes with multiple constructors, and using it makes the previous suggestion of instance methods work out without special cases. It does seem more complicated and longer to programmers accustomed to using `null`.
- Anonymous inner classes are just a convenience. We could instead define “normal” classes that implement `Func<Integer,Integer>` and `Pred<Integer>` and create instances to pass to `map` and `filter`. For the `countNs` example, our class would have an `int` field for holding `n` and we would pass the value for this field to the constructor of the class, which would initialize the field.

53
Closures in C Using Explicit Environments

C does have functions, but they are not closures. If you pass a pointer to a function, it is only a code pointer. As we have studied, if a function argument can use only its arguments, higher-order functions are much less useful. So what can we do in a language like C? We can change the higher-order functions as follows:

- Take the environment explicitly as another argument.
- Have the function-argument also take an environment.
- When calling the function-argument, pass it the environment.

So instead of a higher-order function looking something like this:

```c
int f(int (*g)(int), list_t xs) { ... g(xs->head) ... }
```

we would have it look like this:

```c
int f(int (*g)(void*,int), void* env, list_t xs) { ... g(env,xs->head) ... }
```

We use `void*` because we want `f` to work with functions that use environments of different types, so there is no good choice. Clients will have to cast to and from `void*` from other compatible types. We do not discuss those details here.

While the C code has a lot of other details, this use of explicit environments in the definitions and uses of `map` and `filter` is the key difference from the versions in other languages:
As in Java, using recursion instead of loops is much simpler but likely less efficient. Another alternative would be to define structs that put the code and environment together in one value, but our approach of...
using an extra `void*` argument to every higher-order function is more common in C code.

For those interested in C-specification details: Also note the client code above, specifically the code in functions `doubleInt`, `isN`, and `countNs`, is not portable because it is not technically legal to assume that an `intptr_t` can be cast to a `void*` and back unless the value started as a pointer (rather than a number that fits in an `intptr_t`). While the code as written above is a fairly common approach, portable versions would either need to use a pointer to a number or replace the uses of `void*` in the library with `intptr_t`. The latter approach is still a reusable library because any pointer can be converted to `intptr_t` and back.

53 Standard-Library Documentation

We will not focus too much on the ML standard library in the course, but as we discussed in class, a standard library plays a significant role in any language. ML, like many recent languages, has a standard library. It includes some of the useful functions (higher-order or not). This is code that programs in the language can assume is always available. There are two common and distinct reasons for code to be in a standard library:

- We need a standard-library to interface with the “outside world” to provide features that would otherwise be impossible to implement. Examples include opening a file or setting a timer.
- A standard-library can provide functions so common and useful that it is appropriate to define them once so that all programs can use the same function name, order of arguments, etc. Examples include functions to concatenate two strings, map over a list, etc.

Standard libraries are usually so large that it makes no sense to expect to be taught them. You need to get comfortable seeking out documentation and developing a rough intuition on “what is likely provided” and “where it is likely to be.” We will leave it to you to find out more about a few simple functions in ML’s Standard Library.

The online documentation is very primitive compared to most modern languages, but it is entirely sufficient for our needs. Just go to: http://www.standardml.org/Basis/manpages.html

The functions are organized using ML’s module system. For example, useful functions over characters are in the structure `Char`. To use a function `foo` in structure `Bar`, you write `Bar.foo`, which is exactly how we have been using functions like `List.map`. One wrinkle is that functions for the `String` structure are documented under the signature `STRING`. Signatures are basically types for structures, as we will study later. Certain library functions are considered so useful they are not in a structure, like `hd`. They are described at http://www.standardml.org/Basis/top-level-chapter.html

There is no substitute for precise and complete documentation of code libraries, but sometimes it can be inconvenient to look up the full documentation when you are in the middle of programming and just need a quick reminder. For example, it is easy to forget the order of arguments or whether a function is curried or tupled. Often you can use the REPL to get the information you need quickly. After all, if you enter a function like `List.map`, it evaluates this expression and returns its type. You can even guess the name of a function if you do not remember what it is called. If you are wrong, you will just get an undefined-variable message. Finally, using features just beyond what we will study, you can get the REPL to print out all the bindings provided by a structure. Just do this for example:

```ml
structure X = List; (* List is the structure we want to know about *)
structure X : LIST (* This is what the REPL gives back *)
signature X = LIST; (* Write LIST because that is what follows the : on the previous line *)
```

Because looking things up in the REPL is so convenient, some REPLs for other languages have gone further and provided special commands for printing the documentation associated with functions or libraries.