Prolog
The Plan

- An example program
- Syntax of terms
- Some simple programs
- Terms as data structures, unification
- The Cut
- Writing real programs
What is Prolog?

- Prolog is the most widely used language to have been inspired by logic programming research.

Some Features

- Prolog uses logical variables—These are not the same as variables in other languages. Programmers can use them as ‘holes’ in data structures that are gradually filled in as computation proceeds.
- Unification is a built-in term—A manipulation method that passes parameters, returns results, selects and constructs data structures.
- Basic control flow model is backtracking.
- Program clauses and data have the same form.
- The relational form of procedures makes it possible to define ‘reversible’ procedures.
What is Prolog?

- Features (contd.)
 - Clauses provide a convenient way to express case analysis and nondeterminism.
 - Sometimes it is necessary to use control features that are not part of 'logic'.
 - A Prolog program can also be seen as a relational database containing rules as well as facts.
What a program looks like

/* At the Zoo */

elephant(george).
elephant(mary).

panda(chi_ch).
panda(ming_ming).

dangerous(X) :- big_teeth(X).
dangerous(X) :- venomous(X).

guess(X, tiger) :- stripey(X), big_teeth(X), isaCat(X).
guess(X, koala) :- arboreal(X), sleepy(X).
guess(X, zebra) :- stripey(X), isaHorse(X).
Prolog is a 'declarative language'

- Clauses are statements about what is true about a problem, instead of instructions how to accomplish the solution.
- The Prolog system uses the clauses to work out how to accomplish the solution by searching through the space of possible solutions.
- Not all problems have pure declarative specifications. Sometimes extralogical statements are needed.
Example: Concatenate lists 'a' and 'b'

In an imperative language

```plaintext
list procedure cat(list a, list b) {
    list t = list u = copylist(a);
    while (t.tail != nil) t = t.tail;
    t.tail = b;
    return u;
}
```

In a functional language

```plaintext
cat(a, b) ≡
if b = nil then a
else cons(head(a), cat(tail(a), b))
```

In a declarative language

```prolog
cat([], Z, Z).
cat([H|T], L, [H|Z]) :- cat(T, L, Z).
```
Complete Syntax of Terms

Term

Constant
Names an individual

Atom
- alpha17
- gross_pay
- john_smith
- dyspepsia
- +
- /=
- '12Q&A'

Number
- 0
- 1
- 57
- 1.618
- 2.04e-27
- -13.6

Compound Term
Names an individual that has parts

- likes(john, mary)
- book(dickens, Z, cricket)
- f(x)
- [1, 3, g(a), 7, 9]
- -(+15, 17), t)
- 15 + 17 - t

Variable
Stands for an individual unable to be named when program is written

- X
- Gross_pay
- Diagnosis
- _257
- _
The parents of Spot are Fido and Rover.

\[\text{parents}(\text{spot}, \text{fido}, \text{rover}) \]

Functor (an atom) of arity 3. \hspace{1cm} \text{components} (any terms)

It is possible to depict the term as a tree:

\[\text{parents} \]

\[\text{spot} \quad \text{fido} \quad \text{rover} \]
Some atoms have built-in operator declarations so they may be written in a syntactically convenient form. The meaning is not affected. This example looks like an arithmetic expression, but might not be. It is just a term.

\[=/(15+X, (0*a)+(2<<5))\]
Any atom may be designated an operator. The only purpose is for convenience; the only effect is how the term containing the atom is parsed. Operators are 'syntactic sugar'.

We won’t be designating operators in this course, but it is as well to understand them, because a number of atoms have built-in designations as operators.

Operators have three properties: position, precedence and associativity.
Examples of Operator properties

<table>
<thead>
<tr>
<th></th>
<th>Operator Syntax</th>
<th>Normal Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix:</td>
<td>–2</td>
<td>–(2)</td>
</tr>
<tr>
<td>Infix:</td>
<td>5 + 17</td>
<td>+ (17, 5)</td>
</tr>
<tr>
<td>Postfix:</td>
<td>N!</td>
<td>!(N)</td>
</tr>
</tbody>
</table>

Associativity: left, right, none.

- \(X+Y+Z \) is parsed as \((X+Y)+Z\)
- because addition is left-associative.

Precedence: an integer.

- \(X+Y*Z \) is parsed as \(X+(Y*Z) \)
- because multiplication has higher precedence.

These are all the same as the normal rules of arithmetic.
Constants

Constants are simply compound terms of arity 0.

badger
means the same as
badger()
Programs consist of procedures.
Procedures consist of clauses.
Each clause is a fact or a rule.
Programs are executed by posing queries.
Example

Predicate

Procedure for elephant

Facts

Clauses

Rule

elephant(george).
elephant(mary).
elephant(X) :- grey(X), mammal(X), hasTrunk(X).
Example (I)

Queries

? - elephant(george).

yes

? - elephant(jane).

no
Clauses: Facts and Rules

Head :- Body.

Head.

‘if’
‘provided that’
‘turnstile’

This is a rule.
This is a fact.

Full stop at the end.
Body of a (rule) cause contains goals

Head
likes(mary, X)

Body
human(X), honest(X).

Goals
Interpretation of Clauses

Clauses can be given a declarative reading or a procedural reading.

Form of clause: \[H \leftarrow G_1, \ G_2, \ldots, \ G_n. \]

Declarative reading: “That \(H \) is provable follows from goals \(G_1, G_2, \ldots, G_n \) being provable.”

Procedural reading: “To execute procedure \(H \), the procedures called by goals \(G_1, G_2, \ldots, G_n \) are executed first.”
male(bertram).
male(percival).
female(lucinda).
female(camilla).

pair(X, Y) :- male(X), female(Y).

? - pair(percival, X).
? - pair(apollo, daphne).
? - pair(camilla, X).
? - pair(X, lucinda).
? - pair(X, X).
? - pair(bertram, lucinda).
? - pair(X, daphne).
? - pair(X, Y).
drinks(john, martini).
drinks(mary, gin).
drinks(susan, vodka).
drinks(john, gin).
drinks(fred, gin).

pair(X, Y, Z) :-
 drinks(X, Z),
 drinks(Y, Z).

? - pair(X, john, martini).
? - pair(mary, susan, gin).
? - pair(john, mary, gin).
? - pair(john, john, gin).
? - pair(X, Y, gin).
? - pair(bertram, lucinda).
? - pair(bertram, lucinda, vodka).
? - pair(X, Y, Z).

This definition forces X and Y to be distinct:

pair(X, Y, Z) :- drinks(X, Z), drinks(Y, Z), X \neq Y.
(a) Representing a symmetric relation.
(b) Implementing a strange ticket condition.

How to represent this relation?
Note that borders are symmetric.
This relation represents one ‘direction’ of border:

\[
\text{border(sussex, kent).
border(sussex, surrey).
border(surrey, kent).
border(hampshire, surrey).
border(hampshire, berkshire).
border(berkshire, surrey).
border(wiltshire, hampshire).
border(wiltshire, berkshire).}
\]

What about the other?

(a) Say \(\text{border(kent, sussex).}
border(sussex, kent). \)

(b) Say
\[
\text{adjacent}(X, Y) \iff \text{border}(X, Y).
\text{adjacent}(X, Y) \iff \text{border}(Y, X).
\]

(c) Say
\[
\text{border}(X, Y) \iff \neg \text{border}(Y, X).
\]
Now a somewhat strange type of discount ticket. For the ticket to be valid, one must pass through an intermediate county.

A valid ticket between a start and end county obeys the following rule:

\[
\text{valid}(X, Y) :\neg \text{adjacent}(X, Z), \text{adjacent}(Z, Y)
\]
border(sussex, kent).
border(sussex, surrey).
border(surrey, kent).
border(hampshire, sussex).
border(hampshire, surrey).
border(hampshire, berkshire).
border(berkshire, surrey).
border(wiltshire, hampshire).
border(wiltshire, berkshire).

adjacent(X, Y) :- border(X, Y).
adjacent(X, Y) :- border(Y, X).

valid(X, Y) :-
 adjacent(X, Z),
 adjacent(Z, Y)

?- valid(wiltshire, sussex).
?- valid(wiltshire, kent).
?- valid(hampshire, hampshire).
?- valid(X, kent).
?- valid(sussex, X).
?- valid(X, Y).
Note that Prolog can distinguish between the 0-ary constant \texttt{a} (the name of a node) and the 2-ary functor \texttt{a} (the name of a relation).

text

\begin{verbatim}
path(X, X).
path(X, Y) :- a(X, Z), path(Z, Y).
\end{verbatim}

? - path(f, f).
? - path(a, c).
? - path(g, e).
? - path(g, X).
? - path(X, h).

\end{verbatim}
But what happens if...

path(X, X).
path(X, Y) :- a(X, Z), path(Z, Y).

This program works only for acyclic graphs. The program may infinitely loop given a cyclic graph. We need to leave a ‘trail’ of visited nodes. This is accomplished with a data structure (to be seen later).
Unification

- Two terms unify if substitutions can be made for any variables in the terms so that the terms are made identical. If no such substitution exists, the terms do not unify.

- The Unification Algorithm proceeds by recursive descent of the two terms.
 - Constants unify if they are identical
 - Variables unify with any term, including other variables
 - Compound terms unify if their functors and components unify.
The terms $f(X, a(b, c))$ and $f(d, a(Z, c))$ unify.

The terms are made equal if d is substituted for X, and b is substituted for Z. We also say X is instantiated to d and Z is instantiated to b, or $X/d, Z/b$.
The terms $f(X, a(b,c))$ and $f(Z, a(Z, c))$ unify.

Note that Z co-references within the term. Here, X/b, Z/b.
The terms $f(c, a(b,c))$ and $f(Z, a(Z, c))$ do not unify.

No matter how hard you try, these two terms cannot be made identical by substituting terms for variables.
Do terms $g(Z, f(A, 17, B), A + B, 17)$ and $g(C, f(D, D, E), C, E)$ unify?
First write in the co-referring variables.
Now proceed by recursive descent. We go top-down, left-to-right, but the order does not matter as long as it is systematic and complete.
Z/C, C/Z, A/D, D/A

Pradhan Lecture 09: Programming Languages (CMPU-235)
Z/17+17, C/17+17, A/17, D/17, B/17, E/17
Another Method

\[Z/C \]

\[
\begin{array}{c}
Z \\
A 17 \\
\hline
f \\
B \\
\hline
+ \\
A B \\
\hline
17 \\
\end{array}
\]

\[
\begin{array}{c}
C \\
\hline
f \\
D D \\
\hline
g \\
\hline
E \\
\end{array}
\]
Z/C

\[g \]
\[f \]
\[C \]
\[A \]
\[17 \]
\[B \]
\[A \]
\[+ \]
\[B \]
\[17 \]

\[g \]
\[f \]
\[C \]
\[D \]
\[D \]
\[E \]
A/D, Z/C

\[g \quad f \quad + \quad 17 \]

\[
C \quad A \quad 17 \quad B \\
D \quad D \\
dependent_tree
\]

\[g \quad f \quad C \quad E \]

\[
C \quad D \quad E \\
D \quad D \\
E \quad E \\
dependent_tree
\]
B/E, D/17, A/17, Z/C

```
g  
  / \  
C   f  +  17  
  |   |   |   |   
17   17 17   E
```

```
g  
  / \  
C   f  C  E  
  |   |   |   
17   17 17   E
```
C/17+E, B/E, D/17, A/17, Z/C

```
g
/ \   /
C f  17
/   /
17 17 E
```

```
g
/   /
C  f
/   /
17 17 E
```

C/17+E, B/E, D/17, A/17, Z/17+E
E/17, C/17+17, B/17, D/17, A/17, Z/C

\[
\begin{align*}
E &= f + g = 17 + 17 = 34 \\
C &= f + g = 17 + 17 = 34 \\
B &= f + g = 17 + 17 = 34 \\
\end{align*}
\]