
Tom Ellman
Lecture 2

Problem Solving and Abstraction
(CMPU 101)



Comments in Pyret Code

• Text in the program file that Pyret should ignore.

• Line Comments: Ignore the rest of the line.

#cat = "Felix"
#CAT

• Block Comments: Ignore multiple lines.

#|
x = 17
y = 3
z = x + y
z
|#



Names (a.k.a. Identifiers)

• A sequence of characters:
– Letters: a … z or A … Z
– Numerals 0 … 9
– Punctuation: - (dash) or _ (underscore)

• Starting with a letter. 
OK: x, y1, CAT, dog, pet-store, dog_food
Not OK: 137student, s!, t: , u*, $



Case Matters

CAT and cat are different names. 



Names 



Definitions 
x = 17 and title = “President” are definitions.

A definition creates a binding that associates a name with a 
value by storing them in Pyret’s internal directory. 

If Pyret comes across the name later, Pyret will replace the 
name with it’s associated value. 

In Pyret, definitions are sometimes called declarations. In 
other languages, e.g., Java, C++ these are different concepts. 



Definitions versus Expressions

• Notice that Pyret does not display a value 
after processing a definition. 

• Definitions are statements, not expressions.
• Statements are not evaluated to produce 

values. 
• Instead, statements cause side effects of 

changing Pyret’s directory . 



Bind values to names:

Refer to values using names:

Bind values to names:

Binding and Reference

Refer to values using names:



Pyret’s Internal Directory
Name Value

x 17

y 3

z 20

title “President”

sir-name “Bradley”

titled-name “President Bradley”

Notice that the directory stores values, not expressions: 

the value 20 rather than the expression  x + y  
and 

the value “President Bradley” rather than the expression  title + " " + sir-name.



Substitution

When Pyret evaluates the expression:
x + y

it finds the values of x and y in the directory 
and 

replaces x and y with their respective values 
to get:  17 + 3 which evaluated to 20



“foo” is a string. 

foo (without quotes) is potentially a name. 

Since foo has not been defined, Pyret says it is unbound.

An error occurs if we try to use foo as a name before we have 
given it a definition. 



Once we define a name, we (normally) cannot change its value. 
If we try to do so, we get an shadow error.  



Try These Expressions!

include image 
base = rectangle(20, 20, "solid", "blue")
base
roof = triangle(30, "solid", "red")
roof
house = above(roof, base)
house
neighbors = beside(house, house)
neighbors



Building Expressions from Sub-Expressions

Sub-Sub-Expression

Sub-Sub-Expression

Sub-Expression

Expression



Cut and Paste into the 
Definitions Pane & Press Run

include image 
base = rectangle(20, 20, "solid", "blue")
roof = triangle(30, "solid", "red")
house = above(roof, base)
beside(house, house)



Definitions

Interactions



We are typing and evaluating 
similar expressions over and 
over. This could get tedious. 

In each case, we compute a sum 
and divide by two. 

We can capture this pattern in a 
function definition. 

DRY Principle: Don't Repeat Yourself. 

Repeated Similar Expressions



Defining a Function

fun average(x, y): (x  +  y)  /  2  end

Function 
Name

Formal 
Parameters

Body

Function definition creates a new binding in the Pyret’s
directory between the function name and its definition. 
The body is not evaluated at this time. 



Functional Abstraction

(45 + 53) / 2

(17 + 137) / 2

(123 + 321) / 2

(x + y) / 2

We replace the common parts of these expressions 
by new names, called formal parameters.



fun <function name>(<parameters>):
<body expression>

end

fun average(x,y): 
(x  +  y)  /  2 

end

Function Definition Format





Pyret Evaluating: average(45,63)

1. Find the definition of average in the directory. 
2. Associate the formal parameters (x,y) in the 

definition with the actual parameters (45,63) and 
create temporary bindings:  x = 45 and y = 63. 

3. Evaluate the body expression (x  +  y)  /  2 using 
the new bindings for x and y to get the value 54 
of average(45,63).



We are typing and evaluating 
similar expressions over and 
over. This could get tedious. 

How are the expressions 
similar? How are they 
different?

Can can capture this pattern 
in a function definition?

DRY Principle: Don't Repeat 
Yourself. 

Repeated Similar Expressions



fun house(base-color,roof-color):
above(triangle(30,"solid",roof-color),
rectangle(20,20,"solid",base-color))

end



Annotations and Contracts
fun house(base-color :: String, 

roof-color :: String) -> Image:
above(triangle(30,"solid",roof-color),
rectangle(20,20,"solid",base-color))

end
We use :: String to require the user of house to provide only 
data of type String for base-color and roof-color. 

We use -> Image to promise to the user that the house
function will return a datum of type Image.

The requirement on the user of the house function and the 
promise made by  the programmer are a contract. If both full 
the terms of the contract there will not be any data-type 
errors. 



Pyret detects the data-type error while evaluating the expression: 
house(“blue”,7).



Solving the Quadratic Equation

a x2 + b x + c = 0 Solve for x
quad-high High Root
quad-low Low Root



High Root

fun quad-high(a :: Number,
b :: Number,
c :: Number) -> Number:

((0 - b) + num-sqrt((b * b) - (4 * (a * c)))) / (2 * a)
end



Test Cases

fun quad-high(a :: Number,
b :: Number,
c :: Number) -> Number:

((0 - b) + num-sqrt((b * b) - (4 * (a * c)))) / (2 * a)
where:

quad-high(1,0,-4) is 2
quad-high(1,-5,4) is 4

end



Low Root

fun quad-low(a :: Number,
b :: Number,
c :: Number) -> Number:

((0 - b) - num-sqrt((b * b) - (4 * (a * c)))) / (2 * a)
end



Test Cases

fun quad-low(a :: Number,
b :: Number,
c :: Number) -> Number:

((0 - b) - num-sqrt((b * b) - (4 * (a * c)))) / (2 * a)
where:

quad-low(1,0,-4) is -2
quad-low(1,-5,4) is 1

end



Helper Functions and (DRS)

• Avoid repeated typing. 

• Avoid repeated evaluation.

• Make code more readable. 



We typed some expressions twice.
We are evaluating some expressions twice. 
This is not so easy to read and understand.



Our use of helper functions (house, roof, base) make 
the program easier to read and understand. But we 
still type and evaluate an expression twice. How can 
we fix this problem? 



Using one more helper function, we have avoided 
typing (or evaluating) the same expression twice.



We typed some expressions twice.
We are evaluating some expressions twice.
How can we fix these problems?  



Now we are not computing the discriminant 
twice nor computing its square root twice. 

Why is it tricky to eliminate the remaining 
duplication? 



Here we are solving a different problem. What 
happens if one or both roots are complex (not real) 
numbers? 

We check whether the discriminant is negative. If so, 
we raise an exception.  The raise function halts 
evaluation and displays its parameter. 


	Slide Number 1
	Comments in Pyret Code
	Names (a.k.a. Identifiers)
	Case Matters
	Names 
	Definitions 
	Definitions versus Expressions
	Binding and Reference
	Pyret’s Internal Directory
	Substitution
	Slide Number 11
	Slide Number 12
	Try These Expressions!
	Building Expressions from Sub-Expressions
	Cut and Paste into the Definitions Pane & Press Run
	Slide Number 16
	Repeated Similar Expressions
	Defining a Function
	Functional Abstraction
	Function Definition Format
	Slide Number 21
	Pyret Evaluating: average(45,63)
	Repeated Similar Expressions
	Slide Number 24
	Annotations and Contracts
	Slide Number 26
	Solving the Quadratic Equation
	High Root
	Test Cases
	Low Root
	Test Cases
	Helper Functions and (DRS)
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38

