Problem Solving and Abstraction
(CMPU 101)

Tom Ellman

Lecture 7

Reminder

We won’t cover everything in class!
Follow along with the assigned readings.
Active Reading:

— Keep Pyret open and try examples.
— Take notes.

In lab and on assignments you’ll be expected to
try things that may only be in the readings — or
may be new altogether.

Lab and homework are additional opportunities
for learning!

Where are we?

We can enter tabular data directly in Pyret

We can load it from an external source like a
Google spreadsheet.

We can filter tables to get particular rows.

We can compute values for each row to add as a
new column.

We can order tables by the values in a particular
column.

We can visualize tabular data with plots.

Is your data reliable?
(Probably Not)

e Good data scientists never trust a dataset without
first making sure that the values make sense.

e Visualizations and plots can help data scientists
identify data they might have missed that still
needs to be cleaned/normalized.

name
Allie
GIGI
Elan

Lavon

NUNU

Invalid Data

B
eligible
FALSE
TRUE
TRUE
0
1

height

2
62
70

D

weight
130
150
185
130
170

Wrong Data Type

sportbookl = #Load Fails
load-table: name, eligible, height, weight
source:

load-spreadsheet(dd-ssid).sheet-by-name("sportbook"”, true)
end

There were worksheet importing errors.

All items in every column must have the same type. We expected to find a Bool at
cell B5, but we instead found this Number: 0.

All items in every column must have the same type. We expected to find a Bool at
cell B6, but we instead found this Number: 1.

To make the data end up in the format we
want, we’ll use sanitizers, which convert
data from an external source into a
specific Pyret data type.

Built-in Sanitizers:

* string-sanitizer
* Replaces missing values with ""
 Converts non-string data to strings, e.g., 3 to "3"
* num-sanitizer
* Replaces missing values with O
e Converts numeric strings to numbers, e.g., "3" to 3

Sanitizers are just functions, so you can write your own!

sportbook2 =
load-table: name, eligible, height, weight
source:
load-spreadsheet(dd-ssid).sheet-by-name("sportbook", true)
sanitize name using string-sanitizer
sanitize eligible using bool-sanitizer
sanitize height using num-sanitizer
sanitize weight using num-sanitizer

end
name eligible height weight
"Allie" false 64 130
"GIGI" true 68 150
"Elan" true 72 185
Notice that the problematic SR 6 130
Boolean values (0/1) are
"NUNU" true 70 170

now corrected.

name
Allie

ELAN
Lavon
NUNU

Missing Data

NRO
FALSE

TRUE
FALSE
TRUE

asmti

[E
95

70

asmt2
a0
60
63
08

gradebookla =
load-table: name, NRO, asmtl, asmt2
source:
load-spreadsheet(dd-ssid).sheet-by-name("gradebook", true)
end

name NRO asmtl asmt2

some("Allie") some(false) some(85) 90

none none some(75) 60
some("ELAN") some(true) some(95) 63
some("Lavon") some(false) none 88

some("NUNU") some(true) some(70) 0

Option Data Type

none Missing Data
some(“Allie”) Present Data

If one cell in a column is missing, the entire column is
converted to option type.

Working with Option Values

fun string-worker(s :: Option) -> String:
cases(Option) s:
| some(a) => a
| none => "Anonymous"
end
end

fun bool-worker(s :: Option) -> Boolean:
cases(Option) s:
| some(a) => a
| none => false
end
end

fun num-worker(s :: Option) -> Number:
cases(Option) s:
| some(a) => a
| none => 0
end
end

gradebooklb = #Load Fails
load-table: name, NRO, asmtl, asmt2
source:

load-spreadsheet(gb-ssid).sheet-by-name("gradebook"”, true)
sanitize name using string-sanitizer
sanitize NRO using bool-sanitizer
sanitize asmtl using num-sanitizer
sanitize asmt2 using num-sanitizer

end

gradebook2a =
load-table: name, NRO, asmtl, asmt2
source:

end

Combining option sanitizer

load-spreadsheet(dd-ssid).sheet-by-name("gradebook"”, true)
sanitize name using option-sanitizer(string-sanitizer)
sanitize NRO using option-sanitizer(bool-sanitizer)
sanitize asmtl using option-sanitizer(num-sanitizer)
sanitize asmt2 using option-sanitizer(num-sanitizer)

name NRO asmtl asmt2

some("Allie") some(false) some(85) some(90)

none none some(75) some(60)

W|th Other Sanitizers- If the some("ELAN") some(true) some(95) some(63)
type sanitizer succeeds, use

it’s value, otherwise return

none.

some("Lavon") some(false) none some(88)

some("NUNU") some(true) some(70) some(0)

There are Many Publicly Available Data Sets

e There are a staggering number of publicly
available data sets that we can load from a
spreadsheet.

e Take a look at the archives of the Data is
Plural newsletter: data-is-plural.com

https://www.data-is-plural.com

We can use Pyret to explore these
data sets and transform them so
they’re easier for us to use.

The London Fire Brigade responds to hundreds of
requests to rescue animals each year.

Since 2009 they’ve kept a record of these events:

data.london.gov.uk/dataset/animal-rescue-incidents-attended-by-1fb

https://data.london.gov.uk/dataset/animal-rescue-incidents-attended-by-lfb

This data is available as CSV — a plain-text
file where each cell of the spreadsheet is
separated by commas.

To load it into Pyret, we can first upload it
to a Google spreadsheet.

o0 ® <

& docs.google.com/spreadsheets/d/1zC4aSveQpvWH-qOie25fhoKfa

>
=

| m| N @ ;bW M-

M IR IR A A A A I A T I I T T T T T T
=T =T ST -~ = T A -G i T = = (R Y =~ O BT B o i e =Y

Untitled spreadsheet ¥

File Edit View Insert Format Data Tools Add-ons Help

Share % 0
New > c
Open #0

Import

Make a copy

Email -
Download >

Version history >

Rename

Move to trash

Publish to the web

Document details
Spreadsheet settings

= Print ®P

Sheet! ~

00 123+ Defat(ai. ~ 10 ~ B I S A & H

Use the Edit—Option menu item.

@ docs.google.com/spreadsheets/df1zC4aSveQpvWH-gOie25fhokfa

Import file

File
Animal Rescue incidents attended by LFB from Jan 2009.csv

Import location Separator type

Replace spreadsheet ~ Detect automatically ~

Convert text to numbers, dates, and formulas

Cancel

o000 < >

& docs.google.com/spreadsheets/d/1zC4aSveQpvWH-qOie25fhoKfa

e Share with people and groups

No one has been added yet

@ Get link

https://docs.google.com/spreadsheets/d/1zC4aSvcQpvWH-qOie25fhoKfa...

Restricted ~

+~ Restricted

Send feed

Vassar Google Apps for Education

Anyone with the link

e

Copy link

Too many columns!

We could copy-and-paste the names to
have our column names in Pyret, but,

instead, let’s trim columns we don’t care
about first.

UK Pet Rescue
rss-ssid = "1JWfZkiVirEskNwalLuszuJJ8tkjCwZMEgeNyp_jdLawI”

rescue-datal =
load-table: DateTimeOfCall, CalYear, AnimalGroupParent, ward, borough

source:
load-spreadsheet(rss-ssid).sheet-by-name("Animal Rescue LFB", true)

end
ward borough
some(
"Crystal Palace & Upper Norwood"
) some("Croydon")
some("Woodside") some("Croydon")
some("Carshalton Central") some("Sutton")
some("Harefield") some("Hillingdon")
some("Gooshays") some("Havering")

some(
Some ward and borough o ing and Dagenhan”

some("Alibon"))

data is missing.

rescue-data2 =

load-table: DateTimeOfCall, CalYear, AnimalGroupParent, ward, borough

source:
load-spreadsheet(rss-ssid).sheet-by-name("Animal Rescue LFB", true)

sanitize DateTimeOfCall using string-sanitizer
sanitize CalYear using num-sanitizer
sanitize AnimalGroupParent using string-sanitizer
sanitize borough using string-sanitizer
sanitize ward using string-sanitizer

end

ward borough
"Crystal Palace & Upper Norwood" "Croydon™
"Woodside" "Croydon"
Strlng Sanltlzer Converts "Carshalton Central™ "Sutton”
missing values to
. "Harefield" "Hillingdon"
empty string. Thus all
"Gooshays" "Havering"

values are present and
option type not needed. "Atibon’ *Barking and Dagenhan’

CalYear AnimalGroupParent

2009 "Dog"
2009 "Fox™"
2009 "Dog"
2009 "Horse"
2009 "Rabbit"

Num sanitizer converts “2009” string to 2009 number.

fun just-time(date-time :: String) -> String:
str = string-substring(date-time, 11, 13)

if string-contains(str,":") :
string-substring(str,0,1)

else:
str

end

where:
just—time("@lf@l/Zﬂ@Q 03:01") 1s "03"
just-time("06/01/2009 15:23") is "15"

end

rescue-data3 = transform-column(rescue-data2, "DateTimeOfCall", just-time)

The transform-column function is used to clean up or
otherwise alter the data in a single column of a table.

It returns a new table by applying its function argument to
each value of the given column.

DateTimeOfCall

Il3 (1]

IlBIl

m 1@ mn

(1] 12 mn

m 15 mn

CalYear

2009

2009

2009

2009

2009

freq-bar-chart(rescue-data3, "AnimalGroupParent")
freg-bar-chart(rescue-data3, "CalYear")
freq-bar-chart(rescue-data-2020, "borough")

Reality is more complicated than imagination!

e Unlike data sets we create for exposition,
real data sets often have:

e Missing values
e Values of wrong data type

e Same data expressed different ways
7/4/1987 vs. 4/7/1987
July 4, 1987 vs. 4 July 1987 ...

e Differing levels of precision:

— E.g., Tue vs. Tue @ Noon.
— 1987 vs. 4 July 1987

Checking Email Addresses

Checking Email Addresses.

emaill = "thellmangvassar.edu”

email2 = "thellmanvassar.edu”

email3 = "gvassar.edu”

email4 = "thellmangvassar”

- fun emailp(em :: String) -> Boolean:

string-contains(em,"Q")
and
not(string-index-of(em,"@") == 0)
and
(string-index-of(em,".edu") == (string-length(em) - 4))

where:

emailp(emaill) 1is true

emailp(email2) is false

emailp(email3) is false

emailp(email4) is false
end

Checking URLs, Times and Dates

	Slide Number 1
	Reminder
	Where are we?
	Is your data reliable? �(Probably Not)
	Invalid Data
	Wrong Data Type
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Missing Data
	Slide Number 11
	Option Data Type
	Working with Option Values
	Slide Number 14
	Slide Number 15
	There are Many Publicly Available Data Sets
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Reality is more complicated than imagination!
	Checking Email Addresses
	Checking URLs, Times and Dates

