
Tom Ellman
Lecture 10

Problem Solving and Abstraction
(CMPU 101)

Table Troubles

Does every discount in the table appear
in the set of valid discount codes?

Does every discount in the table appear
in the set of valid discount codes?

At the moment, we might write:

Cumbersome!

Every time the set of discount codes changes, we need
to change our function.

But how you check the discount-codes shouldn’t
change. So let’s write a function that need not change
when the data changes.

How can we rewrite this function
so the set of valid discount codes is
specified outside the function?

Make a table with one column to
hold the valid codes?

This would work, but we really
don’t need a table if each row has
only one datum.

Lists

• Lists are a fundamental type of data structure.
• A list is a container type, i.e. a list contains data.
• A datum on a list is called a “member” or an

“element” of the list.
• A list can hold any number of elements.
• A list holds elements in a specific order.
• Normally all elements of a list have the same

data type.

A list is like a column, but without the header.

import lists as L

To work with lists, we import the lists library and we
give it a special name – L – to avoid conflicts
between the names of functions that work with lists
and existing functions.

To use a function from the library, we pre-pend the
function name with “L.”.

Tools for Working with Lists

? -> List
• [list: ...]
• get-column

List -> List
• L.distinct
• L.filter
• L.append

List -> ?
• L.length
• L.member
• L.any
• L.all

Does every discount in the table appear
in the set of valid discount codes?

If the valid discounts change, we need only to
update the list: valid-discounts. The function
code stays the same.

Does every discount in the table appear
in the set of valid discount codes?

Table Column to List
When we’ve been working with tables we’ve been using the data
type Row, but we never saw a Column data type!

Why not? Well, a column consists of an ordered collection of
values, of unbounded length.

A column is a lot like a list!

>>> event-data.get-column("name")
[list: "Josie", "Sam", "Bart", "Ernie", "Alvina", "Zander", "Shweta"]

The get-column function returns a list.

Find the names of people who got a
specific discount type.

Find the names of people who got a
specific discount type.

A recipe is a list of required ingredients.

A dietary restriction is a list of restricted ingredients.

An inventory is a list of ingredients on hand.

All ingredients needed for a (high-carb) meal, possibly with
duplicates.

A shopping list is a list of distinct (L.distinct) ingredients
that are not members (L.member) of the inventory list.

All ingredients needed for a (high-carb) meal, possibly with
duplicates.

A shopping list is a list of distinct (L.distinct) ingredients
that are not members (L.member) of the inventory list.

Check whether a recipe is gluten-free
using L.filter and L.member.

L.filter(<predicate>,<input-list>) returns a new list
containing just the members of the input list for which
the predicate returns true.

In this function we use L.filter to make a list of all
ingredients in the recipe that are on the gluten list. If
the new list is empty (L.length is zero), the recipe is
gluten-free (return true).

Alternate solution using: L.any

L.any(<predicate>,<list>) returns true if the predicate
returns true when applied to at least one member of the
list.

Write a function to check whether a recipe
is gluten-free, using L.any.

L.any(<predicate>,<list>) returns true if the predicate
returns true when applied to at least one member of the
list.

In this function, we use L.any to ensure that there are not
any members of recipe that are also members of gluten.

Alternate solution using: L.all

L.all(<predicate>,<list>) is true if the predicate returns true
for each member of the list.

Write a function to check whether a recipe
is gluten-free, using L.all.

L.all(<predicate>,<list>) is true if the predicate returns true
for each member of the list.

In this function, we use L.all to ensure that each member
of recipe is not a member of gluten.

Write functions to check whether a recipe
is vegan using L.any and with L.all.

Veganize a Meal

pancakes =
[list: "egg", "butter", "flour", "sugar",

"salt", "baking powder", "blueberries"]

vegan-pancakes =
[list: "flax", "margarine", "flour",
"sugar", "salt", "baking powder", "blueberries"]

Veganize a Meal

1. Write a function veganize-ingredient that
takes a non-vegan ingredient and returns
something vegan to replace it.

2. Use veganize-ingredient repeatedly to
replace each non-vegan ingredient on the
recipe list. But how can we do this for a
recipe list of any length?

Veganize a Meal (Step 1)

Write a function veganize-ingredient that
takes a non-vegan ingredient and returns
something vegan to replace it.

Cumbersome! Not easy to update to handle
other non-vegan ingredients.

Each row indicates how a non-vegan ingredient should
be replaced by a vegan ingredient.

Could we use a list, or two lists instead of a table?

Let’s separate the data from the code,
using a table.

Rewrite veganize-ingredient1 to use the
replacements table.

Here we find the replacement by locating a row whose
ingredient column matches the ingredient parameter.

Here we find the replacement by locating a row whose
ingredient column matches the ingredient parameter.

Veganize a Meal (Step 2)

Use veganize-ingredient repeatedly to
replace each non-vegan ingredient on the
recipe list. But how can we do this for a
recipe list of any length?

L.Map takes a function and a list as parameters. It applies
the function to each list element and replaces the element
with the function result.

Use L.map and veganize-ingredient2 repeatedly to
replace each non-vegan ingredient on the recipe list.

L.Map takes a function and a list as parameters. It applies
the function to each list element and replaces the element
with the function result.

• Marc Smith, Vassar College
• Jason Waterman, Vassar College
• Jonathan Gordon, Vassar College
• Kathi Fisler, Brown University
• Doug Woos, Brown University

Acknowledgments

This class incorporates material from:

	Slide Number 1
	Table Troubles
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Lists
	Slide Number 8
	Slide Number 9
	Tools for Working with Lists
	Slide Number 11
	Slide Number 12
	Table Column to List
	Find the names of people who got a specific discount type.
	Find the names of people who got a specific discount type.
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Check whether a recipe is gluten-free using L.filter and L.member.
	Slide Number 21
	Alternate solution using: L.any
	Write a function to check whether a recipe is gluten-free, using L.any.
	Slide Number 24
	Alternate solution using: L.all
	Write a function to check whether a recipe is gluten-free, using L.all.
	Slide Number 27
	Write functions to check whether a recipe is vegan using L.any and with L.all.
	Slide Number 29
	Slide Number 30
	Veganize a Meal
	Veganize a Meal
	Veganize a Meal (Step 1)
	Slide Number 34
	Let’s separate the data from the code, using a table.
	Rewrite veganize-ingredient1 to use the replacements table.
	Slide Number 37
	Slide Number 38
	Veganize a Meal (Step 2)
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Acknowledgments

