
Tom Ellman
Lecture 12

Problem Solving and Abstraction
(CMPU 101)

The Secret Nature of Lists
Writing our input as [list: 3, 1, 4] hides the truth.

It’s just a shorthand for the real structure of a list.

In its secret heart, Pyret knows there are only two ways of
making a list:

The value: empty.

Using the link function to add an element to the beginning.

When we write an expression like:

[list: 3, 1, 4]

Pyret translates it into this:

link(3,
link(1,
link(4, empty)))

Something that often trips people up when writing
functions like this is the difference between:

link(x, y)
and
[list: x, y]

What happens if we change the former to the latter?

The second argument of link must be a (possibly empty) list.

link(<anything>, <list>)

Thinking Recursively

Recursion is appropriate, any time a problem
can be split into parts, one of which is a
smaller version of the original problem.

sum(link(3,
link(1,
link(4, empty)))

3 + sum(link(1,
link(4, empty)))

fun my-sum(lst :: List<Number>) -> Number:
cases (List) lst:
| empty => 0
| link(first, rest) => first + my-sum(rest)

end
where:
my-sum([list: 3, 1, 4]) is 3 + my-sum([list: 1, 4])
my-sum([list: 1, 4]) is 1 + my-sum([list: 4])
my-sum([list: 4]) is 4 + my-sum([list:])
my-sum([list:]) is 0
end

When we call this function, it evaluates as:

my-sum(link(3, link(1, link(4, empty))))

3 + my-sum(link(1, link(4, empty)))

3 + 1 + my-sum(link(4, empty))

3 + 1 + 4 + my-sum(empty)

3 + 1 + 4 + 0

Recursion

• All recursive functions have these two parts:
• Base case(s):

– What’s the simplest case to solve?

• Recursive case(s):
– What’s the relationship between the current problem

and the answer to a slightly smaller problem?
– You should be calling the function you’re defining

here; this is referred to as a recursive call.

fun rec-fun(lst :: List<Number>) -> Number:
cases (List) lst:
| empty =>

Expression giving value of rec-fun(empty)

| link(first, rest) =>

Expression giving value of rec-fun(link(first,rest))
in terms of first and rec-fun(rest).

end
end

Base Case

Recursive
Case

all-below

• Given:
– a list (lst) of numbers
– a number (bnd)

• Return:
– true if all numbers on lst are below bnd
– false otherwise.

Examples

Notice that all-below(empty,0) is true. Why?

Notice that all-below is true if lst is empty, regardless of bnd.

In this case we cay that all-below is vacuously true!

any-above

• Given:
– a list (lst) of numbers
– a number (bnd)

• Return:
– true if at least one number on lst is above bnd.
– false otherwise.

Examples

Notice that any-above(empty, 0) is false. Why?

Notice that any-above is false if lst is empty, regardless of bnd.

In this case we say that any-above is vacuously false.

increasing

• Given a list of numbers:

• Return:
– true if each number with a predecessor is

larger than the its predecessor.

– false if at least one number has a predecessor
and is not larger than its predecessor.

Examples

Why must the first two tests come out true?

In this definition, we refrain from using a
cases statement and rely on if-else instead.

This works, but it’s cumbersome and hard to
read.

In this definition, we refrain from using a
cases statement and rely on logical operators
or & and.

This works, but it’s also cumbersome and
hard to read.

my-all

• Given a predicate (pred) and a list (lst).

• Return:
– true if pred returns true for each element

of lst.

– false if pred returns false for at least one
element of lst.

Examples

How can my-all be true on the empty list, if
the lambda expression always returns false?

my-any

• Given a predicate (pred) and a list (lst).

• Return:
– true if pred returns true for at least one

element of lst.

– false if pred returns false for each element
of lst.

Examples

How can my-all be false on the empty list, if
the lambda expression always returns true?

	Slide Number 1
	The Secret Nature of Lists
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Thinking Recursively
	Slide Number 7
	Slide Number 8
	Recursion
	Slide Number 10
	all-below
	Examples
	Slide Number 13
	any-above
	Examples
	Slide Number 16
	increasing
	Examples
	Slide Number 19
	Slide Number 20
	Slide Number 21
	my-all
	Examples
	Slide Number 24
	my-any
	Examples
	Slide Number 27

