
Tom Ellman
Lecture 13

Problem Solving and Abstraction
(CMPU 101)

(First)/Rest Recursion Template

fun my-fun(lst :: List<ElementType>) -> ResultType:
cases (List) lst:
| empty => <Value of my-fun(empty)>
| link(first, rest)

=>
first <Operation> my-fun(rest)

or
<Function>(first, my-fun(rest))

or
<Expression using first and my-fun(rest)>

end

Writing my-sum using
(First)/Rest Recursion Template

<Value of my-fun(empty)> replaced by 0

<Operation> replaced by +

fun my-sum(lst :: List<Number>) -> Number:
cases (List) lst:
| empty => 0
| link(first, rest) => first + my-sum(rest)

end

double-all

• Given:
A list (lst) of numbers.

• Return:
A new list obtained by doubling each element of lst.

Tests for the base case (lst is empty) and the
recursive case (lst is not empty).

Writing double-all1 using
(First)/Rest Recursion Template
<Value of my-fun(empty)> replaced by empty

<Expression> replaced by link(2 * first, double-all(rest))

fun double-all1(lst :: List<Number>) -> List<Number>:
cases (List) lst:
| empty => empty
| link(first,rest) => link(2 * first, double-all1(rest))

end
end

We could have implemented
double-all using L.map

Here we use L.map with a lambda expression that
takes a number n as parameter and returns 2 * n.

Could we have written our own
version of map?

• Given:
– A list (lst) of some type1.
– A function (fn) from type1 to type2.

• Return a new list that results from
applying fn to each element of lst.

collect-above

• Given:
A list (lst) of numbers.
A number (bnd).

• Return:
A list of all members of lst that are greater than bnd.

filter-above

• Given:
A list (lst) of numbers.
A number (bnd).

• Return:
A list of all members of lst that are not
greater than bnd.

The definition of filter-above differs from collect
above by interchanging the if and else branches.

my-collect

• Generalize collect-above.

• Don’t check each element with a
numeric bound.

• Instead check each element with a
predicate.

Aside from changing the
function name and parameters,
we need only to replace a
comparison of numbers with
the application of a predicate.

my-filter

• Generalize filter-above.

• Don’t check each element with a
numeric bound.

• Instead check each element with a
predicate.

Try it yourself!

sum-of-squares

• Given a list (lst) of numbers.

• Return the sum of the squares of each
element of lst.

my-fold(fn,b,lst)

• A generalization of every recursive function
that we have written so far.

• Given:
– A list (lst)
– A value (b) for the base case.
– A function (fn) that combines:

first and my-fold(fn,b,rest)
as

fn(first,my-fold(fn,b,rest)

Visualizing my-fold(fn,b,lst)

link(1,
link(2,
link(3, empty)))

fn(1,
fn(2,
fn(3, b)))

Notice that fn replaces link and b replaces empty.

Unfortunately the fold function of Pyret reverses
the order of the parameters to fn, so this picture
does not apply to Pyret’s fold.

Implementing my-sum using
my-fold

link(1,
link(2,
link(3, empty)))

+(1,
+(2,
+(3, 0)))

Implementing my-sum using
my-fold

Unfortunately, we cannot use + as a parameter
to my-fold, so we must write a lambda
expression equivalent to the + operator.

Implementing sum of squares
using my -fold

Implementation of my-fold

	Slide Number 1
	(First)/Rest Recursion Template
	Writing my-sum using (First)/Rest Recursion Template
	double-all
	Slide Number 5
	Slide Number 6
	Writing double-all1 using (First)/Rest Recursion Template
	We could have implemented double-all using L.map
	Could we have written our own version of map?
	Slide Number 10
	Slide Number 11
	collect-above
	Slide Number 13
	Slide Number 14
	filter-above
	Slide Number 16
	my-collect
	Slide Number 18
	my-filter
	sum-of-squares
	Slide Number 21
	Slide Number 22
	Slide Number 23
	my-fold(fn,b,lst)
	Visualizing my-fold(fn,b,lst)
	Implementing my-sum using �my-fold
	Implementing my-sum using �my-fold
	Implementing sum of squares using my -fold
	Implementation of my-fold

