
Tom Ellman
Lecture 14

Problem Solving and Abstraction
(CMPU 101)

Data Types of Our Own

• PyRet provides several types of data: numbers,
strings, images, booleans, tables, and lists.

• These types are broadly useful in many
applications.

• But sometimes we need data types of our own.

In Bizzaro World everything is
opposite to our world.

• Bizzaro Vassar (BV)needs software to conduct surveillance
of Bizarro Vassar students’ (BVS) electronic messages.

• BV promises to look only at meta-data and not the
contents of BVS’ messages. (Ha!)

• The meta-data includes:
– Sender
– Recipient
– Day of the week
– Time (hour and minute)

You may want to read this article, which has been
censored in Bizarro World.

John Bohannon, "Your call and text records are far
more revealing than you think", Science, 2016

https://science.org/content/article/your-call-and-text-records-are-far-more-revealing-you-think

We could use a table.

sender :: String recipient :: String date::?
DD

time :: ?

"401-555-1234" "802-555-1234" ? ?

• How should we represent time and date?
• “12:00” and “2022-10-24”
• Or use two columns (hour, minute) for time.
• And three columns for date (year, month,day).

• Using two columns we can access time components
independently.

• Using one column all the time data is in one place.

Let’s define a new data type that
has two or more components.

data Time:
| time(hours :: Number, mins :: Number)

end

Name of the Data Type

Constructor Function that
Builds Data of this Type

Components of the Data

Data types with multiple components are sometimes called tuples or records.

After defining the data types:

data Time:
| time(hours :: Number, mins :: Number)

End

data Date:
| date(year :: Number, month :: Number, day :: Number)

end

We can call time and date to build Time and Date values.
››› noon = time(12, 0)
››› today = date(2022,10,24)

We can use dot notation to access the components:
››› noon.hours
12
››› date.month
10

Now our table could be:

sender :: String recipient :: String day :: Date
DD

time :: Time

"401-555-1234" "802-555-1234" date(2022,10,24) time(12, 0)

Implement: message-before

• Given:
– A row representing a message.

– A deadline, i.e., date and time.

– Return true if the time of the message is earlier
than the deadline. Otherwise return false.

Appointment Calendar

• A calendar is a collection of appointments.
• An appointment has four parts:

– Date
– Start Time
– Duration
– Description

One Possible Design

data Date:
| date(year :: Number, month :: Number, day :: Number)

end

data Event:
| event(date :: Date, time :: Time, duration :: Number, descr :: String)

end

calendar :: List<Event> = …

Let’s also put tasks on the calendar.

A task has three parts:
– Task
– Deadline
– Urgency

An Event is an appt or a todo

data Date:
| date(year :: Number, month :: Number, day :: Number)

end

data Event:
| appt(date :: Date, time :: Time, duration :: Number, descr :: String)
| todo(deadline :: Date, task :: String, urgency :: String)

end

calendar :: List<Event> = …

Now a calendar can contain both
types of events.

calendar :: List<Event> =
[list:
appt(date(2021, 10, 25), time(13, 30), 75, "CMPU 101"),
todo(date(2021, 10, 27), "Use avocado", "high")

]

search-calendar

• Given:
– cal :: List<Event>
– term :: String

• Return a list of all the events on cal for
which event-matches(event,term) is true.

event-matches

• Given
– event :: Event
– term :: String

• Return true if term appears in either the
descr component (of appt) or the task
component (of todo). Otherwise return
false.

Notice that we use a cases expression to separately handle
appointments (appt) and tasks (todo).

Search a calendar cal (list of events) and return a list of all
events that match a term string.

Defining Recursive Data

data MyList:
| my-empty
| my-link(first :: Any, rest :: MyList)

end

my-list = my-link(1, my-link(2, my-link(3, my-empty)))

#[my-list: 1, 2, 3]

Here we see how we could have defined
the list data type ourselves.

Template for First-Rest Recursion
Over MyList data.

fun my-list-fun(ml :: MyList) -> … ? … :
doc: "Template for a function that takes a MyList"
cases (MyList) ml:
| my-empty => ...?...
| my-link(f, r) => ... f ... my-list-fun(r) ...

end
where:

my-list-fun(...) is ...
end

Here we use a cases expression with pattern
matching to implement a function on my-list.

Design Data Types for a Course Catalog: Courses,
Sections Students Instructors and Prerequisites

	Slide Number 1
	Data Types of Our Own
	In Bizzaro World everything is opposite to our world.
	Slide Number 4
	We could use a table.
	Let’s define a new data type that has two or more components.
	Slide Number 7
	Now our table could be:
	Implement: message-before
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Appointment Calendar
	One Possible Design
	Let’s also put tasks on the calendar.
	An Event is an appt or a todo
	Now a calendar can contain both types of events.
	search-calendar
	event-matches
	Slide Number 21
	Slide Number 22
	Defining Recursive Data
	Template for First-Rest Recursion Over MyList data.
	Slide Number 25
	Design Data Types for a Course Catalog: Courses, Sections Students Instructors and Prerequisites

