
Tom Ellman
Lecture 15

Problem Solving and Abstraction
(CMPU 101)

Defining Recursive Data
data MyList:
| my-empty
| my-link(first :: Any, rest :: MyList)

end

my-list = my-link(1,
my-link(2,

my-link(3, my-empty)))

#[my-list: 1, 2, 3]

Here we see how we could have defined
the list data type ourselves.

Self
Reference

Here we use a cases expression with
pattern matching to implement a
function on my-list.

Template for List-Processing Functions

#|
fun my-list-fun(ml :: MyList) -> <data-type>
doc: "Template for a function that takes a MyList"
cases (MyList) ml:
| my-empty => <base-value>
| my-link(f, r) => <expression(f, my-list-fun(r))>

end
where:

my-list-fun(...) is ... <test-value>
end
|#

Data Definitions & Function Templates

• Every data definition has a corresponding template.

• The recursive structure of the template matches the
recursive structure of the data.

• We will see this correspondence later today.

Rumor Mill

• Let’s track gossip in a rumor mill.
• A gossip event is when a person passes a rumor to one

or more other people.
• Collect and store data about each gossip event.

– Person sending the rumor.
– People receiving the rumor.
– Not the rumor itself. (That would be illegal, ha ha!)

• Acknowledgment: This research is funded by the NSA.

Participants in the Rumor Mill

Pansy Cho Romilda

VincentGinnyDraco

“Harry Got a Hippogryph Tattoo”

Pansy

Cho

Draco

Vincent

Romilda

Ginny

Rumor Mill Data Type
Simplifying Assumption: Each person
sends a rumor to at most two other
people.

data RumorMill:
| no-one
| rMill(name :: String,

next1 :: RumorMill,
next2 :: RumorMill)

end

rMill("Pansy",
rMill("Cho",

no-one,
no-one)

rMill("Draco",
rMill("Romilda",

no-one,
rMill("Ginny",

no-one,
no-one)),

rMill("Vincent",
no-one,
no-one)))

Each red arrow represents a transmission of the rumor from one
person to another.

Tree Structure

Root

Root

Root

Building a Tree Buttom-Up
(Define Receiver before Sender. Why?)

GINNY-MILL =
rMill(“Ginny", no-one, no-one)

ROMILDA-MILL =
rMill("Romilda", no-one, GINNY-MILL)

VINCENT-MILL =
rMill("Vincent", no-one, no-one)

DRACO-MILL =
rMill("Draco", ROMILDA-MILL, VINCENT-MILL)

CHO-MILL =
rMill("Cho", no-one, no-one)

PANSY-MILL =
rMill("Pansy", CHO-MILL, DRACO-MILL)

Root

Tree Terminology

• Each element of a tree is called a “node”.
• Each arrow goes from a “parent” to a “child”.
• The “root” is the node with no parent.
• A node with no children is a “leaf”.
• A tree in which each node has at most two

children is called a “binary tree”.

Recursive Data Structure
Trees and Subtrees

data RumorMill:
| no-one
| rMill(name :: String,

next1 :: RumorMill,
next2 :: RumorMill)

end

• Each child of a node represents a sub-tree.
• Each node is the root of a tree or sub-tree.
• Thus a leaf is a tree.

Tree

Sub-Tree

Sub-Tree

Programming with Rumors

“I heard we need to use recursion.”

“I heard we should use map.”

“I heard we should use filter.”

Haha! That’s not what I meant.

Programming with RumorMill
data RumorMill:
| no-one
| rMill(name :: String,

next1 :: RumorMill,
next2 :: RumorMill)

end
#|
fun rumor-mill-template(rm :: RumorMill) -> <data-type>:

doc: "Template for a function with a RumorMill as input"
cases (RumorMill) rm:
| no-one => <base-value>
| rMill(n, g1, g2) => <expression(n,

rumor-mill-template(g1),
rumor-mill-template(g2)>

end
end
|#

Programming Example 1

Design the function is-informed that takes a
person’s name and a rumor mill and determines
whether the person is part of the rumor mill.

is-informed

Programming Example 2

Design the function gossip-length that takes a rumor
mill and determines the length of the longest
sequence of people who are transmitting the rumor.

gossip-length

Some gossips talk to lots of other gossips.
We must generalize our design.

A Gossip is the root node of a tree. Each
node in the tree may have any number:
0, 1, 2, … n, … children.

data Gossip:
| gossip(name :: String, next :: List<Gossip>)

end

Each Gossip has a list of next Gossip(s).

#|
fun gossip-template(g :: Gossip) -> <Any>

... gossip.name

... log-template(g.next)
End
|#

#|
fun log-template(l :: List<Gossip>) -> <Any>

cases (List) l:
| empty => ...
| link(f, r) =>

... gossip-template(f)

... log-template(r)
end

end
|#

One template takes a single
Gossip as parameter.

Another template takes a list
of Gossip(s) as parameter.

Programming Example 3

Design count-gossips which takes a Gossip and
returns the number of people informed by the
gossip (including the starting person).

count-gossip

Sorting Lists of Numbers

[list: 0, 2, 3, 5, 7, 8, 9][list: 5, 2, 7, 3, 8, 0, 9]

[list: 0, 2, 3, 5, 7, 8, 9][list: 5, 2, 7, 3, 8, 0, 9]

Binary Search Tree
(Binary Sort Tree)

Structure of a Binary Sort Tree

Root

a

Numbers
Less than a

Numbers
Greater than a

Left
Subtree

Right
Subtree

n

left right

BSTNode

Binary Sort Tree

• Store the numbers in a tree structure.
• The root of the tree holds a number n.
• The left subtree holds numbers less than n.
• The right subtree holds numbers greater than n.
• Each subtree stores numbers in the same way as

the whole tree.

Example: [list: 0, 2, 3, 5, 7, 8, 9]

5

2 8

0 3 7 9

Inserting the number N into BST

• If BST is empty, then return a new tree containing
only the number N.

• If N < R then insert N into the left subtree .

• If N > R then insert N into the right subtree.

• If the root R of BST is N, then return BST.

bsTreeSort

[list: 0, 2, 3, 5, 7, 8, 9][list: 5, 2, 7, 3, 8, 0, 9]

listToBST bstToList

Acknowledgments

This lecture incorporates material from: J. K. Rowling, Harry
Potter and the Half-Blood Prince, Marc Smith, Vassar
College and Jonathan Gordon, Vassar College

	Slide Number 1
	Defining Recursive Data
	Slide Number 3
	Template for List-Processing Functions
	Data Definitions & Function Templates
	Rumor Mill
	Participants in the Rumor Mill
	“Harry Got a Hippogryph Tattoo”
	Rumor Mill Data Type
	Slide Number 10
	Slide Number 11
	Tree Structure
	Building a Tree Buttom-Up�(Define Receiver before Sender. Why?)
	Slide Number 14
	Tree Terminology
	Recursive Data Structure�Trees and Subtrees
	Programming with Rumors
	Programming with RumorMill
	Programming Example 1
	is-informed
	Programming Example 2
	gossip-length
	Some gossips talk to lots of other gossips. We must generalize our design.
	Slide Number 24
	A Gossip is the root node of a tree. Each node in the tree may have any number: 0, 1, 2, … n, … children.
	Slide Number 26
	Programming Example 3
	count-gossip
	Sorting Lists of Numbers
	Structure of a Binary Sort Tree
	Slide Number 31
	Binary Sort Tree
	Example: [list: 0, 2, 3, 5, 7, 8, 9]
	Inserting the number N into BST
	Slide Number 35
	bsTreeSort
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Acknowledgments

