A Mutual Exclusion Algorithm for Ad Hoc Mobile Networks

Jennifer E. Walter * Jennifer L. Welch ** Nitin H. Vaidya ***

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112
E-mail: jennyw@cs.tamu.edu, welch@cs.tamu.edu, vaidya@cs.tamu.edu

A fault-tolerant distributed mutual exclusion algorithm that adjusts to node mobility is presented, along with proof of correctness and simulation results. The algorithm requires nodes to communicate with only their current neighbors, making it well-suited to the ad hoc environment. Experimental results indicate that adaptation to mobility can improve performance over that of similar non-adaptive algorithms when nodes are mobile.

Keywords: Mobile computing, ad hoc network, mutual exclusion, distributed algorithm.

1. Introduction

A mobile ad hoc network is a network wherein a pair of nodes communicates by sending messages either over a direct wireless link, or over a sequence of wireless links including one or more intermediate nodes. Direct communication is possible only between pairs of nodes that lie within one another’s transmission radius. Wireless link “failures” occur when previously communicating nodes move such that they are no longer within transmission range of each other. Likewise, wireless link “formation” occurs when nodes that were too far separated to communicate move such that they are within transmission range of each other. Characteristics that distinguish ad hoc networks from existing distributed networks include frequent and unpredictable topology changes and highly variable message delays. These characteristics make ad hoc networks challenging environments in which to implement distributed algorithms.

Past work on modifying existing distributed algorithms for ad hoc networks includes numerous routing protocols (e.g., [8,9,11,13,16,18,19,22-24]), wireless channel allocation algorithms (e.g., [14]), and protocols for broadcasting and multicasting (e.g., [8,12,21,26]).

* Supported by GE Faculty of the Future and Dept. of Education GAANN fellowships. Phone: (979) 845-3937. Fax: (979) 847-8578. Contact author.

** Supported in part by NSF FYI grant CCR-9290098 and NSF grant CCR-9872235. Phone: (979) 845-5076. Fax: (979) 847-8578.

*** Supported in part by Texas Advanced Technology Program grant 010135-248 and NSF grants CDA-9529442 and CCR-9972235. Phone: (979) 845-0512. Fax: (979) 847-8578.

Dynamic networks are fixed wired networks that share some characteristics of ad hoc networks, since failure and repair of nodes and links is unpredictable in both cases. Research on dynamic networks has focused on total ordering [17], end-to-end communication, and routing (e.g., [1,2]).

Existing distributed algorithms will run correctly on top of ad hoc routing protocols, since these protocols are designed to hide the dynamic nature of the network topology from higher layers in the protocol stack (see Figure 1(a)). Routing algorithms on ad hoc networks provide the ability to send messages from any node to any other node. However, our contention is that efficiency can be gained by developing a core set of distributed algorithms, or primitives, that are aware of the underlying mobility in the network, as shown in Figure 1(b). In this paper, we present a mobility aware distributed mutual exclusion algorithm to illustrate the layering approach in Figure 1(b).

The mutual exclusion problem involves a group of processes, each of which intermittently requires access to a resource or a piece of code called the critical section (CS). At most one process may be in the CS at any given time. Providing shared access to resources through mutual exclusion is a fundamental problem in computer science, and is worth considering for the ad hoc environment, where stripped-down mobile nodes may need to share resources.

Distributed mutual exclusion algorithms that rely on the maintenance of a logical structure to provide order and efficiency (e.g., [20,25]) may be inefficient when run
in a mobile environment, where the topology can potentially change with every node movement. Badrinath et al. [3] solve this problem on cellular mobile networks, where the bulk of the computation can be run on wired portions of the network. We present a mutual exclusion algorithm that induces a logical directed acyclic graph (DAG) on the network, dynamically modifying the logical structure to adapt to the changing physical topology in the ad hoc environment. We then present simulation results comparing the performance of this algorithm to a static distributed mutual exclusion algorithm running on top of an ad hoc routing protocol. Simulation results indicate that our algorithm has better average waiting time per CS entry and message complexity per CS entry no greater than the cost incurred by a static mutual exclusion algorithm running on top of an ad hoc routing algorithm when nodes are mobile.

The next section discusses related work. In Section 3, we describe our system assumptions and define the problem in more detail. Section 4 presents our mutual exclusion algorithm. We present a proof of correctness and discuss the simulation results in Sections 5 and 6, respectively. Section 7 presents our conclusions.

2. Related Work

Token based mutual exclusion algorithms provide access to the CS through the maintenance of a single token that cannot simultaneously be present at more than one node in the system. Requests for CS entry are typically directed to whichever node is the current token holder.

Raymond [25] introduced a token based mutual exclusion algorithm in which requests are sent, over a static spanning tree of the network, toward the token holder; this algorithm is resilient to non-adjacent node crashes and recoveries, but is not resilient to link failures. Chang et al. [7] extend Raymond’s algorithm by imposing a logical direction on a sufficient number of links to induce a token oriented DAG in which, for every node i, there exists a directed path originating at i and terminating at the token holder. Allowing request messages to be sent over all links of the DAG provides resilience to link and site failures. However, this algorithm does not consider link recovery, an essential feature in a system of mobile nodes.

Dhamdhere and Kulkarni [10] show that the algorithm of [7] can suffer from deadlock and solve this problem by assigning a dynamically changing sequence number to each node, forming a total ordering of nodes in the system. The token holder always has the highest sequence number, and, by defining links to point from a node with lower to higher sequence number, a token oriented DAG is maintained. Due to link failures, a node i that wants to send a request for the token may find itself with no outgoing links to the token holder. In this situation, i floods the network with messages to build a temporary spanning tree. Once the token holder becomes part of such a spanning tree, the token is passed directly to node i along the tree, bypassing other requests. Since priority is given to nodes that lose a path to the token holder, it seems likely that other requesting nodes could be starved as long as link failures continue. Also, flooding in response to link failures and storing messages for delivery after link recovery make this algorithm ill-suited to the highly dynamic ad hoc environment.

Our token based algorithm combines ideas from several papers. The partial reversal technique from [13], used to maintain a destination oriented DAG in a packet radio network when the destination is static, is used in our algorithm to maintain a token oriented DAG with a dynamic destination. Like the algorithms of [25], [7], and [10], each node in our algorithm maintains a request queue containing the identifiers of neighboring nodes from which it has received requests for the token. Like [10], our algorithm totally orders nodes. The lowest node is always the current token holder, making it a “sink” toward which all requests are sent. Our algorithm also includes some new features. Each node dynamically chooses its lowest neighbor as its preferred link to the token holder. Nodes sense link changes to immediate neighbors and reroute requests based on the
status of the previous preferred link to the token holder and the current contents of the local request queue. All requests reaching the token holder are treated symmetrically, so that requests are continually serviced while the DAG is being re-oriented and blocked requests are being rerouted.

3. Definitions

The system contains a set of n independent mobile nodes, communicating by message passing over a wireless network. Each mobile node runs an application process and a mutual exclusion process that communicate with each other to ensure that the node cycles between its REMAINDER section (not interested in the CS), its WAITING section (waiting for access to the CS), and its CRITICAL section. Assumptions on the mobile nodes and network are:

1. the nodes have unique node identifiers,
2. node failures do not occur,
3. communication links are bidirectional and FIFO,
4. a link-level protocol ensures that each node is aware of the set of nodes with which it can currently directly communicate by providing indications of link formations and failures,
5. incipient link failures are detectable, providing reliable communication on a per-hop basis, and
6. partitions of the network do not occur.

The rest of this section contains our formal definitions. We explicitly model only the mutual exclusion process at each node. Constraints on the behavior of the application processes and the network appear as conditions on executions. The system architecture is shown in Figure 2.

We assume the node identifiers are $0, 1, \ldots, n - 1$. Each node has a (mutual exclusion) process, modeled as a state machine, with the usual set of states, some of which are initial states, and a transition function. Each state contains a local variable that holds the node identifier and a local variable that holds the current neighbors of the node. The transition function is described in more detail shortly.

\(^{1}\) See Section 7 for a discussion of relaxing assumption 6.

![Figure 2. System architecture.](image-url)
RequestCS$_i$, EnterCS$_i$, and ReleaseCS$_i$ are called application events, while Send$_i$, Recv$_i$, LinkUp$_i$, and LinkDown$_i$ are called network events.

An execution is a sequence of the form C_0, in_1, out_1, C_1, in_2, out_2, C_2, ..., where the C_k's are configurations, the in_k's are input events, and the out_k's are sets of output events. An execution must end in a configuration if it is finite. A positive real number is associated with each in_k, representing the time at which that event occurs. An execution must satisfy a number of additional conditions, which we now list. The first set of conditions are basic "syntactic" ones.

- C_0 is an initial configuration.
- If in_k occurs at node i, then out_k and i's state in C_k are correct according to i's transition function operating on in_k and i's state in C_{k-1}.
- The times assigned to the steps must be nondecreasing. If the execution is infinite, then the times must increase without bound. At most one step by each process can occur at a given time.

The next set of conditions require the application process to interact properly with the mutual exclusion process and to give up the CS in finite time.

- If in_k is RequestCS$_i$, then the previous application event at node i (if any) is ReleaseCS$_i$.
- If in_k is ReleaseCS$_i$, then the previous application event at node i must be EnterCS$_i$.
- If out_k includes EnterCS$_i$, then there is a following ReleaseCS$_i$.

The remaining conditions constrain the behavior of the network to match the informal description given above. First, we consider the mobility notification.

- LinkUp$_i(l)$ occurs at time t if and only if LinkUp$_j(l)$ occurs at time t, where l joins i and j. Furthermore, LinkUp$_i(l)$ only occurs if j is not a neighbor of i (according to i's neighbor variable). The analogous condition holds for LinkDown.
- A LinkDown never disconnects the graph.

Finally, we consider message delivery. There must exist a one-to-one and onto correspondence between the occurrences of Send$_j(i,m)$ and Recv$_i(j,m)$, for all i, j and m. This requirement implies that every message sent is received and the network does not duplicate or corrupt messages nor deliver spurious messages. Furthermore, the correspondence must satisfy the following:

- If Send$_i(j,m)$ occurs at some time t, then the corresponding Recv$_j(i,m)$ occurs at some later time t', and the link connecting i and j is continuously up between t and t'. This implies that a LinkDown event for link l cannot occur if any messages are in transit on l.

Now we can state the problem formally. In every execution, the following must hold:

- If out_k includes EnterCS$_i$, then the previous application event at node i must be RequestCS$_i$. I.e., CS access is only given to requesting nodes.
- Mutual Exclusion: If out_k includes EnterCS$_i$, then any previous EnterCS$_j$ event must be followed by a ReleaseCS$_j$ prior to out_k.
- No Starvation: If there are only a finite number of LinkUp$_i$ and LinkDown$_i$ events, then if in_k is RequestCS$_i$, then there is a following EnterCS$_i$.

For the last condition, the hypothesis that link changes cease is needed because an adversarial pattern of link changes can cause starvation.

4. Reverse Link (RL) Mutual Exclusion Algorithm

In this section we first present the data structures maintained at each node in the system, followed by an overview of the algorithm, the algorithm pseudocode, and examples of algorithm operation. Throughout this section, data structures are described for node i, $0 \leq i \leq n - 1$. Subscripts on data structures to indicate the node are only included when needed.

4.1. Data Structures

- status: Indicates whether node is in the WAITING, CRITICAL, or REMAINDER section. Initially, status = REMAINDER.
- N: The set of all nodes in direct wireless contact with node i. Initially, N contains all of node i's neighbors.
- myHeight: A three-tuple $(h1,h2,h3)$ representing the height of node i. Links are considered to be directed from nodes with higher height toward nodes with lower height, based on lexicographic ordering. E.g.,
if myHeight\(_1\) = (2, 3, 1) and myHeight\(_2\) = (2, 2, 2), then myHeight\(_1\) > myHeight\(_2\) and the link between these nodes would be directed from node 1 to node 2. Initially at node 0, myHeight\(_0\) = (0, 0, 0) and, for all \(i \neq 0\), myHeight\(_i\) is initialized so that the directed links form a DAG in which every node has a directed path to node 0.

- **height\(_j\)**: An array of tuples representing node \(i\)'s view of myHeight\(_j\) for all \(j \in N_i\). Initially, height\(_j\) = myHeight\(_j\), for all \(j \in N_i\). In node \(i\)'s viewpoint, if \(j \in N\), then the link between \(i\) and \(j\) is incoming to node \(i\) if height\(_j\) > myHeight, and outgoing from node \(i\) if height\(_j\) < myHeight.

- **token\(_i\)**: Flag set to true if node holds token and set to false otherwise. Initially, token\(_i\) = true if \(i = 0\), and token\(_i\) = false otherwise.

- **next**: When node \(i\) holds the token, next = \(i\), otherwise next is the node on an outgoing link. Initially, next = 0 if \(i = 0\), and next is an outgoing neighbor otherwise.

- **Q**: Queue containing identifiers of requesting neighbors. Operations on Q include Enqueue(), which enqueues an item only if it is not already on Q, Dequeue() with the usual FIFO semantics, and Delete(), which removes a specified item from Q, regardless of its location. Initially, Q = \(\emptyset\).

- **received\(_i\)[j]**: Boolean array indicating whether
LinkInfo message has been received from node \(j\), to which a Token message was recently sent. Any height information received at node \(i\) from a node \(j\) for which received\(_i\)[j] is false will not be recorded in height\(_j\). Initially, received\(_i\)[j] = true for all \(j \in N_i\).

- **forming\(_i\)[j]**: Boolean array set to true when link to node \(j\) has been detected as forming and reset to false when first LinkInfo message arrives from node \(j\). Initially, forming\(_i\)[j] = false for all \(j \in N_i\).

- **formHeight\(_i\)[j]**: An array of tuples storing value of myHeight when new link to \(j\) first detected. Initially, formHeight\(_i\)[j] = myHeight\(_i\) for all \(j \in N_i\).

4.2. Overview of the RL Algorithm

The mutual exclusion algorithm is event-driven. An event at a node \(i\) consists of receiving a message from another node \(j \neq i\), or an indication of link failure or formation from the link layer, or an input from the application on node \(i\) to request or release the CS. Each message sent includes the current value of myHeight at the sender. Modules are assumed to be executed atomically.

The pseudocode triggered by input events from the application process is shown in Figure 3.

![Figure 3. Pseudocode triggered by input events from application process.](image)

Requesting and releasing the CS: When node \(i\) requests access to the CS, it enqueues its own identifier on \(Q\) and sets status to WAITING. If node \(i\) does not currently hold the token and \(i\) has a single element on its queue, it calls ForwardRequest() to send a Request message. If node \(i\) does hold the token, \(i\) can set status to CRITICAL and enter the CS, since it will be at the head of \(Q\). When node \(i\) releases the CS, it calls GiveTokenToNext() to send a Token message if \(Q\) is non-empty, and sets status to REMAINDER.

The pseudocode triggered by network input events is shown in Figures 4 and 5.

Request messages: When a Request message sent by a neighboring node \(j\) is received at node \(i\), \(i\) ignores the Request if received\(_i\)[j] is false. Otherwise, \(i\) changes height\(_j\), and enqueues \(j\) on \(Q\) if the link between \(i\) and \(j\) is incoming at \(i\). If \(Q\) is non-empty, and status = REMAINDER, \(i\) calls GiveTokenToNext(), provided \(i\) holds the token. Non-token holding node \(i\) calls RaiseHeight() if the link to \(j\) is now incoming and \(i\) has no outgoing links or \(i\) calls ForwardRequest() if \(Q = \{j\}\) or if \(Q\) is non-empty and the link to next has reversed.

Token messages: When node \(i\) receives a Token message from some neighbor \(j\), \(i\) sets token\(_i\) = true. Then \(i\) lowers its height to be lower than that of the last token holder, node \(j\), informs all its outgoing neighbors of its new height by sending LinkInfo messages, and calls GiveTokenToNext(). Node \(i\) also informs \(j\) of its new height so that \(j\) will know that \(i\) received the token.

LinkInfo messages: If received\(_i\)[j] is true when a LinkInfo message is received at node \(i\) from node \(j\),
When Request(h) received at node i from node j:
1. if (receivedLL[j])
2. height[j] := h
 // set i’s view of j’s height
3. if (myHeight < height[j]) Enqueue(Q, j)
4. if (tokenHolder)
5. if (|Q| > 0) and (status = REMAINDER)
6. GiveTokenToNext()
7. else // not tokenHolder
8. if (myHeight < height[k], ∀k ∈ N)
9. RaiseHeight()
10. else if (|Q| > 0)
11. ForwardRequest() // reroute request

When Token(h) received at node i from node j:
1. tokenHolder := true
2. height[j] := h
3. Send LinkInfo(h.h1, h.h2 − i, i) to all outgoing k ∈ N and to j
4. myHeight.h1 := h.h1
5. myHeight.h2 := h.h2 − 1 // lower my height
6. if (|Q| > 0) GiveTokenToNext()
7. else next := i

When LinkInfo(h) received at node i from node j:
1. N := N ∪ {j}
2. if ((forming[j] and (myHeight ≠ formHeight[j]))
3. Send LinkInfo(myHeight) to j
4. forming[j] := false
5. if (receivedLL[j]) height[j] := h
6. else if (height[j] = h) receivedLL[j] := true
7. if (myHeight > height[j]) Delete(Q, j)
8. if (myHeight < height[k], ∀k ∈ N)
9. RaiseHeight()
10. else if (|Q| > 0)
11. ForwardRequest() // reroute request

Figure 4. Pseudocode triggered by Rece network input events.

Figure 5. Pseudocode triggered by LinkDown and LinkUp network input events.

Link failures: When node i senses the failure of a link to a neighboring node j, it removes j from N, sets receivedLL[j] to true, and, if j is an element of Q, deletes j from Q. Then, if i is not the token holder and i has no outgoing links, i calls RaiseHeight(). If node i is not the token holder, Q is non-empty, and the link to next has failed, i calls ForwardRequest() since it must send another Request for the token.

Link formation: When node i detects a new link to node j, i sends a LinkInfo message to j with myHeight, sets forming[j] to true, and sets formHeight[j] = myHeight.

The pseudocode for the procedures of the RL algorithm is shown in Figure 6.

Procedure ForwardRequest: Selects node i’s lowest height neighbor to be next. Sends a Request message to next.

Procedure GiveTokenToNext: Node i dequeues the first node on Q and sets next equal to this value. If next = i, i enters the CS. If next ≠ i, i lowers height[next] to (myHeight.h1, myHeight.h2 − 1, next), so any incoming Request messages will be sent to next, sets tokenHolder = false, sets receivedLL[next] to false, and then sends a Token message to next. If Q is non-empty after sending a Token message to next, a Request message is sent to next immediately following the Token message so the token will eventually be returned to i.

Procedure RaiseHeight: Called at non-token holding
Procedure `ForwardRequest()`:
1. `next := l ∈ N : height[l] ≤ height[j], ∀ j ∈ N`
2. Send `Request(myHeight)` to `next`

Procedure `GiveTokenToNext()`: // called when |Q| > 0
1. `next := Dequeue(Q)`
2. if (next ≠ i)
3. `tokenHolder := false`
4. `height[next] := (myHeight.h1, myHeight.h2−1, next)`
5. `receivedQueue[next] := false`
6. Send `Token(myHeight)` to `next`
7. if (|Q| > 0) Send `Request(myHeight)` to `next`
8. else // next = i
9. `status := CRITICAL`
10. Enter CS

Procedure `RaiseHeight()`:
1. `myHeight.h1 := 1 − min_{k ∈ N} {height[k].h1}`
2. `S := {l ∈ N : height[l].h1 = myHeight.h1}`
3. if (S ≠ ∅) `myHeight.h2 := min_{k ∈ S} {height[l].h2} − 1`
4. Send `LinkInfo(myHeight)` to all `k ∈ N`
 // raising own height can cause links to be outgoing
5. for (all `k ∈ N` such that `myHeight > height[k]`)
6. `Delete(Q,k)`
 // route request if queue non-empty,
 // just had no outgoing links
7. if (|Q| > 0) `ForwardRequest()`

Figure 6. Pseudocode for procedures.

Node `i` when `i` loses its last outgoing link. Node `i` raises its height (in lines 1-3) using the partial reversal method of [13] and informs all its neighbors of its height change with `LinkInfo` messages. All nodes on `Q` to which links are now outgoing are deleted from `Q`. If `Q` is not empty at this point, `ForwardRequest()` is called since it must send another `Request` for the token.

4.3 Examples of Algorithm Operation

We first discuss the case of a static network, followed by a dynamic network. An illustration of the algorithm on a static network (in which links do not fail or form) is depicted in Figure 7. Snapshots of the system configuration during algorithm execution are shown, with time increasing from 7(a) to 7(e). The direct wireless links are shown as dashed lines connecting circular nodes. The arrow on each wireless link points from the higher height node to the lower height node. The request queue at each node is depicted as a rectangle, the height is shown as a 3-tuple, and the token holder as a shaded circle. The next pointers are shown as solid arrows.

Note that when a node holds the token, its next pointer is directed towards itself.

Figure 7. Operation of reverse link mutual exclusion algorithm on static network.

In Figure 7(a), nodes 2 and 3 have requested access to the CS (note that nodes 2 and 3 have enqueued themselves on `Q2` and `Q3`) and have sent `Request` messages to node 0, which enqueued them on `Q0` in the order in which the `Request` messages were received. Part (b) depicts the system at a later time, where node 1 has requested access to the CS, and has sent a `Request` message to node 3 (note that 1 is enqueued on `Q1` and `Q3`). Figure 7(c) shows the system configuration after node 0 has released the CS and has sent a `Token` message to node 3, followed by a `Request` sent by node 0 on behalf of node 2. Observe that the logical direction of the link between node 0 and node 3 changes from being directed away from node 3 in part (b), to being directed toward node 3 in part (c), when node 3 receives the `Token` message and lowers its height. Notice also the next pointers of nodes 0 and 3 change from both nodes having next pointers directed toward node 0 in part (b) to both nodes having next pointers directed toward node 3 in part (c). Part (d) shows the system configuration after node 3 sent a `Token` message to node 1, followed by a `Request` message. The `Request` message was sent because node 3 received the `Request` message from node 0. Notice that the items at the head of the nodes’ request queues in part (d) form a path from the token holder, node 1, to the sole remaining requester, node 2.
Part (e) depicts the system configuration after Token messages have been passed from node 1 to 3, node 3 to 0, and from node 0 to 2. Observe that the middle element, h2, of each node’s myHeight tuple decreases by 1 for every hop the token travels, so that the token holder is always the lowest height node in the system.

We now consider the execution of the RL algorithm on a dynamic network. The height information allows each node i to keep track of the current logical direction of links to neighboring nodes, particularly to the node chosen to be next. If the link to next changes and |Q| > 0, node i must reroute its request by calling ForwardRequest().

5. Correctness of Reverse Link Algorithm

The following theorem holds because there is only one token in the system at any time.

Theorem 1. The algorithm ensures mutual exclusion.

To prove no starvation, we first show that, after link changes cease, eventually the system reaches a “good” configuration, and then we apply a variant function argument.

We will show that after link changes cease, the logical directions on the links imparted by height values will eventually form a “token oriented” DAG. Since the height values of the nodes are totally ordered, there cannot be any cycles in the logical graph, and thus it is a DAG. The hard part is showing that this DAG is token oriented, defined next.

Definition 1. A node i is the token holder in a configuration if tokenHolderi = true or if a Token message is in transit from node i to nexti.

Definition 2. The DAG is token oriented in a configuration if for every node i, i ∈ {0, . . . , n − 1}, there exists a directed path originating at node i and terminating at the token holder.

To prove Lemma 3, that the DAG is eventually token oriented, we first show, in Lemma 1, that this condition is equivalent to the absence of “sink” nodes [13], as defined below. We then show, in Lemma 2, that eventually there are no more calls to RaiseHeight(). Throughout, we assume that eventually link changes cease.

Definition 3. A node i is a sink in a configuration if (tokenHolderi = false) and (myHeighti < heighti[j]), for all j ∈ Ni.
Lemma 1. In every configuration of every execution, the DAG is token oriented if and only if there are no sinks.

Proof: The only-if direction follows from the definition of a token oriented DAG. The if direction is proved by contradiction. Assume, in contradiction, that there exists a node i in a configuration such that $tokenHolder_i = false$ and for which there is no directed path starting at i and ending at the token holder. Since there are no sinks, i must have at least one outgoing link that is incoming at some other node. Since the number of nodes is finite, the network is connected, and all links are logically directed such that no logical path can form a cycle, there must exist a directed path from i to the token holder, a contradiction.

To show that eventually there are no sinks (Lemma 3), we show that there are only a finite number of calls to $RaiseHeight()$.

Lemma 2. In every execution with a finite number of link changes, there exists a finite number of calls to $RaiseHeight()$.

Proof: In contradiction, consider an execution with a finite number of link changes but an infinite number of calls to $RaiseHeight()$. Then, after link changes cease, some node calls $RaiseHeight()$ infinitely often. We first note that if one node calls $RaiseHeight()$ infinitely often, then every node calls $RaiseHeight()$ infinitely often. To see this, consider that a node i would call $RaiseHeight()$ infinitely often only if it lost all its outgoing links infinitely often. But this would happen infinitely often at node i only if a neighboring node j raised its height infinitely often, and neighboring node j would only call $RaiseHeight()$ infinitely often if its neighbor k raised its height infinitely often, and so on. However, Claim 1 shows that at least one node calls $RaiseHeight()$ only a finite number of times.

Claim 1. No node that holds the token after the last link change ever calls $RaiseHeight()$ subsequently.

Proof: Suppose the claim is false, and some node that holds the token after the last link change calls $RaiseHeight()$ subsequently. Let i be the first node to do so. By the code, node i does not hold the token when it calls $RaiseHeight()$. Suppose that node i sends the token to neighboring node j at time t_1, setting its view of j to be outgoing, and at a later time, t_3, node i calls $RaiseHeight()$. The reason i calls $RaiseHeight()$ at time t_3 is that it lost its last outgoing link. Thus, at time t_2 between time t_1 and t_3, the link between i and j has reversed direction in i's view from outgoing to incoming. By the code, the direction change at node i must be due to the receipt of a $LinkInfo$ or $Request$ message from node j. We discuss these cases separately below.

Case 1: The direction change at node i is due to the receipt of a $LinkInfo$ message from node j at time t_2. By the code, when i sends the token to j at t_1, it sets $receivedL[i][j]$ to false. Therefore, when the $LinkInfo$ message is received at i from j at time t_2, node i must have already reset $receivedL[i][j]$ to true or i would still see the link to j as outgoing and would not call $RaiseHeight()$ at time t_2. Since i called $RaiseHeight()$ after receiving the $LinkInfo$ message from j at time t_2, i must have received the $LinkInfo$ message node j sent when it received the token from i before time t_2, by the FIFO assumption on message delivery. Then node j must have received the token and sent it to another node, $k \neq i$, after which j raised its height and sent the $LinkInfo$ message that node i received at time t_2. However, this violates our assumption that i is the first node to call $RaiseHeight()$ after the last link change, a contradiction.

Case 2: The direction change at node i is due to the receipt of a $Request$ message from node j at time t_2. By a similar argument to case 1, any $Request$ received from node j would be ignored at node i as long as $receivedL[i][j]$ is false. But this means that node j must have called $RaiseHeight()$ after it received the token from node i and subsequently sent the $Request$ received by i at time t_2. Again, this violates the assumption that i is the first node to call $RaiseHeight()$ after the last link change, a contradiction.

Therefore, node i will not call $RaiseHeight()$ at time t_3 and the claim is true.

Therefore, by Claim 1, there is only a finite number of calls to $RaiseHeight()$ in any execution with a finite number of link changes.

Lemma 3 follows from Lemma 2, since if a node becomes a sink, it will eventually be informed via $LinkInfo$ messages and will then call $RaiseHeight()$.
Lemma 3. Once link changes cease, the logical direction on links imparted by height values will eventually always form a token oriented DAG.

Consider a node that is WAITING in an execution at some point after link changes and calls to RaiseHeight() have ceased. We first define the "request chain" of a node to be the path along which its request has propagated. Then we modify the variant function argument in [25] to show that the node eventually gets to enter the CS.

Definition 4. Given a configuration, a request chain for any node l with a non-empty request queue is the maximal length list of node identifiers $p_1 = l, p_2, \ldots, p_j$, where for each $i, 1 < i \leq j$,

- p_i's queue is not empty,
- $p_i = \text{next}_{p_{i-1}}$,
- the link between p_{i-1} and p_i is outgoing at p_{i-1} and incoming at p_i,
- no Request message is in transit from p_{i-1} to p_i, and
- no Token message is in transit from p_i to p_{i-1}.

Lemma 4 gives useful information about what is going on at the end of a request chain:

Lemma 4. The following is true in every configuration: Let l be a node with a non-empty request queue and let $p_1 = l, p_2, \ldots, p_j$ be l's request chain. Then

(a) l is in Q_l iff l is WAITING,
(b) p_{i-1} is in $Q_{p_i}, 1 < i \leq j$, and
(c) either p_j is the token holder,
 or a Token message is in transit to p_j,
 or a Request message is in transit from p_j to next_{p_j},
 or a LinkInfo message is in transit from next_{p_j} to p_j
 with next_{p_j} higher than p_j,
 or next_{p_j} sees the link to p_j as failed.

Proof: By induction on the execution.

Property (a) can easily be shown to hold, since a node enqueues its own identifier when its application requests access to the CS, at which point it changes its status to WAITING. By the code, at no point will a node dequeue its own identifier until just before it enters the CS and sets its status to CRITICAL.

Properties (b) and (c) are vacuously true in the initial configuration, since no node has a non-empty queue.

Suppose (b) and (c) are true in the $(t - 1)^{st}$ configuration, C_{t-1}, of the execution. It is possible to show these properties are true in the t^{th} configuration, C_t, by considering in turn every possibility for the t^{th} event. Most of the events applied to C_{t-1} are easily shown to yield a configuration C_t in which properties (b) and (c) are true. Here we discuss the events for which the outcome is less clear by presenting the problematic cases that can appear to disrupt a request chain. We note that, in the following cases, non-token holding nodes are often required to find an outgoing link due to link reversals or failures. It is not hard to show that a node i that is not the token holder can always find an outgoing link due to the performance of RaiseHeight().

Case 1: Node i receives a Request(h) from node j and does not enqueue j on its request queue. To ensure that j's Request is not overlooked, causing possible starvation, we show that either a LinkInfo or a Token message is sent to j from i if a Request from j is received at i and j is not enqueued.

Case 1.1: receivedLI[j] is false at i. It must be that i sent the token to j in some previous configuration and i has not yet received the LinkInfo message that j must send to i upon receipt of the token. If the token is not in transit from i to j or held by j in C_{t-1}, then earlier j had the token and passed it on. The Request received by i was sent before the LinkInfo message that j must send to i upon receipt of the token. So if j is WAITING in C_{t-1}, it has already sent a newer Request and properties (b) and (c) hold for this request chain in C_t by the inductive hypothesis.

Case 1.2: receivedLI[j] is true at i. Then if j is not enqueued on i's request queue, it must be that myHeight$_i > h$. Since j viewed i as outgoing when it sent the Request, node i must have either called RaiseHeight() after j was in N_i or the relative heights of i and j changed between the time link(i,j) was first detected and before j was added to N_i. In either case, node j must eventually receive a LinkInfo message from i and see that its link to next$_j$ has reversed, in which case j will take action resulting in the eventual sending of another Request.
Case 2: Node i receives an input causing it to delete identifier j from its request queue. To ensure that j's Request is not forgotten when i calls Delete(Q,j), we show that either node j received a Token message prior to the deletion, in which case j's Request is satisfied, or node j is notified that the link to i failed, in which case j will take the appropriate action to reroute the request chain.

Case 2.1: Node i calls Delete(Q,j) because it receives a LinkInfo message from j indicating that i's link to j has become outgoing at i. Then, since i enqueued j, it must be that in some earlier configuration i saw the link to j as incoming. Since the receipt of the LinkInfo message from j caused the link to change from incoming to outgoing in i's view, it must be that the LinkInfo was sent by j when j received the token and lowered its height. If the token is not held by j in C_{i-1}, then earlier j had the token and passed it on. If j is WAITING in C_{i-1}, it has already sent a newer Request and properties (b) and (c) hold for this request chain in C_{i} by the inductive hypothesis.

Case 2.2: Node i calls Delete(Q,j) because it received an indication that link (i,j) failed. Then j must receive the same indication, in which case it can take appropriate action to advance any request chains.

Therefore, no action taken by node i can make properties (b) and (c) false and the lemma holds.

Lemma 5. Once link changes and calls to RaiseHeight() cease, for every configuration in which a node l's request chain does not include the token holder, then there is a later configuration in which l's request chain does include the token holder.

Proof: By Lemma 3, after link changes cease, eventually a token oriented DAG will be formed. Consider a configuration after link changes and calls to RaiseHeight() cease in which the DAG is token oriented, meaning that all LinkInfo messages generated when nodes raise their heights have been delivered.

The proof is by contradiction. Assume node l's request chain never includes the token holder. So the token can only be held by or be in transit to nodes that are not in l's request chain. By our assumption on the execution, no LinkInfo messages caused by a call to RaiseHeight() will be in transit to a node in l's request chain, nor will any node in l's request chain detect a failed link to a neighboring node. Therefore, by Lemma 4(c), a Request message must be in transit from a node in l's request chain to a node that is not in l's request chain, and the number of nodes in l's request chain will increase when the Request message is received. At this point, l's request chain will either include the token holder, another Request message will be in transit from a node in l's request chain to a node that is not in l's request chain, or l's request chain will have joined the request chain of some other node. While the number of nodes in l's request chain increases, the number of nodes not in l's request chain decreases, since there are a finite number of nodes in the system. So eventually l's request chain includes all nodes. Therefore, if the token is not eventually contained in l's request chain, it is not in the system, a contradiction.

Let l be a node that is WAITING after link changes and calls to RaiseHeight() cease. Given a configuration s in the execution, a function V_i for l is defined to be the following vector of positive integers. Let $p_1 = l, p_2, \ldots, p_m$ be l's request chain. $V_i(s)$ has either $m + 1$ or m elements (v_1, v_2, \ldots), depending on whether a Request message is in transit from p_m or not. In either case, v_1 is the position of $p_1 (= l)$ in Q_i, and for
1 < j ≤ m, v_j is the position of \(p_{j-1} \) in \(Q_{p_j} \). (Positions are numbered in ascending order with 1 being the head of the queue.) If a Request message is in transit, then \(V_i(s) \) has \(m + 1 \) elements and \(v_{m+1} = n + 1 \); otherwise, \(V_i(s) \) has only \(m \) elements. These vectors are compared lexicographically.

Lemma 6. \(V_i \) is a variant function.

Proof. The key points to prove are:

1. \(V_i \) never has more than \(n \) entries and every entry is between 1 and \(n + 1 \), so the range of \(V_i \) is well-founded.
2. Most events can be easily seen not to increase \(V_i \).

Here we discuss the remaining events.

When the Request message at the end of \(l \)'s request chain is received by node \(j \) from node \(p_m \), \(l \)'s request chain increases in length to \(m + 1 \), \(V_i \) decreases from \(\langle v_1, \ldots, v_m, n + 1 \rangle \) to \(\langle v_1, \ldots, v_m, v_{m+1}, \ldots \rangle \), where \(v_{m+1} < n + 1 \) since \(v_{m+1} \) is \(p_m \)'s position in \(Q_j \) after the Request message is received.

When a Token message is received by the node \(p_m \) at the end of \(l \)'s request chain, it is either

- kept at \(p_m \), so \(V_i \) decreases from \(\langle v_1, \ldots, v_{m-1}, v_m \rangle \) to \(\langle v_1, \ldots, v_{m-1}, v_m - 1 \rangle \),
- or sent toward \(l \), so \(V_i \) decreases from \(\langle v_1, \ldots, v_{m-1}, v_m \rangle \) to \(\langle v_1, \ldots, v_{m-1}, v_{m-1} \rangle \),
- or sent away from \(l \), followed by a Request message, so \(V_i \) decreases from \(\langle v_1, \ldots, v_{m-1}, v_m \rangle \) to \(\langle v_1, \ldots, v_{m-1}, v_m - 1, n + 1 \rangle \).

(3) To see that the events that cause \(V_i \) to decrease will continue to occur, consider the following two cases:

Case 1: The token holder is not in \(l \)'s request chain.

By Lemma 5, eventually the token holder will be in \(l \)'s request chain.

Case 2: The token holder is in \(l \)'s request chain.

Since no node stays in the CS forever, at some later time the token will be sent and received, decreasing the value of \(V_i \), by part (2) of this proof.

Once \(V_i \) equals (1), \(l \) enters the CS. We have:

Theorem 2. If link changes cease, then every request is eventually satisfied.

6. Simulation Results

In this section we discuss the static and dynamic performance of the Reverse Link (RL) algorithm compared to a mutual exclusion algorithm designed to operate on a static network. We simulated Raymond’s token based mutual exclusion algorithm [25] as if it were running on top of a “routing” layer that always provided shortest path routes between nodes. In this section, we will refer to this simulation as “Raymond’s with routing” (RR). Raymond’s algorithm was used because it is the static algorithm from which the RL algorithm was adapted and because it does not provide for link failures and recovery and must rely on the routing layer to maintain logical paths if run in a dynamic network.

Complexity comparison of a routing protocol is complicated by the fact that the number of messages and amount of time needed to maintain routes can be amortized over the number of applications using those routes. In order to make our results more generally applicable, we made best-case assumptions about the underlying routing protocol used with Raymond’s algorithm: that it always provides shortest paths and its time and message complexity are zero. If our simulation shows that the RL algorithm is better than the RR combination in some scenario, then the RL algorithm will also be better than Raymond’s algorithm in that scenario when any real ad hoc routing algorithm is used. If our simulation shows that the RL algorithm is worse than the RR combination in some scenario, then it might or might not be worse in an actual situation, depending on how much worse it is in the simulation and what are the costs of the routing algorithm.

A 30 node system was simulated under various scenarios. A 30 node system was chosen, in part, because for networks larger than 30 nodes the time needed for simulation was very high. Also, ad hoc networks are generally envisioned to be much smaller scale than wired networks like the Internet. Typical numbers of nodes used for simulations of ad hoc networks range from 10 to 50 [4–6,15,18,26].

In all our experiments, each CS execution took one time unit and each message delay was one time unit. Requests for the CS were modeled as a Poisson process with arrival rate \(\lambda_{req} \). Thus the time delay between when a node left the CS and made its next request to enter the CS is an exponential random variable with
mean $\frac{1}{\lambda_{req}}$ time units. Link changes were modeled as a Poisson process with arrival rate λ_{mob}. Hence the time delay between each change to the graph is an exponential random variable with mean $\frac{1}{\lambda_{mov}}$ time units. Each change to the graph consisted of the deletion of a link chosen at random (whose loss did not disconnect the graph) and the formation of a link chosen at random.

In each execution, we measured the average number of time units that nodes spent in their WAITING sections and the average number of messages sent per CS entry, while varying the load on the system (λ_{req}), the degree of mobility (λ_{mob}), and the “connectivity” of the graph. Connectivity was measured as the percentage of possible links that were present in the graph. Note that a clique on 30 nodes has 435 (undirected) links.

In the graphs of our results, each plotted point represents the average of five repetitions of the simulation. Thus in plots of average time per CS entry, each point is the average of the averages from five executions, and similarly for plots of average number of messages per CS entry.

The same set of initial graphs were used on both the RL and RR simulations for each experiment. During periods of mobility, link changes were not allowed to change the percent connectivity of the initial graph more than 10% in either the positive or negative direction. For example, when starting with an initial graph with a connectivity of 30%, the connectivity of the graph was maintained at values between 20% and 40% connectivity during simulations with mobility.

Throughout this section, part (a) of each figure displays results when the graph is static, part (b) when $\lambda_{mob} = 5 \times 10^{-2}$ (low mobility), and part (c) when $\lambda_{mob} = 5 \times 10^{-1}$ (high mobility). Our choice for the value of the low mobility parameter corresponds to the situation where nodes remain stationary for a few tens of seconds after moving and prior to making another move. Our choice for the value of the high mobility parameter represents a much more volatile network, where nodes remain static for only a few seconds between moves.

6.1. Average waiting time per CS entry

Figure 9 plots the average number of time units elapsed between host request and subsequent entry to the CS against values of λ_{req} increasing from 10^{-3} (the mean time units between requests is 10^{3}) to 1 (the mean time units between requests is 1) from left to right along the x axis. We chose the high load value of λ_{req} because at this rate each node would have a request pending almost all the time. The low load value of λ_{req} represents a much less busy network, with requests rarely pending at all nodes at the same time. Plots are shown for runs with 20% (87 links) and 80% (348 links) connectivity for both the RL and RR simulations.

In the static case, shown in Figure 9(a), RR has waiting time roughly equal to RL at the lowest and highest loads and better average waiting time when load is 0.01. In RL at a load of 0.001, the LinkInfo messages have sufficient time at the start of the execution to propagate between token moves, reducing the path length between potential requesters and the token holder. When load is 0.01, LinkInfo messages in RL do not have sufficient time to propagate between token moves, resulting in longer request paths and more token hops between consecutive requesters. Both simulations have roughly the same average wait time when load is 0.1 or higher in the static case. This similarity can be explained by the observation that the network begins to be saturated with requests at these loads so that a given node must wait for the token to be used by a greater number of other nodes between its own consecutive CS entries.

Figure 9, parts (b) and (c), indicate that RL has better performance than RR in terms of average waiting time per CS entry for medium to high loads when nodes are mobile. The waiting time advantage of RL over RR increases with increasing load and increasing mobility, particularly at low connectivity. At high connectivity, it is less probable that a particular route between two nodes will be disrupted, resulting in similar performance of the RL and RR simulations. When connectivity decreases in a mobile network, the RR average wait time increases because Raymond’s algorithm sends application messages over a static virtual spanning tree. When a message is sent from a node to one of its neighbors in the virtual spanning tree, it may actually be routed over a long distance, thus increasing the time delay. In contrast, the RL algorithm uses accurate information about the actual current topology, resulting in less delay between each request and subsequent CS entry.

In order to further study the effect of connectivity, we ran the experiments shown in Figure 10: the average number of time units elapsed between host re-
From Figure 10(a), the static case, we can see that, at the loads tested, the RL and RR simulations have nearly the same average waiting time at all connectivities. This corroborates the results shown in Figure 9(a). At low load in the RL algorithm, there is sufficient time for LinkInfo messages to propagate to all neighbors between token moves, resulting in request paths that are as short as those existing in the RR simulation. At high load, there is always a request pending at every node, resulting in a round robin pattern of CS entries for both RR and RL, regardless of connectivity.

The advantage gained by the RL algorithm in terms of waiting time per CS entry becomes apparent when nodes are mobile, as shown in Figure 10, parts (b) and (c). Because request paths and request queues change to match the physical connectivity in the network in RL, the token spends more time in actual use. In the RR simulation, the token spends more time traveling between nodes because request queues are not modified when links fail, resulting in higher average wait time at all connectivity ranges. At the highest mobility, the RL simulation had a lower average wait time at both tested loads when the connectivity was 20% or lower.

The results of the simulations in this section are summarized in Table 1. This table includes data points from both sets of graphs depicted in this subsection. The chosen data points show average waiting time for high (80%) and low (20%) connectivity and for high and low loads in all mobility scenarios.

6.2. Average messages per CS entry

The RR algorithm sends request and token messages along the virtual spanning tree. Each message from a node to its virtual neighbor is converted into a sequence of actual messages, that traverse the (current) shortest path from the sender to the recipient.

The RL algorithm sends Request and Token messages along the actual token oriented DAG. In addition, as the token traverses a path, each node on that path sends LinkInfo messages to all its outgoing neighbors. Additional LinkInfo messages are sent, and propagated, when a link failure causes a node to lose its last outgoing link.

Our experimental results reflect the relative number of hops taken by algorithm messages for RR versus the relative number of hops taken by algorithm messages and LinkInfo messages to maintain the DAG for RL.
Figure 10. Connectivity vs. time per CS entry for (a) zero, (b) low ($\lambda_{mob} = 5 \times 10^{-2}$), and (c) high ($\lambda_{mob} = 5 \times 10^{-1}$) mobility in RL vs. RR simulations.

When interpreting these results, it is important to remember that the simulation of the RR algorithm is not charged for messages needed to recalculate the routes due to topology changes. Thus, if RL is better than RR in some situation, it will certainly be better when routing messages are charged to it, even if they are prorated.

Also, if RR is better than RL in another situation, depending on how much better it is, RL might be comparable or even better than RR when routing messages are charged to RR.

Figure 11 plots the average number of messages received per CS execution against values of λ_{req} ranging from 10^{-3} (the mean time units between requests is 10^3) to 1 (the mean time units between requests is 1) from left to right along the x axis. Plots are shown for runs with 20% (87 links) and 80% (348 links) connectivity for both the RL and RR simulations.

Figure 11 shows that the RR algorithm sends fewer messages per CS entry than the RL algorithm in all simulation trials at these two particular connectivity values.

In all situations studied, except the RL simulation in the static case with high connectivity, the number of messages per CS entry tends to decrease as load increases. The reason for this decrease in number of messages is that, although the overall number of messages increases with load in both algorithms due to the additional token and request messages, the overall number of CS entries increases proportionately faster as load increases. In the extreme, at very high load, every time the token moves, it is likely to cause a CS entry.

In the static case (Figure 11(a)) with 80% connectivity, the RL algorithm reaches a peak in number of messages per CS entry at a load of 0.01, a pattern that
of messages per CS entry.

The RL algorithm sends more messages per CS entry than the RR algorithm when mobility causes link changes, and the number of messages sent in the RL algorithm grows very large under low loads, as can be observed in Figures 11(b) and (c). When links fail and form, the RL algorithm sends many LinkInfo messages to maintain the token oriented DAG, resulting in a higher message to CS entry ratio at low loads when the degree of mobility remains constant.

Figure 12 shows the results of experiments designed to understand the effect of connectivity on the number of messages per CS entry. In the figure, the average number of messages per CS entry is plotted against network connectivity increasing from 10% (43 links) to 100% (435 links) from left to right on the x-axis. Curves are plotted for low load, where $\lambda_{req} = 10^{-3}$ (the mean time units between requests is 10^3) and high load, where $\lambda_{req} = 1$ (the mean time units between requests is 1) for both the RL and RR simulations.

In the static case (Figure 12(a)), the number of RL messages per CS entry increases with connectivity. As connectivity increases, the number of neighbors per node increases, resulting in more LinkInfo messages being sent as the token travels. The number of messages sent per CS entry in the RR simulation decreases with connectivity, since the shortest path lengths between neighbors in the virtual spanning tree decrease. At high load, simulation results for the RR simulation in the static case match the performance of approximately 4 messages per CS entry cited by Raymond [25] for all connectivity levels. This performance is also matched by the RR simulation at lower loads when connectivity is above 80%, due to the extremely short request paths when connectivity is high.

In the RL algorithm, there are two opposing trends with increasing connectivity when nodes are moving (Figure 12, parts (b) and (c)) that appear to cancel each other out: 1) higher connectivity means more neighbors per node, which means more LinkInfo messages will be sent with each failure, and 2) more neighbors per node means that it is less likely for a link failure or reversal to involve the last outgoing link, and thus LinkInfo messages due to failure will propagate less. At high load, the RL simulation sends nearly as few or even fewer messages than does RR when connectivity is below 20% and nodes are mobile (Figures 12(b) and (c)).
Figure 12. Connectivity vs. messages per CS entry for (a) zero, (b) low \(\lambda_{mob} = 5 \times 10^{-2} \), and (c) high \(\lambda_{mob} = 5 \times 10^{-1} \) mobility in RL vs. RR simulations.

The results of the simulations measuring messages per CS entry are summarized in Table 2. This table includes data points from both sets of graphs depicted in this subsection. The chosen data points show average number of messages for high (80%) and low (20%) connectivity and for high and low loads in all mobility scenarios.

<table>
<thead>
<tr>
<th>Table 2: Summary of average messages per CS entry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RR high load</td>
</tr>
<tr>
<td>RR low load</td>
</tr>
<tr>
<td>RL low load</td>
</tr>
<tr>
<td>RL high load</td>
</tr>
</tbody>
</table>

\(^a \) Mean time units between each link change = 500.

\(^b \) Mean time units between each link change = 50.

\(^c \) Average network connectivity.

\(^d \) Mean time units between requests = 1.

\(^e \) Mean time units between requests = 1000.

7. Conclusion and Discussion

We presented a distributed mutual exclusion algorithm designed to be aware of and adapt to node mobility, along with a proof of correctness, and simulation results comparing the performance of this algorithm to that of a static token based mutual exclusion algorithm running on top of an ideal ad hoc routing protocol. We assumed there were no partitions in the network throughout this paper for simplicity; partitions can be handled in our algorithm by using a method similar to that used in the TORA ad hoc routing protocol [22]. In [22], additional labels are used to represent the heights of nodes, allowing nodes to detect, by recognition of the originator of a chain of height increases, when a series of height changes has occurred at all reachable nodes without encountering the “destination”. A similar partition detection mechanism could be incorporated into our mutual exclusion algorithm at the expense of slightly larger messages.

Our algorithm compares favorably to the layered approach using an ad hoc routing protocol, generally providing better average waiting time per CS entry in scenarios when nodes are mobile. Our simulation results indicate that in many situations the message complex-
ity per CS entry of our algorithm would not be greater than the message cost incurred by a static mutual exclusion algorithm running on top of an ad hoc routing algorithm, when messages of both the mutual exclusion algorithm and the routing algorithm are counted.

Acknowledgements

We thank Savita Kini for many discussions on previous versions of the algorithm, Soma Chaudhuri for careful reading and helpful comments on the liveness proof, and Debra Ellkins for helpful discussions.

References