The single-source shortest path problem (SSSP) is the problem of finding a minimum weight (shortest) path from a specific source node s in a directed graph $G = (V, E)$ with edge weights to every other node in V.

Input:
- A directed graph $G = (V, E)$ with edge weights.
- A specific source node s.

Goal:
- Find a minimum weight (shortest) path from s to every other node in V.

It turns out that, in the worst case, finding the shortest path to a single node t is no easier than finding the shortest paths to all other nodes.

Single-Source Shortest Paths (Ch. 24)

Weights in SSSP algorithms include distances, times, hops, cost, etc. Used in lots of routing applications.

Note: BFS finds the shortest paths for the special case when all edge weights are 1. Running time = $O(V + E)$

Dijkstra’s SSSP Algorithm

1. $Q = \emptyset$ //** Q is a priority queue.
2. $d[s] = 0$ and insert s into Q.
3. for each $v \neq s$.
4. \[d[v] = \infty \]
5. insert v into Q with key $d[v]$.
6. while $Q \neq \emptyset$.
7. $u = \text{extract-min}(Q)$.
8. for each outgoing neighbor of u.
9. \[d[v] = \min\{d[v], d[u] + w(u,v)\} \]
10. endfor.
11. endwhile.

Procedure relax (s, y)

\[d[y] = \min\{d[y], d[s] + w(s,y)\} \]

Tree nodes are nodes extracted from Q (in S, the set of shortest paths).

Fringe nodes are nodes in Q with $d[v] < \infty$

Unseen nodes are nodes in Q with $d[v] = \infty$

Negative-weight cycles

Some graphs may have negative-weight cycles and these are a problem for SSSP algorithms.

What is the shortest path from a to d?

- path $a \rightarrow c \rightarrow e \rightarrow d = -12 + 3 - 2 = -11$
- path $a \rightarrow c \rightarrow e \rightarrow d \rightarrow a \rightarrow c \rightarrow e \rightarrow d = -12 + 3 - 2 + 10 - 12 + 3 - 2 = -13$

If we keep going around the cycle $(d \rightarrow a \rightarrow c \rightarrow e \rightarrow d)$, we keep shortening the weight of the path. So the shortest path has weight $-\infty$.

To avoid this problem, we require that the graph has no negative weight cycles, otherwise the solution does not exist.

Question: Can a shortest path contain a cycle?

No.

Suppose we have a shortest path $p = \langle v_1, v_2, ..., v_k \rangle$ and $c = \langle v_i, v_{i+1}, ..., v_j \rangle$ is a positive-weight cycle on p so that $v_i = v_j$ and $w(c) > 0$. Then the path (obtained from splicing out c)

$p' = \langle v_1, v_2, ..., v_{i-1}, v_{i+1}, v_{i+2}, ..., v_j, v_{j+1}, ..., v_k \rangle$

has $w(p') = w(p) - w(c) < w(p)$. So p' can’t be a shortest path.

Therefore, we can assume, wlog, that shortest paths have no cycles.

Tree nodes are nodes extracted from Q (in S, the set of shortest paths).

Fringe nodes are nodes in Q with $d[v] < \infty$

Unseen nodes are nodes in Q with $d[v] = \infty$

Algorithm SSSP-Dijkstra (G, s)

1. $Q = \emptyset$ //** Q is a priority queue.
2. \[d[s] = 0 \] and insert s into Q.
3. **for each** $v \neq s$.
4. \[d[v] = \infty \]
5. **insert** v into Q with key $d[v]$.
6. **while** $Q \neq \emptyset$.
7. **$u = \text{extract-min}(Q)$**.
8. **for each** (outgoing) neighbor of u.
9. \[d[v] = \min\{d[v], d[u] + w(u,v)\} \]
10. **endfor**.
11. **endwhile**.

Trace execution of Dijkstra’s algorithm on graph below.
Algorithm SSSP - Dijkstra

1. \(Q = \emptyset \) \hfill (** Q is a priority queue \\
2. \(d[s] = 0 \) and insert \(s \) into \(Q \) \\
3. for each \(v \neq s \) \\
4. \(d[v] = \infty \) \\
5. insert \(v \) into \(Q \) with key \(d[v] \) \\
6. while \(Q \neq \emptyset \) \\
7. \(u = \text{extract-min}(Q) \) \\
8. for each neighbor of \(u \) \\
9. \(d[v] = \min\{d[v], d[u] + w(t, u)\} \)

Running Time of Dijkstra’s SSSP Alg

Steps 1-5: \(O(V) \) time \\
Steps 6-11: \(V \) iterations \\
Suppose extract-min takes \(O(X) \) time. \\
Total: \(O(VX + E) \)

Exercise:

1. Give a simple example of a directed graph with negative weight edges (but no negative weight cycles) for which Dijkstra’s alg produces incorrect answers.
2. Suppose we change line 6 to “while \(|Q| > 1\)” This change causes the while loop to execute \(|V| - 1\) times instead of \(|V|\) times. Is this proposed algorithm correct? Why or why not?
Correctness of Dijkstra’s SSSP Alg

Lemma: For all nodes $x \in V$:
(a) if $x \in S$ ($x \notin Q$), then the shortest s to x path only uses nodes in S and $d[x]$ is its weight.
(b) if $x \notin S$ ($x \in Q$), then $d[x]$ is weight of the shortest s to x path, all of whose intermediate nodes are in S.

Proof:
By induction on i, the number of iterations of the while loop.

Basis: $i = 1$, $S = \{s\}$, and $d[x] = \infty$ if x is not a neighbor of s, and otherwise $d[x] = wt(s, x)$. So both (a) and (b) hold.

Inductive Hypothesis (IHOP): Assume true for iteration $i - 1$.

Lemma: For all nodes $x \in V$:
(a) if $x \in S$ ($x \notin Q$), then the shortest s to x path only uses nodes in S and $d[x]$ is its weight.
(b) if $x \notin S$ ($x \in Q$), then $d[x]$ is weight of the shortest s to x path, all of whose intermediate nodes are in S.

Induction Step: Show Lemma is true for iteration i.

Let u be the node selected in the ith iteration (the node in Q with minimum $d[u]$ value).

Proof of (a): (Assume x is in S)

Case 1: $x \neq u$. Then x was in S before iteration i, and by the IHOP, we already had the best s to x path.

Case 2: $x = u$. Suppose in contradiction the shortest s to u path uses some node r not in S after iteration i.

- $d[u]$ is wt of shortest s to u path with all internal nodes in S (IHOP)
- $d[r]$ is wt of shortest s to r path with all internal nodes in S (IHOP)
- $d[u] \leq d[r]$ since alg picks $u = x$ in iteration i.

So...the shortest s to u path can’t go through r since there are no negative weight edges.

Proof of (b) (cont): Choose x that is not in S after iteration i ($x \neq u$):

Case 2: x is a neighbor of u.

The algorithm checks to see if it is better to go from s to x via u, or to choose an edge from some other node in S.

Exercise: Why doesn’t the proof of correctness for Dijkstra’s algorithm go through when negative edge weights are allowed?
The Path-relaxation property

- If \(p = v_0, v_1, \ldots, v_k \) is a shortest path from \(s = v_0 \) to \(v_k \), and the edges of \(p \) are relaxed in the order \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k) \), then \(d[v_k] = \delta(s, v_k) \). This property holds regardless of any other relaxation steps that occur, even if these other steps are intermixed with relaxations of the edges of \(p \).

Algorithm SSSP-Dijkstra \((G, s)\)

1. \(Q = \emptyset \) //** \(Q \) is a priority queue
2. \(d[s] = 0 \) and insert \(s \) into \(Q \)
3. for each \(v \neq s \)
4. \(d[v] = \infty \)
5. insert \(v \) into \(Q \) with key \(d[v] \)
6. while \(Q \neq \emptyset \)
7. \(u = \text{extract-min}(Q) \)
8. for each neighbor \(v \) of \(u \)
9. \(\text{relax}(u, v) \)
10. endfor
11. endwhile

Procedure relax \((x,y)\)

\[d[y] = \min\{d[y], d[x] + \text{wt}(x,y)\} \]

Note: Dijkstra's algorithm does not ensure that the edges are examined in any particular order, but it does ensure that, at the time \(u \) is extracted from \(Q \), \(d[u] = \delta(s, u) \).

Bellman-Ford SSSP Algorithm

- Computes single-source shortest paths even when some edges have negative weight.
- Can detect if there are any negative-weight cycles in the graph.

Algorithm SSSP-Bellman-Ford \((G, s)\)

1. \(d[s] = 0 \)
2. for each \(v \neq s \)
3. \(d[v] = \infty \)
4. for \(i = 1 \) to \(|V| - 1\)
5. for each edge \((u, v) \in E\)
6. \(d[v] = \min\{d[v], d[u] + \text{wt}(u,v)\} \)
7. for each edge \((u, v) \in E\)
8. if \(d[v] > d[u] + \text{wt}(u,v) \)
9. return false
10. return true

Procedure relax \((x,y)\)

\[d[y] = \min\{d[y], d[x] + \text{wt}(x,y)\} \]

Bellman-Ford SSSP Algorithm

The algorithm has 2 parts:
Part 1: Computing shortest paths tree:
- \(|V| - 1\) iterations.
- Iteration \(i \) computes the shortest path from \(s \) using paths of up to \(i \) edges.

Part 2: Checking for negative-weight cycles.

Correctness of Bellman-Ford Algorithm

- **Theorem:** Suppose there are no negative-weight cycles in \(G \). After \(|V| - 1\) iterations of the for loop, \(d[v] = \delta(s,v) \) for all vertices \(v \) that are reachable from \(s \).
- **Proof:**
 - If \(v \) is reachable from \(s \), then there is an acyclic path from \(s \) to \(v \), say \(s = u_0, u_1, u_2, \ldots, u_k = v \), where \(k < |V| \).
 - There are \(k \) edges in this path.
 - By the path relaxation property, after the first pass, \(u_0, u_1 \) is a shortest path; after the second pass, \(u_0, u_1, u_2 \) is a shortest path; after \(k \) passes, \(u_0, u_1, u_2, \ldots, u_k \) is a shortest path.
Complexity of Bellman-Ford Algorithm

- Initialization = $O(V)$
- decrease-key is called $(|V| - 1) \times |E|$ times
- Test for any negative-weight cycle = $O(E)$
- Total: $O(VE)$ -- so more expensive than Dijkstra’s, but also more general, since it works for graphs with negative edge weights.

SSSPs in DAGs

- If the graph is a DAG, we can use a topological sort on the vertices and compute the shortest path from a single source in $O(V + E)$ time

Alternate topological sort

- The in-degree of vertex u is the number of incoming edges incident on u. The out-degree of vertex u is the number of outgoing edges incident on u.

Property of a DAG

- Why does the previous algorithm work?
- Claim: a DAG G must have some vertex with no incoming edges. Why?

Suppose, in contradiction, that every vertex in G has at least one incoming edge. Choose a vertex v_0. Trace the edge incoming at v_0 to its source, v_1. Since v_1 must have an incoming edge, we can follow that edge to its source, v_2. If we continue backtracking in this fashion, since there are a finite number of vertices, we will eventually return to a previously visited vertex. At this point, we will have discovered a cycle, which is a contradiction to our assumption that G is a DAG.

Therefore, a DAG has at least one vertex with no incoming edge (a similar argument holds for outgoing edges).

SSSPs in DAGs

Note: This algorithm will work with negative weight edges in the DAG.

DAG-Shortest-Paths (G, s)

1. Topological-Sort(G)
2. $d[s] = 0$
3. for each $v \neq s$
 4. $d[v] = \infty$
5. for each vertex u, taken in topologically sorted order
6. for each vertex v adjacent to u
7. relax(u, v)

Note: This algorithm will work with negative weight edges in the DAG.

DAG-Shortest-Paths (G, s)

1. Topological-Sort(G)
2. $d[s] = 0$
3. for each $v \neq s$
 4. $d[v] = \infty$
5. for each vertex u, taken in topologically sorted order
6. for each vertex v adjacent to u
7. relax(u, v)

SSSPs in DAGs

Note: This algorithm will work with negative weight edges in the DAG.

DAG-Shortest-Paths (G, s)

1. Topological-Sort(G)
2. $d[s] = 0$
3. for each $v \neq s$
 4. $d[v] = \infty$
5. for each vertex u, taken in topologically sorted order
6. for each vertex v adjacent to u
7. relax(u, v)

SSSPs in DAGs

- In a topologically sorted list of vertices, all edges will go from left to right. Once all outgoing edges at a node u have been relaxed, u will never be revisited. Since we process the nodes in topologically-sorted order, the nodes at 1 hop from s will be finished before those at 2 hops, etc. By the path-relaxation property, all shortest paths will be found.

List the shortest path distance from s to every other node in the above graph.